

Oct 6, 2024 - 04:17 AM EDT

PDB ID	:	6NCL
EMDB ID	:	EMD-0436
Title	:	Near-atomic structure of icosahedrally averaged PBCV-1 capsid
Authors	:	Fang, Q.; Rossmann, M.G.
Deposited on	:	2018-12-11
Resolution	:	3.50 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	EM structures		
Metric	$(\# { m Entries})$	$(\# {\rm Entries})$		
Clashscore	210492	15764		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain							
1	a0	352	28%	72%						
2	a1	210	47%	·	49%					
3	a2	289	31%	67%						
3	a3	289	26%	74%						
4	a4	256	• 56%	·	40%					
5	a5	216	5%	86%	• 12%					
6	a6	170		98%						
7	a7	151	47%	••	48%					

Mol	Chain	Length	Quality of chain							
8	a8	146	—	95%	• •					
9	a9	207	23%	77%						
9	b0	207	26% •	71%						
9	b1	207	24% •	74%						
9	b2	207	25%	75%						
9	b3	207	24% •	75%						
9	b4	207	23% •	75%						
9	b5	207	• 25% •	72%						
9	b7	207	24% •	75%						
9	b8	207	27%	72%						
9	c0	207	24% •	75%						
9	c1	207	23% •	75%						
9	15	207	• 27% •	72%						
10	b6	576	•	• 18	3%					
11	c2	181	• - 56%	• 43%						
11	c3	181	33% •	67%						
11	c4	181	30% •	68%						
11	c5	181	31%	68%						
12	c6	171	81%	• 18	3%					
12	с7	171	78%	8% •	14%					
12	c8	171	• 68%	32%						
13	c9	173	•	95%						
14	d0	437	5%	99%						
14	d1	437	—	99%						
14	d2	437	.	100%						

 $Continued \ from \ previous \ page...$ Chain Length Quality of chain Mol <u>.</u> d3437 1499% d41443799% ÷. 14d5437 100% d614437100% 14d7437100% 14d8437100% ÷ 14d9437100% 5% 14e043799% **.** 437 14e199% 14e243799% 9% 14e343799% • 43714e499% ÷ 14e5437100% ÷ 14e6437100% i 14e743799% 5% 14e8437100% ÷ e94371499% f04371499% 14f1437100% f24371499% • f3 14437100% • 14f443799% 5% f54371499% 5% f643714100% ÷ f7437 14 99%

Mol	Chain	Length	Quality of chain
14	f8	437	99%
14	f9	437	99%
14	g0	437	99%
14	g1	437	100%
14	g2	437	99%
14	g3	437	99%
14	g4	437	5% 99%
14	g5	437	99%
14	$\mathbf{g6}$	437	100%
14	g7	437	99%
14	g8	437	100%
14	g9	437	100%
14	h0	437	100%
14	h1	437	8%
14	h2	437	99%
14	h3	437	99%
14	h4	437	99%
14	h5	437	99%
14	h6	437	99%
14	h7	437	100%
14	h8	437	100%
14	h9	437	100%
14	iO	437	100%
14	i1	437	5%
14	i2	437	99%

Mol	Chain	Length	Quality of chain
14	i3	437	99%
14	i4	437	5%
14	i5	437	100%
14	i6	437	6% 99%
14	i7	437	5% 99%
14	i8	437	99%
14	iQ	437	
14	i0	437	
14	J0	437	99% ·
14	j1	437	100%
14	j2	437	99%
14	j3	437	99%
14	j4	437	99% •
14	j5	437	99%
14	j6	437	99%
14	j7	437	6%
14	i8	/37	6%
14	jo	407	
14	J9	437	100%
14	k0	437	99%
14	k1	437	100%
14	k2	437	99%
14	k3	437	99%
14	k4	437	100%
14	k5	437	100%
14	k6	437	99%
14	1-7	497	
14	K (437	99%

Mol	Chain	Length	Quality of chain	
14	k8	437	99%	
14	k9	437	• 100%	
14	10	437	100%	
14	11	437	99%	
14	12	437	99%	
14	13	437	5%	
15	14	98	67%	33%

2 Entry composition (i)

There are 15 unique types of molecules in this entry. The entry contains 305842 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called P14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
1	a0	97	Total 733	C 463	N 122	0 145	${ m S} { m 3}$	0	0

• Molecule 2 is a protein called P9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
2	a1	107	Total 718	C 445	N 122	0 146	${ m S}{ m 5}$	0	0

• Molecule 3 is a protein called P10.

Mol	Chain	Residues	Atoms	AltConf Trace
3 a2	94	Total C N O S	0 0	
	a2	34	650 411 110 125 4	0 0
3 a3	74	Total C N O S	0 0	
	GS	сь	14	485 308 86 88 3

• Molecule 4 is a protein called P7.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	a4	153	Total 1088	C 689	N 192	0 197	S 10	0	0

• Molecule 5 is a protein called P6.

Mol	Chain	Residues		At	AltConf	Trace			
5	.5	180	Total	С	Ν	0	\mathbf{S}	0	0
5	ao	169	1326	878	210	236	2	0	0

• Molecule 6 is a protein called P1.

Mol	Chain	Residues		At	AltConf	Trace			
6	a6	167	Total 1192	C 756	N 203	O 229	$\frac{S}{4}$	0	0

• Molecule 7 is a protein called P12.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
7	a7	78	Total 543	C 357	N 88	O 95	S 3	0	0

• Molecule 8 is a protein called P5.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	a8	142	Total 988	C 638	N 168	0 180	${S \over 2}$	0	0

• Molecule 9 is a protein called P11.

Mol	Chain	Residues	Atoms	AltConf	Trace
9	a9	47	Total C N O S 311 200 53 57 1	0	0
9	b0	59	Total C N O S 398 248 70 79 1	0	0
9	b1	54	Total C N O 368 238 64 66	0	0
9	b2	51	Total C N O S 350 227 59 63 1	0	0
9	b3	51	Total C N O S 335 216 56 62 1	0	0
9	b4	52	Total C N O S 350 228 61 60 1	0	0
9	b5	57	Total C N O S 367 237 64 64 2	0	0
9	b7	52	Total C N O S 375 244 63 67 1	0	0
9	b8	57	Total C N O 379 244 66 69	0	0
9	c0	51	Total C N O S 338 214 59 64 1	0	0
9	c1	51	Total C N O S 335 213 59 61 2	0	0
9	15	58	Total C N O 392 253 67 72	0	0

• Molecule 10 is a protein called P2.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	b6	475	Total 3210	C 2016	N 587	O 603	${S \atop 4}$	0	0

• Molecule 11 is a protein called P4.

Mol	Chain	Residues	Atoms	AltConf	Trace
11	c2	103	Total C N O S 603 369 110 123 1	0	0
11	c3	60	Total C N O 389 242 69 78	0	0
11	c4	58	Total C N O 369 230 65 74	0	0
11	c5	58	$\begin{array}{ccccc} {\rm Total} & {\rm C} & {\rm N} & {\rm O} \\ {\rm 396} & {\rm 252} & {\rm 72} & {\rm 72} \end{array}$	0	0

• Molecule 12 is a protein called P3.

Mol	Chain	Residues		At	oms		AltConf	Trace	
12	6	1.4.1	Total	С	Ν	0	S	0	0
12	0	141	951	602	170	177	2	0	0
19		1.47	Total	С	Ν	0	S	0	0
12	01	147	1004	648	172	180	4	0	0
19	68	116	Total	С	Ν	0	S	0	0
12	C8	c8 116	813	519	141	149	4	0	0

• Molecule 13 is a protein called P8.

Mol	Chain	Residues	Atoms					AltConf	Trace
13	c9	166	Total 1191	C 776	N 198	0 214	${ m S} { m 3}$	0	0

• Molecule 14 is a protein called Major capsid protein.

Mol	Chain	Residues		At		AltConf	Trace		
14 d0	40	429	Total	С	Ν	0	S	0	0
14	uu	432	3369	2142	570	649	8	0	
14	d1	434	Total	С	Ν	0	\mathbf{S}	0	0
14	ui	404	3382	2149	573	652	8	0	0
14	40	425	Total	С	Ν	0	S	0	0
14	d2	d2 435	3387	2152	574	653	8	0	0

Continued for	rom previous	page
---------------	--------------	------

Mol	Chain	Residues		At	oms			AltConf	Trace
14	10	49.4	Total	С	Ν	0	S	0	0
14	03	434	3382	2149	573	652	8	0	0
14	d 4	494	Total	С	Ν	0	S	0	0
14	04	434	3382	2149	573	652	8	0	0
14	45	425	Total	С	Ν	0	S	0	0
14	u.j	400	3383	2150	574	651	8	0	0
14	46	435	Total	С	Ν	0	S	0	0
14	uu	455	3387	2152	574	653	8	0	0
14	d7	435	Total	С	Ν	0	\mathbf{S}	0	0
14	u/	400	3381	2149	571	653	8	0	0
14	48	/35	Total	С	Ν	Ο	\mathbf{S}	0	0
14	uo	400	3390	2153	575	654	8	0	0
14	95	436	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
11	us	400	3395	2156	576	655	8	0	0
14	ell	435	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		100	3390	2153	575	654	8	0	0
14	e1	434	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	01	101	3382	2149	573	652	8	0	0
14	е2	434	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	02	101	3382	2149	573	652	8	0	0
14	eЗ	435	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		100	3387	2152	574	653	8	0	0
14	е4	434	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		101	3382	2149	573	652	8	Ŭ	
14	e5	435	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		100	3390	2153	575	654	8	Ŭ	
14	e6	436	Total	С	Ν	Ο	\mathbf{S}	0	0
		100	3395	2156	576	655	8	Ŭ	
14	e7	435	Total	С	Ν	0	S	0	0
			3390	2153	575	654	8	-	
14	e8	435	Total	С	N	0	S	0	0
			3390	2153	575	654	8	_	
14	e9	435	Total	C	N	0	S	0	0
			3387	2152	574	653	8		
14	fO	434	Total	C	N	0	S	0	0
			3375	2143	573	651	8		
14	f1	435	Total	C	N	0	S	0	0
			3387	2152	574	653	8		
14	f2	436	Total	\mathbf{U}		0	S	0	0
			3395	2156	576	055	8		
14	f3	435	Total	U		U CER	2	0	0
			3383	2147	575	653	8		

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf	Trace
14	£4	49.4	Total	С	Ν	0	S	0	0
14	I4	434	3382	2149	573	652	8	0	0
14	(F	49.4	Total	С	Ν	0	S	0	0
14	GI	434	3376	2146	570	652	8	0	0
14	60	495	Total	С	Ν	0	S	0	0
14	IO	435	3387	2152	574	653	8	0	0
14	C 	49.4	Total	С	Ν	0	S	0	0
14	Ií	434	3372	2142	572	650	8	0	0
1.4	60	499	Total	С	Ν	0	S	0	0
14	18	433	3378	2147	572	651	8	0	0
1.4	60	49.4	Total	С	Ν	0	S	0	0
14	19	434	3379	2145	574	652	8	0	0
1.4	0	495	Total	С	Ν	0	S	0	0
14	g0	435	3387	2152	574	653	8	0	0
14	1	495	Total	С	Ν	0	S	0	0
14	gl	435	3387	2152	574	653	8	0	0
14	2	49.4	Total	С	Ν	0	S	0	0
14	g2	434	3382	2149	573	652	8	0	0
	2	12.1	Total	С	Ν	0	S	6	0
14	g3	434	3382	2149	573	652	8	0	0
		127	Total	С	Ν	0	S		
14	g4	435	3390	2153	575	654	8	0	0
		127	Total	С	Ν	0	S		
14	g_5	435	3387	2152	574	653	8	0	0
		127	Total	С	Ν	0	S		
14	g6	435	3387	2152	574	653	8	0	0
		12.1	Total	С	Ν	0	S		
14	gʻí	434	3376	2146	570	652	8	0	0
	2	12.2	Total	С	Ν	0	S		-
14	g8	436	3395	2156	576	655	8	0	0
	0	125	Total	С	Ν	0	S		
14	g9	435	3390	2153	575	654	8	0	0
			Total	С	Ν	0	S		
14	h0	435	3387	2152	574	653	8	0	0
			Total	C	N	0	S		
14	h1	435	3387	2152	574	653	8	0	0
		15.	Total	<u> </u>	N	0	S		
14	h2	434	3382	2149	573	652	8	0	0
	_		Total	<u> </u>	N	0	S		
14	h3	435	3390	2153	575	654	$\tilde{8}$	0	0
			Total	<u> </u>	N	0	S		
14	h4	434	3382	2149	573	652	~ 8	0	0
			5562	- + 10	010	001	0	1	

α \cdot \cdot \cdot	C		
Continued	from	previous	page

Mol	Chain	Residues		Ate		AltConf	Trace		
14	۱F	494	Total	С	Ν	0	S	0	0
14	nə	434	3382	2149	573	652	8	0	0
14	1.0	49.4	Total	С	Ν	0	S		0
14	hb	434	3382	2149	573	652	8	0	0
14	1 7	49.0	Total	С	Ν	0	S	0	0
14	h/	430	3395	2156	576	655	8	0	0
14	1.0	495	Total	С	Ν	0	S	0	0
14	n8	435	3387	2152	574	653	8	0	0
14	1.0	495	Total	С	Ν	0	S	0	0
14	19	433	3381	2149	571	653	8	0	0
14	:0	425	Total	С	Ν	0	S	0	0
14	10	450	3390	2153	575	654	8	0	0
14	;1	494	Total	С	Ν	0	S	0	0
14	11	404	3382	2149	573	652	8	0	0
14	;0	494	Total	С	Ν	Ο	S	0	0
14	12	404	3382	2149	573	652	8	0	0
14	;2	424	Total	С	Ν	0	S	0	0
14	10	404	3382	2149	573	652	8	0	0
14	;4	425	Total	С	Ν	0	S	0	0
14	14	455	3384	2150	572	654	8	0	0
14	;5	426	Total	С	Ν	0	S	0	0
14	10	430	3395	2156	576	655	8	0	0
14	;6	424	Total	С	Ν	0	S	0	0
14	10	404	3382	2149	573	652	8	0	0
14	;7	434	Total	С	Ν	0	S	0	0
14	17	404	3382	2149	573	652	8	0	0
14	i8	436	Total	С	Ν	Ο	\mathbf{S}	0	0
14	10	400	3388	2150	576	654	8	0	0
14	iQ	435	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
14	15	400	3387	2152	574	653	8	0	0
14	iO	436	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	JO	100	3392	2155	576	653	8	0	0
14	i1	435	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	J*	100	3387	2152	574	653	8	Ŭ	0
14	i2	435	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	JZ	100	3387	2152	574	653	8	0	0
14	i3	435	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	J.C	100	3387	2152	575	652	8		
14	i4	434	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	JT	101	3382	2149	573	652	8		
14	i5	434	Total	С	Ν	Ο	\mathbf{S}	0	0
1-1	10	FOF	3382	2149	573	652	8	U	

Mol	Chain	Residues	Atoms					AltConf	Trace
14	;6	494	Total	С	Ν	Ο	S	0	0
14	JO	434	3382	2149	573	652	8	0	0
14	;7	426	Total	С	Ν	0	S	0	0
14	Jí	430	3395	2156	576	655	8	0	0
14	;0	425	Total	С	Ν	0	S	0	0
14	Jo	455	3390	2153	575	654	8	0	0
14	iQ	/35	Total	С	Ν	0	\mathbf{S}	0	0
14	JJ	400	3387	2152	574	653	8	0	0
14	k0	134	Total	С	Ν	0	\mathbf{S}	0	0
14	KU	404	3382	2149	573	652	8	0	0
14	L1	/35	Total	С	Ν	Ο	\mathbf{S}	0	0
14	K1	400	3387	2152	574	653	8	0	0
14	ŀ9	/35	Total	С	Ν	Ο	\mathbf{S}	0	0
14	κZ	400	3387	2152	574	653	8	0	0
14	<u></u> }3	134	Total	С	Ν	0	S	0	0
14	ко	404	3382	2149	573	652	8		
14	l-1	436	Total	С	Ν	0	S	0	0
14	<u>K4</u>	450	3395	2156	576	655	8		0
14	1-5	426	Total	С	Ν	0	S	0	0
14	кə	430	3395	2156	576	655	8	0	0
14	1-6	495	Total	С	Ν	0	S	0	0
14	KÜ	455	3391	2153	575	655	8	0	0
14	1-7	425	Total	С	Ν	0	S	0	0
14	K (455	3387	2151	574	654	8	0	0
14	1-9	495	Total	С	Ν	0	S	0	0
14	КО	455	3391	2153	575	655	8	0	0
14	1-0	495	Total	С	Ν	0	S	0	0
14	К9	455	3381	2149	571	653	8	0	0
14	10	495	Total	С	Ν	0	S	0	0
14	10	455	3391	2153	575	655	8	0	0
14	11	495	Total	С	Ν	0	S	0	0
14	11	455	3391	2153	575	655	8	0	0
14	10	424	Total	С	Ν	0	S	0	0
14	12	404	3382	2149	573	652	8		U
14	19	196	Total	С	Ν	0	S	0	0
14	61	430	3396	2156	576	656	8	U	U

• Molecule 15 is a protein called P13.

Mol	Chain	Residues	Atoms			AltConf	Trace		
15	l4	66	Total 487	C 313	N 82	O 90	${ m S}$ 2	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: P14

• Molecule 11: P4

Chain d6:	100%
MET A2 2 2 2 2 2 2 4 4 3 6 2 2 2 4 4 3 6 2 2 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 4 3 5 4 5 4	
• Molecule 14: Major capsid protein	
Chain d7:	100%
MET A2 E40 E40 D65 0101 6101 0106 0106 A103 A239 A239 A239 A239 A233 A361 A361 A361 A361 A363 A361 A363	D375
• Molecule 14: Major capsid protein	
Chain d8:	100%
MET ALA G3 D212 P212 A243 M437	
• Molecule 14: Major capsid protein	
Chain d9:	100%
MET A2 417 E40 E40 E99 C101 C101 C101 C101 C102 C101 C125 C101 C125 C101 C125 C101 C125 C101 C125 C101 C125 C125 C125 C125 C125 C125 C125 C12	
• Molecule 14: Major capsid protein	
Chain e0:	99%
MET ALA ALA G 3 C 4 L 5 D 6 D 6 D 6 D 6 D 6 D 6 D 6 D 6 D 6 D 6	E237
• Molecule 14: Major capsid protein	
Chain e1:	99% .
MET ALA ALA G3 G4 E80 B69 B69 B69 B124 D124 D124 D125 T734 D125 T734	D324
• Molecule 14: Major capsid protein	
Chain e2:	99%
MET ALA ALA G3 G3 G4 D69 E97 E99 E99 C100 G101 A195 A239	S242 A243 N254 R363 A436 A36 A36 A38
	WORLDWIDE PROTEIN DATA BANK

• Molecule 14: Major capsid protein		
Chain e3:	99%	
MET A2 C3 C3 C4 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5	N156	1244 1246 1246 0246 1261 1261 1261 1261 1267
D314 G323 A357 A357 A357 A361 G362 A361 G362 A361 A365		
• Molecule 14: Major capsid protein		
Chain e4:	99%	
MET ALA ALA ALA ALA ALA ALA ALA ALA ALA 3234 C 1234 C 1234 A 239 A 239 A 243 A		
• Molecule 14: Major capsid protein		
Chain e5:	100%	
MET ALA B1A B104 E40 E215 C157 C1256 T234 C157 A243 A243 A243 A243 A243 A243 A243 A243		
• Molecule 14: Major capsid protein		
Chain e6:	100%	•
MET A2 E40 B40 G101 C101 A239 A243 A243 A243 M437 M437		
• Molecule 14: Major capsid protein		
Chain e7:	99%	
MET ALA G136 B69 D69 A243 M239 M430 N437		
• Molecule 14: Major capsid protein		
Chain e8:	100%	
MET ALA G3 G3 G48 N47 C48 C48 C48 D96 C48 D96 D96 D124 C10 D124 C125 C125 C125 C125 C125 C125 C225 C225	1234 A235 A243 A243 A243 B14 B14 N264 N263 N264 N263 N264 N263 N264 N437	

Chain e9:	99%
MET A2 A2 A2 B40 B69 D69 D69 D207 D207 D207 D207 D207 D207 D207 D207	A436 ASN
• Molecule 14: Major capsid protein	
Chain f0:	99% .
MET ALA 63 65 66 8181 6195 6195 6195 6195 6195 6195 6195 619	R363 A 43 6 A SN
• Molecule 14: Major capsid protein	
Chain f1:	100%
MET G3 G3 B969 A243 A243 M337	
• Molecule 14: Major capsid protein	
Chain f2:	99%
MET A2 A2 E40 E40 B65 C101 C101 C101 C101 C125 A104 C125 A107 C125 C125 C125 C125 C125 C125 C125 C125	A239 7240 6322 6322 9323 9323 9323 9323 9323 9323
• Molecule 14: Major capsid protein	
Chain f3:	100%
MET ALA G3 G4 A13 E40 E40 E97 E97 E97 E97 E103 E172 E172 E172 E172 E172 E172 E172 E172	D314 4
• Molecule 14: Major capsid protein	
Chain f4:	99% .
MET ALLA G1 G5 G5 G5 12 C5 D12 C7 D12 C7 C7 D12 C7 D12 C7 D12 C7 D12 C7 D12 C7 D12 C7 D12 C7 D12 C7 D12 C7 D12 C7 D12 C7 D12 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7	D324 R363 R373 R373 R375 R425 A3N
• Molecule 14: Major capsid protein	
Chain f5:	99% .
MET ALIA G3 G4 G43 G43 G43 G43 G43 G43 G43 G43 G	125 4157 1238 1238 1238 1238 1238 12340 12340 12353 12363 12373 1238 1239 1239 1230 1231 1231 1231 1231

Chain g2:	99% .
MET A.I.A A.I.A B124 E172 E172 A239 A233 A239 A233 A233 A233 A233 A23	A426
• Molecule 14: Major capsid protein	
Chain g3:	99% •
MET ALA ALA G3 G3 B69 B00 B90 B125 Q157 Q157 Q157 M243 M243 M243 M243	N3559
• Molecule 14: Major capsid protein	
Chain g4:	99%
MET ALA ALA ALA E97 E97 E99 E196 G157 Q157 Q157 Q157 C128 C126 C126 C126 C122 C126 C126 C126 C126	E237 ♦ A243 ♦ T244 ♦ N254 ♦ D3144 ♦ D3133 ♦ R353 ♦ R353 ♦
• Molecule 14: Major capsid protein	
Chain g5:	99%
MET 410 410 410 410 410 410 410 410 410 410	A2 43 4 D3 14 4 D3 24 4 N3 76 4 A1 36 A1 36 A1 36
\bullet Molecule 14: Major capsid protein	
Chain g6:	100%
MET A2 K55 K55 C C C C C C C C C C C C C C C C	ASN ASN
\bullet Molecule 14: Major capsid protein	
Chain g7:	99%
MET ALA G3 G3 G2 G103 A195 A195 D207 D212 E215 E215 C22 C22 C22 C22 D212 C22 D212 C23 D207 D212 C23 D207 D212 C23 D207 C23 D207 C23 D207 D207 D202 D207 D202 D207 D202 D207 D202 D202	D324 ↔ R363 A436 ASN ASN
• Molecule 14: Major capsid protein	
Chain g8:	100%

Chain i1:	99%	
MET ALA ALA ALA ALA R132 B125 D125 0125 A195 A195 A195 A195 C196 C196 C196 C196 C196 C196 C123 C123 C123 C123 C123 C123 C123 C123	A2 43 A2 47 N2 50 N2 50 R3 63 Q3 09 M4 30 A3 6 A3 6 A3 6 A3 6 A3 6 A3 6 A3 6 A3 6	
• Molecule 14: Major capsid protein		
Chain i2:	99%	:
MET ALA G3 G4 F3 F3 F3 F3 F3 F4 F3 F4 F3 F4 F3 F4 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1	E229 + 4243 + 2229 + 2229 + 2229 + 2225 + 22	
• Molecule 14: Major capsid protein		
Chain i3:	99%	
MET G3 G4 B65 B65 B69 B69 B124 A239 A239 A239 A239 A239 A239 B374 B375 B375	A436 ASN	
• Molecule 14: Major capsid protein 5%		
Chain i4:	100%	•
MET ALA G3 TE4 0106 0125 0125 0127 1234 C234 C234 C238 A237 T238 A237 C238 A247 C238 C239 C229 C229	D314 4 G322 4 G323 4 G3250 4 D324 4 D3250 4 N376 4 N437 4	
• Molecule 14: Major capsid protein		
Chain i5:	100%	•
MET A2 X17 K55 K55 R104 Q103 Q103 Q103 Q103 Q104 Q103 Q157 Q157 Q157 Q157	E215 T234 E237 E237 A243 A243 A243 A247 A243 B314 B314 C323 C322 C322 C322 C323 C323 C323 C32	P339 7340 G350 B375 C386 C386
• Molecule 14: Major capsid protein		
Chain i6:	99%	
MET ALA G3 G3 B40 B62 B63 B69 C101 C101 C101 C101 C101 C101 C101 C10	F155 M197 A197 A197 A198 P207 P207 P212 P212 P212 P212 P212 P212 P212 P212 P212 P212 P212 P212 P212 P212 P215	R363
• Molecule 14: Major capsid protein		
Chain i7:	99%	:
MET A2 A2 A2 B65 B65 B69 B69 B65 B97 E97 E93 E93 A243 A243 A243 A243 A243 A243 A243 A24	B314 B314 N321 G322 G322 K359 K359 K356 S366 B375 N399 1400 E401	<mark>Y 435</mark> ALA ASN
	WORLDWIDE PROTEIN DATA BANK	

99%
100%
99%
100%
100%
99%
99%
99%
100% Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution
99%

W O R L D W I D E PROTEIN DATA BANK

• Molecule 14: Major capsid protein	
Chain k1:	100%
MET 42 169 169 101 1124 124 1234 1234 1234 1234 1234 1234	
\bullet Molecule 14: Major capsid protein	
Chain k2:	99%
• Molecule 14: Major capsid protein	
Chain k3:	99% •
MET MLA ALA G 3 G 1 157 P124 M257 M257 M257 M275 M375 ASN	
• Molecule 14: Major capsid protein	
Chain k4:	100%
MET A2 Y17 C13 E73 E73 F234 N437 N437	
\bullet Molecule 14: Major capsid protein	
Chain k5:	100%
MET 42 849 679 697 697 8104 9124 9125 0125 0126 734 8252 1234 8252 1253	D314 ← Q323 ← Q324 ← A349 ← A349 ← C350 ← C350 ← N376 ← N376 ← N419 ← N427
• Molecule 14: Major capsid protein	
Chain k6:	99%
MET ALA ALA B13 B124 B124 C190 C190 C190 C190 C190 C190 C190 C190	N352
• Molecule 14: Major capsid protein	
Chain k7:	99%

Chain l4:

33%

67%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, I	Depositor
Number of particles used	13000	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	24.4	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	69.604	Depositor
Minimum map value	-56.026	Depositor
Average map value	0.028	Depositor
Map value standard deviation	2.763	Depositor
Recommended contour level	7	Depositor
Map size (Å)	1944.0, 1944.0, 1944.0	wwPDB
Map dimensions	1200, 1200, 1200	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.62, 1.62, 1.62	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	a0	0.82	0/741	0.75	0/1006	
2	a1	0.60	2/734~(0.3%)	0.80	0/1011	
3	a2	0.48	0/667	0.79	0/920	
3	a3	0.30	0/497	0.58	0/688	
4	a4	0.90	2/1124~(0.2%)	0.92	0/1543	
5	a5	0.38	0/1365	0.65	0/1883	
6	a6	0.80	0/1220	0.88	0/1677	
7	a7	0.89	1/559~(0.2%)	1.03	0/771	
8	a8	0.83	0/1014	1.00	0/1402	
9	a9	0.48	0/320	0.74	0/446	
9	b0	0.39	0/408	0.71	0/567	
9	b1	0.46	0/379	0.70	0/526	
9	b2	0.46	0/360	0.68	0/500	
9	b3	0.39	0/345	0.73	0/481	
9	b4	0.41	0/360	0.68	0/500	
9	b5	0.52	0/377	0.76	0/523	
9	b7	0.42	0/386	0.66	0/533	
9	b8	0.41	0/391	0.66	0/543	
9	c0	0.49	0/346	0.65	0/480	
9	c1	0.41	0/344	0.74	0/476	
9	15	0.42	0/404	0.69	0/559	
10	b6	0.37	0/3289	0.65	0/4533	
11	c2	0.44	0/608	0.74	0/838	
11	c3	0.37	0/393	0.78	0/538	
11	c4	0.45	0/374	0.74	0/515	
11	c5	0.45	0/403	0.80	0/550	
12	c6	0.41	0/972	0.66	0/1332	
12	c7	0.50	0/1030	0.84	0/1417	
12	c8	0.33	0/830	0.60	$0/1\overline{133}$	
13	c9	0.89	0/1218	0.90	0/1663	
14	d0	0.96	0/3446	0.88	0/4697	
14	d1	0.94	0/3460	0.87	0/4717	
14	d2	0.97	0/3465	0.87	0/4724	
14	d3	0.98	0/3460	0.89	$0/4\overline{717}$	

Mal	Chain	Bo	ond lengths	ths Bond ang	
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
14	d4	1.00	0/3460	0.89	0/4717
14	d5	1.02	0/3461	0.90	0/4719
14	d6	0.98	0/3465	0.89	0/4724
14	d7	0.92	0/3459	0.89	0/4717
14	d8	1.01	0/3468	0.88	0/4728
14	d9	0.99	0/3473	0.90	0/4735
14	e0	0.98	0/3468	0.89	0/4728
14	e1	0.96	0/3460	0.88	0/4717
14	e2	1.00	0/3460	0.90	0/4717
14	e3	0.95	0/3465	0.89	0/4724
14	e4	0.96	0/3460	0.88	0/4717
14	e5	0.99	0/3468	0.89	0/4728
14	e6	0.97	0/3473	0.89	0/4735
14	e7	0.98	0/3468	0.90	0/4728
14	e8	0.99	0/3468	0.90	0/4728
14	e9	1.01	0/3465	0.89	0/4724
14	f0	0.95	0/3452	0.90	0/4706
14	f1	0.99	0/3465	0.88	0/4724
14	f2	0.97	0/3473	0.88	0/4735
14	f3	1.00	0/3460	0.89	0/4717
14	f4	0.97	0/3460	0.87	0/4717
14	f5	0.98	0/3454	0.88	0/4710
14	f6	0.97	0/3465	0.90	0/4724
14	f7	0.99	0/3449	0.89	0/4702
14	f8	0.97	0/3456	0.89	0/4712
14	f9	0.99	0/3456	0.90	0/4712
14	g0	1.00	0/3465	0.91	0/4724
14	g1	0.96	0/3465	0.88	0/4724
14	g2	1.00	0/3460	0.91	0/4717
14	g3	1.00	0/3460	0.89	0/4717
14	g4	0.96	0/3468	0.87	0/4728
14	g5	0.95	0/3465	0.88	0/4724
14	g6	0.94	0/3465	0.88	0/4724
14	g7	0.98	0/3454	0.90	0/4710
14	g8	0.94	0/3473	0.87	0/4735
14	g9	1.00	0/3468	0.90	0/4728
14	h0	0.95	0/3465	0.89	0/4724
14	h1	0.94	0/3465	0.87	0/4724
14	h2	0.97	0/3460	0.88	0/4717
14	h3	0.98	0/3468	0.89	0/4728
14	h4	0.98	0/3460	0.90	0/4717
14	h5	0.94	0/3460	0.88	0/4717
14	h6	1.00	0/3460	0.89	0/4717

Mal	Chain	Bo	ond lengths	Bond angles	
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
14	h7	0.96	0/3473	0.89	0/4735
14	h8	0.96	0/3465	0.88	0/4724
14	h9	0.96	0/3459	0.88	0/4717
14	i0	1.00	0/3468	0.89	0/4728
14	i1	0.98	0/3460	0.88	0/4717
14	i2	1.01	0/3460	0.89	0/4717
14	i3	0.99	0/3460	0.91	0/4717
14	i4	0.98	0/3462	0.89	0/4721
14	i5	0.98	0/3473	0.88	0/4735
14	i6	0.94	0/3460	0.89	0/4717
14	i7	0.95	0/3460	0.87	0/4717
14	i8	0.96	0/3465	0.87	0/4724
14	i9	0.97	0/3465	0.88	0/4724
14	j0	0.98	0/3470	0.89	0/4731
14	j1	0.95	0/3465	0.87	0/4724
14	j2	1.02	0/3465	0.89	0/4724
14	j3	0.98	0/3465	0.89	0/4724
14	j4	0.99	0/3460	0.89	0/4717
14	j5	1.00	0/3460	0.88	0/4717
14	j6	1.03	0/3460	0.89	0/4717
14	j7	1.00	0/3473	0.89	0/4735
14	j8	0.95	0/3468	0.88	0/4728
14	j9	0.98	0/3465	0.90	0/4724
14	k0	0.97	0/3460	0.89	0/4717
14	k1	0.97	0/3465	0.88	0/4724
14	k2	0.96	0/3465	0.90	0/4724
14	k3	1.01	0/3460	0.90	0/4717
14	k4	1.00	0/3473	0.89	0/4735
14	k5	0.97	0/3473	0.88	0/4735
14	k6	0.97	0/3469	0.89	0/4728
14	k7	0.97	0/3465	0.88	0/4723
14	k8	0.97	0/3469	0.89	0/4728
14	k9	0.99	0/3459	0.88	0/4717
14	10	0.98	0/3469	0.88	0/4728
14	l1	1.01	0/3469	0.90	0/4728
14	12	0.97	0/3460	0.88	0/4717
14	13	0.99	0/3474	0.89	0/4735
15	l4	0.84	0/501	0.82	0/684
All	All	0.96	5/312913~(0.0%)	0.88	0/426903

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(\text{\AA})$	Ideal(Å)
2	a1	197	ASP	C-N	8.48	1.50	1.34
7	a7	120	CYS	CB-SG	7.78	1.95	1.82
2	a1	202	THR	C-N	7.76	1.49	1.34
4	a4	134	CYS	CB-SG	-6.38	1.71	1.82
4	a4	120	CYS	CB-SG	-5.84	1.72	1.81

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	a0	733	0	706	0	0
2	a1	718	0	588	0	0
3	a2	650	0	564	0	0
3	a3	485	0	425	0	0
4	a4	1088	0	874	0	0
5	a5	1326	0	1193	0	0
6	a6	1192	0	1133	0	0
7	a7	543	0	455	0	0
8	a8	988	0	900	0	0
9	a9	311	0	257	0	0
9	b0	398	0	325	0	0
9	b1	368	0	314	0	0
9	b2	350	0	314	0	0
9	b3	335	0	275	0	0
9	b4	350	0	299	0	0
9	b5	367	0	296	0	0
9	b7	375	0	345	0	0
9	b8	379	0	301	0	0
9	c0	338	0	292	0	0
9	c1	335	0	285	0	0
9	15	392	0	325	0	0
10	b6	3210	0	2777	0	0
11	c2	603	0	404	0	0
11	c3	389	0	308	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
11	c4	369	0	262	0	0
11	c5	396	0	327	0	0
12	c6	951	0	834	0	0
12	c7	1004	0	875	0	0
12	c8	813	0	754	0	0
13	c9	1191	0	1134	0	0
14	d0	3369	0	3266	0	0
14	d1	3382	0	3278	0	0
14	d2	3387	0	3283	0	0
14	d3	3382	0	3278	0	0
14	d4	3382	0	3278	0	0
14	d5	3383	0	3279	0	0
14	d6	3387	0	3283	0	0
14	d7	3381	0	3272	0	0
14	d8	3390	0	3284	0	0
14	d9	3395	0	3289	0	0
14	e0	3390	0	3284	0	0
14	e1	3382	0	3278	0	0
14	e2	3382	0	3278	0	0
14	e3	3387	0	3283	0	0
14	e4	3382	0	3278	0	0
14	e5	3390	0	3284	0	0
14	e6	3395	0	3289	0	0
14	e7	3390	0	3284	0	0
14	e8	3390	0	3284	0	0
14	e9	3387	0	3283	0	0
14	fO	3375	0	3271	0	0
14	f1	3387	0	3280	0	0
14	f2	3395	0	3289	0	0
14	f3	3383	0	3277	0	0
14	f4	3382	0	3278	0	0
14	f5	3376	0	3267	0	0
14	f6	3387	0	3283	0	0
14	f7	3372	0	3267	0	0
14	f8	3378	0	3275	0	0
14	f9	3379	0	3274	0	0
14	g0	3387	0	3280	0	0
14	g1	3387	0	3283	0	0
14	<u>g2</u>	3382	0	3278	0	0
14	g3	3382	0	3278		0
14	g4	3390	0	3284	0	0
14	g5	3387	0	3283	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
14	g6	3387	0	3283	0	0
14		3376	0	3267	0	0
14	g8	3395	0	3289	0	0
14	g9	3390	0	3284	0	0
14	h0	3387	0	3283	0	0
14	h1	3387	0	3283	0	0
14	h2	3382	0	3278	0	0
14	h3	3390	0	3284	0	0
14	h4	3382	0	3278	0	0
14	h5	3382	0	3278	0	0
14	h6	3382	0	3278	0	0
14	h7	3395	0	3289	0	0
14	h8	3387	0	3283	0	0
14	h9	3381	0	3272	0	0
14	iO	3390	0	3284	0	0
14	i1	3382	0	3278	0	0
14	i2	3382	0	3278	0	0
14	i3	3382	0	3278	0	0
14	i4	3384	0	3273	0	0
14	i5	3395	0	3289	0	0
14	i6	3382	0	3278	0	0
14	i7	3382	0	3278	0	0
14	i8	3388	0	3282	0	0
14	i9	3387	0	3283	0	0
14	j0	3392	0	3287	0	0
14	j1	3387	0	3283	0	0
14	j2	3387	0	3283	0	0
14	j3	3387	0	3282	0	0
14	j4	3382	0	3278	0	0
14	j5	3382	0	3278	0	0
14	j6	3382	0	3278	0	0
14	j7	3395	0	3289	0	0
14	j8	3390	0	3284	0	0
14	j9	3387	0	3283	0	0
14	k0	3382	0	3278	0	0
14	k1	3387	0	3283	0	0
14	k2	3387	0	3283	0	0
14	k3	3382	0	3278	0	0
14	k4	3395	0	3289	0	0
14	k5	3395	0	3289	0	0
14	k6	3391	0	3284	0	0
14	k7	3387	0	3278	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
14	k8	3391	0	3284	0	0
14	k9	3381	0	3272	0	0
14	10	3391	0	3284	0	0
14	l1	3391	0	3284	0	0
14	12	3382	0	3278	0	0
14	13	3396	0	3289	0	0
15	l4	487	0	428	0	0
All	All	305842	0	294139	0	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10.

There are no clashes within the asymmetric unit.

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	a0	95/352~(27%)	93~(98%)	2(2%)	0	100	100
2	al	105/210~(50%)	85 (81%)	17 (16%)	3 (3%)	3	27
3	a2	92/289~(32%)	76 (83%)	14 (15%)	2(2%)	5	31
3	a3	72/289~(25%)	60 (83%)	12 (17%)	0	100	100
4	a4	149/256~(58%)	130 (87%)	14 (9%)	5(3%)	3	24
5	a5	187/216~(87%)	162 (87%)	24 (13%)	1 (0%)	25	59
6	a6	165/170~(97%)	155 (94%)	9 (6%)	1 (1%)	22	56
7	a7	76/151~(50%)	65~(86%)	7 (9%)	4 (5%)	1	14
8	a8	140/146~(96%)	126 (90%)	12 (9%)	2 (1%)	9	40
9	a9	$4\overline{5/207}~(22\%)$	34(76%)	11 (24%)	0	100	100
9	b0	57/207~(28%)	45 (79%)	10 (18%)	2(4%)	3	24

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
9	b1	52/207~(25%)	43 (83%)	8 (15%)	1 (2%)	6	34
9	b2	49/207~(24%)	39~(80%)	10 (20%)	0	100	100
9	b3	49/207~(24%)	38~(78%)	9~(18%)	2(4%)	2	20
9	b4	50/207~(24%)	40 (80%)	9~(18%)	1 (2%)	6	33
9	b5	55/207~(27%)	36~(66%)	16 (29%)	3 (6%)	1	14
9	b7	50/207~(24%)	45 (90%)	5 (10%)	0	100	100
9	b8	55/207~(27%)	47 (86%)	8 (14%)	0	100	100
9	c0	49/207~(24%)	41 (84%)	6 (12%)	2 (4%)	2	20
9	c1	49/207~(24%)	38 (78%)	7 (14%)	4 (8%)	1	8
9	15	56/207~(27%)	42 (75%)	13 (23%)	1 (2%)	7	35
10	b6	473/576 (82%)	392 (83%)	77 (16%)	4 (1%)	16	51
11	c2	101/181~(56%)	76~(75%)	25~(25%)	0	100	100
11	c3	58/181~(32%)	40 (69%)	17 (29%)	1 (2%)	7	36
11	c4	56/181~(31%)	46 (82%)	8 (14%)	2(4%)	3	22
11	c5	56/181 (31%)	42 (75%)	13 (23%)	1 (2%)	7	35
12	c6	139/171~(81%)	114 (82%)	24 (17%)	1 (1%)	19	53
12	c7	145/171~(85%)	111 (77%)	27 (19%)	7~(5%)	2	17
12	c8	114/171~(67%)	100 (88%)	14 (12%)	0	100	100
13	c9	164/173~(95%)	160~(98%)	2(1%)	2(1%)	11	43
14	d0	428/437~(98%)	419 (98%)	9(2%)	0	100	100
14	d1	432/437~(99%)	422 (98%)	10 (2%)	0	100	100
14	d2	433/437~(99%)	425~(98%)	8 (2%)	0	100	100
14	d3	432/437~(99%)	424~(98%)	7 (2%)	1 (0%)	44	75
14	d4	432/437~(99%)	422 (98%)	10 (2%)	0	100	100
14	d5	433/437~(99%)	425~(98%)	8 (2%)	0	100	100
14	d6	433/437~(99%)	427~(99%)	6 (1%)	0	100	100
14	d7	$\overline{433/437}\ (99\%)$	423 (98%)	10 (2%)	0	100	100
14	d8	$\overline{433/437}\ (99\%)$	424 (98%)	9 (2%)	0	100	100
14	d9	$\overline{434/437}\ (99\%)$	422 (97%)	12 (3%)	0	100	100
14	e0	433/437~(99%)	424 (98%)	8 (2%)	1 (0%)	44	75
14	e1	432/437~(99%)	424 (98%)	8 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
14	e2	432/437~(99%)	419 (97%)	13 (3%)	0	100	100
14	e3	433/437~(99%)	426 (98%)	6 (1%)	1 (0%)	44	75
14	e4	432/437~(99%)	425 (98%)	7 (2%)	0	100	100
14	e5	433/437~(99%)	428 (99%)	5 (1%)	0	100	100
14	e6	434/437~(99%)	424 (98%)	10 (2%)	0	100	100
14	e7	433/437~(99%)	423 (98%)	10 (2%)	0	100	100
14	e8	433/437~(99%)	424 (98%)	9~(2%)	0	100	100
14	e9	433/437~(99%)	423 (98%)	9 (2%)	1 (0%)	44	75
14	fO	432/437~(99%)	424 (98%)	8 (2%)	0	100	100
14	f1	433/437~(99%)	426 (98%)	7 (2%)	0	100	100
14	f2	434/437~(99%)	426 (98%)	7 (2%)	1 (0%)	44	75
14	f3	433/437~(99%)	426 (98%)	7 (2%)	0	100	100
14	f4	432/437~(99%)	425~(98%)	7 (2%)	0	100	100
14	f5	432/437~(99%)	423 (98%)	9(2%)	0	100	100
14	f6	433/437~(99%)	423 (98%)	10 (2%)	0	100	100
14	f7	432/437~(99%)	420 (97%)	12 (3%)	0	100	100
14	f8	431/437~(99%)	421 (98%)	10 (2%)	0	100	100
14	f9	432/437~(99%)	419 (97%)	13 (3%)	0	100	100
14	g0	433/437~(99%)	423 (98%)	10 (2%)	0	100	100
14	g1	433/437~(99%)	424 (98%)	9(2%)	0	100	100
14	g2	432/437~(99%)	423 (98%)	8 (2%)	1 (0%)	44	75
14	g3	432/437~(99%)	421 (98%)	11 (2%)	0	100	100
14	g4	433/437~(99%)	423 (98%)	10 (2%)	0	100	100
14	g5	433/437~(99%)	426 (98%)	6 (1%)	1 (0%)	44	75
14	g6	433/437~(99%)	426 (98%)	7 (2%)	0	100	100
14	g7	432/437~(99%)	422 (98%)	10 (2%)	0	100	100
14	g8	434/437~(99%)	427 (98%)	7 (2%)	0	100	100
14	g9	433/437~(99%)	427 (99%)	6 (1%)	0	100	100
14	h0	433/437~(99%)	429 (99%)	4 (1%)	0	100	100
14	h1	433/437~(99%)	426 (98%)	7 (2%)	0	100	100
14	h2	432/437~(99%)	425 (98%)	7 (2%)	0	100	100
					<u>a</u>		

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
14	h3	433/437~(99%)	423~(98%)	10 (2%)	0	100	100
14	h4	432/437~(99%)	424 (98%)	8 (2%)	0	100	100
14	h5	432/437~(99%)	425~(98%)	7 (2%)	0	100	100
14	h6	432/437~(99%)	424 (98%)	8 (2%)	0	100	100
14	h7	434/437~(99%)	427~(98%)	7 (2%)	0	100	100
14	h8	433/437~(99%)	423~(98%)	10 (2%)	0	100	100
14	h9	433/437~(99%)	426~(98%)	7 (2%)	0	100	100
14	i0	433/437~(99%)	424 (98%)	9 (2%)	0	100	100
14	i1	432/437~(99%)	425 (98%)	7 (2%)	0	100	100
14	i2	432/437~(99%)	424 (98%)	8 (2%)	0	100	100
14	i3	432/437~(99%)	425~(98%)	7 (2%)	0	100	100
14	i4	433/437~(99%)	427 (99%)	6 (1%)	0	100	100
14	i5	434/437~(99%)	428 (99%)	6 (1%)	0	100	100
14	i6	432/437~(99%)	423~(98%)	9 (2%)	0	100	100
14	i7	432/437~(99%)	425 (98%)	7 (2%)	0	100	100
14	i8	434/437~(99%)	421 (97%)	11 (2%)	2~(0%)	25	59
14	i9	433/437~(99%)	425~(98%)	8 (2%)	0	100	100
14	j0	434/437~(99%)	426 (98%)	7 (2%)	1 (0%)	44	75
14	j1	433/437~(99%)	425 (98%)	8 (2%)	0	100	100
14	j2	433/437~(99%)	425 (98%)	8 (2%)	0	100	100
14	j3	433/437~(99%)	421 (97%)	12 (3%)	0	100	100
14	j4	432/437~(99%)	422 (98%)	10 (2%)	0	100	100
14	j5	432/437~(99%)	423 (98%)	9 (2%)	0	100	100
14	j6	432/437~(99%)	423 (98%)	9 (2%)	0	100	100
14	j7	434/437~(99%)	423 (98%)	11 (2%)	0	100	100
14	j8	433/437~(99%)	425~(98%)	8 (2%)	0	100	100
14	j9	433/437~(99%)	424 (98%)	9 (2%)	0	100	100
14	k0	$\overline{432/437}\ (99\%)$	426 (99%)	5 (1%)	1 (0%)	44	75
14	k1	433/437~(99%)	427 (99%)	6 (1%)	0	100	100
14	k2	433/437~(99%)	424 (98%)	8 (2%)	1 (0%)	44	75
14	k3	$432/43\overline{7\ (99\%)}$	422 (98%)	10 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
14	k4	434/437~(99%)	426 (98%)	8 (2%)	0	100	100
14	k5	434/437~(99%)	425~(98%)	9 (2%)	0	100	100
14	k6	433/437~(99%)	426 (98%)	7 (2%)	0	100	100
14	k7	433/437~(99%)	424 (98%)	9 (2%)	0	100	100
14	k8	433/437~(99%)	425 (98%)	8 (2%)	0	100	100
14	k9	433/437~(99%)	424 (98%)	9 (2%)	0	100	100
14	10	433/437~(99%)	424 (98%)	9 (2%)	0	100	100
14	l1	433/437~(99%)	423 (98%)	10 (2%)	0	100	100
14	12	432/437~(99%)	423 (98%)	9 (2%)	0	100	100
14	13	434/437~(99%)	426 (98%)	8 (2%)	0	100	100
15	14	64/98~(65%)	63~(98%)	1 (2%)	0	100	100
All	All	39415/43355~(91%)	38213 (97%)	1138 (3%)	64 (0%)	45	75

All (64) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	a1	203	PRO
3	a2	283	ASN
4	a4	199	TRP
9	b0	198	PRO
9	b1	192	MET
9	b5	175	TYR
9	c1	193	MET
9	c1	198	PRO
11	c4	7	ASP
11	c4	15	ASP
12	c7	71	VAL
12	c7	82	GLU
14	e0	25	THR
14	g5	364	GLN
2	a1	137	ASP
4	a4	142	MET
7	a7	114	LYS
10	b6	172	GLY
10	b6	173	ASP
9	c0	198	PRO
11	c3	22	THR
11	c5	34	ILE

Mol	Chain	Res	Type
14	e3	257	HIS
7	a7	116	ASN
7	a7	121	ASN
9	b3	198	PRO
10	b6	112	GLY
10	b6	171	PRO
9	c1	192	MET
12	c7	69	VAL
13	c9	141	SER
14	d3	399	ASN
4	a4	130	GLU
8	a8	7	ALA
12	c7	101	ARG
13	c9	140	PHE
14	f2	240	THR
14	i8	23	GLN
14	j0	434	ALA
2	a1	130	ALA
3	a2	256	GLN
4	a4	168	TRP
4	a4	251	GLN
5	a5	203	PHE
9	b5	174	ASN
12	c6	162	THR
12	c7	53	LEU
12	c7	150	ALA
14	i8	22	PRO
9	15	140	ASP
6	a6	133	ILE
9	b3	197	ASP
9	b5	204	PRO
9	c0	197	ASP
9	c1	197	ASP
14	g2	257	HIS
14	e9	257	HIS
7	a7	125	VAL
8	a8	36	PRO
9	b4	204	PRO
12	c7	27	PRO
14	k2	257	HIS
9	b0	197	ASP
14	k0	257	HIS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	a0	78/309~(25%)	78~(100%)	0	100	100
2	a1	64/179~(36%)	60~(94%)	4~(6%)	15	42
3	a2	60/249~(24%)	57~(95%)	3(5%)	20	49
3	a3	42/249~(17%)	42 (100%)	0	100	100
4	a4	92/222~(41%)	89~(97%)	3(3%)	33	61
5	a5	119/188~(63%)	117 (98%)	2 (2%)	56	75
6	a6	124/145~(86%)	124 (100%)	0	100	100
7	a7	45/139~(32%)	42 (93%)	3 (7%)	13	40
8	a8	87/125 (70%)	85 (98%)	2 (2%)	45	69
9	a9	25/181 (14%)	25 (100%)	0	100	100
9	b0	34/181~(19%)	31 (91%)	3 (9%)	8	31
9	b1	30/181~(17%)	27 (90%)	3 (10%)	6	26
9	b2	31/181~(17%)	31 (100%)	0	100	100
9	b3	26/181 (14%)	26 (100%)	0	100	100
9	b4	26/181~(14%)	23~(88%)	3(12%)	4	22
9	b5	25/181 (14%)	23~(92%)	2 (8%)	10	34
9	b7	35/181~(19%)	33 (94%)	2 (6%)	17	45
9	b8	28/181 (16%)	27 (96%)	1 (4%)	30	59
9	c0	29/181~(16%)	29 (100%)	0	100	100
9	c1	27/181~(15%)	27 (100%)	0	100	100
9	15	29/181~(16%)	28~(97%)	1 (3%)	32	60
10	b6	264/479~(55%)	256~(97%)	8 (3%)	36	63
11	c2	32/161~(20%)	31 (97%)	1 (3%)	35	63
11	c3	29/161 (18%)	29 (100%)	0	100	100
11	c4	24/161~(15%)	22 (92%)	2 (8%)	9	32
11	c5	31/161~(19%)	31 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
12	c6	78/144~(54%)	77~(99%)	1 (1%)	65	81
12	c7	81/144~(56%)	73~(90%)	8 (10%)	6	27
12	c8	73/144~(51%)	73 (100%)	0	100	100
13	c9	114/148~(77%)	114 (100%)	0	100	100
14	d0	355/358~(99%)	355 (100%)	0	100	100
14	d1	356/358~(99%)	356 (100%)	0	100	100
14	d2	356/358~(99%)	356 (100%)	0	100	100
14	d3	356/358~(99%)	356 (100%)	0	100	100
14	d4	356/358~(99%)	356 (100%)	0	100	100
14	d5	355/358~(99%)	355 (100%)	0	100	100
14	d6	356/358~(99%)	356 (100%)	0	100	100
14	d7	355/358~(99%)	355 (100%)	0	100	100
14	d8	357/358~(100%)	357~(100%)	0	100	100
14	d9	357/358~(100%)	357 (100%)	0	100	100
14	e0	357/358~(100%)	356 (100%)	1 (0%)	91	96
14	e1	356/358~(99%)	356 (100%)	0	100	100
14	e2	356/358~(99%)	356 (100%)	0	100	100
14	e3	356/358~(99%)	356 (100%)	0	100	100
14	e4	356/358~(99%)	356 (100%)	0	100	100
14	e5	357/358~(100%)	357 (100%)	0	100	100
14	e6	357/358~(100%)	356 (100%)	1 (0%)	91	96
14	e7	357/358~(100%)	355~(99%)	2 (1%)	84	91
14	e8	357/358~(100%)	357 (100%)	0	100	100
14	e9	356/358~(99%)	356 (100%)	0	100	100
14	fO	355/358~(99%)	354 (100%)	1 (0%)	91	96
14	f1	356/358~(99%)	356 (100%)	0	100	100
14	f2	357/358~(100%)	356 (100%)	1 (0%)	91	96
14	f3	356/358~(99%)	356 (100%)	0	100	100
14	f4	356/358~(99%)	356 (100%)	0	100	100
14	f5	355/358~(99%)	355 (100%)	0	100	100
14	f6	356/358~(99%)	356 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
14	f7	354/358~(99%)	354 (100%)	0	100	100
14	f8	356/358~(99%)	355~(100%)	1 (0%)	91	96
14	f9	356/358~(99%)	356~(100%)	0	100	100
14	g0	356/358~(99%)	355 (100%)	1 (0%)	91	96
14	g1	356/358~(99%)	356 (100%)	0	100	100
14	g2	356/358~(99%)	356 (100%)	0	100	100
14	g3	356/358~(99%)	355 (100%)	1 (0%)	91	96
14	g4	357/358~(100%)	356 (100%)	1 (0%)	91	96
14	g5	356/358~(99%)	356 (100%)	0	100	100
14	g6	356/358~(99%)	356 (100%)	0	100	100
14	g7	355/358~(99%)	355 (100%)	0	100	100
14	g8	357/358~(100%)	356 (100%)	1 (0%)	91	96
14	g9	357/358~(100%)	357~(100%)	0	100	100
14	h0	356/358~(99%)	356 (100%)	0	100	100
14	h1	356/358~(99%)	356 (100%)	0	100	100
14	h2	356/358~(99%)	356 (100%)	0	100	100
14	h3	357/358~(100%)	356 (100%)	1 (0%)	91	96
14	h4	356/358~(99%)	355 (100%)	1 (0%)	91	96
14	h5	356/358~(99%)	356 (100%)	0	100	100
14	h6	356/358~(99%)	356 (100%)	0	100	100
14	h7	357/358~(100%)	357 (100%)	0	100	100
14	h8	356/358~(99%)	356 (100%)	0	100	100
14	h9	355/358~(99%)	355 (100%)	0	100	100
14	i0	357/358~(100%)	357 (100%)	0	100	100
14	i1	356/358~(99%)	355 (100%)	1 (0%)	91	96
14	i2	356/358~(99%)	356 (100%)	0	100	100
14	i3	356/358~(99%)	356 (100%)	0	100	100
14	i4	356/358~(99%)	356 (100%)	0	100	100
14	i5	357/358~(100%)	357 (100%)	0	100	100
14	i6	356/358~(99%)	355 (100%)	1 (0%)	91	96
14	i7	356/358~(99%)	354 (99%)	2 (1%)	84	91

α \cdot 1	C		
Continued	trom	premous	naae
contentaca	<i>J</i> · <i>O</i> · · · <i>O</i>	proceed ao	pagom

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
14	i8	356/358~(99%)	356~(100%)	0	100	100
14	i9	356/358~(99%)	356 (100%)	0	100	100
14	j0	356/358~(99%)	354~(99%)	2(1%)	84	91
14	j1	356/358~(99%)	356 (100%)	0	100	100
14	j2	356/358~(99%)	355~(100%)	1 (0%)	91	96
14	j3	356/358~(99%)	354~(99%)	2(1%)	84	91
14	j4	356/358~(99%)	355~(100%)	1 (0%)	91	96
14	j5	356/358~(99%)	356~(100%)	0	100	100
14	j6	356/358~(99%)	356~(100%)	0	100	100
14	j7	357/358~(100%)	356 (100%)	1 (0%)	91	96
14	j8	357/358~(100%)	354~(99%)	3(1%)	79	88
14	j9	356/358~(99%)	356~(100%)	0	100	100
14	k0	356/358~(99%)	356~(100%)	0	100	100
14	k1	356/358~(99%)	356 (100%)	0	100	100
14	k2	356/358~(99%)	356 (100%)	0	100	100
14	k3	356/358~(99%)	356 (100%)	0	100	100
14	k4	357/358~(100%)	357 (100%)	0	100	100
14	k5	357/358~(100%)	356 (100%)	1 (0%)	91	96
14	k6	357/358~(100%)	355~(99%)	2(1%)	84	91
14	k7	356/358~(99%)	354~(99%)	2(1%)	84	91
14	k8	357/358~(100%)	356~(100%)	1 (0%)	91	96
14	k9	355/358~(99%)	355 (100%)	0	100	100
14	10	357/358~(100%)	357 (100%)	0	100	100
14	l1	357/358~(100%)	356 (100%)	1 (0%)	91	96
14	12	356/358~(99%)	355 (100%)	1 (0%)	91	96
14	13	357/358~(100%)	357 (100%)	0	100	100
15	l4	42/79~(53%)	42 (100%)	0	100	100
All	All	31742/35831 (89%)	31655 (100%)	87 (0%)	90	96

All (87) residues with a non-rotameric sidechain are listed below:

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mol	Chain	Res	Type
	2	a1	104	CYS

Mol	Chain	Res	Type
2	a1	193	THR
2	a1	201	CYS
2	a1	202	THR
3	a2	198	ASP
3	a2	236	LEU
3	a2	274	THR
4	a4	109	VAL
4	a4	241	THR
4	a4	242	TRP
5	a5	52	THR
5	a5	54	THR
7	a7	110	LEU
7	a7	124	TRP
7	a7	125	VAL
8	a8	139	SER
8	a8	144	TYR
9	b0	188	VAL
9	b0	191	TRP
9	b0	192	MET
9	b1	158	THR
9	b1	160	TRP
9	b1	165	THR
9	b4	158	THR
9	b4	188	VAL
9	b4	191	TRP
9	b5	195	SER
9	b5	196	VAL
10	b6	182	VAL
10	b6	183	ASN
10	b6	244	THR
10	b6	281	LEU
10	b6	298	PRO
10	b6	300	GLU
10	b6	358	THR
10	b6	411	THR
9	b7	188	VAL
9	b7	191	TRP
9	b8	190	PRO
11	c2	70	THR
11	c4	17	HIS
11	c4	22	THR
12	c6	95	THR

Mol	Chain	Res	Type
12	c7	43	THR
12	c7	50	ILE
12	c7	56	MET
12	c7	71	VAL
12	c7	154	THR
12	c7	155	SER
12	c7	162	THR
12	c7	166	LEU
14	e0	430	MET
14	e6	63	ASN
14	e7	399	ASN
14	e7	430	MET
14	fO	399	ASN
14	f2	399	ASN
14	f8	399	ASN
14	g0	252	ARG
14	g3	399	ASN
14	g4	433	LEU
14	g8	399	ASN
14	h3	252	ARG
14	h4	399	ASN
14	i1	430	MET
14	i6	399	ASN
14	i7	399	ASN
14	i7	435	TYR
14	j0	171	HIS
14	j0	433	LEU
14	j2	399	ASN
14	j3	11	TYR
14	j3	399	ASN
14	j4	252	ARG
14	j7	103	GLN
14	j8	399	ASN
14	j8	427	MET
14	j8	430	MET
14	k5	427	MET
14	k6	252	ARG
14	k6	399	ASN
14	k7	399	ASN
14	k7	437	ASN
14	k8	437	ASN
14	l1	399	ASN

 $Continued \ from \ previous \ page...$

Mol	Chain	Res	Type
14	12	399	ASN
9	15	141	PHE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (46) such sidechains are listed below:

Mol	Chain	Res	Type
2	a1	115	ASN
2	a1	153	ASN
2	a1	166	GLN
3	a2	237	ASN
3	a3	224	ASN
5	a5	176	ASN
9	a9	166	GLN
9	b0	148	ASN
9	b0	166	GLN
9	b1	172	ASN
9	b3	164	ASN
9	b3	166	GLN
10	b6	195	GLN
10	b6	215	HIS
10	b6	252	GLN
10	b6	257	ASN
10	b6	315	GLN
10	b6	338	ASN
10	b6	419	ASN
9	b7	199	ASN
11	c3	58	GLN
13	c9	42	HIS
14	d1	43	GLN
14	d1	63	ASN
14	d1	214	GLN
14	d8	256	ASN
14	e0	171	HIS
14	eO	254	ASN
14	e3	257	HIS
14	e6	63	ASN
14	e7	257	HIS
14	e9	14	GLN
14	fO	376	ASN
14	f3	14	GLN
14	f3	169	GLN
14	f5	14	GLN

Mol	Chain	Res	Type
14	f8	23	GLN
14	g1	63	ASN
14	g2	169	GLN
14	h6	323	GLN
14	h7	256	ASN
14	i6	221	GLN
14	i9	63	ASN
14	j7	103	GLN
14	j8	103	GLN
14	12	14	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-0436. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

6.2Central slices (i)

6.2.1Primary map

X Index: 600

Y Index: 600

The images above show central slices of the map in three orthogonal directions.

Largest variance slices (i) 6.3

6.3.1Primary map

X Index: 1020

Y Index: 1050

Z Index: 258

The images above show the largest variance slices of the map in three orthogonal directions.

Orthogonal standard-deviation projections (False-color) (i) 6.4

6.4.1**Primary** map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 7.0. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 132822 $\rm nm^3;$ this corresponds to an approximate mass of 119981 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.286 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-0436 and PDB model 6NCL. Per-residue inclusion information can be found in section 3 on page 15.

9.1 Map-model overlays

9.1.1 Map-model overlay (i)

9.1.2 Map-model assembly overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 7.0 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (7).

9.4 Atom inclusion (i)

At the recommended contour level, 86% of all backbone atoms, 73% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (7) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.7270	0.4260
a0	0.6990	0.3870
al	0.7430	0.4520
a2	0.7520	0.4690
a3	0.7740	0.4660
a4	0.7370	0.4130
a5	0.7560	0.4520
a6	0.7510	0.4230
a7	0.8390	0.4030
a8	0.7430	0.4120
a9	0.8210	0.4770
b0	0.8250	0.4480
b1	0.8670	0.4970
b2	0.8080	0.4730
b3	0.8160	0.4540
b4	0.7330	0.4840
b5	0.7100	0.4780
b6	0.7920	0.4610
b7	0.8240	0.4850
b8	0.8530	0.4860
c0	0.8080	0.4950
c1	0.8390	0.4690
c2	0.8360	0.4500
c3	0.8330	0.4630
c4	0.8590	0.4730
c5	0.8900	0.4560
c6	0.8330	0.4740
c7	0.8100	0.4860
c8	0.7480	0.4550
c9	0.8100	0.4130
d0	0.6890	0.4130
d1	0.6790	0.4230
d2	0.7230	0.4280
d3	0.7370	0.4290
d4	0.7220	0.4340

_

1.0

0.0 <0.0

Chain	Atom inclusion	Q-score
d5	0.7240	0.4390
d6	0.7220	0.4290
d7	0.7260	0.4240
d8	0.7650	0.4330
d9	0.7320	0.4300
e0	0.7020	0.4270
e1	0.7160	0.4160
e2	0.7200	0.4010
e3	0.6440	0.3880
e4	0.7290	0.4290
e5	0.7570	0.4330
e6	0.7520	0.4280
e7	0.7420	0.4230
e8	0.7000	0.4200
e9	0.7400	0.4240
f0	0.7190	0.4230
f1	0.7810	0.4330
f2	0.7220	0.4340
f3	0.7060	0.4300
f4	0.7100	0.4270
f5	0.6930	0.4190
f6	0.6930	0.4060
f7	0.7150	0.4110
f8	0.6520	0.4110
f9	0.7140	0.4270
g0	0.7320	0.4350
g1	0.7290	0.4300
g2	0.7260	0.4330
g3	0.7270	0.4380
g4	0.7200	0.4300
g5	0.7380	0.4290
g6	0.7300	0.4290
g7	0.7310	0.4290
g8	0.7240	0.4250
g9	0.6880	0.4060
h0	0.7060	0.4050
h1	0.6590	0.3970
h2	0.7600	0.4350
h3	0.7410	0.4310
h4	0.7490	0.4300
h5	0.7430	0.4310
h6	0.7420	0.4300

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	trom	nremous	naae
contraca	<i>J</i> · <i>O</i> · · · ·	proceed ac	$P^{\alpha g} \cdots$

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
h7	0.7150	0.4220
h8	0.7340	0.4190
h9	0.7170	0.4160
iO	0.7400	0.4290
i1	0.6980	0.4220
i2	0.7170	0.4390
i3	0.7280	0.4270
i4	0.7010	0.4130
i5	0.6870	0.4080
i6	0.6660	0.4130
i7	0.7020	0.4300
i8	0.7510	0.4310
i9	0.7290	0.4260
jO	0.7350	0.4310
j1	0.7120	0.4310
j2	0.7530	0.4340
j3	0.7640	0.4290
j4	0.7510	0.4290
j5	0.7620	0.4310
j6	0.7470	0.4340
j7	0.6920	0.4140
j8	0.7140	0.4080
j9	0.6600	0.3920
k0	0.7470	0.4270
k1	0.7450	0.4240
k2	0.7370	0.4250
k3	0.7570	0.4220
k4	0.7570	0.4340
k5	0.7000	0.4220
k6	0.7400	0.4210
k7	0.7540	0.4230
	0.7370	0.4300
k9	0.7300	0.4270
10	0.7110	0.4320
<u>l1</u>	0.7230	0.4260
12	0.7320	0.4150
13	0.6990	0.4080
14	0.7500	0.4140
15	0.8090	0.4810

