Full wwPDB/EMDataBank EM Map/Model Validation Report

Oct 9, 2019 – 07:05 PM EDT

PDB ID : 6NIJ
EMDB ID: : EMD-9378
Title : PGT145 Fab in complex with full length AMC011 HIV-1 Env
Authors : Cottrell, C.A.; Torrents de la Pena, A.; Rantalainen, K.; Torres, J.L.; Ward, A.B.
Deposited on : 2018-12-29
Resolution : 5.70 Å(reported)

This is a Full wwPDB/EMDataBank EM Map/Model Validation Report for a publicly released PDB/EMDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
with specific help available everywhere you see the □ symbol.

MolProbity : 4.02b-467
Mogul : 1.8.0 (224370), CSD as540be (2019)
Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et. al. (1996)
Validation Pipeline (wwPDB-VP) : 2.4
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

ELECTRON MICROSCOPY

The reported resolution of this entry is 5.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>EM structures (#Entries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clashscore</td>
<td>136327</td>
<td>1886</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>132723</td>
<td>1663</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>132532</td>
<td>1531</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains. The red, orange, yellow and green segments on the bar indicate the fraction of residues that contain outliers for \(\geq 3, 2, 1 \) and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions \(\leq 5\% \)

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>140</td>
<td>86%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11% .</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>113</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9% .</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>473</td>
<td>87%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7% . 5%</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>473</td>
<td>84%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10% . 6%</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>473</td>
<td>83%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10% . 6%</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>345</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>59%</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>345</td>
<td>34%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>61%</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>345</td>
<td>37%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60%</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 6 unique types of molecules in this entry. The entry contains 15939 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called PGT145 Fab heavy chain.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>140</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1095 685 191 214 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 2 is a protein called PGT145 Fab light chain.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>L</td>
<td>112</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>860 542 153 161 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 3 is a protein called AMC011 Glycoprotein 120.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>449</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3535 2229 618 662 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>445</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3507 2214 612 655 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>444</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3495 2205 612 652 26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 4 is a protein called AMC011 Glycoprotein 41.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>B</td>
<td>140</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1124 714 191 213 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>133</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1067 676 180 205 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>139</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1119 711 190 212 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 5 is N-ACETYL-D-GLUCOSAMINE (three-letter code: NAG) (formula: C₆H₁₅NO₆).
- Molecule 6 is BETA-D-MANNOSE (three-letter code: BMA) (formula: C₆H₁₂O₆).
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>E</td>
<td>1</td>
<td>Total C O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 6 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: PGT145 Fab heavy chain

Chain H:

- Molecule 2: PGT145 Fab light chain

Chain L:

- Molecule 3: AMC011 Glycoprotein 120

Chain A:

- Molecule 3: AMC011 Glycoprotein 120

Chain C:

- Molecule 3: AMC011 Glycoprotein 120

Chain E:
• Molecule 4: AMC011 Glycoprotein 41

Chain B:

- 38%
- 59%

Chain D:

- 34%
- 61%

Chain F:

- 37%
- 60%

• Molecule 4: AMC011 Glycoprotein 41
4 Experimental information

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconstruction method</td>
<td>SINGLE PARTICLE</td>
<td>Depositor</td>
</tr>
<tr>
<td>Imposed symmetry</td>
<td>POINT, C1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Number of particles used</td>
<td>51588</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution determination method</td>
<td>FSC 0.143 CUT-OFF</td>
<td>Depositor</td>
</tr>
<tr>
<td>CTF correction method</td>
<td>PHASE FLIPPING AND AMPLITUDE CORRECTION</td>
<td>Depositor</td>
</tr>
<tr>
<td>Microscope</td>
<td>FEI TALOS ARCTICA</td>
<td>Depositor</td>
</tr>
<tr>
<td>Voltage (kV)</td>
<td>200</td>
<td>Depositor</td>
</tr>
<tr>
<td>Electron dose ((e^-/\text{Å}^2))</td>
<td>50</td>
<td>Depositor</td>
</tr>
<tr>
<td>Minimum defocus (nm)</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Maximum defocus (nm)</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Magnification</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Image detector</td>
<td>GATAN K2 SUMMIT (4k x 4k)</td>
<td>Depositor</td>
</tr>
</tbody>
</table>
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: BMA, NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles					
RMSZ	#	$	Z	> 2$	RMSZ	#	$	Z	> 2$
1	H	1.17	5/1122 (0.4%)	1.11	12/1519 (0.8%)				
2	L	1.06	4/883 (0.5%)	1.03	2/1199 (0.2%)				
3	A	0.98	6/3609 (0.2%)	0.95	5/4899 (0.1%)				
3	C	0.97	7/3581 (0.2%)	1.08	10/4860 (0.2%)				
3	E	0.96	2/3567 (0.1%)	0.99	11/4839 (0.2%)				
4	B	1.00	1/1143 (0.1%)	0.89	1/1551 (0.1%)				
4	D	1.04	4/1086 (0.4%)	0.90	2/1474 (0.1%)				
4	F	1.07	2/1138 (0.2%)	0.95	4/1544 (0.3%)				
All	All	1.00	31/16129 (0.2%)	1.00	47/21885 (0.2%)				

All (31) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>L</td>
<td>93</td>
<td>CYS</td>
<td>CB-SG</td>
<td>-9.51</td>
<td>1.66</td>
<td>1.82</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>37</td>
<td>VAL</td>
<td>CB-CG1</td>
<td>-9.47</td>
<td>1.32</td>
<td>1.52</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>631</td>
<td>TRP</td>
<td>CB-CG</td>
<td>-7.60</td>
<td>1.36</td>
<td>1.50</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>628</td>
<td>TRP</td>
<td>CB-CG</td>
<td>-7.48</td>
<td>1.36</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>74</td>
<td>CYS</td>
<td>CB-SG</td>
<td>-7.31</td>
<td>1.69</td>
<td>1.82</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>108</td>
<td>TRP</td>
<td>CB-CG</td>
<td>7.21</td>
<td>1.63</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>239</td>
<td>CYS</td>
<td>CB-SG</td>
<td>-6.37</td>
<td>1.71</td>
<td>1.82</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>103</td>
<td>PHE</td>
<td>CB-CG</td>
<td>-6.21</td>
<td>1.40</td>
<td>1.51</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>84</td>
<td>VAL</td>
<td>CB-CG1</td>
<td>-5.99</td>
<td>1.40</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>100(P)</td>
<td>TRP</td>
<td>CB-CG</td>
<td>-5.93</td>
<td>1.39</td>
<td>1.50</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>631</td>
<td>TRP</td>
<td>CB-CG</td>
<td>-5.90</td>
<td>1.39</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>36</td>
<td>VAL</td>
<td>CB-CG2</td>
<td>-5.81</td>
<td>1.40</td>
<td>1.52</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>457</td>
<td>ASP</td>
<td>CB-CG</td>
<td>5.77</td>
<td>1.63</td>
<td>1.51</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>381</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>-5.70</td>
<td>1.19</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>370</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>-5.54</td>
<td>1.19</td>
<td>1.25</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>76</td>
<td>PHE</td>
<td>CB-CG</td>
<td>-5.54</td>
<td>1.42</td>
<td>1.51</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>191</td>
<td>TYR</td>
<td>CB-CG</td>
<td>-5.52</td>
<td>1.43</td>
<td>1.51</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>91</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>-5.46</td>
<td>1.19</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>69</td>
<td>TRP</td>
<td>CB-CG</td>
<td>-5.40</td>
<td>1.40</td>
<td>1.50</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>632</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>-5.38</td>
<td>1.19</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>35</td>
<td>TRP</td>
<td>CG-CD1</td>
<td>-5.27</td>
<td>1.29</td>
<td>1.36</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>36</td>
<td>TRP</td>
<td>CZ3-CH2</td>
<td>-5.26</td>
<td>1.31</td>
<td>1.40</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>632</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>-5.19</td>
<td>1.20</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>172</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>-5.15</td>
<td>1.20</td>
<td>1.25</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>628</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>-5.12</td>
<td>1.35</td>
<td>1.41</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>100(M)</td>
<td>TYR</td>
<td>CD1-CE1</td>
<td>-5.08</td>
<td>1.31</td>
<td>1.39</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>153</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>-5.06</td>
<td>1.73</td>
<td>1.81</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>35</td>
<td>TRP</td>
<td>CG-CD1</td>
<td>-5.27</td>
<td>1.29</td>
<td>1.36</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>64</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-10.67</td>
<td>114.97</td>
<td>120.30</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>440</td>
<td>LYS</td>
<td>O-C-N</td>
<td>-17.35</td>
<td>116.20</td>
<td>120.00</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>64</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-10.13</td>
<td>115.24</td>
<td>120.30</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>23</td>
<td>CYS</td>
<td>CB-SG</td>
<td>-8.93</td>
<td>124.76</td>
<td>120.30</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>89</td>
<td>VAL</td>
<td>CB-CG2</td>
<td>-5.05</td>
<td>1.42</td>
<td>1.52</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>75</td>
<td>VAL</td>
<td>CB-CG2</td>
<td>-5.02</td>
<td>1.42</td>
<td>1.52</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>657</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>-5.01</td>
<td>1.20</td>
<td>1.25</td>
</tr>
</tbody>
</table>

All (47) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>440</td>
<td>LYS</td>
<td>O-C-N</td>
<td>22.83</td>
<td>162.01</td>
<td>123.20</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>440</td>
<td>LYS</td>
<td>CA-C-O</td>
<td>-18.81</td>
<td>80.59</td>
<td>120.10</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>440</td>
<td>LYS</td>
<td>CA-C-N</td>
<td>-17.35</td>
<td>81.50</td>
<td>116.20</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>64</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-10.67</td>
<td>114.97</td>
<td>120.30</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>480</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-10.13</td>
<td>115.24</td>
<td>120.30</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>59</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>8.93</td>
<td>124.76</td>
<td>120.30</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>557</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>8.44</td>
<td>124.52</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>100(M)</td>
<td>TYR</td>
<td>CB-CG-CD1</td>
<td>-8.30</td>
<td>116.02</td>
<td>121.00</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>273</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.75</td>
<td>116.42</td>
<td>120.30</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>633</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.45</td>
<td>116.57</td>
<td>120.30</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>298</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.27</td>
<td>116.67</td>
<td>120.30</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>191</td>
<td>TYR</td>
<td>CB-CG-CD2</td>
<td>-7.19</td>
<td>116.69</td>
<td>121.00</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>273</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.08</td>
<td>116.76</td>
<td>120.30</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>476</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.92</td>
<td>116.84</td>
<td>120.30</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>475</td>
<td>MET</td>
<td>CG-SD-CE</td>
<td>6.78</td>
<td>111.05</td>
<td>100.20</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>579</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.62</td>
<td>116.99</td>
<td>120.30</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>504</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.58</td>
<td>123.59</td>
<td>120.30</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>636</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>6.56</td>
<td>124.20</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>64</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.33</td>
<td>123.46</td>
<td>120.30</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>480</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.30</td>
<td>123.45</td>
<td>120.30</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>579</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.20</td>
<td>123.40</td>
<td>120.30</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>39</td>
<td>TYR</td>
<td>CB-CG-CD2</td>
<td>-6.18</td>
<td>117.29</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>37</td>
<td>VAL</td>
<td>CB-CA-C</td>
<td>-6.13</td>
<td>99.76</td>
<td>111.40</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>318</td>
<td>TYR</td>
<td>CB-CG-CD2</td>
<td>-5.99</td>
<td>117.41</td>
<td>121.00</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>42</td>
<td>VAL</td>
<td>N-CA-C</td>
<td>-5.99</td>
<td>94.84</td>
<td>111.00</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>1095</td>
<td>0</td>
<td>1033</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>860</td>
<td>0</td>
<td>841</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>3535</td>
<td>0</td>
<td>3500</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>3507</td>
<td>0</td>
<td>3475</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>3495</td>
<td>0</td>
<td>3468</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1124</td>
<td>0</td>
<td>1114</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>1067</td>
<td>0</td>
<td>1044</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>F</td>
<td>1119</td>
<td>0</td>
<td>1109</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>42</td>
<td>0</td>
<td>38</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>42</td>
<td>0</td>
<td>39</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>42</td>
<td>0</td>
<td>37</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>E</td>
<td>11</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>15939</td>
<td>0</td>
<td>15707</td>
<td>104</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All (104) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:D:605:THR:CG2</td>
<td>3:E:37:THR:CG2</td>
<td>2.30</td>
<td>1.08</td>
</tr>
<tr>
<td>4:D:605:THR:HG22</td>
<td>3:E:37:THR:HG22</td>
<td>1.03</td>
<td>0.99</td>
</tr>
<tr>
<td>4:F:540:GLN:HE22</td>
<td>4:F:543:LEU:CD1</td>
<td>1.71</td>
<td>0.96</td>
</tr>
<tr>
<td>4:F:522:PHE:CD2</td>
<td>4:F:543:LEU:CD2</td>
<td>2.03</td>
<td>0.93</td>
</tr>
<tr>
<td>4:F:540:GLN:NE2</td>
<td>4:F:543:LEU:CD2</td>
<td>2.08</td>
<td>0.86</td>
</tr>
<tr>
<td>4:F:522:PHE:CD2</td>
<td>4:F:543:LEU:CD2</td>
<td>1.70</td>
<td>0.64</td>
</tr>
<tr>
<td>3:A:35:TRP:CD2</td>
<td>4:B:605:THR:HG23</td>
<td>2.40</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:A:35:TRP:CE3</td>
<td>4:B:605:THR:HG23</td>
<td>2.40</td>
<td>0.56</td>
</tr>
<tr>
<td>1:H:100(A):ARG:HB3</td>
<td>1:H:100(P):TRP:HB3</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>3:E:231:LYS:NZ</td>
<td>3:E:267:GLU:OE1</td>
<td>2.41</td>
<td>0.53</td>
</tr>
<tr>
<td>3:E:289:ASN:OD1</td>
<td>3:E:289:ASN:N</td>
<td>2.40</td>
<td>0.52</td>
</tr>
<tr>
<td>3:C:123:THR:N</td>
<td>3:C:124:PRO:HD2</td>
<td>2.25</td>
<td>0.52</td>
</tr>
<tr>
<td>4:B:519:PHE:CD2</td>
<td>4:B:543:LEU:HD21</td>
<td>2.45</td>
<td>0.51</td>
</tr>
<tr>
<td>4:D:553:ASN:O</td>
<td>4:D:554:ASN:C</td>
<td>2.48</td>
<td>0.51</td>
</tr>
<tr>
<td>3:C:197:ASN:N</td>
<td>3:C:197:ASN:OD1</td>
<td>2.43</td>
<td>0.51</td>
</tr>
<tr>
<td>4:D:546:SER:OG</td>
<td>4:D:547:GLY:N</td>
<td>2.43</td>
<td>0.50</td>
</tr>
<tr>
<td>3:C:163:THR:OG1</td>
<td>3:C:164:SER:N</td>
<td>2.43</td>
<td>0.49</td>
</tr>
<tr>
<td>3:E:474:ASP:OD1</td>
<td>3:E:475:MET:N</td>
<td>2.45</td>
<td>0.49</td>
</tr>
<tr>
<td>3:E:225:ILE:HB</td>
<td>3:E:245:VAL:HB</td>
<td>1.94</td>
<td>0.48</td>
</tr>
<tr>
<td>3:E:56:SER:OG</td>
<td>3:E:57:ASP:N</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>3:E:303:THR:OG1</td>
<td>3:E:304:ARG:N</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>1:H:16:SER:OG</td>
<td>1:H:17:SER:N</td>
<td>2.47</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:199:SER:OG</td>
<td>3:C:200:VAL:N</td>
<td>2.47</td>
<td>0.47</td>
</tr>
<tr>
<td>2:L:112:LYS:NZ</td>
<td>2:L:113:ARG:OXT</td>
<td>2.40</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:370:GLU:OE2</td>
<td>3:C:421:LYS:NZ</td>
<td>2.47</td>
<td>0.47</td>
</tr>
<tr>
<td>4:B:622:ILE:O</td>
<td>4:B:626:MET:N</td>
<td>2.47</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:62:ASP:O</td>
<td>3:C:66:HIS:CD2</td>
<td>2.68</td>
<td>0.47</td>
</tr>
<tr>
<td>3:E:257:THR:OG1</td>
<td>3:E:258:GLN:N</td>
<td>2.46</td>
<td>0.47</td>
</tr>
<tr>
<td>3:E:66:HIS:NE2</td>
<td>3:E:207:LYS:HE2</td>
<td>2.30</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:198:THR:HB</td>
<td>5:C:603:NAG:H82</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>3:E:95:MET:HB3</td>
<td>3:E:484:TYR:CD2</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>3:A:77:THR:OG1</td>
<td>3:A:78:ASP:N</td>
<td>2.47</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:77:THR:OG1</td>
<td>3:C:78:ASP:N</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:160:ASN:OD1</td>
<td>3:C:160:ASN:N</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:162:THR:OG1</td>
<td>3:C:163:THR:N</td>
<td>2.47</td>
<td>0.46</td>
</tr>
<tr>
<td>4:D:614:TRP:CG</td>
<td>4:D:615:SER:N</td>
<td>2.85</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:B:557:ARG:O</td>
<td>4:B:558:ALA:C</td>
<td>2.53</td>
<td>0.45</td>
</tr>
<tr>
<td>4:D:611:ASN:N</td>
<td>4:D:611:ASN:OD1</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>3:E:258:GLN:NE2</td>
<td>3:E:372:VAL:O</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:358:THR:OG1</td>
<td>3:C:464(A):ASN:O</td>
<td>2.34</td>
<td>0.44</td>
</tr>
<tr>
<td>3:E:77:THR:OG1</td>
<td>3:E:78:ASP:N</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:229:ASN:ND2</td>
<td>3:C:243:SER:OG</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>3:E:123:THR:N</td>
<td>3:E:124:PRO:HD2</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:62:ASP:OD1</td>
<td>3:C:62:ASP:N</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:100(J):GLY:N</td>
<td>1:H:100(K):PRO:CD</td>
<td>2.81</td>
<td>0.43</td>
</tr>
<tr>
<td>3:A:362:ASN:HB3</td>
<td>3:A:467:ILE:HG23</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>3:E:480:ARG:HB3</td>
<td>3:E:484:TYR:CE2</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>2:L:40:TRP:HE1</td>
<td>2:L:91:TYR:HB3</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:280:ASN:N</td>
<td>3:C:280:ASN:OD1</td>
<td>2.47</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:603:ILE:HB</td>
<td>3:E:39:TYR:CZ</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:393:SER:OG</td>
<td>3:C:394:THR:N</td>
<td>2.53</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:524:GLY:H</td>
<td>3:E:86:LEU:HD23</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:319:THR:OG1</td>
<td>3:C:320:THR:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>3:E:86:LEU:HB3</td>
<td>3:E:89:VAL:HB</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:H:93:LEU:HD12</td>
<td>1:H:106:ASP:HB3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>3:A:123:THR:N</td>
<td>3:A:124:PRO:CD</td>
<td>2.84</td>
<td>0.41</td>
</tr>
<tr>
<td>4:F:552:GLN:OE1</td>
<td>4:F:552:GLN:N</td>
<td>2.48</td>
<td>0.41</td>
</tr>
<tr>
<td>3:E:50:THR:OG1</td>
<td>3:E:51:THR:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>3:E:218:CYS:HB3</td>
<td>3:E:247:CYS:HA</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:358:THR:HG1</td>
<td>3:C:359:ILE:H</td>
<td>1.67</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:164:SER:O</td>
<td>3:C:165:MET:CB</td>
<td>2.69</td>
<td>0.40</td>
</tr>
<tr>
<td>3:A:211:GLU:HA</td>
<td>3:A:212:PRO:HD3</td>
<td>1.96</td>
<td>0.40</td>
</tr>
<tr>
<td>3:A:469:ARG:HB2</td>
<td>3:A:470:PRO:HD2</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>3:C:257:THR:OG1</td>
<td>3:C:258:GLN:N</td>
<td>2.46</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.
5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>138/140 (99%)</td>
<td>134 (97%)</td>
<td>4 (3%)</td>
<td>0</td>
<td>100/100</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>110/113 (97%)</td>
<td>102 (93%)</td>
<td>7 (6%)</td>
<td>1 (1%)</td>
<td>19/61</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>443/473 (94%)</td>
<td>419 (95%)</td>
<td>18 (4%)</td>
<td>6 (1%)</td>
<td>12/52</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>439/473 (93%)</td>
<td>413 (94%)</td>
<td>19 (4%)</td>
<td>7 (2%)</td>
<td>11/49</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>436/473 (92%)</td>
<td>415 (95%)</td>
<td>18 (4%)</td>
<td>3 (1%)</td>
<td>24/67</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>136/345 (39%)</td>
<td>133 (98%)</td>
<td>3 (2%)</td>
<td>0</td>
<td>100/100</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>129/345 (37%)</td>
<td>122 (95%)</td>
<td>6 (5%)</td>
<td>1 (1%)</td>
<td>21/65</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>135/345 (39%)</td>
<td>130 (96%)</td>
<td>5 (4%)</td>
<td>0</td>
<td>100/100</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1966/2707 (73%)</td>
<td>1868 (95%)</td>
<td>80 (4%)</td>
<td>18 (1%)</td>
<td>24/61</td>
</tr>
</tbody>
</table>

All (18) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>L</td>
<td>100</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>37</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>501</td>
<td>ALA</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>163</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>165</td>
<td>MET</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>98</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>305</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>205</td>
<td>CYS</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>72</td>
<td>HIS</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>361</td>
<td>PHE</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>230</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>429</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>84</td>
<td>VAL</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>302</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>51</td>
<td>THR</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>548</td>
<td>ILE</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>181</td>
<td>VAL</td>
</tr>
</tbody>
</table>

Continued on next page...
5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>115/115 (100%)</td>
<td>114 (99%)</td>
<td>1 (1%)</td>
<td>81 90</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>95/96 (99%)</td>
<td>95 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>400/420 (95%)</td>
<td>397 (99%)</td>
<td>3 (1%)</td>
<td>83 92</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>397/420 (94%)</td>
<td>395 (100%)</td>
<td>2 (0%)</td>
<td>90 94</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>396/420 (94%)</td>
<td>393 (99%)</td>
<td>3 (1%)</td>
<td>83 92</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>122/298 (41%)</td>
<td>122 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>116/298 (39%)</td>
<td>116 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>122/298 (41%)</td>
<td>122 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1763/2365 (74%)</td>
<td>1754 (100%)</td>
<td>9 (0%)</td>
<td>90 94</td>
</tr>
</tbody>
</table>

All (9) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>48</td>
<td>MET</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>160</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>298</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>434</td>
<td>MET</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>160</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>426</td>
<td>MET</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>298</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>456</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>469</td>
<td>ARG</td>
</tr>
</tbody>
</table>

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (4) such sidechains are listed below:
5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

10 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>A</td>
<td>601</td>
<td>3,5</td>
<td>14,14,15</td>
<td>2.19</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>A</td>
<td>602</td>
<td>5</td>
<td>14,14,15</td>
<td>2.14</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>A</td>
<td>603</td>
<td>3</td>
<td>14,14,15</td>
<td>2.12</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>C</td>
<td>601</td>
<td>3</td>
<td>14,14,15</td>
<td>2.11</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>C</td>
<td>602</td>
<td>3</td>
<td>14,14,15</td>
<td>2.13</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>C</td>
<td>603</td>
<td>3</td>
<td>14,14,15</td>
<td>2.17</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>E</td>
<td>601</td>
<td>3,5</td>
<td>14,14,15</td>
<td>2.11</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>E</td>
<td>602</td>
<td>5,6</td>
<td>14,14,15</td>
<td>2.13</td>
</tr>
<tr>
<td>6</td>
<td>BMA</td>
<td>E</td>
<td>603</td>
<td>5</td>
<td>11,11,12</td>
<td>1.76</td>
</tr>
</tbody>
</table>
In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NAG</td>
<td>A</td>
<td>601</td>
<td>3,5</td>
<td>-</td>
<td>2/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>A</td>
<td>602</td>
<td>5</td>
<td>-</td>
<td>1/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>C</td>
<td>601</td>
<td>3</td>
<td>-</td>
<td>1/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>C</td>
<td>602</td>
<td>3</td>
<td>-</td>
<td>1/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>C</td>
<td>603</td>
<td>3</td>
<td>-</td>
<td>1/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>E</td>
<td>601</td>
<td>3,5</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>E</td>
<td>602</td>
<td>5,6</td>
<td>-</td>
<td>1/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>6</td>
<td>BMA</td>
<td>E</td>
<td>603</td>
<td>5</td>
<td>-</td>
<td>1/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>E</td>
<td>604</td>
<td>3</td>
<td>-</td>
<td>2/6/23/26</td>
<td>0/1/1/1</td>
</tr>
</tbody>
</table>

All (19) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>A</td>
<td>601</td>
<td>NAG</td>
<td>O5-C1</td>
<td>7.25</td>
<td>1.55</td>
<td>1.43</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>602</td>
<td>NAG</td>
<td>O5-C1</td>
<td>7.20</td>
<td>1.55</td>
<td>1.43</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>602</td>
<td>NAG</td>
<td>O5-C1</td>
<td>7.18</td>
<td>1.55</td>
<td>1.43</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>603</td>
<td>NAG</td>
<td>O5-C1</td>
<td>7.10</td>
<td>1.55</td>
<td>1.43</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>604</td>
<td>NAG</td>
<td>O5-C1</td>
<td>7.08</td>
<td>1.55</td>
<td>1.43</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>603</td>
<td>NAG</td>
<td>O5-C1</td>
<td>7.05</td>
<td>1.55</td>
<td>1.43</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>601</td>
<td>NAG</td>
<td>O5-C1</td>
<td>6.87</td>
<td>1.54</td>
<td>1.43</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>601</td>
<td>NAG</td>
<td>O5-C1</td>
<td>6.80</td>
<td>1.54</td>
<td>1.43</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>602</td>
<td>NAG</td>
<td>O5-C1</td>
<td>6.73</td>
<td>1.54</td>
<td>1.43</td>
</tr>
<tr>
<td>6</td>
<td>E</td>
<td>603</td>
<td>BMA</td>
<td>O2-C2</td>
<td>-4.07</td>
<td>1.34</td>
<td>1.43</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>601</td>
<td>NAG</td>
<td>C3-C2</td>
<td>-2.44</td>
<td>1.47</td>
<td>1.52</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>602</td>
<td>NAG</td>
<td>C4-C3</td>
<td>2.28</td>
<td>1.58</td>
<td>1.52</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>601</td>
<td>NAG</td>
<td>C3-C2</td>
<td>-2.27</td>
<td>1.47</td>
<td>1.52</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>604</td>
<td>NAG</td>
<td>C3-C2</td>
<td>-2.19</td>
<td>1.47</td>
<td>1.52</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>603</td>
<td>NAG</td>
<td>C3-C2</td>
<td>-2.13</td>
<td>1.47</td>
<td>1.52</td>
</tr>
<tr>
<td>6</td>
<td>E</td>
<td>603</td>
<td>BMA</td>
<td>C2-C3</td>
<td>-2.12</td>
<td>1.49</td>
<td>1.52</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>603</td>
<td>NAG</td>
<td>C3-C2</td>
<td>-2.11</td>
<td>1.47</td>
<td>1.52</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>601</td>
<td>NAG</td>
<td>C4-C3</td>
<td>2.07</td>
<td>1.57</td>
<td>1.52</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>601</td>
<td>NAG</td>
<td>C4-C3</td>
<td>2.01</td>
<td>1.57</td>
<td>1.52</td>
</tr>
</tbody>
</table>
All (7) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>C</td>
<td>601</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>-3.21</td>
<td>107.84</td>
<td>112.20</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>603</td>
<td>NAG</td>
<td>C8-C7-N2</td>
<td>2.84</td>
<td>121.00</td>
<td>116.10</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>601</td>
<td>NAG</td>
<td>C4-C3-C2</td>
<td>-2.64</td>
<td>107.15</td>
<td>111.02</td>
</tr>
<tr>
<td>6</td>
<td>E</td>
<td>603</td>
<td>NAG</td>
<td>C2-C3-C4</td>
<td>-2.41</td>
<td>106.71</td>
<td>110.89</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>603</td>
<td>NAG</td>
<td>C4-C3-C2</td>
<td>-2.36</td>
<td>107.55</td>
<td>111.02</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>604</td>
<td>NAG</td>
<td>C4-C3-C2</td>
<td>-2.34</td>
<td>107.59</td>
<td>111.02</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>601</td>
<td>NAG</td>
<td>C3-C4-C5</td>
<td>-2.19</td>
<td>106.30</td>
<td>110.23</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

All (14) torsion outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>E</td>
<td>604</td>
<td>NAG</td>
<td>O5-C5-C6-O6</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>603</td>
<td>NAG</td>
<td>O5-C5-C6-O6</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>603</td>
<td>NAG</td>
<td>C8-C7-N2-C2</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>603</td>
<td>NAG</td>
<td>O7-C7-N2-C2</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>603</td>
<td>NAG</td>
<td>O5-C5-C6-O6</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>602</td>
<td>NAG</td>
<td>O5-C5-C6-O6</td>
</tr>
<tr>
<td>6</td>
<td>E</td>
<td>603</td>
<td>BMA</td>
<td>O5-C5-C6-O6</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>601</td>
<td>NAG</td>
<td>O5-C5-C6-O6</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>602</td>
<td>NAG</td>
<td>O5-C5-C6-O6</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>601</td>
<td>NAG</td>
<td>O5-C5-C6-O6</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>602</td>
<td>NAG</td>
<td>O5-C5-C6-O6</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>604</td>
<td>NAG</td>
<td>C4-C5-C6-O6</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>601</td>
<td>NAG</td>
<td>C4-C5-C6-O6</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>603</td>
<td>NAG</td>
<td>C4-C5-C6-O6</td>
</tr>
</tbody>
</table>

There are no ring outliers.

1 monomer is involved in 1 short contact:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>C</td>
<td>603</td>
<td>NAG</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

5.7 Other polymers

There are no such residues in this entry.
5.8 Polymer linkage issues

There are no chain breaks in this entry.