

wwPDB X-ray Structure Validation Summary Report (i)

Oct 2, 2023 – 01:31 AM EDT

ork

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	FAILED
Xtriage (Phenix)	:	1.13
EDS	:	FAILED
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\hbox{-}RAY\,DIFFRACTION$

The reported resolution of this entry is 3.68 Å.

There are no overall percentile quality scores available for this entry.

MolProbity and EDS failed to run properly - the sequence quality summary graphics cannot be shown.

2 Entry composition (i)

There are 10 unique types of molecules in this entry. The entry contains 27705 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	Δ	231	Total	С	Ν	0	S	0	0	0
	A	201	1759	1094	312	347	6	0	0	
1	р	218	Total	С	Ν	0	S	0	0	0
	D	210	1638	1023	284	325	6	0	U	

• Molecule 1 is a protein called DNA-directed RNA polymerase subunit alpha.

Chain	Residue	Modelled	Actual	Comment	Reference
А	235	GLU	-	expression tag	UNP P0A7Z4
А	236	VAL	-	expression tag	UNP P0A7Z4
А	237	LEU	-	expression tag	UNP P0A7Z4
А	238	PHE	-	expression tag	UNP P0A7Z4
А	239	GLN	-	expression tag	UNP P0A7Z4
В	235	GLU	-	expression tag	UNP P0A7Z4
В	236	VAL	-	expression tag	UNP P0A7Z4
В	237	LEU	-	expression tag	UNP P0A7Z4
В	238	PHE	-	expression tag	UNP P0A7Z4
В	239	GLN	-	expression tag	UNP P0A7Z4

There are 10 discrepancies between the modelled and reference sequences:

• Molecule 2 is a protein called DNA-directed RNA polymerase subunit beta.

Mol	Chain	Residues		Atoms					AltConf	Trace
2	C	1335	Total 10470	C 6569	N 1822	O 2036	S 43	0	0	0

• Molecule 3 is a protein called DNA-directed RNA polymerase subunit beta'.

Mol	Chain	Residues		Atoms					AltConf	Trace
3	D	1236	Total 9578	C 6015	N 1711	O 1806	S 46	0	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
D	1	VAL	-	expression tag	UNP P0A8T7
D	1408	LEU	-	expression tag	UNP P0A8T7
D	1409	GLU	-	expression tag	UNP P0A8T7

• Molecule 4 is a protein called DNA-directed RNA polymerase subunit omega.

Mol	Chain	Residues		Atoms					AltConf	Trace
4	Е	79	Total 627	C 382	N 118	O 126	S 1	0	0	0

• Molecule 5 is a protein called RNA polymerase sigma factor RpoD.

Mol	Chain	Residues		Atoms					AltConf	Trace
5	F	318	Total 2399	C 1499	N 442	O 446	S 12	0	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
F	149	ASN	ASP	conflict	UNP Q0P6L9
F	?	-	LEU	deletion	UNP Q0P6L9

• Molecule 6 is a protein called Microcin J25.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
6	М	21	Total 144	C 95	N 23	O 26	0	0	0

• Molecule 7 is a DNA chain called non-template strand DNA.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
7	N	29	Total 595	C 284	N 106	0 176	Р 29	0	0	0

• Molecule 8 is a DNA chain called template strand DNA.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
8	Т	24	Total 492	C 233	N 94	0 141	Р 24	0	0	0

• Molecule 9 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
9	D	1	Total Mg 1 1	0	0

• Molecule 10 is ZINC ION (three-letter code: ZN) (formula: Zn).

ľ	Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
	10	D	2	Total Zn 2 2	0	0

MolProbity and EDS failed to run properly - this section is therefore empty.

3 Data and refinement statistics (i)

Property	Value	Source	
Space group	P 41 21 2	Depositor	
Cell constants	172.91Å 172.91Å 387.26Å	Depositor	
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor	
Resolution (Å)	49.55 - 3.68	Depositor	
% Data completeness	98.3 (49.55-3.68)	Depositor	
(in resolution range)			
R _{merge}	(Not available)	Depositor	
R _{sym}	(Not available)	Depositor	
$< I/\sigma(I) > 1$	$1.10 (at 3.67 \text{\AA})$	Xtriage	
Refinement program	PHENIX (1.13_2998: ???)	Depositor	
R, R_{free}	0.263 , 0.306	Depositor	
Wilson B-factor $(Å^2)$	175.9	Xtriage	
Anisotropy	0.031	Xtriage	
L-test for twinning ²	$ < L >=0.42, < L^2>=0.25$	Xtriage	
Estimated twinning fraction	No twinning to report.	Xtriage	
Total number of atoms	27705	wwPDB-VP	
Average B, all atoms $(Å^2)$	182.0	wwPDB-VP	

EDS failed to run properly - this section is therefore incomplete.

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.63% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

4 Model quality (i)

4.1 Standard geometry (i)

MolProbity failed to run properly - this section is therefore empty.

4.2 Too-close contacts (i)

MolProbity failed to run properly - this section is therefore empty.

4.3 Torsion angles (i)

4.3.1 Protein backbone (i)

MolProbity failed to run properly - this section is therefore empty.

4.3.2 Protein sidechains (i)

MolProbity failed to run properly - this section is therefore empty.

4.3.3 RNA (i)

MolProbity failed to run properly - this section is therefore empty.

4.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

4.5 Carbohydrates (i)

There are no monosaccharides in this entry.

4.6 Ligand geometry (i)

Of 3 ligands modelled in this entry, 3 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

4.7 Other polymers (i)

There are no such residues in this entry.

4.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

5 Fit of model and data (i)

5.1 Protein, DNA and RNA chains (i)

EDS failed to run properly - this section is therefore empty.

5.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS failed to run properly - this section is therefore empty.

5.3 Carbohydrates (i)

EDS failed to run properly - this section is therefore empty.

5.4 Ligands (i)

EDS failed to run properly - this section is therefore empty.

5.5 Other polymers (i)

EDS failed to run properly - this section is therefore empty.

