

Full wwPDB X-ray Structure Validation Report (i)

Nov 5, 2023 – 01:33 AM EST

PDB ID	:	6NAH
Title	:	Crystal structure of Neisseria meningitidis ClpP protease in complex with
		Acyldepsipeptide-14 (ADEP-14)
Authors	:	Mabanglo, M.F.; Houry, W.A.
Deposited on	:	2018-12-05
Resolution	:	2.70 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	4.02b-467
:	1.8.5 (274361), CSD as541be (2020)
:	1.13
:	2.36
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	5.8.0158
:	7.0.044 (Gargrove)
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.36
	:::::::::::::::::::::::::::::::::::::::

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	2808 (2.70-2.70)
Ramachandran outliers	138981	3069 (2.70-2.70)
Sidechain outliers	138945	3069 (2.70-2.70)
RSRZ outliers	127900	2737 (2.70-2.70)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	217	79%	•	19%
1	В	217	% 77%	•	20%
1	С	217	76%	•	20%
1	D	217	% 77%	•	20%
1	Е	217	78%	•	20%
1	F	217	78%	·	21%

Mol	Chain	Length	Quality of chain		
1	G	217	78%	•	20%
1	Н	217	76%	•	20%
1	Ι	217	% 7 6%	•	21%
1	J	217	78%	•	21%
1	Κ	217	.% 78 %	•	20%
1	L	217	.% 78%	•	20%
1	М	217	76%	•	21%
1	Ν	217	% • 77%	•	20%
1	Ο	217	76%	•	21%
1	Р	217	78%	•	20%
1	Q	217	77%	•	20%
1	R	217	78%	•	19%
1	S	217	77%		20%
1	Т	217	77%	•	21%
1	U	217	% • 76%	•	20%
1	V	217	78%	•	21%
1	W	217	78%	•	20%
1	Х	217	77%	•	20%
1	Y	217	77%	•	21%
1	Z	217	77%	•	21%
1	a	217	78%	•	20%
1	b	217	76%	•	21%
2	0	6	33% 67%		
2	1	6	33% 67%		
2	2	6	33% 67%		

Mol	Chain	Length	Quality of chain					
2	3	6	33%	67%				
2	4	6	33%	50%	17%			
2	с	6	33%	67%				
2	е	6	33%	67%				
2	f	6	33%	67%				
2	g	6	33%	67%				
2	h	6	33%	67%				
2	i	6	33%	67%				
2	i	6	230/	67%				
2	J Iz	6	22%	07 %				
2	<u>к</u> 1	6	33%	67%				
	1	0	33%	67%				
2	m	6	33%	67%				
2	n	6	33%	67%				
2	0	6	33%	67%				
2	р	6	33%	67%				
2	q	6	33%	67%				
2	r	6	33%	67%				
2	S	6	17%	83%				
2	t	6	33%	67%				
2	u	6	33%	67%				
2	V	6	17%	83%				
2	W	6	17%	83%				
2	x	6	33%	67%				
2	У	6	17%	83%				
2	Z	6	33%	67%				

6NAH

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 40076 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace				
1	Δ	175	Total	С	Ν	0	S	0	0	0				
		110	1359	858	230	263	8	0	0	0				
1	B	173	Total	С	Ν	Ο	\mathbf{S}	0	0	0				
		110	1347	850	228	261	261 8	0	0	0				
1	С	173	Total	С	Ν	Ο	\mathbf{S}	0	0	0				
	<u> </u>	110	1346	851	228	259	8	Ŭ						
1	D	173	Total	С	Ν	Ο	\mathbf{S}	0	0	0				
-		110	1351	852	229	262	8	0						
1	E	174	Total	С	Ν	Ο	\mathbf{S}	0	0	0				
-	Ц	111	1359	858	230	263	8	Ŭ		0				
1	F	171	Total	С	Ν	Ο	\mathbf{S}	0	0	0				
	1	111	1339	846	226	259	8	0	0	0				
1	G	173	Total	С	Ν	Ο	\mathbf{S}	0	0	0				
	ŭ	110	1351	854	228	261	8	0	0	0				
1	н	174	Total	С	Ν	Ο	\mathbf{S}	0	0	0				
	11	117	1359	858	230	263	8							
1	т	T 171	Total	С	Ν	Ο	\mathbf{S}	0	0	0				
	1	111	1339	846	226	259	8	0	0	0				
1	Т	Т	179	Total	С	Ν	Ο	\mathbf{S}	0	0	0			
1	0	112	1347	850	228	261	8	0	0	0				
1	K	174	Total	С	Ν	Ο	\mathbf{S}	0	0	0				
	11	117	1359	858	230	263	8	0	0	0				
1	L	174	Total	С	Ν	Ο	\mathbf{S}	0	0	0				
1		<u>п</u>						1355	856	229	262	8	0	0
1	М	171	Total	С	Ν	Ο	\mathbf{S}	0	0	0				
1	111	111	1339	846	226	259	8	0	0	0				
1	N	173	Total	С	Ν	Ο	\mathbf{S}	0	0	0				
1		110	1347	850	228	261	8	0	0	0				
1	1 0	179	Total	С	Ν	Ο	\mathbf{S}	0	0	0				
		114	1347	850	228	261	8			0				
1	D	173	Total	С	Ν	0	S	0	0	0				
	L	110	1347	850	228	261	8	U		U				

• Molecule 1 is a protein called ATP-dependent Clp protease proteolytic subunit.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	0	179	Total	С	Ν	0	S	0	0	0
1	Q	175	1351	854	228	261	8	0	0	0
1	1 D	175	Total	С	Ν	0	S	0	0	0
1	n	175	1363	860	231	264	8	0	0	0
1	C	179	Total	С	Ν	0	S	0	0	0
	G	175	1351	852	229	262	8	0	0	0
1	Т	171	Total	С	Ν	0	S	0	0	0
	1	1/1	1339	846	227	258	8	0	0	0
1	TT	174	Total	С	Ν	0	S	0	0	0
1	U	174	1350	853	229	260	8	0		
1	V	171	Total	С	Ν	0	S	0	0	0
	v		1341	847	227	259	8			
1	W	173	Total	С	Ν	0	S	0	0	0
1	vv	VV 170	1347	850	228	261	8	0		
1	v	174	Total	С	Ν	0	S	0	0	0
1	Λ	114	1355	856	229	262	8	0	0	0
1	V	179	Total	С	Ν	Ο	S	0	0	0
1	1	112	1347	850	228	261	8	0		U
1	7	179	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1		172	1343	848	227	260	8	0	0	U
1	1 a	173	Total	С	Ν	Ο	S	0	0	0
1		175	1351	852	229	262	8	0	0	U
1	h	179	Total	С	Ν	0	S	0	0	0
	U	112	1345	851	227	259	8	U	U	U

There are 364 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference			
А	-12	HIS	-	expression tag	UNP I4E574			
А	-11	HIS	-	expression tag	UNP I4E574			
А	-10	HIS	-	expression tag	UNP I4E574			
А	-9	HIS	-	expression tag	UNP I4E574			
А	-8	HIS	-	expression tag	UNP I4E574			
А	-7	HIS	-	expression tag	UNP I4E574			
А	-6	GLU	-	expression tag	UNP I4E574			
А	-5	ASN	-	expression tag	UNP I4E574			
А	-4	LEU	-	expression tag	UNP I4E574			
А	-3	TYR	-	expression tag	UNP I4E574			
А	-2	PHE	-	expression tag	UNP I4E574			
А	-1	GLN	-	expression tag	UNP I4E574			
А	0	GLY	-	expression tag	UNP I4E574			
В	-12	HIS	-	expression tag	UNP I4E574			
В	-11	HIS	-	expression tag	UNP I4E574			
Continued on next page								

WORLDWIDE PROTEIN DATA BANK

Continued from previous page										
Chain	Residue	Modelled	Actual	Comment	Reference					
В	-10	HIS	-	expression tag	UNP I4E574					
В	-9	HIS	-	expression tag	UNP I4E574					
В	-8	HIS	-	expression tag	UNP I4E574					
В	-7	HIS	-	expression tag	UNP I4E574					
В	-6	GLU	-	expression tag	UNP I4E574					
В	-5	ASN	-	expression tag	UNP I4E574					
В	-4	LEU	-	expression tag	UNP I4E574					
В	-3	TYR	-	expression tag	UNP I4E574					
В	-2	PHE	-	expression tag	UNP I4E574					
В	-1	GLN	-	expression tag	UNP I4E574					
В	0	GLY	-	expression tag	UNP I4E574					
С	-12	HIS	-	expression tag	UNP I4E574					
С	-11	HIS	-	expression tag	UNP I4E574					
С	-10	HIS	-	expression tag	UNP I4E574					
С	-9	HIS	-	expression tag	UNP I4E574					
С	-8	HIS	-	expression tag	UNP I4E574					
С	-7	HIS	-	expression tag	UNP I4E574					
С	-6	GLU	-	expression tag	UNP I4E574					
С	-5	ASN	-	expression tag	UNP I4E574					
С	-4	LEU	-	expression tag	UNP I4E574					
С	-3	TYR	-	expression tag	UNP I4E574					
С	-2	PHE	-	expression tag	UNP I4E574					
С	-1	GLN	-	expression tag	UNP I4E574					
С	0	GLY	-	expression tag	UNP I4E574					
D	-12	HIS	-	expression tag	UNP I4E574					
D	-11	HIS	-	expression tag	UNP I4E574					
D	-10	HIS	-	expression tag	UNP I4E574					
D	-9	HIS	-	expression tag	UNP I4E574					
D	-8	HIS	-	expression tag	UNP I4E574					
D	-7	HIS	-	expression tag	UNP I4E574					
D	-6	GLU	-	expression tag	UNP I4E574					
D	-5	ASN	-	expression tag	UNP I4E574					
D	-4	LEU	-	expression tag	UNP I4E574					
D	-3	TYR	-	expression tag	UNP I4E574					
D	-2	PHE	-	expression tag	UNP I4E574					
D	-1	GLN	-	expression tag	UNP I4E574					
D	0	GLY	-	expression tag	UNP I4E574					
Е	-12	HIS	-	expression tag	UNP I4E574					
Е	-11	HIS	-	expression tag	UNP I4E574					
E	-10	HIS	-	expression tag	UNP I4E574					
Е	-9	HIS	-	expression tag	UNP I4E574					
Е	-8	HIS	-	expression tag	UNP I4E574					

 \sim · · 1 C

6NAH

Continued from previous page					
Chain	Residue	Modelled	Actual	Comment	Reference
Е	-7	HIS	-	expression tag	UNP I4E574
Е	-6	GLU	-	expression tag	UNP I4E574
Е	-5	ASN	-	expression tag	UNP I4E574
Е	-4	LEU	-	expression tag	UNP I4E574
Е	-3	TYR	-	expression tag	UNP I4E574
Е	-2	PHE	-	expression tag	UNP I4E574
Е	-1	GLN	-	expression tag	UNP I4E574
Е	0	GLY	-	expression tag	UNP I4E574
F	-12	HIS	-	expression tag	UNP I4E574
F	-11	HIS	-	expression tag	UNP I4E574
F	-10	HIS	-	expression tag	UNP I4E574
F	-9	HIS	-	expression tag	UNP I4E574
F	-8	HIS	-	expression tag	UNP I4E574
F	-7	HIS	-	expression tag	UNP I4E574
F	-6	GLU	-	expression tag	UNP I4E574
F	-5	ASN	-	expression tag	UNP I4E574
F	-4	LEU	-	expression tag	UNP I4E574
F	-3	TYR	-	expression tag	UNP I4E574
F	-2	PHE	-	expression tag	UNP I4E574
F	-1	GLN	-	expression tag	UNP I4E574
F	0	GLY	-	expression tag	UNP I4E574
G	-12	HIS	-	expression tag	UNP I4E574
G	-11	HIS	-	expression tag	UNP I4E574
G	-10	HIS	-	expression tag	UNP I4E574
G	-9	HIS	-	expression tag	UNP I4E574
G	-8	HIS	-	expression tag	UNP I4E574
G	-7	HIS	-	expression tag	UNP I4E574
G	-6	GLU	-	expression tag	UNP I4E574
G	-5	ASN	-	expression tag	UNP I4E574
G	-4	LEU	-	expression tag	UNP I4E574
G	-3	TYR	-	expression tag	UNP I4E574
G	-2	PHE	-	expression tag	UNP I4E574
G	-1	GLN	-	expression tag	UNP I4E574
G	0	GLY	-	expression tag	UNP I4E574
Н	-12	HIS	-	expression tag	UNP I4E574
Н	-11	HIS	-	expression tag	UNP I4E574
Н	-10	HIS	-	expression tag	UNP I4E574
Н	-9	HIS	-	expression tag	UNP I4E574
Н	-8	HIS	-	expression tag	UNP I4E574
H	-7	HIS	-	expression tag	UNP I4E574
Н	-6	GLU	-	expression tag	UNP I4E574
Н	-5	ASN	-	expression tag	UNP I4E574

 α tia 1 [.

Continu	ied from pre	vious page			
Chain	Residue	Modelled	Actual	Comment	Reference
Н	-4	LEU	-	expression tag	UNP I4E574
Н	-3	TYR	-	expression tag	UNP I4E574
Н	-2	PHE	-	expression tag	UNP I4E574
Н	-1	GLN	-	expression tag	UNP I4E574
Н	0	GLY	-	expression tag	UNP I4E574
Ι	-12	HIS	-	expression tag	UNP I4E574
Ι	-11	HIS	-	expression tag	UNP I4E574
Ι	-10	HIS	-	expression tag	UNP I4E574
Ι	-9	HIS	-	expression tag	UNP I4E574
Ι	-8	HIS	-	expression tag	UNP I4E574
Ι	-7	HIS	-	expression tag	UNP I4E574
Ι	-6	GLU	-	expression tag	UNP I4E574
Ι	-5	ASN	-	expression tag	UNP I4E574
Ι	-4	LEU	-	expression tag	UNP I4E574
Ι	-3	TYR	-	expression tag	UNP I4E574
Ι	-2	PHE	-	expression tag	UNP I4E574
Ι	-1	GLN	-	expression tag	UNP I4E574
Ι	0	GLY	-	expression tag	UNP I4E574
J	-12	HIS	-	expression tag	UNP I4E574
J	-11	HIS	-	expression tag	UNP I4E574
J	-10	HIS	-	expression tag	UNP I4E574
J	-9	HIS	-	expression tag	UNP I4E574
J	-8	HIS	-	expression tag	UNP I4E574
J	-7	HIS	-	expression tag	UNP I4E574
J	-6	GLU	-	expression tag	UNP I4E574
J	-5	ASN	-	expression tag	UNP I4E574
J	-4	LEU	-	expression tag	UNP I4E574
J	-3	TYR	-	expression tag	UNP I4E574
J	-2	PHE	-	expression tag	UNP I4E574
J	-1	GLN	-	expression tag	UNP I4E574
J	0	GLY	-	expression tag	UNP I4E574
K	-12	HIS	-	expression tag	UNP I4E574
K	-11	HIS	-	expression tag	UNP I4E574
K	-10	HIS	-	expression tag	UNP I4E574
K	-9	HIS	-	expression tag	UNP I4E574
K	-8	HIS	-	expression tag	UNP I4E574
K	-7	HIS	-	expression tag	UNP I4E574
K	-6	GLU	-	expression tag	UNP I4E574
K	-5	ASN	-	expression tag	UNP I4E574
K	-4	LEU	-	expression tag	UNP I4E574
K	-3	TYR	-	expression tag	UNP I4E574
K	-2	PHE	-	expression tag	UNP I4E574

 α tia 1 [.

6NAH

Continu	ied from pre	vious page			
Chain	Residue	Modelled	Actual	Comment	Reference
K	-1	GLN	-	expression tag	UNP I4E574
K	0	GLY	-	expression tag	UNP I4E574
L	-12	HIS	-	expression tag	UNP I4E574
L	-11	HIS	-	expression tag	UNP I4E574
L	-10	HIS	-	expression tag	UNP I4E574
L	-9	HIS	-	expression tag	UNP I4E574
L	-8	HIS	-	expression tag	UNP I4E574
L	-7	HIS	-	expression tag	UNP I4E574
L	-6	GLU	-	expression tag	UNP I4E574
L	-5	ASN	-	expression tag	UNP I4E574
L	-4	LEU	-	expression tag	UNP I4E574
L	-3	TYR	-	expression tag	UNP I4E574
L	-2	PHE	-	expression tag	UNP I4E574
L	-1	GLN	-	expression tag	UNP I4E574
L	0	GLY	-	expression tag	UNP I4E574
М	-12	HIS	-	expression tag	UNP I4E574
М	-11	HIS	-	expression tag	UNP I4E574
М	-10	HIS	-	expression tag	UNP I4E574
М	-9	HIS	-	expression tag	UNP I4E574
М	-8	HIS	-	expression tag	UNP I4E574
М	-7	HIS	-	expression tag	UNP I4E574
М	-6	GLU	-	expression tag	UNP I4E574
М	-5	ASN	-	expression tag	UNP I4E574
М	-4	LEU	-	expression tag	UNP I4E574
М	-3	TYR	-	expression tag	UNP I4E574
М	-2	PHE	-	expression tag	UNP I4E574
М	-1	GLN	-	expression tag	UNP I4E574
М	0	GLY	-	expression tag	UNP I4E574
N	-12	HIS	-	expression tag	UNP I4E574
N	-11	HIS	-	expression tag	UNP I4E574
N	-10	HIS	-	expression tag	UNP I4E574
N	-9	HIS	-	expression tag	UNP I4E574
N	-8	HIS	-	expression tag	UNP I4E574
N	-7	HIS	-	expression tag	UNP I4E574
N	-6	GLU	-	expression tag	UNP I4E574
N	-5	ASN	-	expression tag	UNP I4E574
N	-4	LEU	-	expression tag	UNP I4E574
N	-3	TYR	-	expression tag	UNP I4E574
N	-2	PHE	-	expression tag	UNP I4E574
N	-1	GLN	-	expression tag	UNP I4E574
N	0	GLY	-	expression tag	UNP I4E574
0	-12	HIS	-	expression tag	UNP I4E574

 α tia 1 [

6NAH

Continued from previous page					
Chain	Residue	Modelled	Actual	Comment	Reference
0	-11	HIS	-	expression tag	UNP I4E574
0	-10	HIS	-	expression tag	UNP I4E574
0	-9	HIS	-	expression tag	UNP I4E574
0	-8	HIS	-	expression tag	UNP I4E574
0	-7	HIS	-	expression tag	UNP I4E574
0	-6	GLU	-	expression tag	UNP I4E574
0	-5	ASN	-	expression tag	UNP I4E574
0	-4	LEU	-	expression tag	UNP I4E574
0	-3	TYR	-	expression tag	UNP I4E574
0	-2	PHE	-	expression tag	UNP I4E574
0	-1	GLN	-	expression tag	UNP I4E574
0	0	GLY	-	expression tag	UNP I4E574
Р	-12	HIS	-	expression tag	UNP I4E574
Р	-11	HIS	-	expression tag	UNP I4E574
Р	-10	HIS	-	expression tag	UNP I4E574
Р	-9	HIS	-	expression tag	UNP I4E574
Р	-8	HIS	-	expression tag	UNP I4E574
Р	-7	HIS	-	expression tag	UNP I4E574
Р	-6	GLU	-	expression tag	UNP I4E574
Р	-5	ASN	-	expression tag	UNP I4E574
Р	-4	LEU	-	expression tag	UNP I4E574
Р	-3	TYR	-	expression tag	UNP I4E574
Р	-2	PHE	-	expression tag	UNP I4E574
Р	-1	GLN	-	expression tag	UNP I4E574
Р	0	GLY	-	expression tag	UNP I4E574
Q	-12	HIS	-	expression tag	UNP I4E574
Q	-11	HIS	-	expression tag	UNP I4E574
Q	-10	HIS	-	expression tag	UNP I4E574
Q	-9	HIS	-	expression tag	UNP I4E574
Q	-8	HIS	-	expression tag	UNP I4E574
Q	-7	HIS	-	expression tag	UNP I4E574
Q	-6	GLU	-	expression tag	UNP I4E574
Q	-5	ASN	-	expression tag	UNP I4E574
Q	-4	LEU	-	expression tag	UNP I4E574
Q	-3	TYR	-	expression tag	UNP I4E574
Q	-2	PHE	-	expression tag	UNP I4E574
Q	-1	GLN	-	expression tag	UNP I4E574
Q	0	GLY	-	expression tag	UNP I4E574
R	-12	HIS	-	expression tag	UNP I4E574
R	-11	HIS	-	expression tag	UNP I4E574
R	-10	HIS	-	expression tag	UNP I4E574
R	-9	HIS	-	expression tag	UNP I4E574

. \sim · · 1 [

Continu	ied from pre	vious page			
Chain	Residue	Modelled	Actual	Comment	Reference
R	-8	HIS	-	expression tag	UNP I4E574
R	-7	HIS	-	expression tag	UNP I4E574
R	-6	GLU	-	expression tag	UNP I4E574
R	-5	ASN	-	expression tag	UNP I4E574
R	-4	LEU	-	expression tag	UNP I4E574
R	-3	TYR	-	expression tag	UNP I4E574
R	-2	PHE	-	expression tag	UNP I4E574
R	-1	GLN	-	expression tag	UNP I4E574
R	0	GLY	-	expression tag	UNP I4E574
S	-12	HIS	-	expression tag	UNP I4E574
S	-11	HIS	-	expression tag	UNP I4E574
S	-10	HIS	-	expression tag	UNP I4E574
S	-9	HIS	-	expression tag	UNP I4E574
S	-8	HIS	-	expression tag	UNP I4E574
S	-7	HIS	-	expression tag	UNP I4E574
S	-6	GLU	-	expression tag	UNP I4E574
S	-5	ASN	-	expression tag	UNP I4E574
S	-4	LEU	-	expression tag	UNP I4E574
S	-3	TYR	-	expression tag	UNP I4E574
S	-2	PHE	-	expression tag	UNP I4E574
S	-1	GLN	-	expression tag	UNP I4E574
S	0	GLY	-	expression tag	UNP I4E574
Т	-12	HIS	-	expression tag	UNP I4E574
Т	-11	HIS	-	expression tag	UNP I4E574
Т	-10	HIS	-	expression tag	UNP I4E574
Т	-9	HIS	-	expression tag	UNP I4E574
Т	-8	HIS	-	expression tag	UNP I4E574
Т	-7	HIS	-	expression tag	UNP I4E574
Т	-6	GLU	-	expression tag	UNP I4E574
Т	-5	ASN	-	expression tag	UNP I4E574
Т	-4	LEU	-	expression tag	UNP I4E574
Т	-3	TYR	-	expression tag	UNP I4E574
Т	-2	PHE	-	expression tag	UNP I4E574
Т	-1	GLN	-	expression tag	UNP I4E574
Т	0	GLY	-	expression tag	UNP I4E574
U	-12	HIS	-	expression tag	UNP I4E574
U	-11	HIS	-	expression tag	UNP I4E574
U	-10	HIS	-	expression tag	UNP I4E574
U	-9	HIS	-	expression tag	UNP I4E574
U	-8	HIS	-	expression tag	UNP I4E574
U	-7	HIS	-	expression tag	UNP I4E574
U	-6	GLU	-	expression tag	UNP I4E574

 \sim *,* · 1 C

6N.	AH

Continu	ed from pre	vious page			
Chain	Residue	Modelled	Actual	Comment	Reference
U	-5	ASN	-	expression tag	UNP I4E574
U	-4	LEU	-	expression tag	UNP I4E574
U	-3	TYR	-	expression tag	UNP I4E574
U	-2	PHE	-	expression tag	UNP I4E574
U	-1	GLN	-	expression tag	UNP I4E574
U	0	GLY	-	expression tag	UNP I4E574
V	-12	HIS	-	expression tag	UNP I4E574
V	-11	HIS	-	expression tag	UNP I4E574
V	-10	HIS	-	expression tag	UNP I4E574
V	-9	HIS	-	expression tag	UNP I4E574
V	-8	HIS	-	expression tag	UNP I4E574
V	-7	HIS	-	expression tag	UNP I4E574
V	-6	GLU	-	expression tag	UNP I4E574
V	-5	ASN	-	expression tag	UNP I4E574
V	-4	LEU	-	expression tag	UNP I4E574
V	-3	TYR	-	expression tag	UNP I4E574
V	-2	PHE	-	expression tag	UNP I4E574
V	-1	GLN	-	expression tag	UNP I4E574
V	0	GLY	-	expression tag	UNP I4E574
W	-12	HIS	-	expression tag	UNP I4E574
W	-11	HIS	-	expression tag	UNP I4E574
W	-10	HIS	-	expression tag	UNP I4E574
W	-9	HIS	-	expression tag	UNP I4E574
W	-8	HIS	-	expression tag	UNP I4E574
W	-7	HIS	-	expression tag	UNP I4E574
W	-6	GLU	-	expression tag	UNP I4E574
W	-5	ASN	-	expression tag	UNP I4E574
W	-4	LEU	-	expression tag	UNP I4E574
W	-3	TYR	-	expression tag	UNP I4E574
W	-2	PHE	-	expression tag	UNP I4E574
W	-1	GLN	-	expression tag	UNP I4E574
W	0	GLY	-	expression tag	UNP I4E574
Х	-12	HIS	-	expression tag	UNP I4E574
Х	-11	HIS	-	expression tag	UNP I4E574
Х	-10	HIS	-	expression tag	UNP I4E574
Х	-9	HIS	-	expression tag	UNP I4E574
X	-8	HIS	-	expression tag	UNP I4E574
X	-7	HIS	-	expression tag	UNP I4E574
X	-6	GLU	-	expression tag	UNP I4E574
X	-5	ASN	-	expression tag	UNP I4E574
Х	-4	LEU	-	expression tag	UNP I4E574
Х	-3	TYR	-	expression tag	UNP I4E574

 \sim *,* · 1 C

6NAH

Continued from previous page					
Chain	Residue	Modelled	Actual	Comment	Reference
Х	-2	PHE	-	expression tag	UNP I4E574
Х	-1	GLN	-	expression tag	UNP I4E574
Х	0	GLY	-	expression tag	UNP I4E574
Y	-12	HIS	-	expression tag	UNP I4E574
Y	-11	HIS	-	expression tag	UNP I4E574
Y	-10	HIS	-	expression tag	UNP I4E574
Y	-9	HIS	-	expression tag	UNP I4E574
Y	-8	HIS	-	expression tag	UNP I4E574
Y	-7	HIS	-	expression tag	UNP I4E574
Y	-6	GLU	-	expression tag	UNP I4E574
Y	-5	ASN	-	expression tag	UNP I4E574
Y	-4	LEU	-	expression tag	UNP I4E574
Y	-3	TYR	-	expression tag	UNP I4E574
Y	-2	PHE	-	expression tag	UNP I4E574
Y	-1	GLN	-	expression tag	UNP I4E574
Y	0	GLY	-	expression tag	UNP I4E574
Ζ	-12	HIS	-	expression tag	UNP I4E574
Ζ	-11	HIS	-	expression tag	UNP I4E574
Ζ	-10	HIS	-	expression tag	UNP I4E574
Ζ	-9	HIS	-	expression tag	UNP I4E574
Ζ	-8	HIS	-	expression tag	UNP I4E574
Ζ	-7	HIS	-	expression tag	UNP I4E574
Ζ	-6	GLU	-	expression tag	UNP I4E574
Ζ	-5	ASN	-	expression tag	UNP I4E574
Ζ	-4	LEU	-	expression tag	UNP I4E574
Ζ	-3	TYR	-	expression tag	UNP I4E574
Ζ	-2	PHE	-	expression tag	UNP I4E574
Z	-1	GLN	-	expression tag	UNP I4E574
Z	0	GLY	-	expression tag	UNP I4E574
a	-12	HIS	-	expression tag	UNP I4E574
a	-11	HIS	-	expression tag	UNP I4E574
a	-10	HIS	-	expression tag	UNP I4E574
a	-9	HIS	-	expression tag	UNP I4E574
a	-8	HIS	-	expression tag	UNP I4E574
a	-7	HIS	-	expression tag	UNP I4E574
a	-6	GLU	-	expression tag	UNP I4E574
a	-5	ASN	-	expression tag	UNP I4E574
a	-4	LEU	-	expression tag	UNP I4E574
a	-3	TYR	-	expression tag	UNP I4E574
a	-2	PHE	-	expression tag	UNP I4E574
a	-1	GLN	-	expression tag	UNP I4E574
a	0	GLY	-	expression tag	UNP I4E574

 \sim *,* · 1 0 .

Chain	Residue	Modelled	Actual	Comment	Reference
b	-12	HIS	-	expression tag	UNP I4E574
b	-11	HIS	-	expression tag	UNP I4E574
b	-10	HIS	-	expression tag	UNP I4E574
b	-9	HIS	-	expression tag	UNP I4E574
b	-8	HIS	-	expression tag	UNP I4E574
b	-7	HIS	-	expression tag	UNP I4E574
b	-6	GLU	-	expression tag	UNP I4E574
b	-5	ASN	-	expression tag	UNP I4E574
b	-4	LEU	-	expression tag	UNP I4E574
b	-3	TYR	-	expression tag	UNP I4E574
b	-2	PHE	-	expression tag	UNP I4E574
b	-1	GLN	-	expression tag	UNP I4E574
b	0	GLY	-	expression tag	UNP I4E574

• Molecule 2 is a protein called Acyldepsipeptide-14.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
2	с	6	Total C F N O	0	0	0
2	е	6	Total C F N O	0	0	0
			48 33 2 6 7	Ű	Ŭ	
2	f	6	Total C F N O	0	0	0
	-	0	48 33 2 6 7	Ŭ	Ŭ	
2	ď	6	Total C F N O	0	0	0
2	5	0	48 33 2 6 7	0	0	0
2	h	6	Total C F N O	0	0	0
	11	0	48 33 2 6 7	0	0	
0	:	6	Total C F N O	0	0	0
	1	0	48 33 2 6 7	0		0
0	:	6	Total C F N O	0	0	0
	J		48 33 2 6 7	0		
0	1	k 6	Total C F N O	0	0	0
	K		48 33 2 6 7		0	
0	1	C	Total C F N O	0	0	0
	I	0	48 33 2 6 7	0	0	
2		0	Total C F N O	0	0	0
2	m	6	48 33 2 6 7	0	0	0
			Total C F N O			-
2	n	6	48 33 2 6 7	0	0	0
			Total C F N O			
2	0	6	48 33 2 6 7	0	0	0
			Total C F N O			
2	р	6	48 33 2 6 7	0	0	0

Mol	Chain	Residues	At	oms			ZeroOcc	AltConf	Trace
2	q	6	TotalC4833	F 2	N 6	O 7	0	0	0
2	r	6	TotalC4833	F 2	N 6	O 7	0	0	0
2	s	6	TotalC4833	F 2	N 6	O 7	0	0	0
2	t	6	TotalC4833	F 2	N 6	O 7	0	0	0
2	u	6	Total C 48 33	F 2	N 6	O 7	0	0	0
2	v	6	Total C 48 33	F 2	N 6	О 7	0	0	0
2	W	6	TotalC4833	F 2	N 6	O 7	0	0	0
2	x	6	TotalC4833	F 2	N 6	O 7	0	0	0
2	У	6	TotalC4833	F 2	N 6	O 7	0	0	0
2	Z	6	Total C 48 33	F 2	N 6	O 7	0	0	0
2	0	6	TotalC4833	F 2	N 6	O 7	0	0	0
2	1	6	Total C 48 33	F 2	N 6	O 7	0	0	0
2	2	6	TotalC4833	F 2	N 6	0 7	0	0	0
2	3	6	$\begin{array}{cc} \text{Total} & \text{C} \\ 48 & 33 \end{array}$	F 2	N 6	0 7	0	0	0
2	4	6	TotalC4833	F 2	N 6	0 7	0	0	0

• Molecule 3 is OCTANOIC ACID (CAPRYLIC ACID) (three-letter code: OCA) (formula: $\rm C_8H_{16}O_2).$

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	с	1	Total C O 9 8 1	0	0
3	е	1	Total C O 9 8 1	0	0
3	f	1	Total C O 9 8 1	0	0
3	g	1	Total C O 9 8 1	0	0
3	h	1	Total C O 9 8 1	0	0
3	i	1	Total C O 9 8 1	0	0
3	j	1	Total C O 9 8 1	0	0
3	k	1	Total C O 9 8 1	0	0
3	1	1	Total C O 9 8 1	0	0
3	m	1	Total C O 9 8 1	0	0
3	n	1	Total C O 9 8 1	0	0
3	0	1	Total C O 9 8 1	0	0
3	р	1	Total C O 9 8 1	0	0
3	q	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 9 & 8 & 1 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	r	1	Total C O 9 8 1	0	0
3	s	1	Total C O 9 8 1	0	0
3	t	1	TotalCO981	0	0
3	u	1	Total C O 9 8 1	0	0
3	V	1	Total C O 9 8 1	0	0
3	W	1	Total C O 9 8 1	0	0
3	х	1	Total C O 9 8 1	0	0
3	У	1	Total C O 9 8 1	0	0
3	Z	1	Total C O 9 8 1	0	0
3	0	1	Total C O 9 8 1	0	0
3	1	1	Total C O 9 8 1	0	0
3	2	1	Total C O 9 8 1	0	0
3	3	1	TotalCO981	0	0
3	4	1	TotalCO981	0	0

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	25	TotalO2525	0	0
4	В	27	TotalO2727	0	0
4	С	21	Total O 21 21	0	0
4	D	17	Total O 17 17	0	0
4	Е	24	TotalO2424	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	F	22	Total O 22 22	0	0
4	G	26	Total O 26 26	0	0
4	Н	19	Total O 19 19	0	0
4	Ι	20	Total O 20 20	0	0
4	J	21	TotalO2121	0	0
4	К	32	$\begin{array}{ccc} \text{Total} & \text{O} \\ 32 & 32 \end{array}$	0	0
4	L	26	Total O 26 26	0	0
4	М	31	Total O 31 31	0	0
4	Ν	35	Total O 35 35	0	0
4	О	22	TotalO2222	0	0
4	Р	30	Total O 30 30	0	0
4	Q	22	TotalO2222	0	0
4	R	27	TotalO2727	0	0
4	S	17	Total O 17 17	0	0
4	Т	24	$\begin{array}{ccc} \text{Total} & \text{O} \\ 24 & 24 \end{array}$	0	0
4	U	25	TotalO2525	0	0
4	V	29	Total O 29 29	0	0
4	W	24	TotalO2424	0	0
4	Х	24	TotalO2424	0	0
4	Y	17	Total O 17 17	0	0
4	Ζ	32	Total O 32 32	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	a	29	Total O 29 29	0	0
4	b	37	$\begin{array}{cc} \text{Total} & \text{O} \\ 37 & 37 \end{array}$	0	0
4	0	1	Total O 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: ATP-dependent Clp protease proteolytic subunit

 \bullet Molecule 1: ATP-dependent Clp protease proteolytic subunit

Chain E:	78%	·	20%
HIS HIS HIS HIS HIS HIS HIS HIS GIU CIU CIU CIU CIU MET SER SER ASN TYR LEU LEU	VAL PVAL TRR TRR VAL VAL CLL CLL CLL CLL CLL CLL CLL CLL CLL C	H127 H127 S132 GLY GLY CLY CLY CLS G135 C136 C136 C136 C136 C136 C136 C136 C136	N198 ARG ALA SER LEU LEU LEU LEU
• Molecule 1: ATP-depende	ent Clp protease proteol	ytic subunit	
Chain F:	78%	·	21%
HIS HIS HIS HIS HIS HIS HIS CIU CIU CIU CIU NET SIR SIR SIR SIR CIU NET CIU NET CIU NET CIU NET CIU NET CIU NET CIU CIU CIU CIU CIU CIU CIU CIU CIU CIU	VAL VAL THR VAL VAL UI CIU CIU CIU CIU ALA ALA ALA ALA ALA ALA ALA	S132 S132 GLY GLY GLY G137 R147 R147	E197 ASN ALG ALA SER LEU LEU LEU
• Molecule 1: ATP-depende	ent Clp protease proteol	ytic subunit	
Chain G:	78%	·	20%
HIS HIS HIS HIS HIS HIS HIS GLU ASN GLU GLU GLN GLN GLN ASP PHE GLN ASP PHE ASP TASN LEU	VAL VAL THR VAL THR VAL THR GLV GLV GLV GLV GLV GLV GLV GLV GLV GLV	H127 8132 6LY 6LY 1135 135 135 135	E197 ASN ARG ALA SER LEU LEU LEU
• Molecule 1: ATP-depende	ent Clp protease proteol	ytic subunit	
Chain H:	76%	·	20%
HIS HIS HIS HIS HIS HIS HIS ALU CLU CLU CLU CLU CLU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	VAL VAL THRO THRO VAL ILE GLV GLV GLV GLV GLV GLV ALG PHLA PHLA PHLA PHLA	1130 1131 1131 1131 1131 1131 1135 1135	R166 L171 L171 L171 L135 L136 L136 R138 A12 ALA
SER Arg Leu			
• Molecule 1: ATP-depende	ent Clp protease proteol	ytic subunit	
Chain I:	76%	•	21%
HIS HIS HIS HIS HIS HIS HIS AIS CLA CLA CLA CLA CLA CLA CLA CLA CLA CLA	VAL VAL THR THR VAL THR CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	H127 S132 GLY GLY LEU GLY C137	K155 E184 E188 C189 C199 E197 ASN ARG ALA
SER ALG LEU LEU			
• Molecule 1: ATP-depende	ent Clp protease proteol	ytic subunit	
Chain J:	78%	·	21%
HIS HIS HIS HIS HIS HIS HIS GIU GIU CIU CIU CIU CIU NET CIU NET CIU NET CIU NET CIU CIU NET CIU CIU CIU CIU CIU CIU CIU CIU CIU CIU	VAL PRO THR THR VAL TLE GLV GLV GLV GLV GLV ARG ARG ARG ARG ARG ARG ARG	L130 L131 S132 S132 GLY GLY CLY CLY CLY CLY CLY CLY CLY	R.47 N198 ARG ALA SER LEU LEU LEU
• Molecule 1: ATP-depende	ent Clp protease proteol	ytic subunit	
Chain K:	78%	·	20%
	PROTEIN DATA	D E BANK	

HIS HIS HIS HIS HIS HIS HIS HIS ALEU ALEU ARA ARA ARA ARA ALA ALA ALA ALA ALA ALA	
• Molecule 1: ATP-dependent Clp protease proteolytic subunit	
Chain L: 78% • 20%	
HIS HIS HIS HIS HIS HIS HIS HIS AIS AIS AIS AIS AIS AIS AIS AIS AIS A	
• Molecule 1: ATP-dependent Clp protease proteolytic subunit	
Chain M: 76% · 21%	
HIS HIS HIS HIS HIS HIS HIS ALU ALU ALU ALN ALN ALN ALA ALA ALA ALA ALA ALA ALA	
ALA SER ARG LEU	
• Molecule 1: ATP-dependent Clp protease proteolytic subunit	
Chain N: 77% • 20%	
HIS HIS HIS HIS HIS HIS HIS HIS ALL ALL ALL ALL ALL HIS HIS HIS HIS HIS HIS HIS HIS HIS HIS	
• Molecule 1: ATP-dependent Clp protease proteolytic subunit	
Chain O: 76% · 21%	
HIS HIS HIS HIS HIS HIS HIS ASN ASN ASN ASN ASN ASN ASN ASN ASN AS	
ARG LEU LEU	
• Molecule 1: ATP-dependent Clp protease proteolytic subunit	
Chain P: 78% • 20%	
HIS HIS HIS HIS HIS HIS ALU ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	
• Molecule 1: ATP-dependent Clp protease proteolytic subunit	
Chain Q: 77% · 20%	

W O R L D W I D E PROTEIN DATA BANK

HIS HIS HIS HIS HIS HIS GLU CLU CLU CLU MET ASN MET ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	LLE CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	8132 GLY CLY CL35 E135 E134 ASN ASN ASN ALA ALA ALA ALA LEU LEU LEU
• Molecule 1: ATP-dependent C	lp protease proteolytic sul	ounit
Chain R:	78%	• 19%
HIS HIS HIS HIS HIS AIS HIS CLU CLU CLU CLU CLU MET ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	LLE GLU SER SER SER ALY ALG ALY ALG ALA ALA ALA ALA ALA ALA ALA ALA ALA	L130 C133 C133 C133 C149 L135 A14 A14 A14 A14 A14 A14 A14 A14 A14 A16 A14 A16 A14 A16 A14 A16 A17 A16 A17 A16 A17 A16 A16 A16 A16 A16 A16 A16 A16 A16 A16
• Molecule 1: ATP-dependent C	lp protease proteolytic sul	ounit
Chain S:	77%	• 20%
HLS HLS HLS HLS HLS HLS HLS GLU GLU CLU CLU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	LLE GLU GLU GLY GLY GLY ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	L47 K113 K113 H127 H127 C133 C137 C137 C137 C137 C137 C137 C13
ARG LEU		
• Molecule 1: ATP-dependent C	lp protease proteolytic sul	ounit
Chain T:	77%	• 21%
HIS HIS HIS HIS HIS HIS HIS GLU CASN CLY CLU CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	ILE GLU GLU GLU GLY GLY ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	8132 GLY GLY GLY GLY GLY GLA GLA GLA CL91 L191 AN B AN AN SER ALA SER LEU
ARG		
• Molecule 1: ATP-dependent C	lp protease proteolytic sul	ounit
Chain U:	76%	• 20%
HIS HIS HIS HIS HIS HIS HIS CIU CIU CIU CIU CIU CIU CIU CIU CIU CIU	LILE GIU GIU GIU GIV GIY ARC ARC ARC ARC CIJ CIJ B23 CIJ CIJ B43 CIJ CIJ B43 CIJ CIJ CIJ CIJ CIJ CIJ CIJ CIJ CIJ CIJ	H127 L130 5132 6133 6133 6134 6134 6134 6134 6134 6134
LEU LEU		
• Molecule 1: ATP-dependent C	lp protease proteolytic sul	ounit
Chain V:	78%	• 21%
HIS HIS HIS HIS HIS HIS GLV CLEU CLU CLU CLN CLU CLU TTMR ASN VAL CLU VAL VAL VAL	LLE GLU GLU GLU GLV GLY ARG GLY ARG ALA ARG CLU TLI 2 CLI 13 2 CLI 7 3 CLI 7 3 CLI 7 3 CLI 7 C CLI 7 C CLI 7 C CLI 7 C C C C C C C C C C C C C C C C C C	LEU LEU GLY GL37 C137 B197 ARG ARA ARG LEU ARC LEU LEU

• Molecule 1: ATP-dependent Clp protease proteolytic subunit

Chain W:	78%	• 20%
HIS HIS HIS HIS HIS CLEU CLEU ASN PHE ASN ASN ASN ASN ASN TTHR TTHR VAL	LLE GLU GLU GLU GLY AGLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	12 G133 G133 G136 G136 G136 G136 G136 A13 A13 A14 A14 A14 A14 A14 A14 A14 A14 A14 A14
• Molecule 1: ATP-dependent C	lp protease proteolytic s	ubunit
Chain X:	77%	• 20%
HIS HIS HIS HIS HIS HIS GLU GLU GLU GLV GLY GLY GLY ASN ASN ASN VAL LEU VAL VAL VAL VAL	LLE GLU GLU GLU GLU GLY ARG ALA ALA ALA ALA ALA ALA SLO S SLO S	dia dia dia dia dia dia dia dia
LEU		
• Molecule 1: ATP-dependent C	lp protease proteolytic s	ubunit
Chain Y:	77%	• 21%
HIS HIS HIS HIS HIS HIS CLU CLU CLU CLU CLU CLU CLU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	LLE GLU GLU GLU GLY GLY ARG GLY ARG ARG ARG ARA ARA ARA ARA ARA ARA	CLY
ARG		
• Molecule 1: ATP-dependent C	lp protease proteolytic s	ubunit
Chain Z:	77%	• 21%
HIS HIS HIS HIS HIS HIS HIS CIS CIS CIS CIS CIS CIS CIS CIS CIS C	LLE GLU GLU GLU GLY GLY ARG ARG ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	LEU C136 C136 M160 B184 B197 A18 A18 A18 A18 A18 A18 A18 A18 A18 A18
• Molecule 1: ATP-dependent C	lp protease proteolytic s	ubunit
Chain a:	78%	• 20%
HIS HIS HIS HIS HIS HIS GLU CLU CLU CLU CLU CLU MET ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	ILE GLU GLU GLU GLY ARG ALA ARA ALA ALA ALA ALA ALA ALA ALA ALA	dLY CLY CLY CLY CLY CL20 CL36 CL36 CL36 A18 A18 A18 A18 A18 A18 A18 A18 A18 A18
• Molecule 1: ATP-dependent C	lp protease proteolytic s	ubunit
Chain b:	76%	• 21%
HIS HIS HIS HIS HIS HIS GLU GLU CLU CLU CLU CLU CLU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	ILE GLU GLU GLY GLY GLY GLY GLY GLY FHE F43 F17 F17 F17 F17 F17 F17 F17 F17 F17 F17	S102 S102 S102 SER CLY CLY CLY CLY CLY ARG ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN
TEN		
• Molecule 2: Acyldepsipeptide-	14	

Chain c: 33%	67%
WFP2 T3 P4 AG P7	
• Molecule 2: Acyldepsipeptide-14	
Chain e: 33%	67%
WFP2 P45 Y CP5 P7	
• Molecule 2: Acyldepsipeptide-14	
Chain f: 33%	67%
WFP2 T3 PCP5 A6 P7	
• Molecule 2: Acyldepsipeptide-14	
Chain g: 33%	67%
WFP2 T3 7 CF5 AG P7	
• Molecule 2: Acyldepsipeptide-14	
Chain h: 33%	67%
WEP2 T P4 Y P4 A6 P7	
• Molecule 2: Acyldepsipeptide-14	
Chain i: 33%	67%
WFP2 T3 YCP5 A6 P7	
• Molecule 2: Acyldepsipeptide-14	
Chain j: 33%	67%
и гр.2 Р.4 Р.7 Р.7	
• Molecule 2: Acyldepsipeptide-14	
Chain k: 33%	67%

WFP2 T3 P4 YCP5 A6 P7

• Molecule 2: Acyldepsipeptide-14

Chain l:	33%	67%
WFP2 T3 P4 YCP5 A6 P7		
• Molecule 2:	Acyldepsipeptide-14	
Chain m:	33%	67%
WFP2 T3 P4 YCP5 A6 P7		
• Molecule 2:	Acyldepsipeptide-14	
Chain n:	33%	67%
WFP2 T3 P4 YCP5 A6 P7		
• Molecule 2:	Acyldepsipeptide-14	
Chain o:	33%	67%
MFP2 T3 P4 YCP5 A6 P7		
• Molecule 2:	Acyldepsipeptide-14	
Chain p:	33%	67%
WFP2 T3 P4 YCP5 A6 P7		
• Molecule 2:	Acyldepsipeptide-14	
Chain q:	33%	67%
WFP2 T3 P4 YCP5 A6 P7		
• Molecule 2:	Acyldepsipeptide-14	
Chain r:	33%	67%
WFP2 T3 P4 YCP5 A6 P7		

• Molecule 2: Acyldepsipeptide-14

Chain s: 17%	83%
WFP2 F4 P7 P7	
• Molecule 2: Acyldepsipeptide-14	
Chain t: 33%	67%
WFP2 P.4 AG AG P7	
• Molecule 2: Acyldepsipeptide-14	
Chain u: 33%	67%
WEP2 13 73 70 86 P7	
• Molecule 2: Acyldepsipeptide-14	
Chain v: 17%	83%
WFP2 T3 7GP5 P7	
• Molecule 2: Acyldepsipeptide-14	
Chain w: 17%	83%
WFP2 T3 T4 A6 P7	
• Molecule 2: Acyldepsipeptide-14	
Chain x: 33%	67%
WFP2 746 766 P7	
• Molecule 2: Acyldepsipeptide-14	
Chain y: 17%	83%
• Molecule 2: Acyldepsipeptide-14	
Chain z: 33%	67%
WFP2 13 7CP5 A6 P7	

W O R L D W I D E PROTEIN DATA BANK

• Molecule 2:	Acyldepsipeptide-14		
Chain 0:	33%	67%	
WFP2 T3 P4 YCP5 A6 P7			
• Molecule 2:	Acyldepsipeptide-14		
Chain 1:	33%	67%	
WEP2 T3 P4 YCP5 A6 P7			
• Molecule 2:	Acyldepsipeptide-14		
Chain 2:	33%	67%	
WFP2 T3 P4 YCP5 A6 P7			
• Molecule 2:	Acyldepsipeptide-14		
Chain 3:	33%	67%	
WFP2 T3 P4 YCP5 A6 P7			
• Molecule 2:	Acyldepsipeptide-14		
Chain 4:	33%	50%	17%
WFP2 T3 P4 YCP5 A6 P7			

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	117.24Å 195.98Å 139.89Å	Depositor
a, b, c, α , β , γ	90.00° 97.42° 90.00°	Depositor
Bosolution(A)	49.63 - 2.70	Depositor
Resolution (A)	49.63 - 2.70	EDS
% Data completeness	98.6 (49.63-2.70)	Depositor
(in resolution range)	98.6 (49.63 - 2.70)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.49 (at 2.69 \text{\AA})$	Xtriage
Refinement program	PHENIX (1.11.1_2575)	Depositor
P. P.	0.192 , 0.248	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.192 , 0.248	DCC
R_{free} test set	1999 reflections (1.19%)	wwPDB-VP
Wilson B-factor $(Å^2)$	43.2	Xtriage
Anisotropy	0.211	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.39, 55.7	EDS
L-test for twinning ²	$ < L >=0.51, < L^2>=0.34$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.93	EDS
Total number of atoms	40076	wwPDB-VP
Average B, all atoms $(Å^2)$	42.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.97% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: OCA, ALO, WFP, YCP, MP8

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	ond lengths	Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.46	0/1379	0.77	2/1856~(0.1%)
1	В	0.54	1/1366~(0.1%)	0.80	5/1837~(0.3%)
1	С	0.45	0/1365	0.76	2/1836~(0.1%)
1	D	0.51	0/1370	0.82	7/1843~(0.4%)
1	Е	0.53	1/1378~(0.1%)	0.83	5/1854~(0.3%)
1	F	0.52	1/1358~(0.1%)	0.72	2/1827~(0.1%)
1	G	0.49	0/1370	0.72	2/1843~(0.1%)
1	Н	0.49	0/1378	0.80	4/1854~(0.2%)
1	Ι	0.51	2/1358~(0.1%)	0.76	3/1827~(0.2%)
1	J	0.48	0/1366	0.79	5/1838~(0.3%)
1	Κ	0.56	0/1378	0.92	6/1854~(0.3%)
1	L	0.51	1/1374~(0.1%)	0.76	4/1848~(0.2%)
1	М	0.52	1/1358~(0.1%)	0.82	5/1827~(0.3%)
1	Ν	0.45	0/1366	0.80	7/1837~(0.4%)
1	0	0.49	0/1366	0.87	7/1838~(0.4%)
1	Р	0.54	1/1366~(0.1%)	0.93	4/1837~(0.2%)
1	Q	0.46	0/1370	0.79	3/1843~(0.2%)
1	R	0.46	0/1382	0.75	3/1859~(0.2%)
1	S	0.53	0/1370	0.82	6/1843~(0.3%)
1	Т	0.43	0/1358	0.70	1/1827~(0.1%)
1	U	0.54	2/1370~(0.1%)	0.86	7/1844~(0.4%)
1	V	0.46	0/1360	0.68	0/1830
1	W	0.46	0/1366	0.72	1/1837~(0.1%)
1	Х	0.46	0/1374	0.74	4/1848~(0.2%)
1	Y	0.46	1/1366~(0.1%)	0.74	3/1838~(0.2%)
1	Ζ	0.46	0/1362	0.68	1/1832~(0.1%)
1	a	0.47	0/1370	0.71	4/1843~(0.2%)
1	b	0.53	0/1364	0.76	3/1835~(0.2%)
2	0	4.18	2/11~(18.2%)	1.21	0/12
2	1	4.14	1/11~(9.1%)	1.35	0/12
2	2	4.25	2/11~(18.2%)	1.90	0/12
2	3	4.18	2/11~(18.2%)	1.42	0/12

Mol	Chain	Bond lengths		Bond angles		
WIOI			# Z > 5	RMSZ	# Z > 5	
2	4	4.21	2/11~(18.2%)	1.20	0/12	
2	с	4.13	2/11~(18.2%)	1.33	0/12	
2	е	4.30	2/11~(18.2%)	1.17	0/12	
2	f	4.11	2/11~(18.2%)	1.52	0/12	
2	g	4.29	2/11~(18.2%)	1.43	0/12	
2	h	4.34	2/11~(18.2%)	1.42	0/12	
2	i	4.26	2/11~(18.2%)	1.44	0/12	
2	j	4.20	2/11~(18.2%)	1.61	0/12	
2	k	4.17	2/11~(18.2%)	1.38	0/12	
2	1	4.20	2/11~(18.2%)	1.34	0/12	
2	m	4.20	2/11~(18.2%)	2.16	0/12	
2	n	4.17	2/11~(18.2%)	1.57	0/12	
2	0	4.14	2/11~(18.2%)	1.45	0/12	
2	р	4.08	2/11~(18.2%)	1.44	0/12	
2	q	4.17	2/11~(18.2%)	1.24	0/12	
2	r	4.31	2/11~(18.2%)	1.32	0/12	
2	s	4.25	2/11~(18.2%)	1.53	0/12	
2	t	4.30	2/11~(18.2%)	1.57	0/12	
2	u	4.11	1/11~(9.1%)	2.06	0/12	
2	V	4.11	2/11~(18.2%)	1.79	0/12	
2	W	4.22	2/11~(18.2%)	1.27	0/12	
2	X	4.15	2/11~(18.2%)	1.70	0/12	
2	У	4.08	1/11~(9.1%)	1.50	0/12	
2	Z	4.22	2/11~(18.2%)	1.59	0/12	
All	All	0.62	64/38616~(0.2%)	0.79	106/51871~(0.2%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	S	0	1
1	W	0	1
All	All	0	2

All (64) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
2	i	4	PRO	N-CD	-11.16	1.32	1.47
2	h	4	PRO	N-CD	-11.16	1.32	1.47
2	е	4	PRO	N-CD	-11.15	1.32	1.47

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	r	4	PRO	N-CD	-11.09	1.32	1.47
2	s	4	PRO	N-CD	-11.02	1.32	1.47
2	2	4	PRO	N-CD	-11.02	1.32	1.47
2	0	4	PRO	N-CD	-10.99	1.32	1.47
2	4	4	PRO	N-CD	-10.96	1.32	1.47
2	j	4	PRO	N-CD	-10.81	1.32	1.47
2	t	4	PRO	N-CD	-10.81	1.32	1.47
2	3	4	PRO	N-CD	-10.74	1.32	1.47
2	W	4	PRO	N-CD	-10.73	1.32	1.47
2	n	4	PRO	N-CD	-10.72	1.32	1.47
2	0	4	PRO	N-CD	-10.72	1.32	1.47
2	1	4	PRO	N-CD	-10.69	1.32	1.47
2	с	4	PRO	N-CD	-10.66	1.32	1.47
2	f	4	PRO	N-CD	-10.62	1.32	1.47
2	g	4	PRO	N-CD	-10.61	1.32	1.47
2	Z	4	PRO	N-CD	-10.60	1.33	1.47
2	m	4	PRO	N-CD	-10.57	1.33	1.47
2	1	4	PRO	N-CD	-10.52	1.33	1.47
2	q	4	PRO	N-CD	-10.52	1.33	1.47
2	Х	4	PRO	N-CD	-10.48	1.33	1.47
2	р	4	PRO	N-CD	-10.48	1.33	1.47
2	u	4	PRO	N-CD	-10.46	1.33	1.47
2	k	4	PRO	N-CD	-10.31	1.33	1.47
2	V	4	PRO	N-CD	-10.30	1.33	1.47
2	У	4	PRO	N-CD	-10.20	1.33	1.47
1	U	184	GLU	CB-CG	7.90	1.67	1.52
1	Р	27	ARG	CZ-NH2	7.09	1.42	1.33
1	U	43	GLU	CB-CG	6.77	1.65	1.52
2	t	4	PRO	N-CA	6.22	1.57	1.47
1	Е	27	ARG	CG-CD	6.01	1.67	1.51
2	q	4	PRO	N-CA	5.88	1.57	1.47
2	1	4	PRO	N-CA	5.87	1.57	1.47
2	W	4	PRO	N-CA	5.83	1.57	1.47
1	Ι	188	GLU	CD-OE2	-5.82	1.19	1.25
2	g	4	PRO	N-CA	5.78	1.57	1.47
2	h	4	PRO	N-CA	5.72	1.56	1.47
1	В	30	LYS	CB-CG	5.70	1.68	1.52
2	е	4	PRO	N-CA	5.62	1.56	1.47
2	r	4	PRO	N-CA	5.61	1.56	1.47
2	Z	4	PRO	N-CA	5.54	1.56	1.47
2	n	4	PRO	N-CA	5.54	1.56	1.47
2	v	4	PRO	N-CA	5.49	1.56	1.47

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	0	4	PRO	N-CA	5.49	1.56	1.47
2	s	4	PRO	N-CA	5.48	1.56	1.47
2	i	4	PRO	N-CA	5.46	1.56	1.47
2	k	4	PRO	N-CA	5.46	1.56	1.47
2	2	4	PRO	N-CA	5.44	1.56	1.47
2	4	4	PRO	N-CA	5.41	1.56	1.47
2	m	4	PRO	N-CA	5.37	1.56	1.47
1	Y	184	GLU	CG-CD	5.34	1.59	1.51
2	Х	4	PRO	N-CA	5.32	1.56	1.47
1	М	43	GLU	CB-CG	-5.27	1.42	1.52
2	р	4	PRO	N-CA	5.25	1.56	1.47
2	j	4	PRO	N-CA	5.25	1.56	1.47
2	с	4	PRO	N-CA	5.17	1.56	1.47
2	f	4	PRO	N-CA	5.17	1.56	1.47
1	L	43	GLU	CD-OE1	5.13	1.31	1.25
2	3	4	PRO	N-CA	5.10	1.55	1.47
1	Ι	27	ARG	CG-CD	5.06	1.64	1.51
2	0	4	PRO	N-CA	5.04	1.55	1.47
1	F	147	ARG	CG-CD	5.00	1.64	1.51

All (106) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Р	27	ARG	NE-CZ-NH2	16.30	128.45	120.30
1	Р	27	ARG	NE-CZ-NH1	-14.57	113.02	120.30
1	K	27	ARG	NE-CZ-NH2	-11.86	114.37	120.30
1	Е	27	ARG	CA-CB-CG	11.69	139.13	113.40
1	K	27	ARG	CG-CD-NE	-11.65	87.34	111.80
1	D	147	ARG	NE-CZ-NH2	11.37	125.99	120.30
1	0	27	ARG	NE-CZ-NH1	11.32	125.96	120.30
1	А	147	ARG	CA-CB-CG	-10.92	89.38	113.40
1	J	147	ARG	NE-CZ-NH1	-10.70	114.95	120.30
1	0	27	ARG	NE-CZ-NH2	-10.61	115.00	120.30
1	N	27	ARG	NE-CZ-NH2	-10.48	115.06	120.30
1	Т	147	ARG	CG-CD-NE	-10.47	89.81	111.80
1	S	43	GLU	CA-CB-CG	10.39	136.25	113.40
1	D	147	ARG	NE-CZ-NH1	-10.25	115.17	120.30
1	Р	188	GLU	CA-CB-CG	-10.18	91.00	113.40
1	b	97	LEU	CA-CB-CG	10.00	138.31	115.30
1	G	30	LYS	CB-CG-CD	-9.82	86.06	111.60
1	Ι	27	ARG	CB-CG-CD	-9.59	86.66	111.60
1	Р	27	ARG	CG-CD-NE	9.41	131.56	111.80

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
1	Q	184	GLU	CA-CB-CG	-9.39	92.75	113.40
1	N	27	ARG	NE-CZ-NH1	9.30	124.95	120.30
1	U	43	GLU	CA-CB-CG	8.83	132.82	113.40
1	Ι	27	ARG	CD-NE-CZ	8.65	135.72	123.60
1	K	194	GLN	CA-CB-CG	8.25	131.56	113.40
1	М	173	ARG	NE-CZ-NH1	-8.13	116.24	120.30
1	U	43	GLU	CB-CA-C	-8.09	94.23	110.40
1	b	43	GLU	CA-CB-CG	-7.93	95.95	113.40
1	K	27	ARG	CB-CG-CD	-7.85	91.19	111.60
1	Е	27	ARG	CG-CD-NE	7.83	128.23	111.80
1	Ι	184	GLU	CA-CB-CG	7.64	130.20	113.40
1	K	62	LYS	CD-CE-NZ	-7.60	94.22	111.70
1	F	147	ARG	CG-CD-NE	7.55	127.66	111.80
1	R	194	GLN	CA-CB-CG	7.25	129.34	113.40
1	В	97	LEU	CA-CB-CG	7.20	131.86	115.30
1	U	184	GLU	CA-CB-CG	7.19	129.21	113.40
1	С	162	LYS	CD-CE-NZ	-7.17	95.20	111.70
1	Ν	27	ARG	CB-CG-CD	-7.06	93.24	111.60
1	G	194	GLN	CA-CB-CG	7.05	128.92	113.40
1	J	130	LEU	CA-CB-CG	6.96	131.30	115.30
1	J	147	ARG	CB-CG-CD	-6.91	93.62	111.60
1	Х	27	ARG	NE-CZ-NH1	6.91	123.75	120.30
1	J	147	ARG	CG-CD-NE	-6.89	97.33	111.80
1	b	43	GLU	N-CA-CB	-6.65	98.62	110.60
1	Ε	27	ARG	CB-CG-CD	-6.60	94.43	111.60
1	М	173	ARG	CA-CB-CG	6.58	127.86	113.40
1	В	162	LYS	CA-CB-CG	6.56	127.84	113.40
1	U	43	GLU	N-CA-CB	6.56	122.41	110.60
1	L	27	ARG	CG-CD-NE	6.56	125.57	111.80
1	Y	43	GLU	CA-CB-CG	-6.51	99.08	113.40
1	S	47	LEU	CB-CG-CD2	6.50	122.04	111.00
1	С	135	LEU	CA-CB-CG	6.36	129.93	115.30
1	K	27	ARG	CD-NE-CZ	6.35	132.49	123.60
1	N	27	ARG	CB-CA-C	-6.31	97.78	110.40
1	Y	173	ARG	CB-CG-CD	-6.28	95.27	111.60
1	В	30	LYS	CG-CD-CE	6.24	130.63	111.90
1	Е	184	GLU	CA-CB-CG	6.24	127.13	113.40
1	W	43	GLU	CA-CB-CG	6.17	126.98	113.40
1	S	113	LYS	CD-CE-NZ	-6.17	97.51	111.70
1	N	27	ARG	CG-CD-NE	6.16	124.74	111.80
1	0	24	ILE	CG1-CB-CG2	-6.15	97.87	111.40
1	L	43	GLU	CA-CB-CG	6.08	126.79	113.40

$6N_{I}$	AН
----------	----

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	Ideal(°)
1	В	30	LYS	CB-CG-CD	-6.08	95.78	111.60
1	Y	43	GLU	N-CA-CB	-6.05	99.71	110.60
1	Q	27	ARG	N-CA-CB	6.01	121.42	110.60
1	0	27	ARG	CD-NE-CZ	5.99	131.99	123.60
1	H	171	LEU	CA-CB-CG	-5.96	101.60	115.30
1	S	27	ARG	CB-CA-C	-5.86	98.67	110.40
1	J	147	ARG	CA-CB-CG	5.85	126.28	113.40
1	L	27	ARG	CB-CA-C	5.81	122.01	110.40
1	Н	196	LEU	CA-CB-CG	5.71	128.44	115.30
1	0	30	LYS	CD-CE-NZ	-5.71	98.57	111.70
1	Е	27	ARG	CB-CA-C	5.71	121.82	110.40
1	D	27	ARG	CB-CA-C	5.71	121.81	110.40
1	N	194	GLN	CA-CB-CG	5.71	125.95	113.40
1	В	30	LYS	CA-CB-CG	5.69	125.91	113.40
1	S	27	ARG	NE-CZ-NH1	-5.68	117.46	120.30
1	М	194	GLN	CA-CB-CG	5.67	125.89	113.40
1	Х	27	ARG	NE-CZ-NH2	-5.67	117.46	120.30
1	F	147	ARG	NE-CZ-NH1	-5.60	117.50	120.30
1	a	97	LEU	CA-CB-CG	5.59	128.15	115.30
1	Ν	27	ARG	CD-NE-CZ	5.57	131.40	123.60
1	Q	27	ARG	CB-CA-C	-5.55	99.30	110.40
1	Х	27	ARG	CB-CG-CD	5.54	126.02	111.60
1	0	171	LEU	CA-CB-CG	-5.54	102.56	115.30
1	А	147	ARG	CB-CG-CD	5.46	125.80	111.60
1	S	43	GLU	CB-CA-C	-5.45	99.51	110.40
1	L	27	ARG	NE-CZ-NH1	5.44	123.02	120.30
1	a	187	LYS	CD-CE-NZ	-5.37	99.35	111.70
1	М	130	LEU	CA-CB-CG	5.35	127.61	115.30
1	Н	130	LEU	CA-CB-CG	5.33	127.55	115.30
1	D	188	GLU	CB-CA-C	-5.32	99.75	110.40
1	a	194	GLN	CA-CB-CG	5.32	125.11	113.40
1	Х	184	GLU	CB-CA-C	-5.32	99.76	110.40
1	U	27	ARG	CG-CD-NE	-5.23	100.81	111.80
1	0	130	LEU	CA-CB-CG	5.22	127.32	115.30
1	R	30	LYS	CG-CD-CE	-5.21	96.26	111.90
1	Z	184	GLU	CA-CB-CG	-5.19	101.98	113.40
1	R	149	LEU	CB-CG-CD2	-5.17	102.22	111.00
1	D	147	ARG	CA-CB-CG	5.16	$124.7\overline{5}$	113.40
1	U	130	LEU	CA-CB-CG	5.10	127.03	115.30
1	М	27	ARG	CB-CA-C	-5.07	100.27	110.40
1	D	147	ARG	CD-NE-CZ	$5.0\overline{6}$	130.68	123.60
1	U	27	ARG	NE-CZ-NH2	-5.04	117.78	120.30

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
1	a	187	LYS	CB-CG-CD	5.03	124.69	111.60
1	D	191	LEU	CA-CB-CG	5.03	126.87	115.30
1	Н	147	ARG	CA-CB-CG	-5.02	102.36	113.40

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	S	43	GLU	Sidechain
1	W	193	ASP	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	173/217~(80%)	168 (97%)	5 (3%)	0	100	100
1	В	169/217~(78%)	166 (98%)	3 (2%)	0	100	100
1	С	169/217~(78%)	166 (98%)	3 (2%)	0	100	100
1	D	169/217~(78%)	165 (98%)	4 (2%)	0	100	100
1	Е	170/217~(78%)	165 (97%)	4 (2%)	1 (1%)	25	50
1	F	167/217~(77%)	165 (99%)	2 (1%)	0	100	100
1	G	169/217~(78%)	165 (98%)	4 (2%)	0	100	100
1	Н	170/217~(78%)	165 (97%)	3 (2%)	2 (1%)	13	32
1	Ι	167/217~(77%)	165 (99%)	2 (1%)	0	100	100
1	J	168/217~(77%)	166 (99%)	2 (1%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	Κ	170/217~(78%)	165~(97%)	5(3%)	0	100	100
1	L	170/217~(78%)	166~(98%)	4 (2%)	0	100	100
1	М	167/217~(77%)	165~(99%)	2(1%)	0	100	100
1	Ν	169/217~(78%)	167 (99%)	2(1%)	0	100	100
1	Ο	168/217~(77%)	164 (98%)	3 (2%)	1 (1%)	25	50
1	Р	169/217~(78%)	167 (99%)	2(1%)	0	100	100
1	Q	169/217~(78%)	166 (98%)	3 (2%)	0	100	100
1	R	171/217~(79%)	168 (98%)	3 (2%)	0	100	100
1	S	169/217~(78%)	165~(98%)	4 (2%)	0	100	100
1	Т	167/217~(77%)	165 (99%)	2 (1%)	0	100	100
1	U	172/217~(79%)	165 (96%)	5(3%)	2(1%)	13	32
1	V	167/217~(77%)	164 (98%)	2 (1%)	1 (1%)	25	50
1	W	169/217~(78%)	167 (99%)	2 (1%)	0	100	100
1	Х	170/217~(78%)	165 (97%)	5 (3%)	0	100	100
1	Y	168/217~(77%)	165 (98%)	3 (2%)	0	100	100
1	Z	168/217~(77%)	165~(98%)	3 (2%)	0	100	100
1	a	169/217~(78%)	167 (99%)	2(1%)	0	100	100
1	b	168/217~(77%)	166 (99%)	2(1%)	0	100	100
2	0	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	1	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	2	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	3	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	4	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	с	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	е	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	f	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	g	$2/\overline{6}$ (33%)	1 (50%)	1(50%)	0	100	100
2	h	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	i	$2/\overline{6}$ (33%)	1 (50%)	1 (50%)	0	100	100
2	j	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	k	2/6~(33%)	1 (50%)	1 (50%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	1	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	m	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	n	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	О	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	р	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	q	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	r	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	s	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	t	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	u	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	V	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	W	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	х	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	У	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
2	Z	2/6~(33%)	1 (50%)	1 (50%)	0	100	100
All	All	4787/6244 (77%)	4666 (98%)	114 (2%)	7~(0%)	51	78

All (7) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	Е	136	GLY
1	Н	136	GLY
1	Н	196	LEU
1	U	132	SER
1	U	133	GLY
1	V	130	LEU
1	0	197	GLU

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

$6N_{1}$	AН
-	

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	148/185~(80%)	146 (99%)	2(1%)	67	86
1	В	147/185~(80%)	145 (99%)	2(1%)	67	86
1	С	147/185~(80%)	141 (96%)	6 (4%)	30	59
1	D	148/185~(80%)	147 (99%)	1 (1%)	84	94
1	Е	149/185~(80%)	148 (99%)	1 (1%)	84	94
1	F	147/185~(80%)	146 (99%)	1 (1%)	84	94
1	G	148/185~(80%)	147 (99%)	1 (1%)	84	94
1	Н	149/185~(80%)	146 (98%)	3~(2%)	55	81
1	Ι	147/185~(80%)	145 (99%)	2(1%)	67	86
1	J	148/185~(80%)	146 (99%)	2(1%)	67	86
1	К	149/185~(80%)	146 (98%)	3(2%)	55	81
1	L	148/185~(80%)	146 (99%)	2(1%)	67	86
1	М	147/185~(80%)	145 (99%)	2(1%)	67	86
1	Ν	147/185~(80%)	144 (98%)	3 (2%)	55	81
1	Ο	148/185~(80%)	146 (99%)	2(1%)	67	86
1	Р	147/185~(80%)	145 (99%)	2 (1%)	67	86
1	Q	148/185~(80%)	145 (98%)	3(2%)	55	81
1	R	149/185~(80%)	146 (98%)	3 (2%)	55	81
1	S	148/185~(80%)	146 (99%)	2(1%)	67	86
1	Т	147/185~(80%)	143 (97%)	4 (3%)	44	74
1	U	147/185~(80%)	145 (99%)	2(1%)	67	86
1	V	147/185~(80%)	146 (99%)	1 (1%)	84	94
1	W	147/185~(80%)	145 (99%)	2(1%)	67	86
1	Х	148/185~(80%)	144 (97%)	4 (3%)	44	74
1	Y	148/185~(80%)	146 (99%)	2 (1%)	67	86
1	Ζ	147/185~(80%)	144 (98%)	3 (2%)	55	81
1	a	$\overline{148/185}\ (80\%)$	147 (99%)	1 (1%)	84	94
1	b	147/185~(80%)	143 (97%)	4 (3%)	44	74
2	0	1/1 (100%)	1 (100%)	0	100	100
2	1	1/1 (100%)	1 (100%)	0	100	100
2	2	1/1 (100%)	1 (100%)	0	100	100
2	3	$1/1 \ (100\%)$	1 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	4	1/1 (100%)	0	1 (100%)	0	0
2	с	1/1 (100%)	1 (100%)	0	100	100
2	е	1/1 (100%)	1 (100%)	0	100	100
2	f	1/1 (100%)	1 (100%)	0	100	100
2	g	1/1 (100%)	1 (100%)	0	100	100
2	h	1/1 (100%)	1 (100%)	0	100	100
2	i	1/1 (100%)	1 (100%)	0	100	100
2	j	1/1 (100%)	1 (100%)	0	100	100
2	k	1/1 (100%)	1 (100%)	0	100	100
2	1	1/1 (100%)	1 (100%)	0	100	100
2	m	$1/1 \ (100\%)$	1 (100%)	0	100	100
2	n	$1/1 \ (100\%)$	1 (100%)	0	100	100
2	О	$1/1 \ (100\%)$	1 (100%)	0	100	100
2	р	$1/1 \ (100\%)$	1 (100%)	0	100	100
2	q	1/1 (100%)	1 (100%)	0	100	100
2	r	$1/1 \ (100\%)$	1 (100%)	0	100	100
2	s	1/1 (100%)	1 (100%)	0	100	100
2	t	$1/1 \ (100\%)$	1 (100%)	0	100	100
2	u	$1/1 \ (100\%)$	1 (100%)	0	100	100
2	v	$1/1 \ (100\%)$	1 (100%)	0	100	100
2	W	$1/1 \ (100\%)$	1 (100%)	0	100	100
2	x	$1/1 \ (100\%)$	1 (100%)	0	100	100
2	У	$1/1 \ (100\%)$	1 (100%)	0	100	100
2	z	$1/1 \ (100\%)$	1 (100%)	0	100	100
All	All	4163/5208 (80%)	4096 (98%)	67 (2%)	62	85

All (67) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	127	HIS
1	А	155	LYS
1	В	125	MET
1	В	127	HIS
1	С	43	GLU

Mol	Chain	Res	Type
1	С	79	MET
1	С	127	HIS
1	С	135	LEU
1	С	149	LEU
1	С	166	ARG
1	D	127	HIS
1	Е	127	HIS
1	F	127	HIS
1	G	127	HIS
1	Н	127	HIS
1	Н	166	ARG
1	Н	194	GLN
1	Ι	127	HIS
1	Ι	155	LYS
1	J	127	HIS
1	J	130	LEU
1	Κ	27	ARG
1	K	127	HIS
1	Κ	173	ARG
1	L	30	LYS
1	L	127	HIS
1	М	69	ASN
1	М	127	HIS
1	Ν	30	LYS
1	Ν	102	SER
1	N	127	HIS
1	0	127	HIS
1	0	158	ARG
1	Р	127	HIS
1	Р	160	MET
1	Q	127	HIS
1	Q	130	LEU
1	Q	135	LEU
1	R	123	ARG
1	R	127	HIS
1	R	130	LEU
1	S	30	LYS
1	S	127	HIS
1	Т	103	MET
1	Т	127	HIS
1	Т	147	ARG
1	Т	191	LEU

Mol	Chain	Res	Type
1	U	127	HIS
1	U	135	LEU
1	V	127	HIS
1	W	27	ARG
1	W	127	HIS
1	Х	102	SER
1	Х	127	HIS
1	Х	155	LYS
1	Х	160	MET
1	Y	127	HIS
1	Y	191	LEU
1	Ζ	127	HIS
1	Ζ	160	MET
1	Ζ	166	ARG
1	a	127	HIS
1	b	76	THR
1	b	102	SER
1	b	127	HIS
1	b	197	GLU
2	4	4	PRO

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (7) such sidechains are listed below:

Mol	Chain	Res	Type
1	D	46	ASN
1	Н	46	ASN
1	J	59	ASN
1	М	69	ASN
1	Р	59	ASN
1	Ζ	127	HIS
1	b	46	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

112 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul

statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	Bo	ond leng	ths	B	ond ang	les
IVIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	ALO	У	3	2	$5,\!6,\!7$	0.78	0	6,7,9	1.35	1 (16%)
2	YCP	W	5	2	6,8,9	1.35	2 (33%)	5,9,11	1.83	3 (60%)
2	WFP	s	2	2,3	12,13,14	1.29	0	14,17,19	1.88	6 (42%)
2	YCP	4	5	2	6,8,9	1.45	2 (33%)	5,9,11	1.33	0
2	WFP	V	2	2,3	12,13,14	1.24	0	14,17,19	1.64	4 (28%)
2	ALO	f	3	2	$5,\!6,\!7$	0.64	0	6,7,9	0.58	0
2	WFP	0	2	2,3	12,13,14	1.06	0	14,17,19	1.74	4 (28%)
2	YCP	е	5	2	6,8,9	1.33	2 (33%)	5,9,11	1.07	0
2	MP8	1	7	2	5,8,9	2.94	2 (40%)	3,10,12	1.13	0
2	WFP	g	2	2,3	12,13,14	1.02	0	14,17,19	1.90	4 (28%)
2	WFP	q	2	2,3	12,13,14	0.94	0	14,17,19	1.79	4 (28%)
2	ALO	е	3	2	$5,\!6,\!7$	0.78	0	6,7,9	0.90	0
2	ALO	m	3	2	$5,\!6,\!7$	0.65	0	6,7,9	0.53	0
2	YCP	2	5	2	6,8,9	1.36	1 (16%)	5,9,11	1.32	0
2	MP8	0	7	2	5,8,9	2.92	2 (40%)	3,10,12	1.40	0
2	ALO	v	3	2	5,6,7	0.56	0	6,7,9	1.15	1 (16%)
2	MP8	W	7	2	5,8,9	2.99	2 (40%)	3,10,12	1.29	0
2	YCP	1	5	2	6,8,9	1.36	2 (33%)	5,9,11	1.36	1 (20%)
2	YCP	3	5	2	6,8,9	1.25	1 (16%)	5,9,11	2.46	3 (60%)
2	YCP	1	5	2	6,8,9	1.25	0	5,9,11	2.68	2 (40%)
2	WFP	W	2	2,3	12,13,14	1.15	1 (8%)	14,17,19	1.60	4 (28%)
2	ALO	t	3	2	$5,\!6,\!7$	0.55	0	6,7,9	0.63	0
2	MP8	h	7	2	5,8,9	2.94	3 (60%)	3,10,12	1.42	1 (33%)
2	ALO	j	3	2	$5,\!6,\!7$	0.59	0	6,7,9	0.85	0
2	ALO	h	3	2	$5,\!6,\!7$	0.80	0	6,7,9	0.74	0
2	ALO	с	3	2	$5,\!6,\!7$	0.83	0	6,7,9	0.93	0
2	WFP	р	2	2,3	12,13,14	1.08	0	$14,\!17,\!19$	1.87	6 (42%)
2	WFP	k	2	2,3	12,13,14	1.03	0	14,17,19	1.94	4 (28%)
2	ALO	р	3	2	$5,\!6,\!7$	0.74	0	6,7,9	0.74	0
2	MP8	i	7	2	$5,\!8,\!9$	3.02	3 (60%)	3,10,12	0.77	0
2	MP8	t	7	2	5,8,9	2.95	3 (60%)	3,10,12	1.49	0

Mal	Trung	Chain	Dec	Timle	Bo	ond leng	ths	В	ond ang	les
IVIOI	Type	Chain	Res	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	ALO	u	3	2	5,6,7	0.64	0	6,7,9	0.87	0
2	MP8	1	7	2	5,8,9	2.91	2 (40%)	3,10,12	1.19	0
2	WFP	х	2	2,3	12,13,14	1.03	0	14,17,19	1.55	3 (21%)
2	WFP	У	2	2,3	12,13,14	0.97	0	14,17,19	1.79	5 (35%)
2	WFP	r	2	2,3	12,13,14	1.21	0	14,17,19	1.72	3 (21%)
2	MP8	n	7	2	5,8,9	2.88	2 (40%)	3,10,12	1.43	0
2	MP8	х	7	2	5,8,9	2.88	2 (40%)	3,10,12	1.30	0
2	MP8	2	7	2	5,8,9	2.91	2 (40%)	3,10,12	1.42	1 (33%)
2	YCP	0	5	2	6,8,9	1.31	1 (16%)	5,9,11	2.03	3 (60%)
2	ALO	0	3	2	5,6,7	0.56	0	6,7,9	0.67	0
2	YCP	f	5	2	6,8,9	1.30	1 (16%)	5, 9, 11	1.30	1 (20%)
2	ALO	0	3	2	$5,\!6,\!7$	0.67	0	6,7,9	0.79	0
2	WFP	4	2	2,3	12,13,14	1.01	0	14,17,19	1.82	5 (35%)
2	MP8	f	7	2	$5,\!8,\!9$	2.97	3 (60%)	$3,\!10,\!12$	1.38	0
2	WFP	е	2	2,3	12,13,14	1.07	0	14,17,19	1.95	5 (35%)
2	ALO	g	3	2	5,6,7	0.67	0	6,7,9	1.21	0
2	MP8	У	7	2	$5,\!8,\!9$	2.92	3 (60%)	3,10,12	1.16	0
2	YCP	j	5	2	6,8,9	1.41	2 (33%)	5, 9, 11	1.55	1 (20%)
2	YCP	У	5	2	6,8,9	1.41	1 (16%)	5, 9, 11	1.12	0
2	MP8	Z	7	2	5,8,9	2.91	2 (40%)	3,10,12	1.43	1 (33%)
2	MP8	m	7	2	5,8,9	2.91	2 (40%)	3,10,12	1.44	0
2	ALO	k	3	2	5,6,7	0.64	0	6,7,9	0.95	0
2	YCP	S	5	2	6,8,9	1.47	2 (33%)	5, 9, 11	1.44	1 (20%)
2	YCP	h	5	2	6,8,9	1.47	2 (33%)	5, 9, 11	1.48	1 (20%)
2	MP8	е	7	2	5,8,9	3.01	3 (60%)	3,10,12	1.52	0
2	WFP	2	2	2,3	12,13,14	1.12	0	14,17,19	1.77	4 (28%)
2	MP8	с	7	2	5,8,9	2.84	3 (60%)	3,10,12	1.25	0
2	ALO	i	3	2	5,6,7	0.68	0	6,7,9	0.58	0
2	ALO	W	3	2	5,6,7	0.69	0	6,7,9	1.09	1 (16%)
2	WFP	3	2	2,3	12,13,14	1.01	0	14,17,19	1.62	4 (28%)
2	YCP	р	5	2	6,8,9	1.46	2 (33%)	5,9,11	1.76	2 (40%)
2	MP8	0	7	2	5,8,9	2.91	3 (60%)	3,10,12	1.33	0
2	YCP	С	5	2	6,8,9	1.35	1 (16%)	5,9,11	1.61	2(40%)
2	YCP	g	5	2	6,8,9	1.42	2 (33%)	5,9,11	1.34	0
2	WFP	n	2	2,3	12,13,14	1.08	0	14,17,19	1.75	5 (35%)
2	YCP	V	5	2	6,8,9	1.52	2 (33%)	5,9,11	1.29	1 (20%)

Mal	Trung	Chain	Dec	Timle	Bo	ond leng	ths	В	ond ang	les
NIOI	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
2	YCP	0	5	2	6, 8, 9	1.54	2 (33%)	$5,\!9,\!11$	1.30	1 (20%)
2	ALO	2	3	2	5,6,7	0.62	0	6,7,9	0.67	0
2	MP8	3	7	2	$5,\!8,\!9$	2.84	3 (60%)	$3,\!10,\!12$	1.49	0
2	MP8	s	7	2	5,8,9	2.89	3 (60%)	3,10,12	1.20	0
2	ALO	s	3	2	5,6,7	0.66	0	6,7,9	0.94	1 (16%)
2	WFP	1	2	2,3	12,13,14	1.02	0	14,17,19	1.84	4 (28%)
2	MP8	q	7	2	5,8,9	2.89	2 (40%)	3,10,12	1.63	1 (33%)
2	MP8	р	7	2	5,8,9	2.87	3 (60%)	3,10,12	0.91	0
2	ALO	n	3	2	5,6,7	0.59	0	6,7,9	0.60	0
2	ALO	х	3	2	$5,\!6,\!7$	0.53	0	6,7,9	0.86	0
2	YCP	m	5	2	6,8,9	1.42	2 (33%)	$5,\!9,\!11$	1.53	1 (20%)
2	ALO	r	3	2	5,6,7	0.71	0	6,7,9	0.74	0
2	YCP	k	5	2	6,8,9	1.42	2 (33%)	5,9,11	1.49	1 (20%)
2	ALO	Z	3	2	5,6,7	0.79	0	6,7,9	0.73	0
2	MP8	4	7	2	5,8,9	2.90	2 (40%)	3,10,12	1.09	0
2	YCP	i	5	2	6,8,9	1.28	1 (16%)	5,9,11	1.41	1 (20%)
2	MP8	g	7	2	5,8,9	3.03	3 (60%)	3,10,12	1.05	0
2	YCP	u	5	2	6,8,9	1.48	2 (33%)	5, 9, 11	0.87	0
2	WFP	0	2	2,3	12,13,14	1.07	0	14,17,19	1.79	4 (28%)
2	WFP	f	2	2,3	12,13,14	0.99	0	14,17,19	1.85	4 (28%)
2	WFP	u	2	2,3	12,13,14	1.07	1 (8%)	14,17,19	1.87	5 (35%)
2	ALO	3	3	2	$5,\!6,\!7$	0.68	0	6,7,9	0.42	0
2	YCP	t	5	2	6,8,9	1.44	2 (33%)	$5,\!9,\!11$	1.38	1 (20%)
2	ALO	4	3	2	5,6,7	0.68	0	6,7,9	0.91	0
2	ALO	q	3	2	5,6,7	0.67	0	6,7,9	0.58	0
2	WFP	m	2	2,3	12,13,14	1.15	0	$14,\!17,\!19$	2.06	4 (28%)
2	MP8	k	7	2	5,8,9	2.90	2 (40%)	3,10,12	1.37	0
2	WFP	i	2	2,3	12,13,14	1.06	0	$14,\!17,\!19$	2.19	4 (28%)
2	MP8	u	7	2	5,8,9	2.96	3 (60%)	3,10,12	1.24	0
2	YCP	r	5	2	6,8,9	1.34	1 (16%)	5,9,11	1.48	1 (20%)
2	WFP	Z	2	2,3	12,13,14	1.20	1 (8%)	14,17,19	2.12	<mark>5 (35%)</mark>
2	ALO	1	3	2	5,6,7	0.66	0	6,7,9	0.75	0
2	MP8	r	7	2	5,8,9	3.07	3 (60%)	3,10,12	1.33	0
2	WFP	1	2	2,3	12,13,14	1.09	1 (8%)	14,17,19	1.73	4 (28%)
2	MP8	V	7	2	5,8,9	3.12	3 (60%)	3,10,12	1.18	0
2	ALO	1	3	2	5,6,7	0.72	0	6,7,9	1.03	0
2	WFP	t	2	2,3	12,13,14	1.09	0	14,17,19	1.70	2 (14%)

Mal	Turne	Chain Reg Link Bond lengths				\mathbf{ths}	Bond angles			
WIOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	YCP	q	5	2	6,8,9	1.33	1 (16%)	5, 9, 11	1.41	1 (20%)
2	WFP	j	2	2,3	12,13,14	1.13	1 (8%)	$14,\!17,\!19$	1.51	4 (28%)
2	YCP	n	5	2	6,8,9	1.37	2 (33%)	5, 9, 11	1.73	1 (20%)
2	YCP	х	5	2	6,8,9	1.42	1 (16%)	5, 9, 11	2.32	3 (60%)
2	WFP	h	2	2,3	12,13,14	1.08	0	14,17,19	1.58	3 (21%)
2	MP8	j	7	2	5,8,9	2.91	2 (40%)	3,10,12	1.69	1 (33%)
2	WFP	С	2	2,3	12,13,14	1.19	0	14,17,19	1.76	2 (14%)
2	YCP	Z	5	2	6,8,9	1.39	1 (16%)	5,9,11	1.21	1 (20%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	ALO	у	3	2	-	1/5/6/8	-
2	YCP	W	5	2	-	0/1/10/12	0/1/1/1
2	WFP	s	2	2,3	-	0/5/6/8	0/1/1/1
2	YCP	4	5	2	-	0/1/10/12	1/1/1/1
2	WFP	V	2	2,3	-	0/5/6/8	0/1/1/1
2	ALO	f	3	2	-	1/5/6/8	-
2	WFP	0	2	2,3	-	0/5/6/8	0/1/1/1
2	YCP	е	5	2	-	0/1/10/12	1/1/1/1
2	MP8	1	7	2	-	0/0/11/13	0/1/1/1
2	WFP	g	2	2,3	-	0/5/6/8	0/1/1/1
2	WFP	q	2	2,3	-	0/5/6/8	0/1/1/1
2	ALO	е	3	2	-	1/5/6/8	-
2	ALO	m	3	2	-	1/5/6/8	-
2	YCP	2	5	2	-	1/1/10/12	0/1/1/1
2	MP8	0	7	2	-	0/0/11/13	0/1/1/1
2	ALO	V	3	2	-	1/5/6/8	-
2	MP8	W	7	2	-	0/0/11/13	0/1/1/1
2	YCP	1	5	2	-	0/1/10/12	1/1/1/1
2	YCP	3	5	2	-	0/1/10/12	0/1/1/1
2	YCP	1	5	2	-	0/1/10/12	0/1/1/1
2	WFP	W	2	2,3	-	0/5/6/8	0/1/1/1
2	ALO	t	3	2	-	1/5/6/8	-
2	MP8	h	7	2	-	0/0/11/13	0/1/1/1
2	ALO	j	3	2	-	1/5/6/8	-
2	ALO	h	3	2	-	1/5/6/8	-
2	ALO	с	3	2	-	1/5/6/8	-

6NA	Н
-----	---

Continued from previous page									
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings		
2	WFP	р	2	2,3	-	0/5/6/8	0/1/1/1		
2	WFP	k	2	2,3	-	0/5/6/8	0/1/1/1		
2	ALO	р	3	2	-	1/5/6/8	-		
2	MP8	i	7	2	-	0/0/11/13	0/1/1/1		
2	MP8	t	7	2	-	0/0/11/13	0/1/1/1		
2	ALO	u	3	2	-	1/5/6/8	-		
2	MP8	1	7	2	-	0/0/11/13	0/1/1/1		
2	WFP	X	2	2,3	-	0/5/6/8	0/1/1/1		
2	WFP	У	2	2,3	-	0/5/6/8	0/1/1/1		
2	WFP	r	2	2,3	-	0/5/6/8	0/1/1/1		
2	MP8	n	7	2	-	0/0/11/13	0/1/1/1		
2	MP8	X	7	2	-	0/0/11/13	0/1/1/1		
2	MP8	2	7	2	-	0/0/11/13	0/1/1/1		
2	YCP	0	5	2	-	0/1/10/12	1/1/1/1		
2	ALO	0	3	2	-	1/5/6/8	-		
2	YCP	f	5	2	-	0/1/10/12	1/1/1/1		
2	ALO	0	3	2	-	1/5/6/8	-		
2	WFP	4	2	2,3	-	0/5/6/8	0/1/1/1		
2	MP8	f	7	2	-	0/0/11/13	0/1/1/1		
2	WFP	е	2	2,3	-	0/5/6/8	0/1/1/1		
2	ALO	g	3	2	-	1/5/6/8	-		
2	MP8	у	7	2	-	0/0/11/13	0/1/1/1		
2	YCP	j	5	2	-	1/1/10/12	1/1/1/1		
2	YCP	у	5	2	-	1/1/10/12	1/1/1/1		
2	MP8	Z	7	2	-	0/0/11/13	0/1/1/1		
2	MP8	m	7	2	-	0/0/11/13	0/1/1/1		
2	ALO	k	3	2	-	1/5/6/8	-		
2	YCP	s	5	2	-	0/1/10/12	1/1/1/1		
2	YCP	h	5	2	-	1/1/10/12	1/1/1/1		
2	MP8	е	7	2	-	0/0/11/13	0/1/1/1		
2	WFP	2	2	2,3	-	0/5/6/8	0/1/1/1		
2	MP8	с	7	2	-	0/0/11/13	0/1/1/1		
2	ALO	i	3	2	-	1/5/6/8	-		
2	ALO	W	3	2	-	1/5/6/8	-		
2	WFP	3	2	2,3	-	0/5/6/8	0/1/1/1		
2	YCP	р	5	2	-	1/1/10/12	1/1/1/1		
2	MP8	0	7	2	-	0/0/11/13	0/1/1/1		
2	YCP	с	5	2	-	1/1/10/12	1/1/1/1		
2	YCP	g	5	2	-	0/1/10/12	1/1/1/1		
2	WFP	n	2	2,3	-	0/5/6/8	0/1/1/1		
2	YCP	V	5	2	-	1/1/10/12	1/1/1/1		
2	YCP	0	5	2	-	0/1/10/12	1/1/1/1		

Cntin d fa

6NA	Н
-----	---

Continued from previous page									
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings		
2	ALO	2	3	2	-	1/5/6/8	-		
2	MP8	3	7	2	-	0/0/11/13	0/1/1/1		
2	MP8	S	7	2	-	0/0/11/13	0/1/1/1		
2	ALO	s	3	2	-	1/5/6/8	-		
2	WFP	1	2	2,3	-	0/5/6/8	0/1/1/1		
2	MP8	q	7	2	-	0/0/11/13	0/1/1/1		
2	MP8	р	7	2	-	0/0/11/13	0/1/1/1		
2	ALO	n	3	2	-	1/5/6/8	-		
2	ALO	Х	3	2	-	1/5/6/8	-		
2	YCP	m	5	2	-	1/1/10/12	1/1/1/1		
2	ALO	r	3	2	-	1/5/6/8	-		
2	YCP	k	5	2	-	0/1/10/12	1/1/1/1		
2	ALO	Z	3	2	-	1/5/6/8	_		
2	MP8	4	7	2	-	0/0/11/13	0/1/1/1		
2	YCP	i	5	2	_	0/1/10/12	1/1/1/1		
2	MP8	g	7	2	-	0/0/11/13	0/1/1/1		
2	YCP	u	5	2	-	1/1/10/12	1/1/1/1		
2	WFP	0	2	2,3	-	0/5/6/8	0/1/1/1		
2	WFP	f	2	2,3	-	0/5/6/8	0/1/1/1		
2	WFP	u	2	2,3	-	0/5/6/8	0/1/1/1		
2	ALO	3	3	2	-	1/5/6/8	-		
2	YCP	t	5	2	-	1/1/10/12	1/1/1/1		
2	ALO	4	3	2	-	1/5/6/8	-		
2	ALO	q	3	2	-	1/5/6/8	-		
2	WFP	m	2	2,3	-	0/5/6/8	0/1/1/1		
2	MP8	k	7	2	-	0/0/11/13	0/1/1/1		
2	WFP	i	2	2,3	_	0/5/6/8	0/1/1/1		
2	MP8	u	7	2	-	0/0/11/13	0/1/1/1		
2	YCP	r	5	2	-	0/1/10/12	1/1/1/1		
2	WFP	Z	2	2,3	-	0/5/6/8	0/1/1/1		
2	ALO	1	3	2	-	1/5/6/8	-		
2	MP8	r	7	2	-	0/0/11/13	0/1/1/1		
2	WFP	1	2	2,3	-	0/5/6/8	0/1/1/1		
2	MP8	V	7	2	-	0/0/11/13	0/1/1/1		
2	ALO	1	3	2	_	1/5/6/8	-		
2	WFP	t	2	2,3	_	0/5/6/8	0/1/1/1		
2	YCP	q	5	2	-	0/1/10/12	1/1/1/1		
2	WFP	j	2	2,3	-	0/5/6/8	0/1/1/1		
2	YCP	n	5	2	-	1/1/10/12	1/1/1/1		
2	YCP	x	5	2	-	0/1/10/12	0/1/1/1		
2	WFP	h	2	2,3	-	0/5/6/8	0/1/1/1		
2	MP8	j	7	2	_	0/0/11/13	0/1/1/1		

 α J fa . . : .

Continued from previous page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	WFP	с	2	2,3	-	0/5/6/8	0/1/1/1
2	YCP	Z	5	2	-	1/1/10/12	1/1/1/1

All (119) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
2	u	7	MP8	CD-N	5.68	1.67	1.47
2	е	7	MP8	CD-N	5.66	1.67	1.47
2	r	7	MP8	CD-N	5.66	1.67	1.47
2	1	7	MP8	CD-N	5.65	1.67	1.47
2	g	7	MP8	CD-N	5.65	1.67	1.47
2	h	7	MP8	CD-N	5.62	1.67	1.47
2	V	7	MP8	CD-N	5.61	1.67	1.47
2	W	7	MP8	CD-N	5.58	1.67	1.47
2	i	7	MP8	CD-N	5.58	1.67	1.47
2	0	7	MP8	CD-N	5.56	1.67	1.47
2	0	7	MP8	CD-N	5.54	1.67	1.47
2	m	7	MP8	CD-N	5.54	1.67	1.47
2	j	7	MP8	CD-N	5.54	1.66	1.47
2	t	7	MP8	CD-N	5.54	1.66	1.47
2	4	7	MP8	CD-N	5.49	1.66	1.47
2	f	7	MP8	CD-N	5.47	1.66	1.47
2	q	7	MP8	CD-N	5.47	1.66	1.47
2	1	7	MP8	CD-N	5.46	1.66	1.47
2	Z	7	MP8	CD-N	5.44	1.66	1.47
2	n	7	MP8	CD-N	5.42	1.66	1.47
2	Х	7	MP8	CD-N	5.37	1.66	1.47
2	s	7	MP8	CD-N	5.37	1.66	1.47
2	2	7	MP8	CD-N	5.35	1.66	1.47
2	У	7	MP8	CD-N	5.34	1.66	1.47
2	с	7	MP8	CD-N	5.33	1.66	1.47
2	3	7	MP8	CD-N	5.29	1.66	1.47
2	k	7	MP8	CD-N	5.27	1.66	1.47
2	р	7	MP8	CD-N	5.27	1.66	1.47
2	V	7	MP8	CB-CG	3.16	1.61	1.52
2	W	7	MP8	CB-CG	2.97	1.61	1.52
2	f	7	MP8	CB-CG	2.96	1.61	1.52
2	r	7	MP8	CB-CG	2.93	1.60	1.52
2	2	7	MP8	CB-CG	2.87	1.60	1.52
2	Х	7	MP8	CB-CG	2.86	1.60	1.52
2	k	7	MP8	CB-CG	2.84	1.60	1.52
2	е	7	MP8	CB-CG	2.84	1.60	1.52

Conti	nuea fron	i previ	ous page	•••			
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(A)
2	У	7	MP8	CB-CG	2.83	1.60	1.52
2	g	7	MP8	CB-CG	2.83	1.60	1.52
2	1	7	MP8	CB-CG	2.82	1.60	1.52
2	i	7	MP8	CB-CG	2.79	1.60	1.52
2	4	7	MP8	CB-CG	2.79	1.60	1.52
2	0	7	MP8	CB-CG	2.75	1.60	1.52
2	р	7	MP8	CB-CG	2.74	1.60	1.52
2	S	7	MP8	CB-CG	2.73	1.60	1.52
2	Z	7	MP8	CB-CG	2.71	1.60	1.52
2	n	7	MP8	CB-CG	2.67	1.60	1.52
2	q	7	MP8	CB-CG	2.65	1.60	1.52
2	t	7	MP8	CB-CG	2.65	1.60	1.52
2	j	7	MP8	CB-CG	2.61	1.60	1.52
2	m	7	MP8	CB-CG	2.61	1.59	1.52
2	0	5	YCP	CG-CB	-2.59	1.46	1.53
2	с	7	MP8	CB-CG	2.58	1.59	1.52
2	h	7	MP8	CB-CG	2.58	1.59	1.52
2	1	7	MP8	CB-CG	2.56	1.59	1.52
2	0	7	MP8	CB-CG	2.56	1.59	1.52
2	3	7	MP8	CB-CG	2.55	1.59	1.52
2	X	5	YCP	CE-N	2.51	1.54	1.47
2	V	5	YCP	CE-N	2.51	1.53	1.47
2	u	7	MP8	CB-CG	2.48	1.59	1.52
2	р	5	YCP	CE-N	2.47	1.53	1.47
2	S	5	YCP	CG-CB	-2.45	1.46	1.53
2	u	5	YCP	CE-N	2.41	1.53	1.47
2	у	5	YCP	CE-N	2.40	1.53	1.47
2	Z	5	YCP	CG-CB	-2.40	1.46	1.53
2	i	7	MP8	CB-CA	2.36	1.59	1.54
2	m	5	YCP	CE-N	2.36	1.53	1.47
2	r	5	YCP	CG-CB	-2.34	1.47	1.53
2	u	2	WFP	CD2-CE2	2.34	1.41	1.37
2	4	5	YCP	CE-N	2.33	1.53	1.47
2	t	5	YCP	CG-CB	-2.33	1.47	1.53
2	v	7	MP8	CB-CA	2.32	1.59	1.54
2	r	7	MP8	CB-CA	2.31	1.59	1.54
2	k	5	YCP	CE-N	2.28	1.53	1.47
2	i	5	YCP	CG-CB	-2.27	1.47	1.53
2	j	5	YCP	CG-CB	-2.27	1.47	1.53
2	u	5	YCP	CG-CB	-2.24	1.47	1.53
2	h	5	YCP	CG-CB	-2.24	1.47	1.53
2	q	5	YCP	CG-CB	-2.24	1.47	1.53

J fa α ntin

6NAH	
------	--

	Choin	l previ	Turne	Atoma	7	Observed(Å)	Ideal(Å)
	Unain	res	Type VCD	Atoms	L	Observed(A)	1 1 5 2
2	V	5 F	YCP	CG-CB	-2.23	1.47	1.53
2	С	5	YCP	CG-CB	-2.23	1.47	1.53
2	g	5	YCP	CG-CB	-2.22	1.47	1.53
2	g	5	YCP	CE-N	2.22	1.53	1.47
2	2	5	YCP	CG-CB	-2.22	1.47	1.53
2	k	5	YCP	CG-CB	-2.20	1.47	1.53
2	g	7	MP8	CB-CA	2.20	1.59	1.54
2	h	5	YCP	CE-N	2.19	1.53	1.47
2	У	7	MP8	CB-CA	2.19	1.59	1.54
2	р	7	MP8	CB-CA	2.18	1.59	1.54
2	Z	2	WFP	CD1-CE1	2.16	1.41	1.37
2	n	5	YCP	CG-CB	-2.15	1.47	1.53
2	0	5	YCP	CE-N	2.14	1.53	1.47
2	n	5	YCP	CE-N	2.14	1.53	1.47
2	4	5	YCP	CG-CB	-2.14	1.47	1.53
2	f	7	MP8	CB-CA	2.14	1.59	1.54
2	1	5	YCP	CE-N	2.14	1.53	1.47
2	3	7	MP8	CB-CA	2.14	1.59	1.54
2	t	7	MP8	CB-CA	2.12	1.59	1.54
2	W	5	YCP	CG-CB	-2.10	1.47	1.53
2	j	2	WFP	CD2-CE2	2.10	1.41	1.37
2	e	5	YCP	CE-N	2.09	1.52	1.47
2	S	5	YCP	CE-N	2.09	1.52	1.47
2	е	7	MP8	CB-CA	2.08	1.59	1.54
2	s	7	MP8	CB-CA	2.07	1.59	1.54
2	i	5	YCP	CE-N	2.07	1.52	1.47
2	1	2	WFP	CD2-CE2	2.06	1.41	1.37
2	p	5	YCP	CG-CB	-2.06	1.47	1.53
2	m	5	YCP	CG-CB	-2.06	1.47	1.53
2	t	5	YCP	CE-N	2.06	1.52	1.47
2	W	2	WFP	CD2-CE2	2.06	1.41	1.37
2	W	5	YCP	CE-N	2.04	1.52	1.47
2	С	7	MP8	CB-CA	2.04	1.58	1.54
2	0	5	YCP	CG-CB	-2.04	1 47	1.53
2	1	5	YCP	CG-CB	-2.03	1.17	1.53
2	0	7	MP8	CB-CA	2.03	1.58	1.54
2	3	5	YCP	CG-CB	-2.02	1 47	1.53
2	11	7	MP8	CB-CA	2.02	1.58	1.55
$\frac{2}{2}$	f	5	YCP	CG-CB	-2.02	1.00	1.54
2	e i	5	YCP	CG-CB	-2.00	1.17	1.50
$\frac{2}{2}$	h	7	MP8	CR-CA	2.00	1.58	1.55
<u> </u>	11	1			2.00	1.00	1.04

All (157) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	m	2	WFP	CG-CB-CA	-4.93	104.12	114.10
2	е	2	WFP	CG-CB-CA	-4.78	104.42	114.10
2	i	2	WFP	CG-CB-CA	-4.74	104.51	114.10
2	g	2	WFP	CG-CB-CA	-4.73	104.53	114.10
2	Z	2	WFP	CG-CB-CA	-4.72	104.53	114.10
2	f	2	WFP	CG-CB-CA	-4.69	104.61	114.10
2	t	2	WFP	CG-CB-CA	-4.56	104.88	114.10
2	1	5	YCP	CD-CG-CB	4.50	120.58	111.42
2	k	2	WFP	CG-CB-CA	-4.43	105.13	114.10
2	с	2	WFP	CG-CB-CA	-4.32	105.36	114.10
2	r	2	WFP	CG-CB-CA	-4.25	105.50	114.10
2	1	2	WFP	CG-CB-CA	-4.15	105.70	114.10
2	1	2	WFP	CG-CB-CA	-3.99	106.02	114.10
2	Х	5	YCP	CD-CG-CB	3.88	119.33	111.42
2	4	2	WFP	CG-CB-CA	-3.86	106.28	114.10
2	0	2	WFP	CG-CB-CA	-3.79	106.43	114.10
2	3	5	YCP	CG-CB-CA	3.71	116.49	110.98
2	3	2	WFP	CG-CB-CA	-3.61	106.78	114.10
2	i	2	WFP	CD2-CE2-CZ	-3.56	119.03	123.52
2	2	2	WFP	CG-CB-CA	-3.52	106.97	114.10
2	р	2	WFP	CG-CB-CA	-3.49	107.04	114.10
2	n	2	WFP	CD1-CE1-CZ	-3.46	119.15	123.52
2	S	2	WFP	CD2-CE2-CZ	-3.40	119.22	123.52
2	1	5	YCP	CG-CB-CA	3.37	115.98	110.98
2	у	2	WFP	CG-CB-CA	-3.28	107.47	114.10
2	0	2	WFP	CG-CB-CA	-3.28	107.47	114.10
2	Z	2	WFP	CD1-CE1-CZ	-3.27	119.39	123.52
2	m	2	WFP	CD1-CE1-CZ	-3.26	119.39	123.52
2	k	2	WFP	CD1-CE1-CZ	-3.25	119.42	123.52
2	u	2	WFP	F2-CE2-CD2	3.23	122.86	118.25
2	q	2	WFP	CG-CB-CA	-3.18	107.65	114.10
2	n	5	YCP	O-C-CA	-3.17	116.48	124.78
2	2	2	WFP	CD1-CE1-CZ	-3.14	119.56	123.52
2	i	2	WFP	CE2-CZ-CE1	3.08	120.93	116.13
2	р	2	WFP	CD2-CE2-CZ	-3.05	119.66	123.52
2	u	2	WFP	CD2-CE2-CZ	-3.02	119.70	123.52
2	0	5	YCP	O-C-CA	-3.02	116.87	124.78
2	q	2	WFP	CD1-CE1-CZ	-2.96	119.78	123.52
2	0	2	WFP	CD2-CE2-CZ	-2.94	119.80	123.52
2	Х	2	WFP	CD1-CE1-CZ	-2.93	119.81	123.52
2	Z	2	WFP	CE2-CZ-CE1	2.93	120.68	116.13
2	h	2	WFP	CG-CB-CA	-2.91	108.20	114.10
2	i	2	WFP	CD1-CE1-CZ	-2.91	119.85	123.52

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	W	2	WFP	CG-CB-CA	-2.89	108.25	114.10
2	r	5	YCP	O-C-CA	-2.88	117.22	124.78
2	s	2	WFP	CG-CD2-CE2	2.88	121.43	118.81
2	h	2	WFP	CD2-CE2-CZ	-2.85	119.91	123.52
2	j	5	YCP	O-C-CA	-2.85	117.32	124.78
2	W	2	WFP	CD2-CE2-CZ	-2.83	119.94	123.52
2	с	2	WFP	CD2-CE2-CZ	-2.80	119.97	123.52
2	V	2	WFP	CG-CB-CA	-2.80	108.42	114.10
2	n	2	WFP	CE2-CZ-CE1	2.80	120.49	116.13
2	3	5	YCP	CD-CG-CB	2.80	117.12	111.42
2	Х	2	WFP	CG-CB-CA	-2.77	108.50	114.10
2	s	5	YCP	O-C-CA	-2.77	117.53	124.78
2	1	2	WFP	CD2-CE2-CZ	-2.75	120.04	123.52
2	u	2	WFP	CG-CB-CA	-2.75	108.52	114.10
2	4	2	WFP	CD2-CE2-CZ	-2.75	120.05	123.52
2	u	2	WFP	CE2-CZ-CE1	2.74	120.40	116.13
2	V	2	WFP	CD2-CE2-CZ	-2.72	120.08	123.52
2	1	2	WFP	CD1-CE1-CZ	-2.72	120.09	123.52
2	0	2	WFP	CD1-CE1-CZ	-2.72	120.09	123.52
2	3	2	WFP	CD1-CE1-CZ	-2.71	120.10	123.52
2	m	5	YCP	O-C-CA	-2.71	117.69	124.78
2	е	2	WFP	CD1-CE1-CZ	-2.70	120.10	123.52
2	t	5	YCP	O-C-CA	-2.70	117.70	124.78
2	у	2	WFP	CD1-CE1-CZ	-2.69	120.12	123.52
2	q	2	WFP	CE2-CZ-CE1	2.69	120.31	116.13
2	р	2	WFP	F2-CE2-CD2	2.65	122.04	118.25
2	n	2	WFP	F1-CE1-CD1	2.64	122.03	118.25
2	l	2	WFP	CD2-CE2-CZ	-2.60	120.23	123.52
2	р	2	WFP	CE2-CZ-CE1	2.59	120.17	116.13
2	у	2	WFP	CE2-CZ-CE1	2.59	120.16	116.13
2	0	2	WFP	CE2-CZ-CE1	2.59	120.16	116.13
2	у	2	WFP	CD2-CE2-CZ	-2.58	120.25	123.52
2	q	2	WFP	CD2-CE2-CZ	-2.57	120.27	123.52
2	V	3	ALO	CG2-CB-CA	-2.57	106.11	112.14
2	р	5	YCP	CG-CB-CA	2.57	114.79	110.98
2	m	2	WFP	CE2-CZ-CE1	2.56	120.12	116.13
2	у	3	ALO	CB-CA-C	-2.56	107.68	111.77
2	i	5	YCP	O-C-CA	-2.54	118.13	124.78
2	0	5	YCP	CG-CB-CA	2.54	114.75	110.98
2	Z	2	WFP	CD2-CE2-CZ	-2.52	120.34	123.52
2	f	2	WFP	CD2-CE2-CZ	-2.51	120.34	123.52
2	0	5	YCP	O-C-CA	-2.51	118.20	124.78

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
2	q	5	YCP	O-C-CA	-2.51	118.21	124.78
2	Х	5	YCP	CG-CB-CA	2.49	114.67	110.98
2	m	2	WFP	CD2-CE2-CZ	-2.48	120.38	123.52
2	V	2	WFP	CD1-CE1-CZ	-2.47	120.40	123.52
2	s	2	WFP	CG-CB-CA	-2.46	109.12	114.10
2	r	2	WFP	CD2-CE2-CZ	-2.46	120.42	123.52
2	е	2	WFP	CD2-CE2-CZ	-2.44	120.44	123.52
2	k	2	WFP	CE2-CZ-CE1	2.44	119.92	116.13
2	W	5	YCP	CD-CG-CB	2.42	116.36	111.42
2	g	2	WFP	CD1-CE1-CZ	-2.41	120.47	123.52
2	j	2	WFP	CD1-CE1-CZ	-2.41	120.48	123.52
2	j	2	WFP	CD2-CE2-CZ	-2.40	120.49	123.52
2	3	5	YCP	O-C-CA	-2.38	118.54	124.78
2	2	2	WFP	CE2-CZ-CE1	2.38	119.83	116.13
2	V	2	WFP	CE2-CZ-CE1	2.35	119.78	116.13
2	0	2	WFP	CD1-CE1-CZ	-2.35	120.56	123.52
2	t	2	WFP	CD2-CE2-CZ	-2.32	120.58	123.52
2	g	2	WFP	CD2-CE2-CZ	-2.31	120.59	123.52
2	р	5	YCP	CD-CG-CB	2.31	116.13	111.42
2	с	5	YCP	CG-CB-CA	2.31	114.40	110.98
2	j	2	WFP	F2-CE2-CD2	2.30	121.54	118.25
2	n	2	WFP	CD2-CE2-CZ	-2.30	120.61	123.52
2	k	5	YCP	CD-CG-CB	2.30	116.10	111.42
2	W	3	ALO	OG1-CB-CA	-2.29	104.19	109.06
2	g	2	WFP	F2-CE2-CZ	2.29	121.52	118.25
2	с	5	YCP	O-C-CA	-2.28	118.80	124.78
2	1	2	WFP	CE2-CZ-CE1	2.28	119.68	116.13
2	4	2	WFP	CD1-CE1-CZ	-2.27	120.65	123.52
2	р	2	WFP	F1-CE1-CD1	2.27	121.49	118.25
2	1	5	YCP	CD-CG-CB	2.27	116.03	111.42
2	V	5	YCP	O-C-CA	-2.26	118.84	124.78
2	Z	2	WFP	F1-CE1-CD1	2.26	121.48	118.25
2	u	2	WFP	CD1-CE1-CZ	-2.26	120.66	123.52
2	Z	7	MP8	O-C-CA	-2.26	118.86	124.78
2	s	2	WFP	CD1-CE1-CZ	-2.25	120.67	123.52
2	W	5	YCP	CG-CB-CA	2.25	114.32	110.98
2	S	2	WFP	CE2-CZ-CE1	2.23	119.61	116.13
2	Х	2	WFP	CE2-CZ-CE1	2.23	119.60	116.13
2	j	2	WFP	CE2-CZ-CE1	2.22	119.58	116.13
2	1	2	WFP	CD1-CE1-CZ	-2.21	120.72	123.52
2	W	2	WFP	CE2-CZ-CE1	2.20	119.56	116.13
2	s	2	WFP	CB-CA-C	2.20	$1\overline{15.59}$	111.47

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
2	f	2	WFP	CD1-CE1-CZ	-2.19	120.75	123.52
2	0	5	YCP	CD-CG-CB	2.18	115.87	111.42
2	у	2	WFP	F1-CE1-CD1	2.18	121.36	118.25
2	r	2	WFP	CD1-CE1-CZ	-2.18	120.77	123.52
2	W	5	YCP	O-C-CA	-2.17	119.08	124.78
2	f	5	YCP	O-C-CA	-2.16	119.11	124.78
2	4	2	WFP	CE2-CZ-CE1	2.16	119.50	116.13
2	е	2	WFP	F1-CE1-CZ	2.16	121.33	118.25
2	Z	5	YCP	O-C-CA	-2.15	119.14	124.78
2	Х	5	YCP	O-C-CA	-2.14	119.17	124.78
2	р	2	WFP	CD1-CE1-CZ	-2.13	120.82	123.52
2	W	2	WFP	CD1-CE1-CZ	-2.12	120.84	123.52
2	n	2	WFP	F2-CE2-CD2	2.11	121.26	118.25
2	2	7	MP8	O-C-CA	-2.10	119.28	124.78
2	k	2	WFP	CD2-CE2-CZ	-2.09	120.88	123.52
2	0	2	WFP	F1-CE1-CD1	2.08	121.23	118.25
2	0	2	WFP	CB-CA-C	2.08	115.36	111.47
2	s	3	ALO	OG1-CB-CA	-2.07	104.67	109.06
2	3	2	WFP	CD2-CE2-CZ	-2.06	120.92	123.52
2	j	7	MP8	CE-CG-CB	-2.05	108.86	114.05
2	h	7	MP8	O-C-CA	-2.04	119.43	124.78
2	f	2	WFP	CE2-CZ-CE1	2.04	119.30	116.13
2	1	2	WFP	CE2-CZ-CE1	2.03	119.30	116.13
2	4	2	WFP	F2-CE2-CD2	2.03	121.15	118.25
2	q	7	MP8	O-C-CA	-2.03	119.46	124.78
2	h	5	YCP	CG-CB-CA	2.02	113.98	110.98
2	h	2	WFP	CE2-CZ-CE1	2.01	119.27	116.13
2	3	2	WFP	CE2-CZ-CE1	2.01	119.26	116.13
2	е	2	WFP	CE2-CZ-CE1	2.01	119.26	116.13
2	2	2	WFP	CD2-CE2-CZ	-2.01	120.98	123.52

Continued from previous page...

There are no chirality outliers.

All (40) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	е	3	ALO	O-C-CA-CB
2	f	3	ALO	O-C-CA-CB
2	g	3	ALO	O-C-CA-CB
2	h	3	ALO	O-C-CA-CB
2	i	3	ALO	O-C-CA-CB
2	j	3	ALO	O-C-CA-CB
2	k	3	ALO	O-C-CA-CB

Mol	Chain	Res	Type	Atoms
2	1	3	ALO	O-C-CA-CB
2	m	3	ALO	O-C-CA-CB
2	n	3	ALO	O-C-CA-CB
2	0	3	ALO	O-C-CA-CB
2	р	3	ALO	O-C-CA-CB
2	q	3	ALO	O-C-CA-CB
2	r	3	ALO	O-C-CA-CB
2	S	3	ALO	O-C-CA-CB
2	t	3	ALO	O-C-CA-CB
2	u	3	ALO	O-C-CA-CB
2	V	3	ALO	O-C-CA-CB
2	W	3	ALO	O-C-CA-CB
2	Х	3	ALO	O-C-CA-CB
2	у	3	ALO	O-C-CA-CB
2	Z	3	ALO	O-C-CA-CB
2	0	3	ALO	O-C-CA-CB
2	1	3	ALO	O-C-CA-CB
2	2	3	ALO	O-C-CA-CB
2	3	3	ALO	O-C-CA-CB
2	4	3	ALO	O-C-CA-CB
2	с	5	YCP	O-C-CA-CB
2	m	5	YCP	O-C-CA-CB
2	р	5	YCP	O-C-CA-CB
2	u	5	YCP	O-C-CA-CB
2	у	5	YCP	O-C-CA-CB
2	Z	5	YCP	O-C-CA-CB
2	j	5	YCP	O-C-CA-CB
2	n	5	YCP	O-C-CA-CB
2	V	5	YCP	O-C-CA-CB
2	h	5	YCP	O-C-CA-CB
2	t	5	YCP	O-C-CA-CB
2	2	5	YCP	O-C-CA-CB
2	с	3	ALO	O-C-CA-CB

Continued from previous page...

All (23) ring outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	t	5	YCP	CA-CB-CD-CE-CG-N
2	0	5	YCP	CA-CB-CD-CE-CG-N
2	Z	5	YCP	CA-CB-CD-CE-CG-N
2	р	5	YCP	CA-CB-CD-CE-CG-N
2	k	5	YCP	CA-CB-CD-CE-CG-N

UNAII	6N.	AH	
-------	-----	----	--

Mol	Chain	Res	Type	Atoms
2	с	5	YCP	CA-CB-CD-CE-CG-N
2	h	5	YCP	CA-CB-CD-CE-CG-N
2	V	5	YCP	CA-CB-CD-CE-CG-N
2	j	5	YCP	CA-CB-CD-CE-CG-N
2	4	5	YCP	CA-CB-CD-CE-CG-N
2	n	5	YCP	CA-CB-CD-CE-CG-N
2	0	5	YCP	CA-CB-CD-CE-CG-N
2	u	5	YCP	CA-CB-CD-CE-CG-N
2	g	5	YCP	CA-CB-CD-CE-CG-N
2	i	5	YCP	CA-CB-CD-CE-CG-N
2	f	5	YCP	CA-CB-CD-CE-CG-N
2	l	5	YCP	CA-CB-CD-CE-CG-N
2	m	5	YCP	CA-CB-CD-CE-CG-N
2	е	5	YCP	CA-CB-CD-CE-CG-N
2	q	5	YCP	CA-CB-CD-CE-CG-N
2	r	5	YCP	CA-CB-CD-CE-CG-N
2	У	5	YCP	CA-CB-CD-CE-CG-N
2	S	5	YCP	CA-CB-CD-CE-CG-N

Continued from previous page...

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

28 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type	Type	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Dec	Tiple	B	ond leng	gths	B	Bond ang	gles
	туре		nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2																				
3	OCA	k	101	2	8,8,9	1.79	2 (25%)	7,7,9	0.89	0																				
3	OCA	1	101	2	8,8,9	1.83	2 (25%)	7,7,9	0.84	0																				

Mol	Type	Chain	Bos	Link	B	ond leng	gths	B	ond ang	gles
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
3	OCA	V	101	2	8,8,9	1.70	2 (25%)	$7,\!7,\!9$	1.01	0
3	OCA	S	101	2	8,8,9	1.89	2 (25%)	$7,\!7,\!9$	0.74	0
3	OCA	n	101	2	8,8,9	1.70	2 (25%)	7,7,9	0.99	0
3	OCA	2	101	2	8,8,9	1.74	2 (25%)	7,7,9	0.91	0
3	OCA	r	101	2	8,8,9	1.73	2 (25%)	7,7,9	1.02	0
3	OCA	У	101	2	8,8,9	1.75	2 (25%)	7,7,9	1.00	0
3	OCA	u	101	2	8,8,9	1.81	2 (25%)	7,7,9	0.88	0
3	OCA	W	101	2	8,8,9	1.72	2 (25%)	7,7,9	1.05	0
3	OCA	t	101	2	8,8,9	1.76	2 (25%)	7,7,9	1.06	0
3	OCA	j	101	2	8,8,9	1.67	2 (25%)	7,7,9	1.11	0
3	OCA	h	101	2	8,8,9	1.76	2 (25%)	7,7,9	0.90	0
3	OCA	m	101	2	8,8,9	1.76	2 (25%)	7,7,9	1.01	0
3	OCA	р	101	2	8,8,9	1.74	2 (25%)	7,7,9	0.90	0
3	OCA	4	101	2	8,8,9	1.69	2 (25%)	7,7,9	1.08	0
3	OCA	i	101	2	8,8,9	1.71	2 (25%)	7,7,9	0.93	0
3	OCA	е	101	2	8,8,9	1.72	2 (25%)	7,7,9	0.95	0
3	OCA	Z	101	2	8,8,9	1.72	2 (25%)	7,7,9	1.02	0
3	OCA	f	101	2	8,8,9	1.68	2 (25%)	7,7,9	0.92	0
3	OCA	0	101	2	8,8,9	1.73	2 (25%)	7,7,9	1.11	0
3	OCA	3	101	2	8,8,9	1.77	2 (25%)	7,7,9	0.92	0
3	OCA	1	101	2	8,8,9	1.71	2 (25%)	7,7,9	1.05	0
3	OCA	g	101	2	8,8,9	1.75	2 (25%)	7,7,9	0.94	0
3	OCA	с	101	2	8,8,9	1.75	2 (25%)	7,7,9	0.83	0
3	OCA	q	101	2	8,8,9	1.75	2 (25%)	7,7,9	0.91	0
3	OCA	x	101	2	8,8,9	1.66	2 (25%)	7,7,9	1.08	0
3	OCA	0	101	2	8,8,9	1.72	2 (25%)	7,7,9	1.10	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	OCA	k	101	2	-	1/5/6/7	-
3	OCA	1	101	2	-	2/5/6/7	-
3	OCA	V	101	2	-	1/5/6/7	-

6NAH	

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	OCA	s	101	2	-	2/5/6/7	-
3	OCA	n	101	2	-	2/5/6/7	-
3	OCA	2	101	2	-	2/5/6/7	-
3	OCA	r	101	2	_	2/5/6/7	_
3	OCA	у	101	2	-	1/5/6/7	-
3	OCA	u	101	2	-	1/5/6/7	-
3	OCA	W	101	2	-	3/5/6/7	-
3	OCA	t	101	2	-	2/5/6/7	-
3	OCA	j	101	2	-	2/5/6/7	-
3	OCA	h	101	2	-	2/5/6/7	-
3	OCA	m	101	2	-	1/5/6/7	_
3	OCA	р	101	2	-	1/5/6/7	-
3	OCA	4	101	2	-	2/5/6/7	-
3	OCA	i	101	2	-	1/5/6/7	-
3	OCA	е	101	2	-	2/5/6/7	-
3	OCA	Z	101	2	-	1/5/6/7	-
3	OCA	f	101	2	-	2/5/6/7	-
3	OCA	О	101	2	-	2/5/6/7	-
3	OCA	3	101	2	-	2/5/6/7	-
3	OCA	1	101	2	-	0/5/6/7	-
3	OCA	g	101	2	-	2/5/6/7	-
3	OCA	с	101	2	-	1/5/6/7	-
3	OCA	q	101	2	-	2/5/6/7	-
3	OCA	х	101	2	-	1/5/6/7	-
3	OCA	0	101	2	-	1/5/6/7	-

All (56) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	s	101	OCA	C3-C2	-4.17	1.35	1.52
3	u	101	OCA	C3-C2	-3.96	1.36	1.52
3	1	101	OCA	C3-C2	-3.96	1.36	1.52
3	k	101	OCA	C3-C2	-3.83	1.37	1.52
3	3	101	OCA	C3-C2	-3.81	1.37	1.52
3	m	101	OCA	C3-C2	-3.81	1.37	1.52
3	0	101	OCA	C3-C2	-3.80	1.37	1.52
3	g	101	OCA	C3-C2	-3.77	1.37	1.52
3	q	101	OCA	C3-C2	-3.76	1.37	1.52
3	1	101	OCA	C3-C2	-3.75	1.37	1.52

6N.	AH
0111	TTT

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	y	101	OCA	C3-C2	-3.73	1.37	1.52
3	t	101	OCA	C3-C2	-3.72	1.37	1.52
3	с	101	OCA	C3-C2	-3.72	1.37	1.52
3	h	101	OCA	C3-C2	-3.70	1.37	1.52
3	V	101	OCA	C3-C2	-3.68	1.37	1.52
3	0	101	OCA	C3-C2	-3.67	1.37	1.52
3	i	101	OCA	C3-C2	-3.66	1.37	1.52
3	2	101	OCA	C3-C2	-3.66	1.37	1.52
3	е	101	OCA	C3-C2	-3.64	1.37	1.52
3	r	101	OCA	C3-C2	-3.63	1.37	1.52
3	Z	101	OCA	C3-C2	-3.63	1.37	1.52
3	W	101	OCA	C3-C2	-3.60	1.37	1.52
3	n	101	OCA	C3-C2	-3.60	1.37	1.52
3	р	101	OCA	C3-C2	-3.60	1.37	1.52
3	4	101	OCA	C3-C2	-3.59	1.38	1.52
3	f	101	OCA	C3-C2	-3.49	1.38	1.52
3	j	101	OCA	C3-C2	-3.48	1.38	1.52
3	X	101	OCA	C3-C2	-3.47	1.38	1.52
3	k	101	OCA	C5-C4	-3.22	1.33	1.51
3	h	101	OCA	C5-C4	-3.20	1.33	1.51
3	р	101	OCA	C5-C4	-3.20	1.33	1.51
3	S	101	OCA	C5-C4	-3.20	1.33	1.51
3	t	101	OCA	C5-C4	-3.18	1.33	1.51
3	1	101	OCA	C5-C4	-3.17	1.33	1.51
3	с	101	OCA	C5-C4	-3.15	1.33	1.51
3	r	101	OCA	C5-C4	-3.14	1.33	1.51
3	2	101	OCA	C5-C4	-3.12	1.34	1.51
3	У	101	OCA	C5-C4	-3.11	1.34	1.51
3	u	101	OCA	C5-C4	-3.11	1.34	1.51
3	W	101	OCA	C5-C4	-3.08	1.34	1.51
3	f	101	OCA	C5-C4	-3.07	1.34	1.51
3	q	101	OCA	C5-C4	-3.06	1.34	1.51
3	m	101	OCA	C5-C4	-3.05	1.34	1.51
3	g	101	OCA	C5-C4	-3.05	1.34	1.51
3	е	101	OCA	C5-C4	-3.04	1.34	1.51
3	3	101	OCA	C5-C4	-3.03	1.34	1.51
3	Z	101	OCA	C5-C4	-3.03	1.34	1.51
3	j	101	OCA	C5-C4	-3.00	1.34	1.51
3	n	101	OCA	C5-C4	-3.00	1.34	1.51
3	х	101	OCA	C5-C4	-2.96	1.35	1.51
3	i	101	OCA	C5-C4	-2.95	1.35	1.51
3	0	101	OCA	C5-C4	-2.94	1.35	1.51

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	4	101	OCA	C5-C4	-2.94	1.35	1.51
3	V	101	OCA	C5-C4	-2.90	1.35	1.51
3	0	101	OCA	C5-C4	-2.89	1.35	1.51
3	1	101	OCA	C5-C4	-2.88	1.35	1.51

There are no bond angle outliers.

There are no chirality outliers.

All (44) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	u	101	OCA	C4-C5-C6-C7
3	Х	101	OCA	C4-C5-C6-C7
3	i	101	OCA	C4-C5-C6-C7
3	s	101	OCA	C4-C5-C6-C7
3	t	101	OCA	C4-C5-C6-C7
3	g	101	OCA	C4-C5-C6-C7
3	0	101	OCA	C4-C5-C6-C7
3	f	101	OCA	C4-C5-C6-C7
3	с	101	OCA	C4-C5-C6-C7
3	W	101	OCA	C4-C5-C6-C7
3	3	101	OCA	C4-C5-C6-C7
3	n	101	OCA	C4-C5-C6-C7
3	h	101	OCA	C4-C5-C6-C7
3	Z	101	OCA	C4-C5-C6-C7
3	4	101	OCA	C4-C5-C6-C7
3	0	101	OCA	C2-C3-C4-C5
3	р	101	OCA	C2-C3-C4-C5
3	0	101	OCA	C4-C5-C6-C7
3	е	101	OCA	C4-C5-C6-C7
3	У	101	OCA	C4-C5-C6-C7
3	q	101	OCA	C2-C3-C4-C5
3	2	101	OCA	C4-C5-C6-C7
3	m	101	OCA	C4-C5-C6-C7
3	V	101	OCA	C5-C6-C7-C8
3	s	101	OCA	C5-C6-C7-C8
3	1	101	OCA	C5-C6-C7-C8
3	е	101	OCA	C5-C6-C7-C8
3	j	101	OCA	C5-C6-C7-C8
3	2	101	OCA	C5-C6-C7-C8
3	k	101	OCA	C4-C5-C6-C7
3	f	101	OCA	C5-C6-C7-C8

Mol	Chain	Res	Type	Atoms
3	j	101	OCA	C4-C5-C6-C7
3	W	101	OCA	C2-C3-C4-C5
3	3	101	OCA	C5-C6-C7-C8
3	r	101	OCA	C4-C5-C6-C7
3	g	101	OCA	C5-C6-C7-C8
3	r	101	OCA	C2-C3-C4-C5
3	n	101	OCA	C5-C6-C7-C8
3	W	101	OCA	C5-C6-C7-C8
3	h	101	OCA	C5-C6-C7-C8
3	l	101	OCA	C4-C5-C6-C7
3	q	101	OCA	C5-C6-C7-C8
3	t	101	OCA	C2-C3-C4-C5
3	4	101	OCA	C2-C3-C4-C5

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q < 0.9
1	А	175/217~(80%)	0.17	1 (0%) 89 91	29, 39, 60, 74	0
1	В	173/217~(79%)	0.16	2 (1%) 79 80	30, 38, 60, 72	0
1	С	173/217~(79%)	0.19	1 (0%) 89 91	32, 42, 60, 80	0
1	D	173/217~(79%)	0.21	2 (1%) 79 80	32, 43, 63, 76	0
1	Ε	174/217~(80%)	0.15	1 (0%) 89 91	32, 41, 59, 79	0
1	F	171/217~(78%)	0.15	0 100 100	31, 37, 53, 76	0
1	G	173/217~(79%)	0.05	0 100 100	30, 39, 57, 69	0
1	Н	174/217~(80%)	0.17	1 (0%) 89 91	32, 42, 59, 70	0
1	Ι	171/217~(78%)	0.20	2 (1%) 79 80	34, 43, 62, 76	0
1	J	172/217~(79%)	0.19	1 (0%) 89 91	33, 42, 60, 76	0
1	Κ	174/217~(80%)	0.16	2 (1%) 80 82	32, 39, 61, 72	0
1	L	174/217~(80%)	0.09	2 (1%) 80 82	29, 37, 57, 79	0
1	М	171/217~(78%)	0.12	0 100 100	27, 37, 56, 76	0
1	Ν	173/217~(79%)	0.10	2 (1%) 79 80	31, 38, 55, 68	0
1	Ο	172/217~(79%)	0.13	0 100 100	30, 41, 64, 90	0
1	Р	173/217~(79%)	0.04	0 100 100	27, 37, 59, 75	0
1	Q	173/217~(79%)	0.14	0 100 100	30, 39, 58, 70	0
1	R	175/217~(80%)	0.14	1 (0%) 89 91	32, 40, 59, 69	0
1	S	173/217~(79%)	0.23	1 (0%) 89 91	32, 42, 65, 77	0
1	Т	171/217~(78%)	0.20	1 (0%) 89 91	35, 46, 61, 72	0
1	U	174/217~(80%)	0.20	2 (1%) 80 82	30, 42, 63, 79	0
1	V	171/217 (78%)	0.17	1 (0%) 89 91	28, 36, 53, 69	0
1	W	$17\overline{3}/217~(79\%)$	0.16	1 (0%) 89 91	30, 38, 56, 69	0
1	X	174/217~(80%)	0.13	0 100 100	31, 40, 59, 76	0

Mol	Chain	Analysed	$\langle RSRZ \rangle$	7	# RS R	Z>2	$OWAB(Å^2)$	Q < 0.9
1	Y	172/217~(79%)	0.09	1 (0	9%) 8	9 91	28, 39, 56, 80	0
1	Z	172/217~(79%)	0.10	1 (0	9%) 8	9 91	28, 37, 56, 66	0
1	a	173/217~(79%)	0.15	1 (0	0%) 8	9 91	28, 38, 55, 72	0
1	b	172/217~(79%)	0.05	0	100	100	30, 36, 49, 70	0
2	0	2/6~(33%)	0.25	0	100	100	41, 41, 41, 45	0
2	1	2/6~(33%)	0.01	0	100	100	40, 40, 40, 42	0
2	2	2/6~(33%)	0.57	0	100	100	41, 41, 41, 45	0
2	3	2/6~(33%)	0.43	0	100	100	37, 37, 37, 41	0
2	4	2/6~(33%)	0.08	0	100	100	39, 39, 39, 41	0
2	с	2/6~(33%)	0.22	0	100	100	45, 45, 45, 50	0
2	е	2/6~(33%)	-0.16	0	100	100	45, 45, 45, 48	0
2	f	2/6~(33%)	0.14	0	100	100	51, 51, 51, 52	0
2	g	2/6~(33%)	0.03	0	100	100	47, 47, 47, 47	0
2	h	2/6~(33%)	0.52	0	100	100	44, 44, 44, 47	0
2	i	2/6~(33%)	0.18	0	100	100	42, 42, 42, 42	0
2	j	2/6~(33%)	-0.23	0	100	100	46, 46, 46, 49	0
2	k	2/6~(33%)	0.05	0	100	100	42, 42, 42, 43	0
2	1	2/6~(33%)	0.70	0	100	100	44, 44, 44, 49	0
2	m	2/6~(33%)	0.48	0	100	100	44, 44, 44, 44	0
2	n	2/6~(33%)	0.27	0	100	100	46, 46, 46, 56	0
2	О	2/6~(33%)	-0.14	0	100	100	39, 39, 39, 44	0
2	р	2/6~(33%)	0.09	0	100	100	46, 46, 46, 48	0
2	q	2/6~(33%)	0.10	0	100	100	43, 43, 43, 44	0
2	r	2/6~(33%)	0.12	0	100	100	44, 44, 44, 49	0
2	s	2/6~(33%)	-0.17	0	100	100	46, 46, 46, 51	0
2	t	2/6~(33%)	0.00	0	100	100	40, 40, 40, 42	0
2	u	2/6~(33%)	-0.04	0	100	100	43, 43, 43, 48	0
2	V	2/6~(33%)	1.53	0	100	100	45, 45, 45, 48	0
2	W	2/6~(33%)	0.54	0	100	100	51, 51, 51, 56	0
2	X	2/6 (33%)	0.21	0	100	100	47, 47, 47, 51	0
2	У	2/6 (33%)	-0.07	0	100	100	43, 43, 43, 43	0

Continued from previous page...

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RS	RZ>2	$OWAB(Å^2)$	Q<0.9
2	Z	2/6~(33%)	0.44	0 100	100	45, 45, 45, 46	0
All	All	4895/6244 (78%)	0.14	27 (0%)	89 91	27, 40, 59, 90	0

All (27) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	Κ	136	GLY	3.6
1	В	25	TYR	3.3
1	Ν	24	ILE	3.2
1	S	43	GLU	3.1
1	В	24	ILE	3.1
1	А	147	ARG	3.0
1	U	29	LEU	2.8
1	Н	147	ARG	2.6
1	С	136	GLY	2.6
1	a	197	GLU	2.6
1	Κ	194	GLN	2.5
1	V	197	GLU	2.4
1	Ι	184	GLU	2.4
1	U	132	SER	2.4
1	Y	197	GLU	2.3
1	D	198	ASN	2.3
1	Ι	190	GLY	2.3
1	L	24	ILE	2.3
1	J	198	ASN	2.2
1	L	43	GLU	2.2
1	N	27	ARG	2.2
1	W	190	GLY	2.1
1	Ζ	184	GLU	2.1
1	Е	184	GLU	2.0
1	Т	54	PHE	2.0
1	D	168	LEU	2.0
1	R	194	GLN	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
2	ALO	3	3	7/8	0.91	0.19	36,42,44,48	0
2	ALO	1	3	7/8	0.93	0.17	39,41,44,46	0
2	YCP	3	5	8/9	0.93	0.24	24,35,39,42	0
2	ALO	р	3	7/8	0.94	0.18	43,45,50,53	0
2	ALO	W	3	7/8	0.94	0.16	46,53,56,56	0
2	WFP	е	2	13/14	0.94	0.19	41,43,47,49	0
2	ALO	с	3	7/8	0.94	0.16	39,45,47,51	0
2	ALO	4	3	7/8	0.94	0.24	$35,\!37,\!42,\!43$	0
2	YCP	с	5	8/9	0.94	0.18	$39,\!46,\!49,\!52$	0
2	YCP	е	5	8/9	0.94	0.22	$45,\!49,\!51,\!53$	0
2	YCP	u	5	8/9	0.94	0.16	42,46,48,50	0
2	ALO	m	3	7/8	0.94	0.19	$39,\!48,\!50,\!55$	0
2	MP8	W	7	8/9	0.94	0.22	46,50,53,56	0
2	ALO	Х	3	7/8	0.95	0.18	42,51,54,56	0
2	ALO	Z	3	7/8	0.95	0.18	37,43,46,52	0
2	WFP	с	2	13/14	0.95	0.21	38,46,50,50	0
2	ALO	f	3	7/8	0.95	0.19	46,46,50,53	0
2	ALO	k	3	7/8	0.95	0.18	38,42,44,47	0
2	WFP	n	2	13/14	0.95	0.21	43,46,51,55	0
2	WFP	S	2	13/14	0.95	0.21	39,47,52,55	0
2	YCP	f	5	8/9	0.95	0.19	43,50,53,53	0
2	YCP	j	5	8/9	0.95	0.19	47,48,53,53	0
2	ALO	q	3	7/8	0.95	0.16	31,42,44,44	0
2	YCP	Х	5	8/9	0.95	0.20	47,50,51,52	0
2	YCP	У	5	8/9	0.95	0.15	41,45,46,48	0
2	YCP	Z	5	8/9	0.95	0.19	39,44,47,50	0
2	ALO	r	3	7/8	0.95	0.20	39,45,51,51	0
2	YCP	4	5	8/9	0.95	0.14	37,42,43,44	0
2	MP8	n	7	8/9	0.95	0.21	37,46,47,47	0
2	WFP	1	2	13/14	0.95	0.19	36,40,43,43	0
2	WFP	X	2	13/14	0.96	0.20	45,48,53,55	0
2	ALO	S	3	7/8	0.96	0.17	45,50,53,57	0
2	ALO	t	3	7/8	0.96	0.14	34,38,40,42	0
2	ALO	u	3	7/8	0.96	0.22	44,46,50,56	0
2	YCP	k	5	8/9	0.96	0.19	38,43,45,45	0
2	YCP	1	5	8/9	0.96	0.17	34,44,48,49	0
2	YCP	р	5	8/9	0.96	0.20	41,44,47,47	0
2	YCP	r	5	8/9	0.96	0.14	46,49,54,54	0
2	YCP	t	5	8/9	0.96	0.19	36,40,41,42	0
2	ALO	g	3	7/8	0.96	0.16	37,44,49,52	0
2	YCP	V ·	5	8/9	0.96	0.20	40,43,44,47	0
$\frac{2}{2}$	ALO	1	3	7/8	0.96	0.24	41,44,46,46	0
2	ALO	У	3	7/8	0.96	0.18	37,43,46,46	0

Continueu from previous page								
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
2	WFP	Z	2	13/14	0.96	0.19	39,42,45,46	0
2	YCP	0	5	8/9	0.96	0.17	37,43,45,47	0
2	ALO	0	3	7/8	0.96	0.15	38,41,44,45	0
2	WFP	t	2	13/14	0.96	0.22	37,41,47,49	0
2	MP8	е	7	8/9	0.96	0.20	46,47,48,48	0
2	MP8	f	7	8/9	0.96	0.17	43,46,48,49	0
2	MP8	g	7	8/9	0.96	0.18	35,41,45,45	0
2	MP8	h	7	8/9	0.96	0.21	37,39,42,43	0
2	MP8	k	7	8/9	0.96	0.26	39,43,48,51	0
2	WFP	u	2	13/14	0.96	0.25	38,43,47,48	0
2	MP8	р	7	8/9	0.96	0.23	39,44,47,50	0
2	ALO	е	3	7/8	0.96	0.16	46,47,48,51	0
2	MP8	Х	7	8/9	0.96	0.20	46,49,52,54	0
2	MP8	1	7	8/9	0.96	0.15	39,41,43,44	0
2	MP8	3	7	8/9	0.96	0.21	31,37,40,41	0
2	WFP	g	2	13/14	0.97	0.21	36,41,44,45	0
2	ALO	n	3	7/8	0.97	0.18	41,52,53,53	0
2	YCP	m	5	8/9	0.97	0.20	38,44,46,47	0
2	YCP	n	5	8/9	0.97	0.15	46,51,55,57	0
2	YCP	0	5	8/9	0.97	0.23	39,40,43,43	0
2	WFP	h	2	13/14	0.97	0.23	41,45,47,48	0
2	WFP	i	2	13/14	0.97	0.25	42,43,46,49	0
2	YCP	s	5	8/9	0.97	0.20	44,48,53,53	0
2	WFP	V	2	13/14	0.97	0.26	35,40,44,48	0
2	WFP	W	2	13/14	0.97	0.22	45,50,53,53	0
2	WFP	j	2	13/14	0.97	0.18	41,44,47,48	0
2	WFP	k	2	13/14	0.97	0.22	$36,\!41,\!45,\!48$	0
2	WFP	0	2	13/14	0.97	0.18	35,43,49,49	0
2	WFP	1	2	13/14	0.97	0.19	$39,\!44,\!48,\!51$	0
2	WFP	2	2	13/14	0.97	0.21	34,39,45,46	0
2	YCP	1	5	8/9	0.97	0.14	$39,\!43,\!47,\!48$	0
2	YCP	2	5	8/9	0.97	0.18	36,38,42,42	0
2	WFP	m	2	13/14	0.97	0.19	$45,\!47,\!50,\!50$	0
2	WFP	f	2	13/14	0.97	0.20	44,48,50,52	0
2	MP8	с	7	8/9	0.97	0.16	$39,\!43,\!47,\!48$	0
2	WFP	0	2	13/14	0.97	0.17	34,40,44,45	0
2	ALO	2	3	7/8	0.97	0.16	$39,\!41,\!44,\!55$	0
2	WFP	р	2	13/14	0.97	0.21	$35,\!39,\!47,\!47$	0
2	ALO	h	3	7/8	0.97	0.16	41,44,48,52	0
2	MP8	j	7	8/9	0.97	0.18	$38,\!43,\!47,\!47$	0
2	WFP	q	2	13/14	0.97	0.22	39,43,47,51	0
2	MP8	1	7	8/9	0.97	$0.2\overline{4}$	34,42,43,49	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
2	MP8	m	7	8/9	0.97	0.19	38,42,45,46	0
2	ALO	j	3	7/8	0.97	0.21	40,44,49,54	0
2	MP8	0	7	8/9	0.97	0.18	38,43,45,47	0
2	WFP	r	2	13/14	0.97	0.22	35,40,47,49	0
2	MP8	q	7	8/9	0.97	0.19	36,39,42,42	0
2	MP8	r	7	8/9	0.97	0.19	41,44,49,49	0
2	MP8	s	7	8/9	0.97	0.18	45,50,51,51	0
2	MP8	V	7	8/9	0.97	0.14	37,40,42,44	0
2	YCP	g	5	8/9	0.97	0.20	41,45,50,51	0
2	YCP	h	5	8/9	0.97	0.18	37,45,48,50	0
2	YCP	i	5	8/9	0.97	0.27	40,41,47,48	0
2	MP8	2	7	8/9	0.97	0.21	36,39,43,43	0
2	ALO	1	3	7/8	0.97	0.14	41,43,47,53	0
2	WFP	3	2	13/14	0.98	0.21	34,37,41,43	0
2	MP8	t	7	8/9	0.98	0.15	35,37,43,45	0
2	MP8	u	7	8/9	0.98	0.22	41,43,44,44	0
2	ALO	0	3	7/8	0.98	0.14	41,42,45,52	0
2	YCP	W	5	8/9	0.98	0.23	46,52,54,55	0
2	WFP	4	2	13/14	0.98	0.22	33,38,43,47	0
2	MP8	У	7	8/9	0.98	0.15	37,39,42,43	0
2	MP8	Z	7	8/9	0.98	0.23	39,40,44,44	0
2	MP8	0	7	8/9	0.98	0.17	36,40,41,44	0
2	MP8	i	7	8/9	0.98	0.21	36,42,44,44	0
2	WFP	У	2	13/14	0.98	0.18	33,37,43,43	0
2	ALO	V	3	7/8	0.98	0.16	37,44,47,48	0
2	MP8	4	7	8/9	0.98	0.19	$2\overline{8,36,38,41}$	0
2	YCP	q	5	8/9	0.99	0.17	39,43,44,46	0

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
3	OCA	W	101	9/10	0.90	0.32	41,48,52,56	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
3	OCA	t	101	9/10	0.92	0.27	38,41,49,54	0
3	OCA	j	101	9/10	0.93	0.34	43,45,50,52	0
3	OCA	i	101	9/10	0.94	0.35	43,44,58,61	0
3	OCA	е	101	9/10	0.95	0.28	40,49,55,58	0
3	OCA	m	101	9/10	0.95	0.33	42,46,56,59	0
3	OCA	r	101	9/10	0.95	0.41	39,45,53,69	0
3	OCA	g	101	9/10	0.95	0.24	38,44,53,58	0
3	OCA	u	101	9/10	0.95	0.28	40,43,51,57	0
3	OCA	с	101	9/10	0.95	0.27	35,40,46,47	0
3	OCA	1	101	9/10	0.95	0.26	37,41,44,48	0
3	OCA	h	101	9/10	0.96	0.23	39,48,53,56	0
3	OCA	s	101	9/10	0.96	0.26	38,46,53,56	0
3	OCA	1	101	9/10	0.96	0.25	31,40,50,50	0
3	OCA	f	101	9/10	0.96	0.45	43,49,63,66	0
3	OCA	V	101	9/10	0.96	0.19	38,43,48,49	0
3	OCA	0	101	9/10	0.96	0.25	38,40,49,52	0
3	OCA	Х	101	9/10	0.96	0.24	45,46,53,53	0
3	OCA	Z	101	9/10	0.96	0.29	37,43,54,56	0
3	OCA	р	101	9/10	0.96	0.23	38,45,51,51	0
3	OCA	2	101	9/10	0.96	0.28	$38,\!43,\!54,\!57$	0
3	OCA	У	101	9/10	0.97	0.26	40,42,45,49	0
3	OCA	n	101	9/10	0.97	0.25	44,48,55,57	0
3	OCA	0	101	9/10	0.97	0.21	30,34,44,46	0
3	OCA	q	101	9/10	0.97	0.29	37,41,50,59	0
3	OCA	k	101	9/10	0.97	0.28	$3\overline{1,}3\overline{7,}52,\overline{5}3$	0
3	OCA	3	101	9/10	0.97	0.25	40,41,43,49	0
3	OCA	4	101	9/10	0.97	0.24	31,35,41,44	0

6.5 Other polymers (i)

There are no such residues in this entry.

