

wwPDB EM Validation Summary Report (i)

May 19, 2024 – 08:18 AM EDT

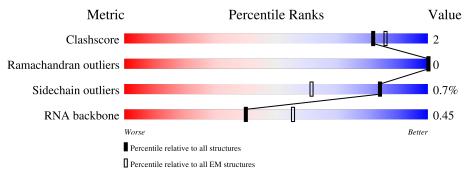
PDB ID	:	7MQB
EMDB ID	:	EMD-23941
Title	:	Bartonella henselae NrnC bound to pGG. D4 Symmetry
Authors	:	Lormand, J.D.; Brownfield, B.; Fromme, J.C.; Sondermann, H.
Deposited on	:	2021-05-05
Resolution	:	3.25 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


EMDB validation analysis	:	0.0.1.dev92
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.25 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	207	92%	7% •
1	С	207	92%	7% •
1	Е	207	92%	7% •
1	G	207	92%	7% •
1	Ι	207	92%	7% •
1	Κ	207	92%	7% •
1	М	207	92%	7% •

Continued on next page...

Mol	Chain	Length	Quality of chain	
1	0	207	5% 92%	7% •
2	В	2	50%	50%
2	D	2	50%	50%
2	F	2	50%	50%
2	Н	2	50%	50%
2	J	2	50%	50%
2	L	2	50%	50%
2	N	2	50%	50%
2	Р	2	50%	50%

Continued from previous page...

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 12760 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

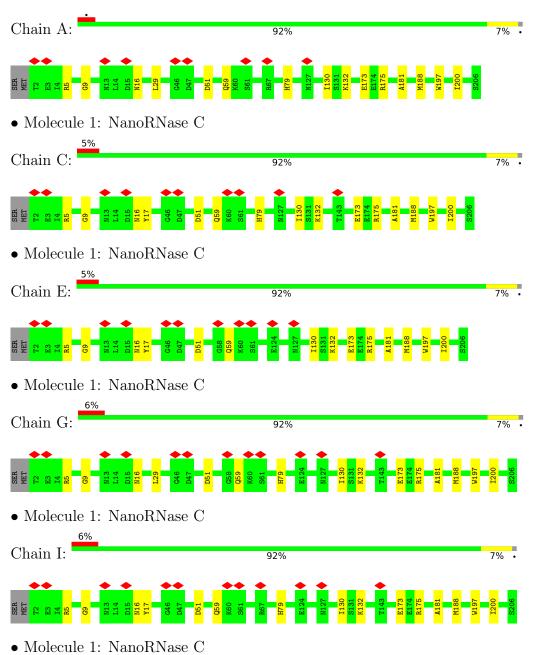
Mol	Chain	Residues		At	oms			AltConf	Trace
1	А	205	Total	С	Ν	0	S	0	0
	A	205	1548	988	281	273	6	0	0
1	С	205	Total	С	Ν	0	S	0	0
	C	205	1548	988	281	273	6	0	0
1	Е	205	Total	С	Ν	0	S	0	0
	Ľ	203	1548	988	281	273	6	0	0
1	G	205	Total	С	Ν	0	S	0	0
	G	203	1548	988	281	273	6	0	0
1	Ι	205	Total	С	Ν	0	S	0	0
1	1	205	1548	988	281	273	6	0	
1	K	205	Total	С	Ν	0	S	0	0
1	Т	205	1548	988	281	273	6	0	0
1	М	205	Total	С	Ν	0	S	0	0
	111	200	1548	988	281	273	6		
1	1 O	205	Total	С	Ν	0	S	0	0
	0	205	1548	988	281	273	6	0	0

• Molecule 1 is a protein called NanoRNase C.

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	0	SER	-	expression tag	UNP X5MEI1
С	0	SER	-	expression tag	UNP X5MEI1
Е	0	SER	-	expression tag	UNP X5MEI1
G	0	SER	-	expression tag	UNP X5MEI1
Ι	0	SER	-	expression tag	UNP X5MEI1
K	0	SER	-	expression tag	UNP X5MEI1
М	0	SER	-	expression tag	UNP X5MEI1
0	0	SER	-	expression tag	UNP X5MEI1

• Molecule 2 is a RNA chain called RNA (5'-R(P*GP*G)-3').


Mol	Chain	Residues		At	oms			AltConf	Trace
2	В	2	Total	С	Ν	Ο	Р	0	0
	D	2	47	20	10	15	2	0	0
2	D	2	Total	С	Ν	0	Р	0	0
	D	2	47	20	10	15	2	0	0
2	F	2	Total	С	Ν	Ο	Р	0	0
	Г	2	47	20	10	15	2	0	0
2	Н	2	Total	С	Ν	Ο	Р	0	0
	11	2	47	20	10	15	2	0	0
2	J	2	Total	С	Ν	Ο	Р	0	0
	J	2	47	20	10	15	2	0	0
2	L	2	Total	С	Ν	Ο	Р	0	0
		2	47	20	10	15	2	0	0
2	Ν	2	Total	С	Ν	Ο	Р	0	0
	1N	۷	47	20	10	15	2		U
2	Р	2	Total	С	Ν	Ο	Р	0	0
	T	Δ	47	20	10	15	2	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: NanoRNase C

Chain K:		92%	7%•
SER MET 12 13 14 14 14 11 11 14 11 15 14 11 15 14 11 15 14 14 14 14 14 14 14 14 14 14 14 14 14	646 047 051 65 860 861 867 H79	N127 ♦ 1130 5131 K132 E173 E173 E173 A181 A181 A181 A181 A181 A181 A181 A18	
• Molecule 1: NanoR	Nase C		
Chain M:		92%	7% •
SER MET 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	123 646 047 047 051 861 867 861	H79 H127 B124 H127 K132 B131 K132 B173 B175 H175 H175 H175 H175 H181 H175 H181	W197 I 200 S 206
• Molecule 1: NanoR	Nase C		
Chain O:		92%	7% •
• Molecule 2: RNA (Image: Second	(H79 E124 E124 M127 E173 E173 E173 E173 E173 A181 M188 M188 M188 M188 M188 M187 M187 M187 M187 M187 M197 M187 M197 M197 M187 M197 M187 M17 M17 M187 M17 M17 M17 M17 M17 M17 M17 M17 M17 M1	8206
Chain B:	50%	50%	
(603 (604			
• Molecule 2: RNA (5'-R(P*GP*G)-3')	
Chain D:	50%	50%	
(603 (604			
• Molecule 2: RNA (5'-R(P*GP*G)-3')	
Chain F:	50%	50%	
C 60 3 C 60 4			
• Molecule 2: RNA (5'-R(P*GP*G)-3')	
Chain H:	50%	50%	
6603 6604			
• Molecule 2: RNA (5'-R(P*GP*G)-3')	
Chain J:	50%	50%	

G603 G604

• Molecule 2: RNA (5'-R(P*GP*G)-3')

Chain L:	50%	50%
0603 0604		
• Molecule 2: RNA (5'-	R(P*GP*G)-3')	
Chain N:	50%	50%
0 60 3 0 60 4		
• Molecule 2: RNA (5'-	R(P*GP*G)-3')	
Chain P:	50%	50%
0603 0604		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, D4	Depositor
Number of particles used	113081	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE CORRECTION	Depositor
Microscope	FEI TALOS ARCTICA	Depositor
Voltage (kV)	200	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	0.244	Depositor
Minimum map value	-0.114	Depositor
Average map value	0.002	Depositor
Map value standard deviation	0.012	Depositor
Recommended contour level	0.0548	Depositor
Map size (Å)	178.56, 178.56, 178.56	wwPDB
Map dimensions	144, 144, 144	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.24, 1.24, 1.24	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	nd lengths	Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.34	0/1576	0.48	0/2139	
1	С	0.34	0/1576	0.48	0/2139	
1	Е	0.34	0/1576	0.48	0/2139	
1	G	0.34	0/1576	0.48	0/2139	
1	Ι	0.34	0/1576	0.48	0/2139	
1	Κ	0.34	0/1576	0.48	0/2139	
1	М	0.34	0/1576	0.48	0/2139	
1	0	0.34	0/1576	0.48	0/2139	
2	В	1.69	1/52~(1.9%)	0.63	0/78	
2	D	1.69	1/52~(1.9%)	0.63	0/78	
2	F	1.69	1/52~(1.9%)	0.64	0/78	
2	Н	1.69	1/52~(1.9%)	0.63	0/78	
2	J	1.69	1/52~(1.9%)	0.63	0/78	
2	L	1.70	1/52~(1.9%)	0.64	0/78	
2	Ν	1.69	1/52~(1.9%)	0.64	0/78	
2	Р	1.68	1/52~(1.9%)	0.63	0/78	
All	All	0.45	8/13024~(0.1%)	0.49	0/17736	

The worst 5 of 8 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
2	Н	603	G	OP3-P	-11.23	1.47	1.61
2	В	603	G	OP3-P	-11.22	1.47	1.61
2	L	603	G	OP3-P	-11.21	1.47	1.61
2	Ν	603	G	OP3-P	-11.18	1.47	1.61
2	D	603	G	OP3-P	-11.17	1.47	1.61

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1548	0	1512	9	0
1	С	1548	0	1512	9	0
1	Е	1548	0	1512	8	0
1	G	1548	0	1512	9	0
1	Ι	1548	0	1512	9	0
1	Κ	1548	0	1512	8	0
1	М	1548	0	1512	9	0
1	0	1548	0	1512	9	0
2	В	47	0	23	1	0
2	D	47	0	23	1	0
2	F	47	0	23	0	0
2	Н	47	0	23	1	0
2	J	47	0	23	1	0
2	L	47	0	23	1	0
2	Ν	47	0	23	1	0
2	Р	47	0	23	1	0
All	All	12760	0	12280	62	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

The worst 5 of 62 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:K:79:HIS:NE2	2:L:603:G:OP1	2.30	0.60
1:G:181:ALA:HB3	1:0:188:MET:HG2	1.84	0.58
1:A:79:HIS:NE2	2:B:603:G:OP1	2.34	0.58
1:E:188:MET:HG2	1:I:181:ALA:HB3	1.85	0.57
1:G:79:HIS:NE2	2:H:603:G:OP1	2.35	0.56

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	203/207~(98%)	202 (100%)	1 (0%)	0	100	100
1	\mathbf{C}	203/207~(98%)	202 (100%)	1 (0%)	0	100	100
1	Ε	203/207~(98%)	202 (100%)	1 (0%)	0	100	100
1	G	203/207~(98%)	202 (100%)	1 (0%)	0	100	100
1	Ι	203/207~(98%)	202 (100%)	1 (0%)	0	100	100
1	Κ	203/207~(98%)	202 (100%)	1 (0%)	0	100	100
1	М	203/207~(98%)	202 (100%)	1 (0%)	0	100	100
1	Ο	203/207~(98%)	202 (100%)	1 (0%)	0	100	100
All	All	1624/1656~(98%)	1616 (100%)	8~(0%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	P	erce	ntiles
1	А	152/180~(84%)	151 (99%)	1 (1%)		84	90
1	С	152/180~(84%)	151 (99%)	1 (1%)		84	90
1	Е	152/180~(84%)	151 (99%)	1 (1%)		84	90
1	G	152/180~(84%)	151 (99%)	1 (1%)		84	90
1	Ι	152/180~(84%)	151 (99%)	1 (1%)		84	90
1	Κ	152/180~(84%)	151 (99%)	1 (1%)		84	90

Continued on next page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	М	152/180~(84%)	151~(99%)	1 (1%)	84 90
1	Ο	152/180~(84%)	151 (99%)	1 (1%)	84 90
All	All	1216/1440 (84%)	1208 (99%)	8 (1%)	84 90

Continued from previous page...

5 of 8 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	0	16	ASN
1	М	16	ASN
1	Ι	16	ASN
1	G	16	ASN
1	Κ	16	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 8 such sidechains are listed below:

Mol	Chain	Res	Type
1	0	59	GLN
1	М	59	GLN
1	Ι	59	GLN
1	G	59	GLN
1	Κ	59	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
2	В	1/2~(50%)	0	0
2	D	1/2~(50%)	0	0
2	F	1/2~(50%)	0	0
2	Н	1/2~(50%)	0	0
2	J	1/2~(50%)	0	0
2	L	1/2~(50%)	0	0
2	Ν	1/2~(50%)	0	0
2	Р	1/2~(50%)	0	0
All	All	8/16~(50%)	0	0

There are no RNA backbone outliers to report.

There are no RNA pucker outliers to report.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

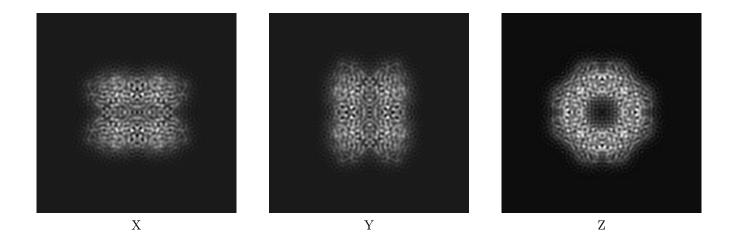
There are no ligands in this entry.

5.7 Other polymers (i)

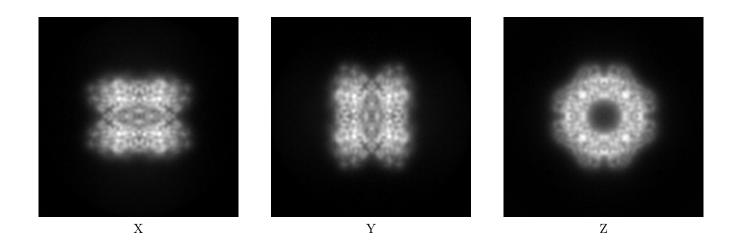
There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.


6 Map visualisation (i)

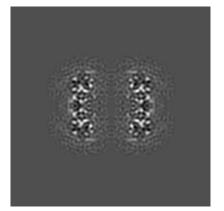
This section contains visualisations of the EMDB entry EMD-23941. These allow visual inspection of the internal detail of the map and identification of artifacts.


Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

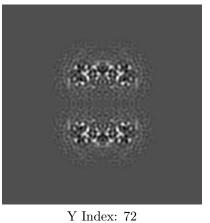
6.1 Orthogonal projections (i)

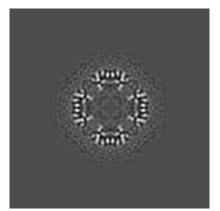
6.1.1 Primary map

6.1.2 Raw map

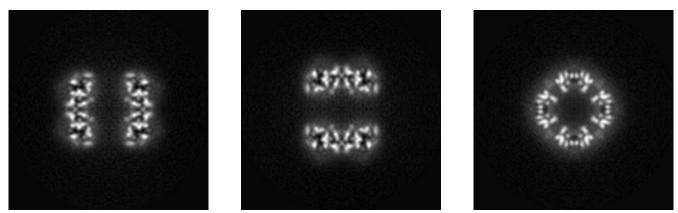


The images above show the map projected in three orthogonal directions.




6.2 Central slices (i)

6.2.1 Primary map

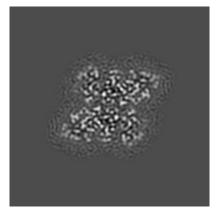

X Index: 72

Z Index: 72

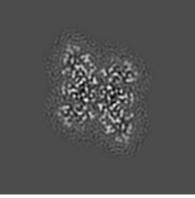
6.2.2 Raw map

X Index: 72

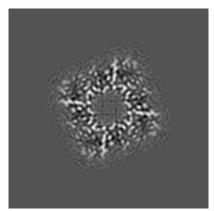
Y Index: 72


Z Index: 72

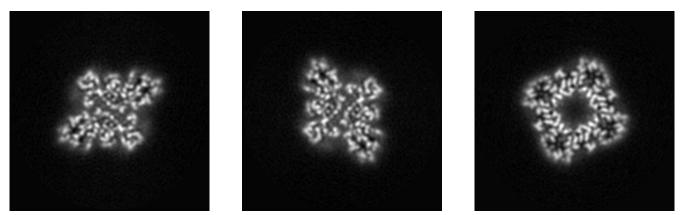
The images above show central slices of the map in three orthogonal directions.



6.3 Largest variance slices (i)


6.3.1 Primary map

X Index: 55



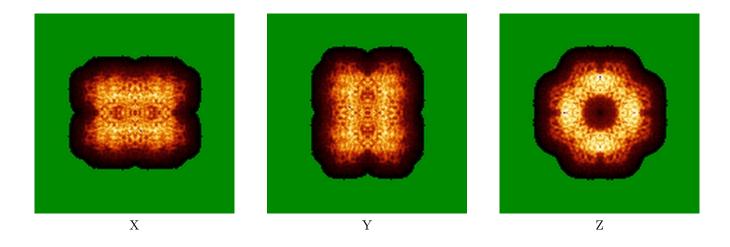
Y Index: 55

Z Index: 59

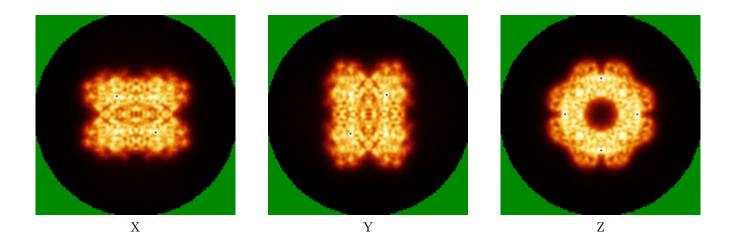
6.3.2 Raw map

X Index: 56

Y Index: 56


Z Index: 60

The images above show the largest variance slices of the map in three orthogonal directions.



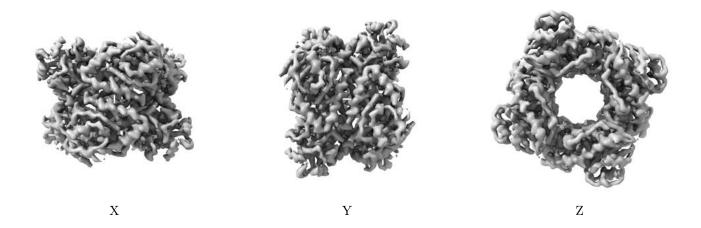
6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map



The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.


6.5 Orthogonal surface views (i)

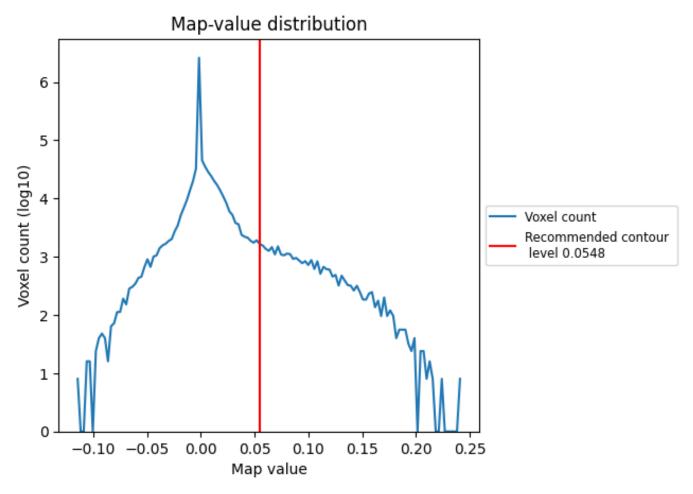
6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0548. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)


This section was not generated. No masks/segmentation were deposited.

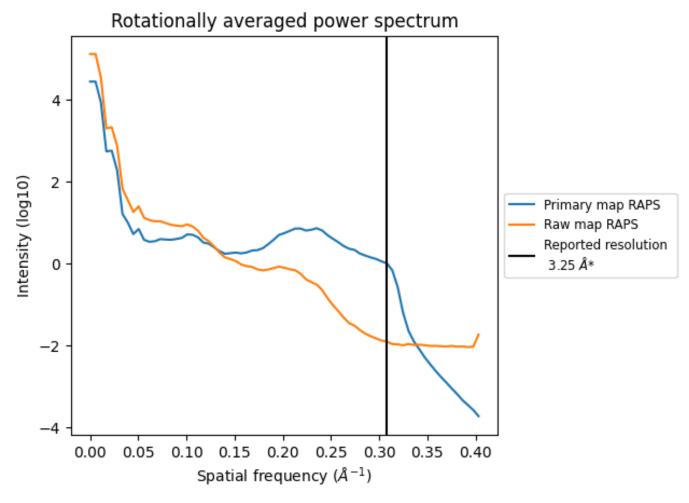
7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

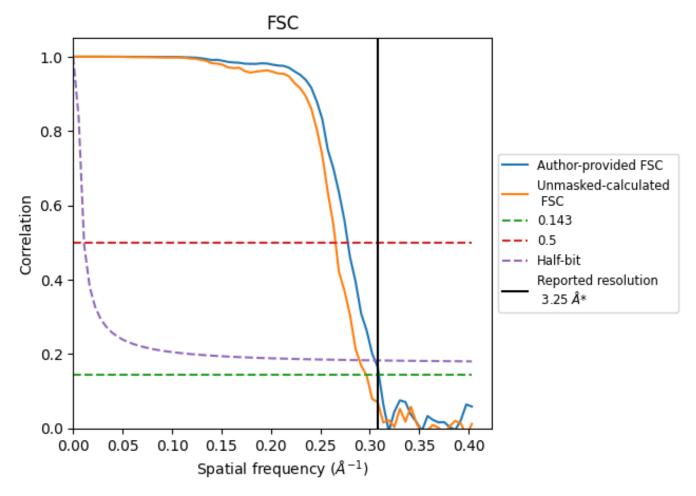
7.2 Volume estimate (i)



The volume at the recommended contour level is 57 $\rm nm^3;$ this corresponds to an approximate mass of 51 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)


*Reported resolution corresponds to spatial frequency of 0.308 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

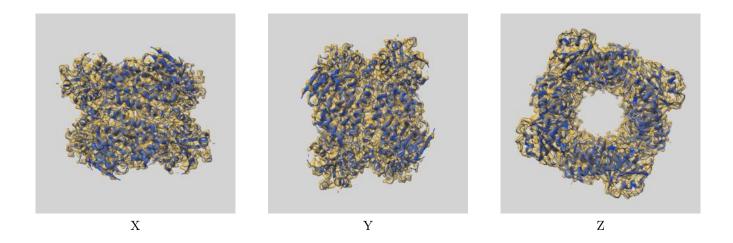
Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.308 $\mathrm{\AA^{-1}}$

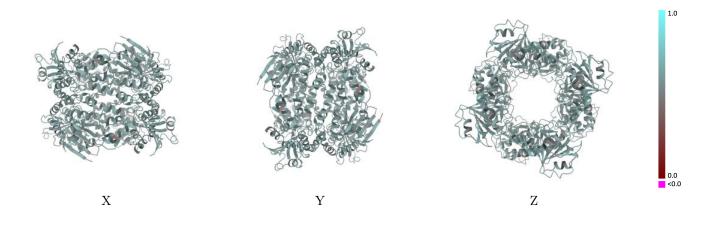
8.2 Resolution estimates (i)

Resolution estimate (Å)	Estim	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit		
Reported by author	3.25	-	-		
Author-provided FSC curve	3.23	3.60	3.28		
Unmasked-calculated*	3.37	3.77	3.46		

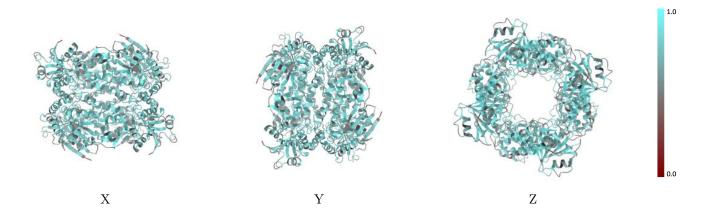

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-23941 and PDB model 7MQB. Per-residue inclusion information can be found in section 3 on page 6.

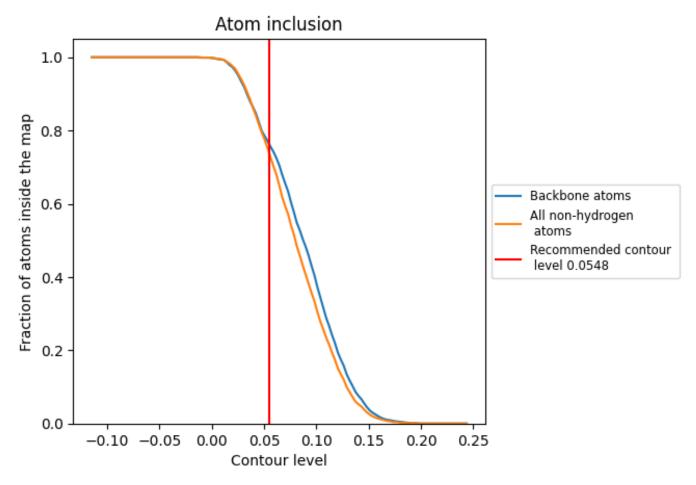

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0548 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.


9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0548).

9.4 Atom inclusion (i)

At the recommended contour level, 76% of all backbone atoms, 74% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0548) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score	
All	0.7400	0.5720	
A	0.7320	0.5700	
В	0.9570	0.6050	1.0
С	0.7340	0.5730	
D	0.9360	0.5980	
E	0.7320	0.5710	
F	0.9360	0.6020	
G	0.7340	0.5700	
Н	0.9570	0.6000	
Ι	0.7320	0.5720	
J	0.9570	0.5920	
K	0.7360	0.5700	0.0
L	0.9360	0.5990	0 .0
M	0.7340	0.5710	
N	0.9360	0.5990	
0	0.7340	0.5710	
Р	0.9360	0.5970	

