

wwPDB EM Validation Summary Report (i)

Mar 10, 2022 - 04:09 pm GMT

PDB ID : 700X EMDB ID : EMD-12682 Title : Cryo-EM structure (model 2b) of the RC-dLH complex from Gemmatimonas phototrophica at 2.44 A Authors : Qian, P.; Koblizek, M. 2021-03-28 Deposited on : 2.44 Å(reported) Resolution : Based on initial models 6ET5, 5Y5S, 1LGH :

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	$0.0.0.{ m dev}97$
Mogul	:	1.8.4, CSD as 541 be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.27

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.44 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Percentile Ranks	Value			
Ramachandran outliers		0.0%			
Sidechain outliers		0.4%			
Wor:	Worse				
Per	entile relative to all structures				
Per	entile relative to all EM structures				
Motric	Whole archive	EM structures			
Meth	(HEntrica)	(//Entring)			

Metric	(# Entries)	(# Entries)
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	AA	54	89%	• 9%
1	AB	54	89%	• 9%
1	AC	54	87%	• 11%
1	AD	54	87%	• 11%
1	AE	54	89%	• 9%
1	AF	54	89%	• 9%
1	AG	54	89%	• 9%
1	AH	54	89%	• 9%
1	AI	54	89%	• 9%

Mol	Chain	Length	Quality of chain	
1	AJ	54	89%	• 9%
1	AK	54	89%	• 9%
1	AL	54	89%	• 9%
1	AM	54	89%	• 9%
1	AN	54	89%	• 9%
1	AO	54	91%	9%
1	AP	54	89%	• 9%
1	AQ	54	89%	. 9%
1	AR	54	80%	9%
1		5/	00%	00/
1		54	09%	• 9%
1	AI	54	91%	9%
1	AU	54	91%	9%
1	AV	54	89%	• 9%
1	AW	54	91%	9%
1	AX	54	91%	9%
2	ВА	44	89%	11%
2	BB	44	91%	9%
2	BC	44	89%	11%
2	BD	44	91%	9%
2	BE	44	91%	9%
2	BF	44	89%	11%
2	BG	44	89%	11%
2	BH	44	86%	11%
2	BI	44	91%	9%
2	BJ	44	89%	11%

Mol	Chain	Length	Quality of chain	
2	BK	44	86%	• 11%
2	BL	44	89%	11%
2	BM	44	89%	11%
2	BN	44	89%	11%
2	BO	44	89%	11%
2	BP	44	89%	11%
2	BQ	44	91%	9%
2	BR	44	91%	9%
2	BS	44	91%	9%
2	BT	44	91%	9%
2	BU	44	89%	11%
2	BV	44	91%	9%
2	BW	44	91%	9%
2	BX	44	89%	11%
2	ba	44	86%	• 11%
2	bb	44	7%	11%
2	bc	44	5%	11%
2	bd	44	89%	11%
2	be	44	89%	11%
2	bf	44	89%	11%
2	bg	44	89%	11%
2	bh	44	89%	11%
2	bi	44	89%	11%
2	bi	44	5%	11%
2	bk	44	► 89%	11%

Chain Length Quality of chain Mol <u>.</u> 2 \mathbf{bl} 44 89% 11% 2bm4489% 11% 5% 2bn44 91% 9% 2bo 4486% 11% . 2bp 4489% 11% \mathbf{C} 3 35483% 16% C12024 51% 49% C2512579% 21% H167 6 90% 7% • i •• H27 181 98% 8 L 27498% • 5% 3679 М 90% 9% . 7% 10 71aa 76% 23% • i 11 ab 7180% 18% • 11 71ac 79% 21% ÷ 7111 ad 82% 15% 7111 ae 79% 18% . 11 af 7180% 18% • ÷ 11 71ag 82% 18% 6% 11 $^{\mathrm{ah}}$ 7183% 15% • 6% 11 ai7182% • 15% 6% 7111 aj 83% 15% i 7111 $\mathbf{a}\mathbf{k}$ 97% . ÷ 7111 al83% 15% • 6% 11 71 am 85% 15%

Continued from previous page...

Mol	Chain	Length	Quality of chain	
11		P 1	14%	
	an	71	99% •	
			6%	
11	ao	71	83% · 15%	
			6%	
11	ap	71	97% •	
12	CG	2	100%	
12	MG	2	100%	

2 Entry composition (i)

There are 28 unique types of molecules in this entry. The entry contains 56446 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
1	Δ.Δ.	40	Total	С	Ν	Ο	S	0	0
1	AA	49	391	261	65	61	4	0	0
1	٨D	40	Total	С	Ν	Ο	S	0	0
	AB	49	391	261	65	61	4	0	0
1		18	Total	С	Ν	Ο	S	0	0
	AC	40	384	256	64	60	4	0	0
1		48	Total	С	Ν	Ο	S	0	0
	AD	40	384	256	64	60	4	0	0
1	٨F	40	Total	С	Ν	Ο	\mathbf{S}	0	0
1	AĽ	49	391	261	65	61	4	0	0
1	ΔF	/19	Total	С	Ν	Ο	\mathbf{S}	0	0
L		43	391	261	65	61	4	0	0
1	AG	/19	Total	С	Ν	Ο	\mathbf{S}	0	0
	10	45	391	261	65	61	4	0	0
1	AН	49	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
-		10	391	261	65	61	4		
1	AT	49	Total	С	Ν	Ο	\mathbf{S}	0	0
	111	10	391	261	65	61	4	0	0
1	AJ	49	Total	С	Ν	Ο	\mathbf{S}	0	0
-		10	391	261	65	61	4	Ŭ	0
1	AK	49	Total	С	Ν	Ο	\mathbf{S}	0	0
		10	391	261	65	61	4	Ŭ	•
1	AL	49	Total	С	Ν	Ο	\mathbf{S}	0	0
		10	391	261	65	61	4	Ŭ	
1	АМ	49	Total	С	Ν	0	S	0	0
			391	261	65	61	4		
1	AN	49	Total	С	Ν	0	S	0	0
			391	261	65	61	4		
1	AO	49	Total	С	N	0	S	0	0
		~	391	261	65	61	4		
1	AP	49	Total	С	N	O	S	0	0
		_	391	261	65	61	4		-
1	AQ	49	Total	C	N	O	S	0	0
_			391	261	65	61	4		-

• Molecule 1 is a protein called LHh-alpha.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace		
1	٨D	40	Total	С	Ν	Ο	\mathbf{S}	0	0		
	An	49	391	261	65	61	4	0	0		
1	٨C	40	Total	С	Ν	Ο	S	0	0		
	AS	49	391	261	65	61	4	0	0		
1	۸T	40	Total	С	Ν	Ο	S	0	0		
	AI	AI	AI	A1 49	391	261	65	61	4	0	0
1	ΔΤΙ	AU 49	Total	С	Ν	Ο	S	0	0		
	AU		391	261	65	61	4		0		
1	AV	40	Total	С	Ν	Ο	S	0	0		
	AV	49	391	261	65	61	4	0	0		
1		40	Total	С	Ν	Ο	S	0	0		
	Ανν	49	391	261	65	61	4	0	0		
1	ΔX	40	Total	С	N	0	S	0	0		
	лл	49	391	261	65	61	4	0	0		

• Molecule 2 is a protein called Light-harvesting protein B:885 subunit beta.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
0	DA	20	Total	С	Ν	0	S	0	0
	DA		323	213	55	53	2	0	0
0	DD	40	Total	С	Ν	Ο	S	0	0
	DD	40	327	215	56	54	2	0	0
0	DC	20	Total	С	Ν	0	S	0	0
	DC		323	213	55	53	2	0	0
9	BD	40	Total	С	Ν	0	S	0	0
	DD	40	327	215	56	54	2	0	0
2	BE	40	Total	С	Ν	0	S	0	0
2		40	327	215	56	54	2	0	0
2	BE	BF 39	Total	С	Ν	Ο	\mathbf{S}	0	0
2	DI		323	213	55	53	2		0
2	BC	39	Total	С	Ν	Ο	\mathbf{S}	0	0
2	DG		323	213	55	53	2	0	0
2	BH	30	Total	С	Ν	Ο	\mathbf{S}	0	0
2	DII		323	213	55	53	2	0	0
2	BI	40	Total	С	Ν	Ο	\mathbf{S}	0	0
2	DI	40	327	215	56	54	2	0	0
2	BI	30	Total	С	Ν	Ο	\mathbf{S}	0	0
	D0		323	213	55	53	2	0	0
2	BK	30	Total	С	Ν	Ο	\mathbf{S}	0	0
		00	323	213	55	53	2		0
2	BL	30	Total	С	Ν	Ο	\mathbf{S}	0	0
		00	323	213	55	53	2		U U

Continued from previous page...

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
0	DM	20	Total	С	Ν	Ο	S	0	0
	DM	59	323	213	55	53	2	0	0
0	DN	20	Total	С	Ν	Ο	S	0	0
	DN	- 39	323	213	55	53	2	0	0
0	PO	20	Total	С	Ν	0	S	0	0
	DO	- 39	323	213	55	53	2	0	0
0	ЪD	20	Total	С	Ν	Ο	S	0	0
	DI	- 39	323	213	55	53	2	0	0
0	BO	40	Total	С	Ν	Ο	S	0	0
	ЪQ	40	327	215	56	54	2	0	0
0	ЪD	40	Total	С	Ν	0	S	0	0
	DR	40	327	215	56	54	2	0	0
0	PC	40	Total	С	Ν	0	S	0	0
	DS	40	327	215	56	54	2	0	0
0	РТ	40	Total	С	Ν	Ο	S	0	0
	DI	40	327	215	56	54	2	0	0
0	DII	20	Total	С	Ν	Ο	S	0	0
	DU	- 39	323	213	55	53	2	0	0
0	DV	40	Total	С	Ν	Ο	S	0	0
	DV	40	327	215	56	54	2		
0	DW	40	Total	С	Ν	Ο	S	0	0
	DW	40	327	215	56	54	2	0	0
0	ΡV	20	Total	С	Ν	Ο	S	0	0
	DA	- 39	323	213	55	53	2	0	0
2	ha	30	Total	С	Ν	Ο	\mathbf{S}	0	0
	Da	- 39	323	213	55	53	2	0	0
2	bb	30	Total	С	Ν	Ο	\mathbf{S}	0	0
	DD	- 59	323	213	55	53	2	0	0
2	ha	30	Total	С	Ν	Ο	S	0	0
2	bC	09	323	213	55	53	2	0	0
2	bd	30	Total	С	Ν	Ο	S	0	0
	bu	- 59	323	213	55	53	2	0	0
2	ha	30	Total	С	Ν	Ο	S	0	0
	be	- 59	323	213	55	53	2	0	0
2	hf	30	Total	С	Ν	Ο	S	0	0
	DI	- 59	323	213	55	53	2	0	0
0	hæ	20	Total	С	Ν	Ο	S	0	0
	ng	59	323	213	55	53	2		U
0	ի հե	20	Total	С	Ν	Ο	S	0	0
	DII	39	323	213	55	53	2		U
0	L;	20	Total	С	Ν	Ο	S	0	0
	DI	อษ	323	213	55	53	2		U

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
9	hi	20	Total	С	Ν	Ο	\mathbf{S}	0	0
2	DJ	- 39	323	213	55	53	2	0	0
9	bŀ	20	Total	С	Ν	Ο	S	0	0
2	UK	- 39	323	213	55	53	2	0	0
9	Ы	20	Total	С	Ν	Ο	S	0	0
2	DI		323	213	55	53	2	0	0
9	hm	bm 39	Total	С	Ν	Ο	S	0	0
2	DIII		323	213	55	53	2		0
9	hn	40	Total	С	Ν	Ο	S	0	0
2	DII	40	327	215	56	54	2	0	0
9	ho	30	Total	С	Ν	Ο	S	0	0
2 00	59	323	213	55	53	2	0	0	
2	hn	bp 20	Total	С	N	0	S	0	0
2	ъþ		323	213	55	53	2	0	0

• Molecule 3 is a protein called MULTIHEME_CYTC domain-containing protein.

Mol	Chain	Residues		At	AltConf	Trace			
3	С	299	Total 2325	C 1464	N 419	0 423	S 19	0	0

• Molecule 4 is a protein called RC-S.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	C1	103	Total 806	C 506	N 151	0 145	$\frac{S}{4}$	0	0

• Molecule 5 is a protein called RC-U.

Mol	Chain	Residues		At	oms	AltConf	Trace		
5	C2	99	Total 766	C 483	N 148	0 132	${ m S} { m 3}$	0	0

• Molecule 6 is a protein called PRCH domain-containing protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	H1	62	Total 522	C 343	N 80	0	S 2	0	0
			522	343	89	88	2		

• Molecule 7 is a protein called RC-Hc.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	H2	180	Total 1404	C 894	N 239	O 267	$\frac{S}{4}$	0	0

• Molecule 8 is a protein called Photosynthetic reaction center L subunit.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	L	273	Total 2165	C 1457	N 351	O 347	S 10	0	0

• Molecule 9 is a protein called RC-M.

Mol	Chain	Residues		At	AltConf	Trace			
9	М	335	Total 2694	C 1789	N 442	0 453	S 10	0	0

• Molecule 10 is a protein called LHC domain-containing protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	9.9	55	Total	С	Ν	Ο	S	0	0
10	aa		433	284	76	71	2	0	0

• Molecule 11 is a protein called LHC domain-containing protein.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
11	ah	58	Total	С	Ν	Ο	S	0	0
11	ab		455	298	79	75	3	0	0
11	20	56	Total	С	Ν	Ο	S	0	0
11	ac	50	443	290	77	73	3	0	0
11	ьd	60	Total	С	Ν	Ο	\mathbf{S}	0	0
11	au	00	465	304	81	77	3	0	0
11	20	58	Total	С	Ν	Ο	\mathbf{S}	0	0
11	ae		455	298	79	75	3	0	0
11	of	58	Total	С	Ν	Ο	S	0	0
11	ai		455	298	79	75	3	0	0
11	٥ď	58	Total	С	Ν	Ο	\mathbf{S}	0	0
11	ag		455	298	79	75	3	0	0
11	ah	60	Total	С	Ν	Ο	\mathbf{S}	0	0
11	all	00	465	304	81	77	3	0	0
11	ai	60	Total	С	Ν	Ο	\mathbf{S}	0	0
11	ai	00	465	304	81	77	3	0	0
11	ai	60	Total	С	Ν	Ο	S	0	0
	aj	00	465	304	81	77	3		0

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
11	ماد	71	Total	С	Ν	Ο	S	0	0
11	an	11	542	352	95	91	4	0	0
11	പ	60	Total	С	Ν	Ο	\mathbf{S}	0	0
11	ai	00	465	304	81	77	3	0	0
11	0.00	60	Total	С	Ν	Ο	\mathbf{S}	0	0
11	am	00	465	304	81	77	3	0	0
11	on	71	Total	С	Ν	Ο	\mathbf{S}	0	0
11	all	11	542	352	95	91	4	0	0
11	20	60	Total	С	Ν	Ο	\mathbf{S}	0	0
11	au	00	465	304	81	77	3	0	0
11	an	71	Total	С	Ν	Ο	S	0	0
	ap	11	543	352	95	92	4	0	0

• Molecule 12 is an oligosaccharide called alpha-L-rhamnopyranose-(1-4)-alpha-D-mannopyra nose.

Mol	Chain	Residues	Atoms	AltConf	Trace
12	MG	2	Total C O 21 12 9	0	0
12	CG	2	Total C O 21 12 9	0	0

• Molecule 13 is BACTERIOCHLOROPHYLL A (three-letter code: BCL) (formula: $C_{55}H_{74}MgN_4O_6$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		At	oms			AltConf
10		1	Total	С	Mg	Ν	0	0
13	AA	1	132	110	2	8	12	0
10	A A	1	Total	С	Mg	Ν	0	0
15	AA	L	132	110	2	8	12	0
19	٨D	1	Total	С	Mg	Ν	0	0
15	AD	L	132	110	2	8	12	0
19	٨D	1	Total	С	Mg	Ν	0	0
13	AB	1	132	110	2	8	12	0
10	AC	1	Total	С	Mg	Ν	0	0
13	AC	1	132	110	2	8	12	0
1.9		1	Total	С	Mg	Ν	0	0
15	AC	L	132	110	2	8	12	0
10		1	Total	С	Mg	Ν	0	0
15	AD	L	132	110	2	8	12	0
19		1	Total	С	Mg	Ν	0	0
10	AD	L	132	110	2	8	12	0
19		1	Total	С	Mg	Ν	0	0
10	AL	L	132	110	2	8	12	0
19		1	Total	С	Mg	Ν	0	0
10	AL	L	132	110	2	8	12	0
19	ΔE	1	Total	С	Mg	Ν	0	0
10	Аг	L	132	110	2	8	12	0
12	٨٢	1	Total	С	Mg	Ν	0	0
10	АГ		132	110	2	8	12	U
12		1	Total	С	Mg	Ν	0	0
10	AG	L	132	110	2	8	12	U
12		1	Total	С	Mg	Ν	0	0
10	AG	L	132	110	2	8	12	

Continued from previous page...

Mol	Chain	Residues		At	\mathbf{oms}			AltConf
19	ATT	1	Total	С	Mg	Ν	0	0
15	АП	1	132	110	2	8	12	0
19	ΛЦ	1	Total	С	Mg	Ν	0	0
15	АП	1	132	110	2	8	12	0
19	АТ	1	Total	С	Mg	Ν	0	0
10	AI	1	132	110	2	8	12	0
12	ΔΤ	1	Total	С	Mg	Ν	0	0
10	AI	1	132	110	2	8	12	0
12	ΛΤ	1	Total	С	Mg	Ν	0	0
10	AJ	1	132	110	2	8	12	0
12	ΛΤ	1	Total	С	Mg	Ν	0	0
10	AJ	1	132	110	2	8	12	0
12	ΛK	1	Total	С	Mg	Ν	0	0
10	AN	1	132	110	2	8	12	0
12	ΛK	1	Total	С	Mg	Ν	0	0
10	AN	1	132	110	2	8	12	0
12	ΔT	1	Total	С	Mg	Ν	0	0
10	AL	1	132	110	2	8	12	0
19	ΔT	1	Total	С	Mg	Ν	0	0
10	AL	1	132	110	2	8	12	0
12	АМ	1	Total	С	Mg	Ν	0	0
10	AM	1	132	110	2	8	12	0
12	АМ	1	Total	С	Mg	Ν	0	0
10	AM	1	132	110	2	8	12	0
12	ΛN	1	Total	С	Mg	Ν	0	0
10	AN	1	132	110	2	8	12	0
12	ΛN	1	Total	С	Mg	Ν	0	0
10	AN	I	132	110	2	8	12	0
13		1	Total	С	Mg	Ν	0	0
10	110	I	132	110	2	8	12	0
13		1	Total	С	Mg	Ν	Ο	0
10	110	1	132	110	2	8	12	0
13	AР	1	Total	\mathbf{C}	Mg	Ν	0	0
10	111	1	132	110	2	8	12	0
13	ΔP	1	Total	\mathbf{C}	Mg	Ν	Ο	0
10	111	1	132	110	2	8	12	0
12		1	Total	С	Mg	Ν	0	0
	1102	1	198	165	3	12	18	
12		1	Total	С	Mg	Ν	0	0
10	лд	1	198	165	3	12	18	U
12		1	Total	С	Mg	Ν	0	0
61	പര്	L	198	165	3	12	18	

Continued from previous page...

Mol	Chain	Residues	Atoms AltConf		
19	٨D	1	Total C Mg N O	0	
15	Añ	1	66 55 1 4 6	0	
10	AC	1	Total C Mg N O	0	
15	AS	1	198 165 3 12 18	0	
19	٨C	1	Total C Mg N O	0	
15	AS	1	198 165 3 12 18	0	
19	٨C	1	Total C Mg N O	0	
10	AS	1	198 165 3 12 18	0	
19		1	Total C Mg N O	0	
10	AI	1	66 55 1 4 6	0	
19	ATT	1	Total C Mg N O	0	
10	AU	1	132 110 2 8 12	0	
12	ATT	1	Total C Mg N O	0	
10	AU	1	132 110 2 8 12	0	
12	AV	1	Total C Mg N O	0	
10	ΛV	1	132 110 2 8 12	0	
12	ΔV	1	Total C Mg N O	0	
10	ΛV	1	132 110 2 8 12	0	
12	4117	1	Total C Mg N O	0	
10	AW	1	198 165 3 12 18	0	
12		1	Total C Mg N O	0	
10	AW	1	198 165 3 12 18	0	
12		1	Total C Mg N O	0	
15		T	198 165 3 12 18	0	
13	ΔX	1	Total C Mg N O	0	
10	1111	1	66 55 1 4 6	0	
13	BΔ	1	Total C Mg N O	0	
10	DA	I	66 55 1 4 6	0	
13	BB	1	Total C Mg N O	0	
10		1	66 55 1 4 6	Ŭ	
13	BC	1	Total C Mg N O	0	
10	DO	1	66 55 1 4 6	Ŭ	
13	BD	1	Total C Mg N O	0	
10		I.	66 55 1 4 6		
13	\mathbf{BE}	1	Total C Mg N O	0	
		*	66 55 1 4 6		
13	BF	1	Total C Mg N O	0	
		-	66 55 1 4 6		
13	BG	1	Total C Mg N O	0	
	20	*	66 55 1 4 6		
13	BH	1	Total C Mg N O	0	
		±	66 55 1 4 6		

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
19	DI	1	Total C Mg N O	0
10	DI	1	66 55 1 4 6	0
19	DI	1	Total C Mg N O	0
10	DJ	1	66 55 1 4 6	0
19	DV	1	Total C Mg N O	0
10	DA	1	66 55 1 4 6	0
12	BI	1	Total C Mg N O	0
10		1	66 55 1 4 6	0
12	BM	1	Total C Mg N O	0
10	DIVI	1	66 55 1 4 6	0
12	BN	1	Total C Mg N O	0
10	DN	1	66 55 1 4 6	0
19	PO	1	Total C Mg N O	0
10	DO	1	66 55 1 4 6	0
19	рр	1	Total C Mg N O	0
15	DF	1	66 55 1 4 6	0
19	DO	1	Total C Mg N O	0
15	ЪQ	1	66 55 1 4 6	0
1.0	מת	1	Total C Mg N O	
13	BR	1	66 55 1 4 6	0
10	DC	1	Total C Mg N O	
13	В2	1	66 55 1 4 6	0
10	рт	1	Total C Mg N O	0
13	BI	1	66 55 1 4 6	0
10	DU	1	Total C Mg N O	0
15	BU	1	66 55 1 4 6	0
10	DV	1	Total C Mg N O	
15	BV	1	66 55 1 4 6	0
1.0	DW	1	Total C Mg N O	
15	BW	1	66 55 1 4 6	0
10	DV	1	Total C Mg N O	
15	БА	1	66 55 1 4 6	0
10	т	1	Total C Mg N O	
13	L	1	132 110 2 8 12	0
1.0	т	1	Total C Mg N O	
13	L	1	132 110 2 8 12	0
10	ъл	1	Total C Mg N O	
13	IVI	1	132 110 2 8 12	U
10	٦r	1	Total C Mg N O	
13	IVI	1	132 110 2 8 12	0
10			Total C Mg N O	
13	aa	1	66 55 1 4 6	0

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
19	ah	1	Total	С	Mg	Ν	0	0
15	ab	1	66	55	1	4	6	0
19	2.0	1	Total	С	Mg	Ν	Ο	0
15	ac	1	66	55	1	4	6	0
19	ad	1	Total	С	Mg	Ν	0	0
10	au	1	66	55	1	4	6	0
12	20	1	Total	С	Mg	Ν	0	0
10	ae	1	66	55	1	4	6	0
12	of	1	Total	С	Mg	Ν	Ο	0
10	aı	1	66	55	1	4	6	0
12	9.0	1	Total	С	Mg	Ν	Ο	0
10	ag	1	66	55	1	4	6	0
12	ah	1	Total	С	Mg	Ν	Ο	0
10	all	1	66	55	1	4	6	0
12	ai	1	Total	С	Mg	Ν	Ο	0
10	aı	1	66	55	1	4	6	0
12	ni	1	Total	С	Mg	Ν	Ο	0
10	aj	1	66	55	1	4	6	0
12	alı	1	Total	С	Mg	Ν	0	0
10	aĸ	1	66	55	1	4	6	0
12	പ	1	Total	С	Mg	Ν	0	0
10	ai	1	66	55	1	4	6	0
13	am	1	Total	С	Mg	Ν	Ο	0
10	am	T	66	55	1	4	6	0
13	an	1	Total	С	Mg	Ν	Ο	0
10	an	1	66	55	1	4	6	0
13	80	1	Total	С	Mg	Ν	Ο	0
10	40	1	66	55	1	4	6	0
13	an	1	Total	С	Mg	Ν	Ο	0
	щр	Ĩ	66	55	1	4	6	Ŭ
13	ha	1	Total	С	Mg	Ν	Ο	0
		-	66	55	1	4	6	
13	bb	1	Total	С	Mg	Ν	Ο	0
		-	66	55	1	4	6	Ŭ
13	bc	1	Total	С	Mg	Ν	0	0
		_	66	55	1	4	6	Ľ.
13	bd	1	Total	C	Mg	N	0	0
		-	66	55	1	4	6	
13	be	1	Total	С	Mg	N	0	0
		-	66	55	1	4	6	
13	bf	1	Total	\mathbf{C}	Mg	N	0	0
			66	55	1	4	6	

Mol	Chain	Residues		Atoms Alt				AltConf
12	hr	1	Total	С	Mg	Ν	0	0
10	bg	L	66	55	1	4	6	0
12	bh	1	Total	С	Mg	Ν	Ο	0
10	DII	T	66	55	1	4	6	0
12	hi	1	Total	С	Mg	Ν	Ο	0
10	DI	T	66	55	1	4	6	0
12	hi	1	Total	С	Mg	Ν	Ο	0
10	DJ	T	66	55	1	4	6	0
12	bk	1	Total	С	Mg	Ν	Ο	0
10	UK	T	66	55	1	4	6	0
13	Ы	1	Total	С	Mg	Ν	Ο	0
10	DI	T	66	55	1	4	6	0
13	hm	1	Total	С	Mg	Ν	Ο	0
10	DIII	I	66	55	1	4	6	0
13	hn	1	Total	С	Mg	Ν	Ο	0
10	DII	I	66	55	1	4	6	0
13	ho	1	Total	С	Mg	Ν	Ο	0
10	00	1	66	55	1	4	6	0
13	hn	1	Total	С	Mg	N	0	0
10	ph		66	55	1	4	6	

• Molecule 14 is DODECYL-BETA-D-MALTOSIDE (three-letter code: LMT) (formula: $\rm C_{24}H_{46}O_{11}).$

Mol	Chain	Residues	Atoms	AltConf
14	АА	1	Total C O 35 24 11	0

Continued from previous page...

Mol	Chain	Residues	At	oms		AltConf
14	A D	1	Total	С	0	0
14	AB	1	70	48	22	0
14	A D	1	Total	С	0	0
14	AB	1	70	48	22	0
14		1	Total	С	0	0
14	AD	T	70	48	22	0
14	AD	1	Total	\mathbf{C}	0	0
11		1	70	48	22	0
14	AF	1	Total	С	Ο	0
		1	35	24	11	Ŭ
14	AG	1	Total	С	0	0
		-	35	24	11	Ŭ
14	AH	1	Total	С	0	0
			105	72	33	
14	AH	1	Total	C	0	0
			105	72	33	
14	AH	1	Total	C	0	0
			105	$\frac{72}{C}$	<u>33</u>	
14	AI	1	Total	C	0	0
			30 Tatal	$\frac{24}{C}$	<u> </u>	
14	AJ	1	10tai 25		11	0
			- 50 Total	$\frac{24}{C}$	$\frac{11}{0}$	
14	AK	1	10tai 35	$\frac{0}{24}$	11	0
			Total	$\frac{24}{C}$	0	
14	AL	1	35	$\frac{0}{24}$	11	0
			Total	$\frac{2\pi}{C}$	0	
14	AN	1	70	48	22	0
			Total	C	0	
14	AN	1	70	48	22	0
	1.0		Total	С	0	
14	AO	1	35	24	11	0
14	AD	1	Total	С	0	0
14	AP	1	35	24	11	0
14		1	Total	С	0	0
14	AK		35	24	11	U
14	٨٩	1	Total	С	0	0
14	AS		35	24	11	U
14	ΔT	1	Total	С	0	0
	AI		35	24	11	U
14	ΔΤΙ	1	Total	С	0	0
14	AU		35	24	11	U

Continued from previous page...

14 AV 1 Total C 0 14 AW 1 Total C 0 14 BA 1 Total C 0 14 BB 1 Total C 0 14 BC 1 Total C 0 14 BC 1 Total C 0 14 BD 1 Total C 0	Mol	Chain	Residues	Atoms	AltConf
14 AV 1 35 24 11 0 14 AW 1 Total C O 0 14 BA 1 Total C O 0 14 BB 1 Total C O 0 14 BB 1 Total C O 0 14 BC 1 Total C O 0 14 BD 1 Total C O 0 <td< td=""><td>14</td><td></td><td>1</td><td>Total C O</td><td>0</td></td<>	14		1	Total C O	0
14 AW 1 Total C 0 14 BA 1 Total C 0 14 BB 1 Total C 0 14 BC 1 Total C 0 14 BC 1 Total C 0 14 BD 1 Total C 0 14 BD 1 Total C 0	14	AV	1	35 24 11	0
14 AW 1 35 24 11 0 14 BA 1 Total C 0 14 BB 1 Total C 0 14 BB 1 Total C 0 14 BC 1 Total C 0 14 BC 1 Total C 0 14 BD 1 Total C 0 14 BD 1 Tota	14	ΔΨ	1	Total C O	0
14 BA 1 Total C 0 14 BB 1 Total C 0 14 BB 1 Total C 0 14 BB 1 Total C 0 14 BC 1 Total C 0 14 BC 1 Total C 0 14 BD 1 Total C 0 14 BD 1 Total C 0 14 BD 1 Total C 0	14	Αν	1	35 24 11	0
14 DA 1 140 96 44 0 14 BA 1 Total C 0 0 14 BB 1 Total C 0 0 14 BB 1 Total C 0 0 14 BB 1 Total C 0 0 14 BC 1 Total C 0 0 14 BC 1 Total C 0 0 14 BC 1 Total C 0 0 14 BD 1 Total C 0 0 14 BD 1 Total C 0 0 <t< td=""><td>1/</td><td>RΔ</td><td>1</td><td>Total C O</td><td>0</td></t<>	1/	RΔ	1	Total C O	0
14 BA 1 Total C 0 14 BB 1 Total C 0 14 BC 1 Total C 0 14 BC 1 Total C 0 14 BD 1 Total C 0	11	DI	1	140 96 44	0
14 BA 1 140 96 44 0 14 BA 1 Total C 0 0 14 BA 1 Total C 0 0 14 BA 1 Total C 0 0 14 BB 1 Total C 0 0 14 BC 1 Total C 0 0 14 BC 1 Total C 0 0 14 BC 1 Total C 0 0 14 BD 1 Total C 0 0 14 BD 1 Total C 0 0 0 14 BD 1 Total C 0 0	14	BA	1	Total C O	0
14 BA 1 Total C O 0 14 BA 1 Total C O 0 14 BA 1 Total C O 0 14 BB 1 Total C O 0 14 BC 1 Total C O 0 14 BD 1 Total C O 0 14 BD 1 Total C O 0 14 BD 1 Total C O 0 <t< td=""><td></td><td></td><td>-</td><td>140 96 44</td><td>Ŭ</td></t<>			-	140 96 44	Ŭ
140 96 44 1 14 BA 1 Total C O 14 BB 1 Total C O 14 BC 1 Total C O 14 BD 1 Total C O 14 BD 1 Total C O 14 BD 1 Total C O 14 BE 1 Total C O <td>14</td> <td>BA</td> <td>1</td> <td>Total C O</td> <td>0</td>	14	BA	1	Total C O	0
14 BA 1 Iotal C 0 14 BB 1 Total C 0 14 BC 1 Total C 0 14 BD 1 Total C 0 14 BE 1 Total C 0 14 BE 1 Total C 0				140 96 44	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	BA	1	Total C O	0
14 BB 1 Iotal C O O 70 48 22 0 14 BB 1 Total C O 70 48 22 0 14 BC 1 Total C O 70 48 22 0 14 BC 1 Total C O 70 48 22 0 14 BC 1 Total C O 70 48 22 0 14 BC 1 Total C O 70 48 22 0 14 BD 1 Total C O 70 48 22 0 14 BD 1 Total C O 70 48 22 0 14 BD 1 Total C O 70 48 22 0 14 BD 1 Total C O 70 48 22 0 14 BD 1 Total C O 70 48 22 0 14 BD 1 Total C O 70 444 0 14 BD 1 Total C O 70 444 0 14 BE 1 Total C O 70 70 0 14 BE 1 Total C O 70 70 0 14 BE 1 Total C O 70 70 0 14 BF 1 Tota				$\frac{140 96 44}{140 96 44}$	
14 BB 1 Total C O 14 BC 1 Total C O 14 BD 1 Total C O 14 BE 1 Total C O 14 BE 1 Total C O 14 BE 1 Total	14	BB	1	$\begin{array}{cccc} 10tal & C & O \\ 70 & 48 & 22 \end{array}$	0
14 BB 1 Iotal C 0 14 BC 1 Total C 0 14 BD 1 Total C 0 14 BE 1 Total C 0 14 BE 1 Total C 0 14 BE 1 Total C 0 14 BF 1 Total C 0				$\frac{10 40 22}{\text{Total} C O}$	
14 BC 1 Total C O 0 14 BD 1 Total C O 0 14 BE 1 Total C O 0 14 BE 1 Total C O 0 14 BE 1 Total C O 0	14	BB	1	70 48 22	0
14 BC 1 70 48 22 0 14 BC 1 70 48 22 0 14 BD 1 $Total$ C 0 0 14 BD 1 $Total$ C 0 0 14 BD 1 $Total$ C 0 0 14 BE 1 $Total$ C 0 0 14 BE 1 $Total$ C 0 0 14 BE 1 $Total$ C 0 0 14 BF 1 $Total$ C 0<				$\frac{70 + 40 + 22}{\text{Total C} + 0}$	
14 BC 1 Total C O 70 48 22 0 14 BD 1 Total C O 0 14 BE 1 Total C O 0 14 BE 1 Total C O 0 14 BE 1 Total C O 0 14 BF 1 Total </td <td>14</td> <td>BC</td> <td>1</td> <td>70 48 22</td> <td>0</td>	14	BC	1	70 48 22	0
14 BC 1 Formation of the set of t				$\frac{10 + 0 + 22}{\text{Total C} + 0}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	BC	1	70 48 22	0
14 BD 1 105 an 0 0 14 BD 1 140 96 44 0 14 BD 1 Total C 0 0 14 BE 1 Total C 0 0 14 BF 1 Total C 0 0 14				Total C O	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	BD	1	140 96 44	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		DD	-	Total C O	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	BD	1	140 96 44	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14		1	Total C O	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	BD	1	140 96 44	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	BD	1	Total C O	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	DD	1	140 96 44	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	BE	1	Total C O	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11		1	140 96 44	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	BE	1	Total C O	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	140 96 44	Ŭ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	BE	1	Total C O	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\frac{140 96 44}{140 96 44}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	BE	1	Total C O	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				140 96 44	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	BF	1	$\begin{array}{cccc} 10tal & U & U \\ 105 & 72 & 22 \end{array}$	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\frac{100 (2 0.00)}{\text{Total} C O}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	BF	1	$101a1 \cup 0$ 105 79 22	0
14 BF 1 105 72 33 0				$\frac{100 (2 00)}{\text{Total } C 0}$	
	14	BF	1	105 72 33	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
14	DC	1	Total C O	0
14	BG	1	70 48 22	0
14	ВС	1	Total C O	0
14	DG	1	70 48 22	0
14	BH	1	Total C O	0
14	DII	1	105 72 33	0
14	BH	1	Total C O	0
		1	105 72 33	
14	BH	1	Total C O	0
			105 72 33	
14	BI	1	Total C O	0
			140 96 44	
14	BI	1	Total C U	0
			140 90 44 Total C O	
14	BI	1	140 06 44	0
			$\begin{array}{c c} 140 & 50 & 44 \\ \hline Total & C & O \\ \end{array}$	
14	BI	1	140 96 44	0
			Total C O	
14	BJ	1	70 48 22	0
			Total C O	
14	BJ	1	70 48 22	0
14	DV		Total C O	
14	BK	1	140 96 44	0
14	DV	1	Total C O	0
14	BK	1	140 96 44	0
14	BK	1	Total C O	0
14	DI	T	140 96 44	0
14	BK	1	Total C O	0
		1	140 96 44	
14	BL	1	Total C O	0
			105 72 33	
14	BL	1	Total C O	0
			$\frac{105}{72} \frac{72}{33}$	
14	BL	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 105 & 79 & 22 \end{array}$	0
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
14	BM	1	$\begin{array}{c} 10ta1 \\ 70 \\ 18 \\ 99 \end{array}$	0
			Total C O	
14	BM	1	70 48 92	0
			Total C O	
14	BN	1	140 96 44	0

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	J	1	I J

Mol	Chain	Residues	At	oms		AltConf
14	DN	1	Total	С	0	0
14	DN	L	140	96	44	0
14	BN	1	Total	С	0	0
14	DN	L	140	96	44	0
14	BN	1	Total	С	0	0
14	DN	T	140	96	44	0
14	BO	1	Total	\mathbf{C}	Ο	0
	DO	1	70	48	22	0
14	BO	1	Total	С	Ο	0
17	DO	1	70	48	22	0
14	BP	1	Total	С	Ο	0
		1	140	96	44	0
14	BP	1	Total	С	0	0
		-	140	96	44	Ŭ
14	BP	1	Total	С	0	0
		-	140	96	44	Ŭ
14	BP	1	Total	С	0	0
		-	140	96	44	
14	BO	1	Total	С	0	0
	Ъą	1	70	48	22	0
14	BO	1	Total	С	0	0
	Ъų	1	70	48	22	Ŭ
14	BB	1	Total	С	0	0
		1	140	96	44	Ŭ
14	BB	1	Total	С	0	0
		-	140	96	44	Ŭ
14	BB	1	Total	С	0	0
		-	140	96	44	Ŭ
14	BB	1	Total	С	0	0
		1	140	96	44	Ŭ
14	BS	1	Total	С	0	0
	D	1	105	72	33	0
14	BS	1	Total	С	0	0
	D	1	105	72	33	Ŭ
14	BS	1	Total	С	0	0
		*	105	72	33	
14	BT	1	Total	\mathbf{C}	Ο	0
			105	72	33	
14	вт	1	Total	\mathbf{C}	0	0
		1	105	72	33	
14	вт	1	Total	\overline{C}	0	0
1.7		L 1	105	72	33	

			C	α \cdot \cdot \cdot
e	page	previous	from	Continued
1	bug	pretious	JIOIN	Continucu

Mol	Chain	Residues	Atoms	AltConf
14	BII	1	Total C O	0
14	DU	L	105 72 33	0
14	BU	1	Total C O	0
14	DU	1	105 72 33	0
14	BU	1	Total C O	0
	20	-	105 72 33	· · · · · · · · · · · · · · · · · · ·
14	BV	1	Total C O	0
			70 48 22	_
14	BV	1	Total C O	0
14	BW	1	Total C U	0
			140 90 44 Total C O	
14	BW	1	140 96 44	0
			$\begin{array}{ccc} 140 & 50 & 44 \\ \hline Total & C & O \end{array}$	
14	BW	1	140 96 44	0
			Total C O	
14	BW	1	140 96 44	0
		_	Total C O	
14	BX	1	70 48 22	0
14	DV	1	Total C O	0
14	ВХ	1	70 48 22	0
14	т	1	Total C O	0
14	L	L	175 120 55	0
14	T	1	Total C O	0
14	Ľ	I	175 120 55	0
14	L	1	Total C O	0
		-	175 120 55	· · · · · ·
14	L	1	Total C O	0
			175 120 55	
14	L	1	Total C O	0
			175 120 55	
14	М	1	$\begin{array}{cccc} 10tal & U \\ 25 & 24 & 11 \end{array}$	0
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
14	ac	1	$35 \ 24 \ 11$	0
			Total C O	
14	bb	1	35 24 11	0
	_		Total C O	
14	bc	1	35 24 11	0
1.4	, ,		Total C O	6
14	bd		35 24 11	0

Mol	Chain	Residues	Atoms	AltConf
14	hf	1	Total C O	0
14	DI	L	70 48 22	0
14	bf	1	Total C O	0
14	DI	L	70 48 22	0
14	ba	1	Total C O	0
14	Ug	T	35 24 11	0
14	bh	1	Total C O	0
14	UII	I	70 48 22	0
14	bh	1	Total C O	0
14	011	I	70 48 22	0
14	hi	1	Total C O	0
17	IJ	1	35 24 11	0
14	bk	1	Total C O	0
	OK	1	35 24 11	0
14	bl	1	Total C O	0
		1	70 48 22	Ŭ
14	bl	1	Total C O	0
		1	70 48 22	Ŭ
14	hm	1	Total C O	0
		1	35 24 11	0
14	hn	1	Total C O	0
17		1	35 24 11	0
14	bo	1	Total C O	0
		1	35 24 11	0
14	hn	1	Total C O	0
1.1	ph	1 I	35 24 11	

• Molecule 15 is $(2 \{E\}, 4 \{E\}, 6 \{E\}, 10 \{E\}, 12 \{E\}, 14 \{E\}, 16 \{E\}, 18 \{E\}, 20 \{E\}, 22 \{Z\}, 2 4 \{E\}, 26 \{E\}, 28 \{E\})$ -23-methanoyl-31-methoxy-2, 6, 10, 14, 19, 27, 31-heptamethyl-dotriaco nta-2, 4, 6, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28-tridecaenoic acid (three-letter code: V7N) (formula: $C_{41}H_{54}O_4$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
15	ΔE	1	Total C O	0
10		1	45 41 4	0
15	AH	1	Total C O	0
		-	45 41 4	Ŭ
15	AT	1	Total C O	0
			45 41 4	_
15	BA	1	Total C O	0
			45 41 4	_
15	BB	1	Total C O	0
			45 41 4	_
15	BC	1	Total C O	0
	_		45 41 4	_
15	BD	1	Total C O	0
			45 41 4	_
15	BE	1	Total C O	0
			45 41 4	
15	BG	1	Total C O	0
	_		45 41 4	_
15	BH	1	Total C O	0
		_	45 41 4	
15	BJ	1	Total C O	0
		_	45 41 4	
15	BK	1	Total C O	0
		-	45 41 4	Ŭ
15	BL	1	Total C O	0
		-	45 41 4	Ŭ
15	BM	1	Total C O	0
	10111		45 41 4	Ŭ Ŭ

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
15	BN	1	Total C O	0
			45 41 4	
15	BO	1	$\begin{array}{c ccc} Total & C & O \\ 45 & 41 & 4 \end{array}$	0
			Total C O	
15	BP	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
15	BO	1	Total C O	0
10	Ъą	1	45 41 4	0
15	BR	1	Total C O	0
		1	45 41 4	
15	BS	1	Total C O	0
	2.5	-	45 41 4	
15	ВТ	1	Total C O	0
		-	45 41 4	
15	BV	1	Total C O	0
	2,	-	45 41 4	
15	BW	1	Total C O	0
		1	45 41 4	
15	BX	1	Total C O	0
10	DA	T	45 41 4	0
15	ha	1	Total C O	0
10	Da	T	45 41 4	0
15	hh	1	Total C O	0
10	00	L	45 41 4	0
15	he	1	Total C O	0
10	DC	L	45 41 4	0
15	hd	1	Total C O	0
10	bu	I	45 41 4	0
15	ho	1	Total C O	0
10	De	T	45 41 4	0
15	bf	1	Total C O	0
10	DI	T	45 41 4	0
15	ba	1	Total C O	0
10	bg	I	45 41 4	0
15	bh	1	Total C O	0
10	UII	T	45 41 4	0
15	hi	1	Total C O	0
	51	1	45 41 4	
15	hi	1	Total C O	0
1.0	νJ		45 41 4	
15	bŀ	1	Total C O	0
10	UK		45 41 4	

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
15	bl	1	Total C O 45 41 4	0
15	bm	1	Total C O 45 41 4	0
15	bn	1	Total C O 45 41 4	0
15	bo	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 45 & 41 & 4 \end{array}$	0
15	bp	1	Total C O 45 41 4	0

• Molecule 16 is HEME C (three-letter code: HEC) (formula: $C_{34}H_{34}FeN_4O_4$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Atoms				
16	С	1	Total	С	Fe	Ν	0	0
10	U	L	172	136	4	16	16	0
16	С	1	Total	С	Fe	Ν	0	0
10	U	L	172	136	4	16	16	0
16	С	1	Total	С	Fe	Ν	0	0
10	U	L	172	136	4	16	16	0
16	16 C	1	Total	С	Fe	Ν	0	0
10	U		172	136	4	16	16	0

• Molecule 17 is 2-acetamido-2-deoxy-alpha-D-glucopyranose (three-letter code: NDG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms				AltConf
17	С	1	Total	С	Ν	0	0
11		1	14	8	1	5	0
17	C1	1	Total	С	Ν	Ο	0
11	UI	1	14	8	1	5	0

• Molecule 18 is $(2 \{S\}, 3 \{S\}, 4 \{S\}, 5 \{S\})-4, 5$ -diacetyloxy-3-oxidanyl-oxane-2-carboxylic acid (three-letter code: V75) (formula: $C_{10}H_{14}O_8$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
18	С	1	Total C O 18 10 8	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
18	М	1	Total C O 18 10 8	0

• Molecule 19 is (1R)-2-{[(S)-{[(2S)-2,3-dihydroxypropyl]oxy}(hydroxy)phosphoryl]oxy}-1-[(hexadecanoyloxy)methyl]ethyl (9Z)-octadec-9-enoate (three-letter code: PGW) (formula: $C_{40}H_{77}O_{10}P$).

Mol	Chain	Residues	Atoms				AltConf
10	Ц 1	1	Total	С	Ο	Р	0
19	111	L	51	40	10	1	0

• Molecule 20 is (19R,22S)-25-amino-22-hydroxy-22-oxido-16-oxo-17,21,23-trioxa-22lamb da 5 -phosphapentacosan-19-yl (9Z)-hexadec-9-enoate (three-letter code: 0V9) (formula: $C_{37}H_{72}NO_8P$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ato	oms			AltConf
- 20	TT1	1	Total	С	Ν	Ο	Р	0
20	HI	1	45	35	1	8	1	0
- 20	т	1	Total	С	Ν	Ο	Р	0
20	L	1	45	35	1	8	1	0
20		1	Total	С	Ν	Ο	Р	0
20	aj	1	45	35	1	8	1	0
20	1	1	Total	С	Ν	Ο	Р	0
20	ba	1	90	70	2	16	2	0
20	1	1	Total	С	Ν	Ο	Р	0
20	ba	1	90	70	2	16	2	0
20	LL	1	Total	С	Ν	Ο	Р	0
20	dd	1	45	35	1	8	1	0
20	1	1	Total	С	Ν	Ο	Р	0
20	DC	1	45	35	1	8	1	0
20	ha	1	Total	С	Ν	Ο	Р	0
20	be	1	90	70	2	16	2	0
20	1	1	Total	С	Ν	Ο	Р	0
20	be	1	90	70	2	16	2	0
20	1.6	1	Total	С	Ν	Ο	Р	0
20	DI	1	45	35	1	8	1	0
20	1	1	Total	С	Ν	Ο	Р	0
20	bg	1	45	35	1	8	1	0
20	1.1.	1	Total	С	Ν	Ο	Р	0
20	DI		45	35	1	8	1	U
20	hi	1	Total	С	Ν	0	Р	0
20			45	35	1	8	1	U
20	ь;	1	Total	С	Ν	0	Р	0
20	սյ		45	35	1	8	1	U

Mol	Chain	Residues	Atoms					AltConf
20	bŀ	1	Total	С	Ν	Ο	Р	0
20	UK	L	90	70	2	16	2	0
20	bk	1	Total	С	Ν	Ο	Р	0
20	UK	T	90	70	2	16	2	0
20	Ы	1	Total	С	Ν	Ο	Р	0
20	DI	L	45	35	1	8	1	0
20	hm	1	Total	С	Ν	Ο	Р	0
20	DIII	T	45	35	1	8	1	0
20	hn	1	Total	С	Ν	Ο	Р	0
20	DII	T	45	35	1	8	1	0
20	ho	1	Total	С	N	0	Р	0
	00	L	45	35	1	8	1	U

Continued from previous page...

• Molecule 21 is (2R,5R,11R,14R)-5,8,11-trihydroxy-5,11-dioxido-17-oxo-2,14-bis(tetradecano yloxy)-4,6,10,12,16-pentaoxa-5,11-diphosphatriacont-1-yl tetradecanoate (three-letter code: CD4) (formula: $C_{65}H_{126}O_{17}P_2$).

Mol	Chain	Residues	Atoms	AltConf
91	日1	1	Total C O P	0
<u></u>	111	1	84 65 17 2	0
91	М	1	Total C O P	0
<u></u>	111	1	84 65 17 2	0
91	ad	1	Total C O P	0
21	au	1	84 65 17 2	0
01	of	1	Total C O P	0
21	aı	1	168 130 34 4	0

α \cdot 1	C		
Continued	trom	previous	<i>paae</i>
• • • • • • • • • • • •	J	P	Pagan

Mol	Chain	Residues	Atoms	AltConf
21	of	1	Total C O P	0
	21 ai	1	168 130 34 4	0
-01	1 ai	- 1	Total C O P	0
21		1	84 65 17 2	0

• Molecule 22 is BACTERIOPHEOPHYTIN A (three-letter code: BPH) (formula: $C_{55}H_{76}N_4O_6$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms			AltConf	
22	т	1	Total	С	Ν	Ο	0
			65	55	4	6	0
22	22 M	1	Total	С	Ν	Ο	0
	111		65	55	4	6	U

• Molecule 23 is MENAQUINONE 8 (three-letter code: MQ8) (formula: $C_{51}H_{72}O_2$).

Mol	Chain	Residues	Atoms	AltConf
23	L	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 53 & 51 & 2 \end{array}$	0
23	М	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 53 & 51 & 2 \end{array}$	0
23	an	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 53 & 51 & 2 \end{array}$	0

• Molecule 24 is FE (III) ION (three-letter code: FE) (formula: Fe).

Mol	Chain	Residues	Ator	ns	AltConf
24	М	1	Total 1	Fe 1	0

• Molecule 25 is SPIRILLOXANTHIN (three-letter code: CRT) (formula: $C_{42}H_{60}O_2$).

Mol	Chain	Residues	Atoms	AltConf
25	М	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 44 & 42 & 2 \end{array}$	0

• Molecule 26 is $[(2 \{S\})-3-[(2 \{R\},3 \{R\},4 \{R\},5 \{S\},6 \{R\})-6-(hydroxymethyl)-5-[(2 \{R\},3 \{R\},4 \{S\},5 \{S\},6 \{R\})-6-(hydroxymethyl)-3,4,5-tris(oxidanyl)oxan-2-yl]oxy-3,4-bis(oxidanyl)oxan-2-yl]oxy-2-(12-methyltridecanoyloxy)propyl] 12-methyltridecanoate (three-letter code: V7B) (formula: C₄₃H₈₀O₁₅) (labeled as "Ligand of Interest" by depositor).$

Mol	Chain	Residues	Atoms	AltConf
26	af	1	Total C O 58 43 15	0

Mol	Chain	Residues	Atoms	AltConf
26	ag	1	Total C O 58 43 15	0

Molecule 27 is [(2 {S})-3-[(2 {R},3 {R},4 {S},5 {S},6 {R})-6-(hydroxymethyl)-3,4,5-tris(oxidanyl)oxan-2-yl]oxy-2-octadecanoyloxy-propyl] octadecanoate (three-letter code: UYH) (formula: C₄₅H₈₆O₁₀) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
27	ai	1	$\begin{array}{rrrr} \text{Total} & \text{C} & \text{O} \\ 55 & 45 & 10 \end{array}$	0

• Molecule 28 is water.

Mol	Chain	Residues	Atoms	AltConf
28	АА	3	Total O 3 3	0
28	AB	3	Total O 3 3	0
28	AC	2	Total O 2 2	0
28	AD	5	Total O 5 5	0
28	AG	2	Total O 2 2	0
28	AH	3	Total O 3 3	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
28	AI	3	Total O	0
		<u> </u>	3 3	
28	AJ	6	Total O	0
			6 6	
28	AK	3	Total O	0
		_	3 3	-
28	AL	3	Total O	0
			3 3	
28	AM	4	Total O	0
			4 4	
28	AN	3	Total O	0
			3 3	
28	AO	2	Total O	0
			2 2	
28	AP	3	Total O	0
			$\frac{3}{3}$	
28	AQ	5	Total O	0
			5 5	
28	AR	2	Total O	0
			2 2	
28	AS	5	Total O	0
			$\frac{5}{5}$	
28	AT	7	Total O	0
			777	
28	AV	6	Total O	0
			6 6	
28	AW	6	Total O	0
			6 6	
28	AX	5	Total O	0
28	BD	1	Total O	0
28	BE	1	Total O	0
28	BF	1	Total O	0
28	BO	1	1 Iotal U	0
28	BW	1	1 1 0 1 1	0
			I I Total O	
28	С	98		0
			98 98	

α \cdot \cdot \cdot	C	•	
Continued	trom	premous	naae
contentaca	<i>J</i> · <i>O</i> · · · <i>O</i>	proceeduo	pago

Mol	Chain	Residues	Atoms	AltConf
<u> </u>	C1	18	Total O	0
20	U1	40	48 48	0
28	C2	3	Total O	0
20	02	0	3 3	0
28	H1	9	Total O	0
	111		9 9	0
28	H2	35	Total O	0
			35 35	Ŭ
28	L	53	Total O	0
			53 53	
28	М	59	Total O	0
			59 59	
28	aa	3	Total O	0
			3 3	
28	ab	3	Total O	0
			$\frac{3}{7}$	
28	ac	4	Total O	0
			4 4	
28	ad	9	Total O	0
			$\frac{9}{7}$	
28	ae	7	Total O	0
28	af	7		0
			1 1 Total O	
28	ag	7	7 7	0
			Total O	
28	$^{\mathrm{ah}}$	6		0
			Total O	
28	ai	3		0
			Total O	
28	aj	6	6 6	0
	_		Total O	
28	ak	14	14 14	0
			Total O	
28	al	8	8 8	0
		0	Total O	
28	am	8	8 8	0
		~	Total O	0
28	an	5	5 - 5	0
		0	Total O	0
28	ao	2	2 2	

Mol	Chain	Residues	Atoms	AltConf
28	ар	8	Total O 8 8	0
28	bb	2	Total O 2 2	0
28	bc	2	Total O 2 2	0
28	bd	1	Total O 1 1	0
28	be	1	Total O 1 1	0
28	bf	1	Total O 1 1	0
28	bg	1	Total O 1 1	0
28	bh	2	Total O 2 2	0
28	bi	3	Total O 3 3	0
28	bk	4	Total O 4 4	0
28	bl	3	Total O 3 3	0
28	bm	4	Total O 4 4	0
28	bn	3	Total O 3 3	0
28	bo	2	Total O 2 2	0
28	bp	1	Total O 1 1	0

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: LHh-alpha

• Molecule 1: LHh-alpha

Chain AF:	89%	• 9%
M1 P49 P1A ALA ALA ARG ARG		
• Molecule 1: LHh-alpha		
Chain AG:	89%	• 9%
M1 PRO ALA ALA ARG		
• Molecule 1: LHh-alpha		
Chain AH:	89%	• 9%
M1 H2 P49 P40 ALA ALA ALA ALA ALA ALA		
• Molecule 1: LHh-alpha		
Chain AI:	89%	• 9%
M1 PR0 ALA ALA ARG		
• Molecule 1: LHh-alpha		
Chain AJ:	89%	• 9%
M1 P40 PR0 ALA ALA ALA ARG ARG		
• Molecule 1: LHh-alpha		
Chain AK:	89%	• 9%
M1 P49 PR0 ALA ALA ALA ARG ARG		
• Molecule 1: LHh-alpha		
Chain AL:	89%	• 9%
M1 PRO PRO ALA ALA ARG ARG		
• Molecule 1: LHh-alpha		

W O R L D W I D E PROTEIN DATA BANK

Chain AM:	89%	• 9%
M1 P49 P1A ALA ALA ARG ARG		
• Molecule 1: LHh-alpha		
Chain AN:	89%	• 9%
M1 P49 P1A A ALA A ALA A ARG ARG		
• Molecule 1: LHh-alpha		
Chain AO:	91%	9%
M1 P49 PR0 D ALA ALA ALA ARG ARG		
• Molecule 1: LHh-alpha		
Chain AP:	89%	9%
M1 PRO ALA ALA ARG		
• Molecule 1: LHh-alpha		
Chain AQ:	89%	• 9%
M1 PR0 ALA ALA ARG ARG		
• Molecule 1: LHh-alpha		
Chain AR:	89%	• 9%
M1 PR0 PR0 ALA ALA ARG ARG		
• Molecule 1: LHh-alpha		
Chain AS:	89% .	9%
M1 PR0 ALA ALA ARG ARG		

• Molecule 1: LHh-alpha

Chain AT:	91%	9%
M1 P49 PR0 ALA ALA ARG ARG		
• Molecule 1	: LHh-alpha	
Chain AU:	91%	9%
M1 P49 PR0 ALA ALA ALA ARG		
• Molecule 1	: LHh-alpha	
Chain AV:	89%	• 9%
M1 P49 PR0 ALA ALA ALA ARG		
• Molecule 1	: LHh-alpha	
Chain AW:	91%	9%
M1 P49 PR0 ALA ALA ALA ARG		
• Molecule 1	: LHh-alpha	
Chain AX:	91%	9%
M1 P49 PR0 ALA ALA ALA ALA ARG		
• Molecule 2	: Light-harvesting protein B:885 subunit beta	
Chain BA:	89%	11%
MET SER GLU CLYS GLY GG F44		
• Molecule 2	: Light-harvesting protein B:885 subunit beta	
Chain BB:	91%	9%
MET SER GLU LYS G5 F44		

• Molecule 2: Light-harvesting protein B:885 subunit beta

Chain BC:	89%	11%
MET SER SER GLU GLY GLY F44		
• Molecule 2:	Light-harvesting protein B:885 subunit beta	
Chain BD:	91%	9%
MET SER GLU LYS GS F44		
• Molecule 2:	Light-harvesting protein B:885 subunit beta	
Chain BE:	91%	9%
MET SER GLU LYS G5 F44		
• Molecule 2:	Light-harvesting protein B:885 subunit beta	
Chain BF:	89%	11%
MET SER GLU LYS GL F44		
• Molecule 2:	Light-harvesting protein B:885 subunit beta	
Chain BG:	89%	11%
MET SER GLU GLY GL F44		
• Molecule 2:	Light-harvesting protein B:885 subunit beta	
Chain BH:	86%	• 11%
MET SER GLU GLY GG R14 R14 F44		
• Molecule 2:	Light-harvesting protein B:885 subunit beta	
Chain BI:	91%	9%
MET SER GLU LYS G5 G5 F1 F44		
• Molecule 2:	Light-harvesting protein B:885 subunit beta	

Chain BJ:	89%	11%
MET SER GLU LYS GLY F44 F44		
• Molecule 2:	Light-harvesting protein B:885 subunit beta	
Chain BK:	86%	• 11%
MET SER GLU CLY GLY R13 R13 R13		
• Molecule 2:	Light-harvesting protein B:885 subunit beta	
Chain BL:	89%	11%
MET SER SER GLU GLY GG F44		
• Molecule 2:	Light-harvesting protein B:885 subunit beta	
Chain BM:	89%	11%
MET SER GLU GLV GLY F44		
• Molecule 2:	Light-harvesting protein B:885 subunit beta	
Chain BN:	89%	11%
MET SER GLU LYS GL F44		
• Molecule 2:	Light-harvesting protein B:885 subunit beta	
Chain BO:	89%	11%
MET SER GLU LYS GLY G6 F44		
• Molecule 2:	Light-harvesting protein B:885 subunit beta	
Chain BP:	89%	11%
MET SER GLU GLY GG F44		

• Molecule 2: Light-harvesting protein B:885 subunit beta

Chain BQ:		91%	9%
MET SER GLU LYS G5 F44			
• Molecule 2:	Light-harvesting protein	B:885 subunit beta	
Chain BR:		91%	9%
MET SER GLU LYS G5 G5 F44			
• Molecule 2:	Light-harvesting protein	B:885 subunit beta	
Chain BS:		91%	9%
MET SER GLU LYS G5 F44			
• Molecule 2:	Light-harvesting protein	B:885 subunit beta	
Chain BT:		91%	9%
MET SER GIU LYS G5 F44			
• Molecule 2:	Light-harvesting protein	B:885 subunit beta	
Chain BU:		89%	11%
MET SER GLU LYS GLY GG F44			
• Molecule 2:	Light-harvesting protein	B:885 subunit beta	
Chain BV:		91%	9%
MET SER GLU LYS G5 F44			
• Molecule 2:	Light-harvesting protein	B:885 subunit beta	
Chain BW:		91%	9%
MET SER GLU LYS G5 F44			
• Molecule 2:	Light-harvesting protein	B:885 subunit beta	

Chain BX:	89%	11%
MET SER GLU LYS GLY GF F44		
• Molecule 2: 1	Light-harvesting protein B:885 subunit beta	
Chain ba:	86%	• 11%
MET SER GLU CLY GLY GS M7 T8 E9 E10		
• Molecule 2: 1	Light-harvesting protein B:885 subunit beta	
Chain bb:	89%	11%
MET SER CLU LYS CLY GLY R R F F F F	4 4 4	
• Molecule 2: 1	Light-harvesting protein B:885 subunit beta	
Chain bc:	89%	11%
MET SER GLU LVS CLY GL GG E10 F44		
• Molecule 2: 1	Light-harvesting protein B:885 subunit beta	
Chain bd:	89%	11%
MET SER GLU LYS GLY GS GS F44		
• Molecule 2: 1	Light-harvesting protein B:885 subunit beta	
Chain be:	89%	11%
MET SER GLU LYS GLY GG		
• Molecule 2: 1	Light-harvesting protein B:885 subunit beta	
Chain bf:	89%	11%
MET SER GLU LIYS GG GG F44 F44		

 \bullet Molecule 2: Light-harvesting protein B:885 subunit beta

Chain bg:	89%	11%
MET SER GLU LYS GL F44		
• Molecule 2	: Light-harvesting protein B:885 subunit beta	
Chain bh:	89%	11%
MET SER GLU GLY GG F44		
• Molecule 2	: Light-harvesting protein B:885 subunit beta	
Chain bi:	89%	11%
MET SER GLU LYS GLY GG F44		
• Molecule 2	: Light-harvesting protein B:885 subunit beta	
Chain bj:	89%	11%
MET SER CLU LVS GLV GL BLO		
• Molecule 2	: Light-harvesting protein B:885 subunit beta	
Chain bk:	89%	11%
MET SER GLV GLY G6 F44		
• Molecule 2	: Light-harvesting protein B:885 subunit beta	
Chain bl:	89%	11%
MET SER GLU GLY GC F44		
• Molecule 2	: Light-harvesting protein B:885 subunit beta	
Chain bm:	89%	11%
MET SER GLU LYS GLY F44		

 \bullet Molecule 2: Light-harvesting protein B:885 subunit beta

Chain bn:	5%91%	9%	
MET SER GLU LYS G5 G6			
• Molecule	e 2: Light-harvesting protein B:885 subunit beta		
Chain bo:	86%	• 11%	
MET SER GLU GLY GG B13			
• Molecule	e 2: Light-harvesting protein B:885 subunit beta		
Chain bp:	89%	11%	
MET SER GLU LYS GLY G6 F44			
• Molecule	e 3: MULTIHEME_CYTC domain-containing protein		
Chain C:	83% •	16%	
MET VAL PRO VAL SER LEU LEU THR	LEU GLY GLY GLY GLY GLY AL5 BSF B55 B56 B56 B56 B51 B56 B51 B51 B51 B51 B51 B51 B51 B51 B51 B51	SER THR VAL VAL ALA ALA ALA ALA	ALA PRO ALA GLN ARG
THR SER ALA ARG PRO GLY SER VAL	THR PRO VAL GLY VAL ASN		
• Molecule	e 4: RC-S		
Chain C1:	51% 49%		
MET PRO SER PRO FRO LEU	PR0 SER SER ASN ALA ASN ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	THR ALA ALA ALA PRO ASP LEU ALA	VAL GLN ASP
SER THR LYS ALA ASP SER THR ALA	VAL ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP		
• Molecule	e 5: RC-U		
Chain C2:	79%	21%	
MET ASN MET HIS SER SER ASP ALA	THR SER PRO PRO PRO PRO PRO PRO PRO PO PO PO PO PO PO PO PO PO PO PO PO PO		
• Molecule	e 6: PRCH domain-containing protein		
Chain H1:	• 90%	• 7%	

• Molecule 7: RC-Hc

• Molecule 8: Photosynthetic reaction center L subunit

Chain L:	98%	·	
MET A1 247 C247 V249 W272			
• Molecule 9:	RC-M		
Chain M:	90%	• 9%	
MET LEU E3 P17 E18 P19 C20 C20	P24 P24 P24 P24 P24 P33 P33 P33 P33 P33 P33 P33 P33 P33 P3	PRO ASP ALA ALA ALA PRO TI F	VAL THA ASP SER ILE THR ASP SFS
THR LVS THR GLY GLY GLN			
• Molecule 10): LHC domain-containing protein		
Chain aa:	76% ·	23%	1
MET H2 R3 M7 M12	ASS BALA ALA ALA ALA ALA ALA ALA ALA ALA AL		
• Molecule 11	1: LHC domain-containing protein		
Chain ab:	80% •	18%	
M1 ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	PRO PRO GLY ARG		
• Molecule 11	1: LHC domain-containing protein		
Chain ac:	79%	21%	I
M1 A55 S56 ALA ALA ALA ALA ALA	ALA ALA SER SER PRO PRO GLY ARG ARG		

• Molecule 11: Ll	HC domain-containing protein	
Chain ad:	82%	• 15%
M1 839 469 460 A60 ALA ALA ALA ALA ALA PRO	LEU PRO GLY ARG	
• Molecule 11: Ll	HC domain-containing protein	
Chain ae:	79%	• 18%
M1 R3 S39 A57 ALA ALA ALA ALA	MET SER SER SER SER PRO GLY ARG ARG	
• Molecule 11: Ll	HC domain-containing protein	
Chain af:	80%	• 18%
M1 457 758 71A ALA ALA ALA ALA ALA ALA ALA ALA ALA A	LEU PRO GLY ARG	
• Molecule 11: Ll	HC domain-containing protein	
Chain ag:	82%	18%
M1 S56 A57 A57 A1A ALA ALA ALA ALA CLU MET SER	PRO PRO GLY ARG	
• Molecule 11: Ll 6%	HC domain-containing protein	
Chain ah:	83%	• 15%
M1 55 758 758 758 760 710 710 710 710 710 710 710 710 710 71	LEU PRO GLY ARG	
• Molecule 11: Ll	HC domain-containing protein	
Chain ai:	82%	• 15%
M1 H2 R3 A55 A55 A56 A1A A1A A1A A1A A1A	MET PRO LEU PRO GLY ARG	
• Molecule 11: Ll	HC domain-containing protein	
Chain aj:	83%	• 15%
v		

• Molecule 12: alpha-L-rhamnopyranose-(1-4)-alpha-D-mannopyranose

Chain MG:	100%
MAN1 RAM2	
• Molecule 12: alpha	-L-rhamnopyranose-(1-4)-alpha-D-mannopyranose
Chain CG:	100%
MAN1 RAM2	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	73853	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	24.8	Depositor
Minimum defocus (nm)	-800	Depositor
Maximum defocus (nm)	-2400	Depositor
Magnification	120000	Depositor
Image detector	FEI FALCON IV (4k x 4k)	Depositor
Maximum map value	0.204	Depositor
Minimum map value	-0.061	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.005	Depositor
Recommended contour level	0.0292	Depositor
Map size (Å)	399.784, 399.784, 399.784	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.99946, 0.99946, 0.99946	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: HEC, CRT, V7B, NDG, UYH, RAM, LMT, MAN, FE, 0V9, BCL, FME, BPH, CD4, PGW, V75, MQ8, V7N

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

MotChainRMSZ $\# Z > 5$ RMSZ $\# Z > 5$ 1AA0.240/3960.490/5411AB0.240/3960.500/5411AC0.250/3880.520/5291AD0.250/3880.520/5411AF0.240/3960.500/5411AF0.240/3960.500/5411AF0.240/3960.500/5411AH0.240/3960.500/5411AH0.240/3960.510/5411AH0.240/3960.520/5411AK0.250/3960.510/5411AK0.250/3960.510/5411AK0.240/3960.520/5411AM0.240/3960.530/5411AM0.240/3960.530/5411AN0.240/3960.500/5411AQ0.240/3960.500/5411AR0.240/3960.530/5411AR0.240/3960.530/5411AR0.240/3960.510/5411AR0.240/3960.530/5411AR0.240/3960.530/5411AV0.240/3960.530/541 <t< th=""><th>Mal</th><th>Chain</th><th>Bond</th><th>lengths</th><th colspan="3">Bond angles</th></t<>	Mal	Chain	Bond	lengths	Bond angles		
1AA 0.24 $0/396$ 0.49 $0/541$ 1AB 0.24 $0/396$ 0.50 $0/541$ 1AC 0.25 $0/388$ 0.53 $0/529$ 1AD 0.25 $0/388$ 0.52 $0/541$ 1AE 0.24 $0/396$ 0.52 $0/541$ 1AF 0.24 $0/396$ 0.50 $0/541$ 1AG 0.25 $0/396$ 0.50 $0/541$ 1AH 0.24 $0/396$ 0.52 $0/541$ 1AI 0.24 $0/396$ 0.52 $0/541$ 1AK 0.25 $0/396$ 0.51 $0/541$ 1AK 0.25 $0/396$ 0.52 $0/541$ 1AN 0.24 $0/396$ 0.53 $0/541$ 1AN 0.24 $0/396$ 0.53 $0/541$ 1AQ 0.24 $0/396$ 0.51 $0/541$ 1AQ 0.24 $0/396$ 0.53 $0/541$ 1AR 0.24 $0/396$ 0.53 $0/541$ 1AR 0.24 $0/396$ 0.53 $0/541$ 1AR 0.24 $0/396$ 0.53 $0/541$ 1AV 0.24 $0/396$ 0.53 $0/541$ 1 <th></th> <th>Ullalli</th> <th>RMSZ</th> <th># Z > 5</th> <th>RMSZ</th> <th># Z > 5</th>		Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1AB 0.24 $0/396$ 0.50 $0/541$ 1AC 0.25 $0/388$ 0.53 $0/529$ 1AD 0.25 $0/388$ 0.52 $0/541$ 1AE 0.24 $0/396$ 0.50 $0/541$ 1AF 0.24 $0/396$ 0.50 $0/541$ 1AG 0.25 $0/396$ 0.50 $0/541$ 1AH 0.24 $0/396$ 0.50 $0/541$ 1AH 0.24 $0/396$ 0.50 $0/541$ 1AH 0.24 $0/396$ 0.50 $0/541$ 1AJ 0.24 $0/396$ 0.52 $0/541$ 1AK 0.25 $0/396$ 0.51 $0/541$ 1AK 0.25 $0/396$ 0.51 $0/541$ 1AM 0.24 $0/396$ 0.53 $0/541$ 1AN 0.24 $0/396$ 0.53 $0/541$ 1AO 0.23 $0/396$ 0.51 $0/541$ 1AQ 0.24 $0/396$ 0.51 $0/541$ 1AR 0.24 $0/396$ 0.53 $0/541$ 1AR 0.24 $0/396$ 0.51 $0/541$ 1AV 0.24 $0/396$ 0.51 $0/541$ 1 <td>1</td> <td>AA</td> <td>0.24</td> <td>0/396</td> <td>0.49</td> <td>0/541</td>	1	AA	0.24	0/396	0.49	0/541	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AB	0.24	0/396	0.50	0/541	
1AD 0.25 $0/388$ 0.52 $0/529$ 1AE 0.24 $0/396$ 0.52 $0/541$ 1AF 0.24 $0/396$ 0.50 $0/541$ 1AG 0.25 $0/396$ 0.50 $0/541$ 1AH 0.24 $0/396$ 0.51 $0/541$ 1AI 0.24 $0/396$ 0.52 $0/541$ 1AJ 0.24 $0/396$ 0.52 $0/541$ 1AK 0.25 $0/396$ 0.51 $0/541$ 1AK 0.25 $0/396$ 0.52 $0/541$ 1AK 0.24 $0/396$ 0.52 $0/541$ 1AM 0.24 $0/396$ 0.53 $0/541$ 1AN 0.24 $0/396$ 0.53 $0/541$ 1AO 0.23 $0/396$ 0.50 $0/541$ 1AQ 0.24 $0/396$ 0.51 $0/541$ 1AQ 0.24 $0/396$ 0.53 $0/541$ 1AR 0.24 $0/396$ 0.53 $0/541$ 1AR 0.24 $0/396$ 0.53 $0/541$ 1AV 0.24 $0/396$ 0.53 $0/541$ 1AV 0.24 $0/396$ 0.51 $0/541$ 1 <td>1</td> <td>AC</td> <td>0.25</td> <td>0/388</td> <td>0.53</td> <td>0/529</td>	1	AC	0.25	0/388	0.53	0/529	
1AE 0.24 $0/396$ 0.52 $0/541$ 1AF 0.24 $0/396$ 0.50 $0/541$ 1AG 0.25 $0/396$ 0.50 $0/541$ 1AH 0.24 $0/396$ 0.51 $0/541$ 1AI 0.24 $0/396$ 0.52 $0/541$ 1AJ 0.24 $0/396$ 0.52 $0/541$ 1AK 0.25 $0/396$ 0.51 $0/541$ 1AK 0.25 $0/396$ 0.51 $0/541$ 1AK 0.24 $0/396$ 0.52 $0/541$ 1AM 0.24 $0/396$ 0.48 $0/541$ 1AN 0.24 $0/396$ 0.53 $0/541$ 1AO 0.23 $0/396$ 0.50 $0/541$ 1AQ 0.24 $0/396$ 0.51 $0/541$ 1AQ 0.24 $0/396$ 0.50 $0/541$ 1AR 0.24 $0/396$ 0.53 $0/541$ 1AR 0.24 $0/396$ 0.53 $0/541$ 1AV 0.24 $0/396$ 0.53 $0/541$ 1AV 0.24 $0/396$ 0.51 $0/541$ 1 <td>1</td> <td>AD</td> <td>0.25</td> <td>0/388</td> <td>0.52</td> <td>0/529</td>	1	AD	0.25	0/388	0.52	0/529	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AE	0.24	0/396	0.52	0/541	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AF	0.24	0/396	0.50	0/541	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AG	0.25	0/396	0.50	0/541	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	AH	0.24	0/396	0.51	0/541	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AI	0.24	0/396	0.50	0/541	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AJ	0.24	0/396	0.52	0/541	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AK	0.25	0/396	0.51	0/541	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AL	0.24	0/396	0.52	0/541	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AM	0.24	0/396	0.48	0/541	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AN	0.24	0/396	0.53	0/541	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AO	0.23	0/396	0.50	0/541	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AP	0.24	0/396	0.49	0/541	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	AQ	0.24	0/396	0.51	0/541	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AR	0.24	0/396	0.50	0/541	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AS	0.24	0/396	0.53	0/541	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AT	0.24	0/396	0.52	0/541	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AU	0.24	0/396	0.50	0/541	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AV	0.24	0/396	0.51	0/541	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AW	0.24	0/396	0.53	0/541	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	AX	0.24	0/396	0.51	0/541	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	BA	0.24	0/336	0.50	0/456	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	BB	0.25	0/340	0.49	0/461	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	BC	0.24	0/336	0.49	0/456	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	BD	0.25	0/340	0.50	0/461	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	BE	0.25	0/340	0.49	0/461	
2 BG 0.24 0/336 0.49 0/456	2	BF	0.24	0/336	0.50	0/456	
	2	BG	0.24	0/336	0.49	0/456	

Mal	Chain	Bond lengths		Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
2	BH	0.24	0/336	0.48	0/456	
2	BI	0.25	0/340	0.49	0/461	
2	BJ	0.24	0/336	0.49	0/456	
2	BK	0.24	0/336	0.50	0/456	
2	BL	0.25	0/336	0.54	0/456	
2	BM	0.25	0/336	0.51	0/456	
2	BN	0.25	0/336	0.51	0/456	
2	BO	0.24	0/336	0.51	0/456	
2	BP	0.24	0/336	0.51	0/456	
2	BQ	0.24	0/340	0.50	0/461	
2	BR	0.26	0/340	0.52	0/461	
2	BS	0.24	0/340	0.49	0/461	
2	BT	0.24	0/340	0.52	0/461	
2	BU	0.24	0/336	0.50	0/456	
2	BV	0.24	0/340	0.50	0/461	
2	BW	0.24	0/340	0.49	0/461	
2	BX	0.24	0/336	0.48	0/456	
2	ba	0.25	0/336	0.53	0/456	
2	bb	0.24	0/336	0.49	0/456	
2	bc	0.25	0/336	0.51	0/456	
2	bd	0.26	0/336	0.49	0/456	
2	be	0.26	0/336	0.53	0/456	
2	bf	0.24	0/336	0.48	0/456	
2	bg	0.26	0/336	0.51	0/456	
2	bh	0.24	0/336	0.49	0/456	
2	bi	0.27	0/336	0.51	0/456	
2	bj	0.27	0/336	0.52	0/456	
2	bk	0.26	0/336	0.52	0/456	
2	bl	0.25	0/336	0.49	0/456	
2	bm	0.26	0/336	0.50	0/456	
2	bn	0.25	0/340	0.50	0/461	
2	bo	0.25	0/336	0.49	0/456	
2	bp	0.25	0/336	0.49	0/456	
3	С	0.27	0/2392	0.55	0/3263	
4	C1	0.24	0/826	0.58	0/1128	
5	C2	0.24	0/787	0.56	0/1075	
6	H1	0.27	0/531	0.52	0/717	
7	H2	0.25	0/1443	0.55	0/1970	
8	L	0.25	0/2252	0.51	0/3081	
9	М	0.26	0/2795	0.54	0/3824	
10	aa	0.24	0/444	0.54	0/605	
11	ab	0.25	0/457	0.51	0/624	
11	ac	0.26	0/444	0.55	0/605	

Mal	Chain	Bond	lengths	Bond angles		
IVIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
11	ad	0.25	0/467	0.54	0/638	
11	ae	0.26	0/457	0.53	0/624	
11	af	0.25	0/457	0.52	0/624	
11	ag	0.25	0/457	0.56	0/624	
11	ah	0.26	0/467	0.54	0/638	
11	ai	0.25	0/467	0.53	0/638	
11	aj	0.25	0/467	0.55	0/638	
11	ak	0.27	0/547	0.53	0/748	
11	al	0.26	0/467	0.54	0/638	
11	am	0.26	0/467	0.53	0/638	
11	an	0.26	0/547	0.55	0/748	
11	ao	0.26	0/467	0.55	0/638	
11	ар	0.25	0/548	0.55	0/748	
All	All	0.25	0/41625	0.52	0/56729	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	AH	0	1
2	BH	0	1
2	bo	0	1
3	С	0	1
6	H1	0	1
7	H2	0	1
8	L	0	1
9	М	0	1
11	ae	0	1
11	ai	0	1
All	All	0	10

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

5 of 10 planarity outliers are listed below:

1 AH 3 ARG Sidecha	p	Group	Type	Res	Chain	Mol
	ain	Sidechair	ARG	3	AH	1
2 BH 14 ARG Sidecha	ain	Sidechai	ARG	14	BH	2

Continued from previous page...

Mol	Chain	Res	Type	Group
3	С	170	ARG	Sidechain
6	H1	59	ARG	Sidechain
7	H2	55	ARG	Sidechain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	AA	47/54~(87%)	47 (100%)	0	0	100	100
1	AB	47/54~(87%)	47 (100%)	0	0	100	100
1	AC	46/54~(85%)	46 (100%)	0	0	100	100
1	AD	46/54~(85%)	46 (100%)	0	0	100	100
1	AE	47/54~(87%)	47 (100%)	0	0	100	100
1	AF	47/54~(87%)	47 (100%)	0	0	100	100
1	AG	47/54~(87%)	47 (100%)	0	0	100	100
1	AH	47/54~(87%)	47 (100%)	0	0	100	100
1	AI	47/54~(87%)	47 (100%)	0	0	100	100
1	AJ	47/54~(87%)	47 (100%)	0	0	100	100
1	AK	47/54~(87%)	47 (100%)	0	0	100	100
1	AL	47/54~(87%)	46 (98%)	1 (2%)	0	100	100
1	AM	47/54~(87%)	47 (100%)	0	0	100	100
1	AN	47/54~(87%)	47 (100%)	0	0	100	100
1	AO	47/54 (87%)	46 (98%)	1 (2%)	0	100	100
1	AP	47/54 (87%)	47 (100%)	0	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	AQ	47/54~(87%)	47 (100%)	0	0	100	100
1	AR	47/54~(87%)	47 (100%)	0	0	100	100
1	AS	47/54~(87%)	47 (100%)	0	0	100	100
1	AT	47/54~(87%)	47 (100%)	0	0	100	100
1	AU	47/54~(87%)	47 (100%)	0	0	100	100
1	AV	47/54~(87%)	47 (100%)	0	0	100	100
1	AW	47/54~(87%)	46 (98%)	1 (2%)	0	100	100
1	AX	47/54~(87%)	47 (100%)	0	0	100	100
2	BA	37/44~(84%)	36 (97%)	1 (3%)	0	100	100
2	BB	38/44~(86%)	37 (97%)	1 (3%)	0	100	100
2	BC	37/44~(84%)	37 (100%)	0	0	100	100
2	BD	38/44~(86%)	38 (100%)	0	0	100	100
2	BE	38/44~(86%)	38 (100%)	0	0	100	100
2	BF	37/44~(84%)	37 (100%)	0	0	100	100
2	BG	37/44~(84%)	37 (100%)	0	0	100	100
2	BH	37/44~(84%)	37 (100%)	0	0	100	100
2	BI	38/44~(86%)	38 (100%)	0	0	100	100
2	BJ	37/44~(84%)	37 (100%)	0	0	100	100
2	BK	37/44~(84%)	37 (100%)	0	0	100	100
2	BL	37/44~(84%)	37 (100%)	0	0	100	100
2	BM	37/44~(84%)	37 (100%)	0	0	100	100
2	BN	37/44~(84%)	37 (100%)	0	0	100	100
2	BO	37/44~(84%)	37 (100%)	0	0	100	100
2	BP	37/44~(84%)	37 (100%)	0	0	100	100
2	BQ	38/44~(86%)	38 (100%)	0	0	100	100
2	BR	38/44~(86%)	38 (100%)	0	0	100	100
2	BS	38/44~(86%)	38 (100%)	0	0	100	100
2	BT	38/44~(86%)	38 (100%)	0	0	100	100
2	BU	37/44~(84%)	37 (100%)	0	0	100	100
2	BV	38/44~(86%)	38 (100%)	0	0	100	100
2	BW	38/44~(86%)	38 (100%)	0	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	BX	37/44~(84%)	37 (100%)	0	0	100	100
2	ba	37/44~(84%)	37 (100%)	0	0	100	100
2	bb	37/44 (84%)	37 (100%)	0	0	100	100
2	bc	37/44~(84%)	37 (100%)	0	0	100	100
2	bd	37/44~(84%)	37 (100%)	0	0	100	100
2	be	37/44~(84%)	37 (100%)	0	0	100	100
2	bf	37/44~(84%)	37 (100%)	0	0	100	100
2	bg	37/44~(84%)	37 (100%)	0	0	100	100
2	bh	37/44~(84%)	37 (100%)	0	0	100	100
2	bi	37/44~(84%)	37 (100%)	0	0	100	100
2	bj	37/44~(84%)	37 (100%)	0	0	100	100
2	bk	37/44~(84%)	36~(97%)	1 (3%)	0	100	100
2	bl	37/44~(84%)	37 (100%)	0	0	100	100
2	bm	37/44~(84%)	37 (100%)	0	0	100	100
2	bn	38/44~(86%)	37~(97%)	1 (3%)	0	100	100
2	bo	37/44~(84%)	36 (97%)	1 (3%)	0	100	100
2	bp	37/44~(84%)	37 (100%)	0	0	100	100
3	С	297/354~(84%)	283 (95%)	13 (4%)	1 (0%)	41	49
4	C1	101/202~(50%)	97~(96%)	4 (4%)	0	100	100
5	C2	97/125~(78%)	96~(99%)	1 (1%)	0	100	100
6	H1	60/67~(90%)	60 (100%)	0	0	100	100
7	H2	178/181 (98%)	173 (97%)	5(3%)	0	100	100
8	L	271/274~(99%)	263~(97%)	8 (3%)	0	100	100
9	М	333/367~(91%)	324 (97%)	9(3%)	0	100	100
10	aa	53/71~(75%)	53 (100%)	0	0	100	100
11	ab	56/71~(79%)	55~(98%)	1 (2%)	0	100	100
11	ac	54/71~(76%)	52 (96%)	2 (4%)	0	100	100
11	ad	58/71~(82%)	57 (98%)	1 (2%)	0	100	100
11	ae	56/71~(79%)	55~(98%)	1 (2%)	0	100	100
11	af	56/71~(79%)	55~(98%)	1 (2%)	0	100	100
11	ag	56/71~(79%)	55~(98%)	1 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
11	ah	58/71~(82%)	58 (100%)	0	0	100	100
11	ai	58/71~(82%)	56~(97%)	2(3%)	0	100	100
11	aj	58/71~(82%)	57~(98%)	1 (2%)	0	100	100
11	ak	69/71~(97%)	66~(96%)	3~(4%)	0	100	100
11	al	58/71~(82%)	57~(98%)	1 (2%)	0	100	100
11	am	58/71~(82%)	57~(98%)	1 (2%)	0	100	100
11	an	69/71~(97%)	64 (93%)	5 (7%)	0	100	100
11	ao	58/71~(82%)	57~(98%)	1 (2%)	0	100	100
11	ар	69/71 $(97%)$	69 (100%)	0	0	100	100
All	All	4898/5762 (85%)	4828 (99%)	69 (1%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
3	С	25	ARG

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	AA	38/41~(93%)	38 (100%)	0	100 100
1	AB	38/41~(93%)	38 (100%)	0	100 100
1	AC	37/41~(90%)	37 (100%)	0	100 100
1	AD	37/41~(90%)	37~(100%)	0	100 100
1	AE	38/41~(93%)	38 (100%)	0	100 100
1	AF	38/41~(93%)	38 (100%)	0	100 100
1	AG	38/41~(93%)	38 (100%)	0	100 100
1	AH	38/41~(93%)	38 (100%)	0	100 100
1	AI	38/41~(93%)	38 (100%)	0	100 100

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles	
1	AJ	38/41~(93%)	38 (100%)	0	100	100	
1	AK	38/41~(93%)	38 (100%)	0	100	100	
1	AL	38/41~(93%)	38 (100%)	0	100	100	
1	AM	38/41~(93%)	38 (100%)	0	100	100	
1	AN	38/41~(93%)	38 (100%)	0	100	100	
1	AO	38/41~(93%)	38 (100%)	0	100	100	
1	AP	38/41~(93%)	38 (100%)	0	100	100	
1	AQ	38/41~(93%)	38 (100%)	0	100	100	
1	AR	38/41~(93%)	38 (100%)	0	100	100	
1	AS	38/41~(93%)	38 (100%)	0	100	100	
1	AT	38/41~(93%)	38 (100%)	0	100	100	
1	AU	38/41~(93%)	38 (100%)	0	100	100	
1	AV	38/41~(93%)	38 (100%)	0	100	100	
1	AW	38/41~(93%)	38 (100%)	0	100	100	
1	AX	38/41~(93%)	38 (100%)	0	100	100	
2	BA	31/35~(89%)	31 (100%)	0	100	100	
2	BB	31/35~(89%)	31 (100%)	0	100	100	
2	BC	31/35~(89%)	31 (100%)	0	100	100	
2	BD	31/35~(89%)	31 (100%)	0	100	100	
2	BE	31/35~(89%)	31 (100%)	0	100	100	
2	BF	31/35~(89%)	31 (100%)	0	100	100	
2	BG	31/35~(89%)	31 (100%)	0	100	100	
2	BH	31/35~(89%)	31 (100%)	0	100	100	
2	BI	31/35~(89%)	31 (100%)	0	100	100	
2	BJ	31/35~(89%)	31 (100%)	0	100	100	
2	BK	31/35~(89%)	30 (97%)	1 (3%)	39	50	
2	BL	31/35~(89%)	31 (100%)	0	100	100	
2	BM	31/35~(89%)	31 (100%)	0	100	100	
2	BN	31/35~(89%)	31 (100%)	0	100	100	
2	BO	31/35~(89%)	31 (100%)	0	100	100	
2	BP	31/35~(89%)	31 (100%)	0	100	100	

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	BQ	31/35~(89%)	31~(100%)	0	100	100
2	BR	31/35~(89%)	31 (100%)	0	100	100
2	BS	31/35~(89%)	31 (100%)	0	100	100
2	BT	31/35~(89%)	31 (100%)	0	100	100
2	BU	31/35~(89%)	31 (100%)	0	100	100
2	BV	31/35~(89%)	31 (100%)	0	100	100
2	BW	31/35~(89%)	31 (100%)	0	100	100
2	BX	31/35~(89%)	31 (100%)	0	100	100
2	ba	31/35~(89%)	30~(97%)	1 (3%)	39	50
2	bb	31/35~(89%)	31 (100%)	0	100	100
2	bc	31/35~(89%)	31 (100%)	0	100	100
2	bd	31/35~(89%)	31 (100%)	0	100	100
2	be	31/35~(89%)	31 (100%)	0	100	100
2	bf	31/35~(89%)	31 (100%)	0	100	100
2	bg	31/35~(89%)	31 (100%)	0	100	100
2	bh	31/35~(89%)	31 (100%)	0	100	100
2	bi	31/35~(89%)	31 (100%)	0	100	100
2	bj	31/35~(89%)	31 (100%)	0	100	100
2	bk	31/35~(89%)	31 (100%)	0	100	100
2	bl	31/35~(89%)	31 (100%)	0	100	100
2	bm	31/35~(89%)	31 (100%)	0	100	100
2	bn	31/35~(89%)	31 (100%)	0	100	100
2	bo	31/35~(89%)	31 (100%)	0	100	100
2	bp	31/35~(89%)	31 (100%)	0	100	100
3	С	245/285~(86%)	242 (99%)	3 (1%)	71	81
4	C1	88/156~(56%)	88 (100%)	0	100	100
5	C2	70/95~(74%)	70 (100%)	0	100	100
6	H1	50/53~(94%)	50 (100%)	0	100	100
7	H2	150/151~(99%)	149 (99%)	1 (1%)	84	90
8	L	215/216~(100%)	212 (99%)	3 (1%)	67	78
9	М	273/299~(91%)	271 (99%)	2 (1%)	84	90

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
10	aa	45/55~(82%)	44 (98%)	1 (2%)	52	64
11	ab	46/54~(85%)	46 (100%)	0	100	100
11	ac	45/54~(83%)	45 (100%)	0	100	100
11	ad	46/54~(85%)	45 (98%)	1 (2%)	52	64
11	ae	46/54~(85%)	45 (98%)	1 (2%)	52	64
11	af	46/54~(85%)	46 (100%)	0	100	100
11	ag	46/54~(85%)	46 (100%)	0	100	100
11	ah	46/54~(85%)	46 (100%)	0	100	100
11	ai	46/54~(85%)	46 (100%)	0	100	100
11	aj	46/54~(85%)	46 (100%)	0	100	100
11	ak	54/54~(100%)	53~(98%)	1 (2%)	57	69
11	al	46/54~(85%)	46 (100%)	0	100	100
11	am	46/54~(85%)	46 (100%)	0	100	100
11	an	54/54~(100%)	54 (100%)	0	100	100
11	ao	46/54~(85%)	46 (100%)	0	100	100
11	ар	54/54~(100%)	52 (96%)	2 (4%)	34	45
All	All	3999/4504 (89%)	3982 (100%)	17 (0%)	91	94

5 of 17 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
11	ар	11	ARG
2	ba	13	ARG
8	L	272	TRP
9	М	215	PHE
9	М	291	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 9 such sidechains are listed below:

Mol	Chain	Res	Type
8	L	116	HIS
9	М	110	ASN
5	C2	24	HIS
7	H2	12	ASN
7	H2	119	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

40 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Tink	Bond lengths		Bond angles			
	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
11	FME	ad	1	11	8,9,10	0.90	0	$7,\!9,\!11$	1.31	1 (14%)
1	FME	AW	1	1	8,9,10	0.89	0	$7,\!9,\!11$	0.96	0
1	FME	AG	1	1	8,9,10	0.89	0	7, 9, 11	1.22	1 (14%)
11	FME	ae	1	11	8,9,10	0.92	0	7,9,11	0.91	0
1	FME	AH	1	1	8,9,10	0.93	0	7,9,11	0.97	0
1	FME	AR	1	1	8,9,10	0.94	0	$7,\!9,\!11$	0.96	1 (14%)
1	FME	AK	1	1	8,9,10	0.92	0	7,9,11	1.10	1 (14%)
11	FME	ab	1	11	8,9,10	0.91	0	7,9,11	1.30	1 (14%)
1	FME	AM	1	1	8,9,10	0.93	0	7,9,11	1.01	1 (14%)
1	FME	AD	1	1	8,9,10	0.92	0	7,9,11	1.12	1 (14%)
11	FME	ag	1	11	8,9,10	0.90	0	7,9,11	1.01	0
11	FME	ah	1	11	8,9,10	0.92	0	7,9,11	1.21	1 (14%)
1	FME	AV	1	1	8,9,10	0.96	0	7,9,11	0.95	1 (14%)
11	FME	an	1	11	8,9,10	0.96	0	7,9,11	1.03	1 (14%)
1	FME	AO	1	1	8,9,10	0.94	0	7,9,11	0.95	0
11	FME	aj	1	11	8,9,10	0.92	0	7,9,11	1.14	1 (14%)
11	FME	ар	1	11	8,9,10	0.92	0	7,9,11	0.99	0
1	FME	AU	1	1	8,9,10	0.96	0	$7,\!9,\!11$	0.95	0
1	FME	AX	1	1	8,9,10	0.97	0	$7,\!9,\!11$	0.90	0
1	FME	AI	1	1	8,9,10	0.95	0	$7,\!9,\!11$	0.98	1 (14%)
1	FME	AB	1	1	8,9,10	0.91	0	7,9,11	1.08	1 (14%)
11	FME	ao	1	11	8,9,10	0.94	0	7,9,11	1.06	1 (14%)
11	FME	ai	1	11	8,9,10	0.95	0	7,9,11	1.17	1 (14%)
11	FME	ak	1	11	8,9,10	0.94	0	$7,\!9,\!11$	1.02	1 (14%)

Mol	Type	Chain	Bos	Link	В	ond leng	gths	B	Bond ang	gles
IVIOI	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
1	FME	AL	1	1	8,9,10	0.93	0	7,9,11	1.09	1 (14%)
1	FME	AN	1	1	8,9,10	0.91	0	7,9,11	1.10	1 (14%)
1	FME	AP	1	1	8,9,10	0.91	0	7,9,11	1.04	1 (14%)
1	FME	AS	1	1	8,9,10	0.93	0	7,9,11	1.15	1 (14%)
11	FME	am	1	11	8,9,10	0.93	0	7,9,11	0.70	0
1	FME	AF	1	1	8,9,10	0.91	0	7,9,11	1.36	2 (28%)
1	FME	AT	1	1	8,9,10	0.94	0	7,9,11	0.90	0
1	FME	AC	1	1	8,9,10	0.91	0	7,9,11	1.37	2 (28%)
6	FME	H1	1	6	8,9,10	0.92	0	7,9,11	1.13	1 (14%)
1	FME	AE	1	1	8,9,10	0.93	0	7,9,11	1.08	1 (14%)
1	FME	AQ	1	1	8,9,10	0.91	0	7,9,11	1.21	1 (14%)
11	FME	ac	1	11	8,9,10	0.96	0	7,9,11	1.02	0
11	FME	al	1	11	8,9,10	0.94	0	7,9,11	1.14	1 (14%)
1	FME	AJ	1	1	8,9,10	0.93	0	7,9,11	1.04	1 (14%)
1	FME	AA	1	1	8,9,10	0.93	0	7,9,11	1.08	1 (14%)
11	FME	af	1	11	8,9,10	0.91	0	7,9,11	1.29	1 (14%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
11	FME	ad	1	11	-	2/7/9/11	-
1	FME	AW	1	1	-	3/7/9/11	-
1	FME	AG	1	1	-	1/7/9/11	-
11	FME	ae	1	11	-	0/7/9/11	-
1	FME	AH	1	1	-	0/7/9/11	-
1	FME	AR	1	1	-	0/7/9/11	-
1	FME	AK	1	1	-	1/7/9/11	-
11	FME	ab	1	11	-	0/7/9/11	-
1	FME	AM	1	1	-	2/7/9/11	-
1	FME	AD	1	1	-	1/7/9/11	-
11	FME	ag	1	11	-	1/7/9/11	-
11	FME	ah	1	11	-	1/7/9/11	-
1	FME	AV	1	1	-	0/7/9/11	-
11	FME	an	1	11	-	0/7/9/11	-
1	FME	AO	1	1	-	0/7/9/11	-
11	FME	aj	1	11	-	0/7/9/11	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
11	FME	ар	1	11	-	1/7/9/11	-
1	FME	AU	1	1	-	0/7/9/11	-
1	FME	AX	1	1	-	1/7/9/11	-
1	FME	AI	1	1	-	0/7/9/11	-
1	FME	AB	1	1	-	2/7/9/11	-
11	FME	ao	1	11	-	0/7/9/11	-
11	FME	ai	1	11	-	0/7/9/11	-
11	FME	ak	1	11	-	1/7/9/11	-
1	FME	AL	1	1	-	0/7/9/11	-
1	FME	AN	1	1	-	2/7/9/11	-
1	FME	AP	1	1	-	1/7/9/11	-
1	FME	AS	1	1	-	1/7/9/11	-
11	FME	am	1	11	-	1/7/9/11	-
1	FME	AF	1	1	-	1/7/9/11	-
1	FME	AT	1	1	-	1/7/9/11	-
1	FME	AC	1	1	-	0/7/9/11	-
6	FME	H1	1	6	-	2/7/9/11	-
1	FME	AE	1	1	-	0/7/9/11	-
1	FME	AQ	1	1	-	1/7/9/11	-
11	FME	ac	1	11	-	1/7/9/11	-
11	FME	al	1	11	-	0/7/9/11	-
1	FME	AJ	1	1	-	0/7/9/11	-
1	FME	AA	1	1	-	1/7/9/11	-
11	FME	af	1	11	-	0/7/9/11	-

There are no bond length outliers.

The worst 5 of 31 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
11	ad	1	FME	C-CA-N	2.85	114.88	109.73
11	af	1	FME	C-CA-N	2.85	114.87	109.73
11	ab	1	FME	C-CA-N	2.77	114.72	109.73
11	ah	1	FME	C-CA-N	2.64	114.49	109.73
1	AC	1	FME	C-CA-N	2.58	114.39	109.73

There are no chirality outliers.

5 of 29 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
11	ah	1	FME	O-C-CA-CB
1	AB	1	FME	O-C-CA-CB

Continued from previous page...

Mol	Chain	Res	Type	Atoms
1	AK	1	FME	O-C-CA-CB
1	AM	1	FME	O-C-CA-CB
1	AN	1	FME	O-C-CA-CB

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

4 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Res	Tink	Bo	ond leng	$_{\rm sths}$	Bond angles			
1VIOI	туре	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
12	MAN	CG	1	3,18,12	11,11,12	0.81	1 (9%)	15,15,17	1.06	1 (6%)	
12	RAM	CG	2	12	10,10,11	1.76	2 (20%)	14,14,16	0.81	0	
12	MAN	MG	1	9,18,12	11,11,12	0.92	0	15,15,17	1.15	1 (6%)	
12	RAM	MG	2	12	10,10,11	1.85	3 (30%)	14,14,16	2.17	4 (28%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
12	MAN	CG	1	3,18,12	-	2/2/19/22	0/1/1/1
12	RAM	CG	2	12	-	-	0/1/1/1
12	MAN	MG	1	9,18,12	-	0/2/19/22	0/1/1/1
12	RAM	MG	2	12	-	-	0/1/1/1

The worst 5 of 6 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(\text{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
12	MG	2	RAM	O5-C1	4.43	1.50	1.43
12	CG	2	RAM	O5-C1	4.34	1.50	1.43
12	MG	2	RAM	C2-C3	-2.66	1.48	1.52
12	CG	2	RAM	C2-C3	-2.38	1.49	1.52
12	CG	1	MAN	O5-C1	-2.23	1.40	1.43

The worst 5 of 6 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
12	MG	2	RAM	O5-C5-C4	4.15	116.97	109.52
12	MG	2	RAM	C6-C5-C4	-4.12	105.45	113.07
12	MG	2	RAM	C3-C4-C5	3.84	115.76	109.77
12	MG	1	MAN	C1-O5-C5	3.37	116.76	112.19
12	MG	2	RAM	C1-C2-C3	2.59	112.85	109.67

There are no chirality outliers.

All (2) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
12	CG	1	MAN	O5-C5-C6-O6
12	CG	1	MAN	C4-C5-C6-O6

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

Of 312 ligands modelled in this entry, 1 is monoatomic - leaving 311 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Ty	Turne	Chain	Dec	Tink	B	ond leng	gths	Bond angles		
	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
13	BCL	AV	103	28	58,74,74	1.26	3 (5%)	69,115,115	1.38	11 (15%)
13	BCL	ak	1001	-	58,74,74	1.23	4 (6%)	69,115,115	1.35	10 (14%)
15	V7N	AE	1003	_	40,44,44	2.10	10 (25%)	40,54,54	1.50	7 (17%)

Mol	Type	Chain	Dog	Link	В	ond leng	gths	Bo	ond ang	es
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
20	0V9	ba	102	-	44,44,46	0.75	1 (2%)	47,49,51	0.87	1 (2%)
14	LMT	bl	101	-	36,36,36	1.10	4 (11%)	47,47,47	1.06	5 (10%)
13	BCL	ac	102	-	58,74,74	1.24	3 (5%)	69,115,115	1.36	10 (14%)
14	LMT	AP	102	-	36,36,36	1.09	5 (13%)	47,47,47	0.91	0
13	BCL	AN	104	-	58,74,74	1.22	4 (6%)	69,115,115	1.35	9 (13%)
13	BCL	AW	104	-	58,74,74	1.26	5 (8%)	69,115,115	1.46	13 (18%)
13	BCL	AG	102	-	58,74,74	1.26	4 (6%)	69,115,115	1.43	11 (15%)
14	LMT	BS	1002	-	36,36,36	1.10	5 (13%)	47,47,47	0.92	2 (4%)
14	LMT	BI	103	-	36,36,36	1.11	5 (13%)	47,47,47	0.89	1 (2%)
13	BCL	BV	1004	-	58,74,74	1.22	3 (5%)	69,115,115	1.36	11 (15%)
14	LMT	BL	1002	-	36,36,36	1.08	4 (11%)	47,47,47	1.07	3 (6%)
14	LMT	BT	1002	-	36,36,36	1.12	5 (13%)	47,47,47	0.90	2 (4%)
23	MQ8	L	309	-	54,54,54	0.62	0	66,69,69	0.83	3 (4%)
14	LMT	BD	105	-	36,36,36	1.09	5 (13%)	47,47,47	0.91	2 (4%)
13	BCL	bf	105	-	58,74,74	1.25	3 (5%)	69,115,115	1.31	10 (14%)
13	BCL	bk	105	-	58,74,74	1.25	3 (5%)	69,115,115	1.48	13 (18%)
15	V7N	BN	1001	-	40,44,44	2.06	10 (25%)	40,54,54	1.82	9 (22%)
13	BCL	AD	1002	-	58,74,74	1.26	3 (5%)	69,115,115	1.40	10 (14%)
13	BCL	bg	104	-	58,74,74	1.22	3 (5%)	69,115,115	1.30	11 (15%)
14	LMT	BM	1002	-	36,36,36	1.08	5 (13%)	47,47,47	0.86	1 (2%)
13	BCL	AQ	103	-	58,74,74	1.29	5 (8%)	69,115,115	1.66	13 (18%)
13	BCL	BH	1003	-	58,74,74	1.23	3 (5%)	69,115,115	1.42	12 (17%)
14	LMT	BB	103	-	36,36,36	1.10	5 (13%)	47,47,47	0.98	2 (4%)
20	0V9	L	310	-	44,44,46	0.75	1 (2%)	47,49,51	0.82	1 (2%)
23	MQ8	М	407	-	54,54,54	0.63	0	66,69,69	0.63	0
14	LMT	BR	1005	-	36,36,36	1.10	5 (13%)	47,47,47	0.89	0
13	BCL	aa	1001	-	58,74,74	1.27	4 (6%)	69,115,115	1.36	10 (14%)
14	LMT	BV	1002	-	36,36,36	1.11	5 (13%)	47,47,47	0.88	1 (2%)
13	BCL	AH	102	-	58,74,74	1.22	3 (5%)	69,115,115	1.36	9 (13%)
15	V7N	BD	101	-	40,44,44	2.07	9 (22%)	40,54,54	1.67	9 (22%)
14	LMT	BN	1003	-	36,36,36	1.09	5 (13%)	47,47,47	0.98	2 (4%)
14	LMT	BL	1003	-	36,36,36	1.09	5 (13%)	47,47,47	0.94	2 (4%)
13	BCL	BM	1004	-	58,74,74	1.26	3 (5%)	69,115,115	1.47	11 (15%)
15	V7N	BX	1001	-	40,44,44	2.12	10 (25%)	40,54,54	1.51	7 (17%)
13	BCL	AS	104	28	58,74,74	1.25	3 (5%)	69,115,115	1.51	13 (18%)

Mal	Turne	Chain	Dec	Tink	B	ond leng	gths	Bo	ond ang	les
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
14	LMT	BE	103	-	36,36,36	1.08	5 (13%)	47,47,47	0.85	1 (2%)
15	V7N	BA	101	-	40,44,44	2.06	10 (25%)	$40,\!54,\!54$	1.53	8 (20%)
13	BCL	BE	104	-	58,74,74	1.22	3 (5%)	$69,\!115,\!115$	1.49	13 (18%)
14	LMT	BH	1005	-	36,36,36	1.12	5 (13%)	47,47,47	0.90	2 (4%)
17	NDG	C1	301	18	14,14,15	0.66	0	17,19,21	0.87	1 (5%)
20	0V9	bk	104	-	44,44,46	0.73	1 (2%)	47,49,51	0.98	<mark>3 (6%)</mark>
26	V7B	ag	1002	-	59, 59, 59	0.93	5 (8%)	75,75,75	1.29	8 (10%)
13	BCL	bp	103	-	58,74,74	1.27	3 (5%)	69,115,115	1.37	11 (15%)
13	BCL	be	104	-	58,74,74	1.24	3 (5%)	69,115,115	1.30	10 (14%)
14	LMT	bh	101	-	36,36,36	1.08	4 (11%)	47,47,47	1.01	3 (6%)
15	V7N	bd	101	-	40,44,44	2.09	9 (22%)	40,54,54	1.48	8 (20%)
14	LMT	AF	1003	-	36,36,36	1.09	5 (13%)	47,47,47	0.88	1 (2%)
13	BCL	AS	102	28	58,74,74	1.25	5 (8%)	69,115,115	1.41	10 (14%)
22	BPH	L	301	-	64,70,70	0.85	3 (4%)	76,101,101	1.09	7 (9%)
14	LMT	BV	1003	-	36,36,36	1.08	5 (13%)	47,47,47	0.88	1 (2%)
13	BCL	AU	103	-	58,74,74	1.24	4 (6%)	69,115,115	1.35	9 (13%)
15	V7N	bc	104	-	40,44,44	2.12	11 (27%)	40,54,54	1.59	8 (20%)
19	PGW	H1	1001	-	50,50,50	0.46	0	53,56,56	1.04	3 (5%)
14	LMT	BA	103	-	36,36,36	1.07	5 (13%)	47,47,47	0.93	2 (4%)
13	BCL	BA	104	-	58,74,74	1.20	3 (5%)	69,115,115	1.59	12 (17%)
14	LMT	AI	101	-	36,36,36	1.09	4 (11%)	47,47,47	0.82	0
14	LMT	BK	1002	-	36,36,36	1.09	5 (13%)	47,47,47	0.93	2 (4%)
14	LMT	BB	102	-	36,36,36	1.10	5 (13%)	47,47,47	0.84	1 (2%)
13	BCL	BQ	1003	-	58,74,74	1.21	3 (5%)	69,115,115	1.34	9 (13%)
20	0V9	bf	103	-	44,44,46	0.75	1 (2%)	47,49,51	0.88	3 (6%)
13	BCL	AR	101	-	58,74,74	1.23	4 (6%)	69,115,115	1.33	9 (13%)
15	V7N	bl	102	-	40,44,44	2.12	10 (25%)	40,54,54	1.49	8 (20%)
14	LMT	BO	1002	-	36,36,36	1.10	5 (13%)	47,47,47	0.87	1 (2%)
15	V7N	bo	101	-	40,44,44	2.13	12 (30%)	40,54,54	1.48	8 (20%)
13	BCL	ad	102	-	58,74,74	1.23	3 (5%)	69,115,115	1.38	9 (13%)
20	0V9	bo	104	-	44,44,46	0.74	1 (2%)	47,49,51	0.82	1 (2%)
21	CD4	H1	1003	-	83,83,83	0.46	0	89,95,95	0.94	3 (3%)
14	LMT	bc	101	-	36,36,36	1.08	5 (13%)	47,47,47	1.05	4 (8%)
13	BCL	bd	103	-	58,74,74	1.25	3 (5%)	69,115,115	1.36	10 (14%)
14	LMT	BD	103	-	36,36,36	1.09	5 (13%)	47,47,47	0.86	1 (2%)

Mol	Type	Chain	Bos	Link	Bond lengths		Bond angles			
	Type	Cilain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
14	LMT	BP	1002	-	36,36,36	1.09	4 (11%)	47,47,47	0.91	1 (2%)
13	BCL	AB	103	28	58,74,74	1.26	4 (6%)	69,115,115	1.47	13 (18%)
13	BCL	bm	103	-	58,74,74	1.24	3 (5%)	69,115,115	1.33	10 (14%)
13	BCL	BN	1006	-	58,74,74	1.21	3 (5%)	69,115,115	1.40	10 (14%)
20	0V9	ba	104	-	44,44,46	0.76	1 (2%)	47,49,51	0.90	1 (2%)
14	LMT	bp	101	-	36,36,36	1.10	4 (11%)	47,47,47	1.09	3 (6%)
14	LMT	AW	102	-	36,36,36	1.08	4 (11%)	47,47,47	0.95	<mark>3 (6%)</mark>
15	V7N	BE	101	-	40,44,44	2.12	11 (27%)	40,54,54	1.42	7 (17%)
15	V7N	ba	101	-	40,44,44	2.16	10 (25%)	40,54,54	1.48	8 (20%)
14	LMT	BU	1002	-	36,36,36	1.10	5 (13%)	47,47,47	0.85	1 (2%)
13	BCL	AN	102	28	58,74,74	1.26	4 (6%)	69,115,115	1.37	11 (15%)
13	BCL	BR	1003	-	58,74,74	1.23	3 (5%)	69,115,115	1.30	10 (14%)
20	0V9	bh	104	-	44,44,46	0.73	1 (2%)	47,49,51	0.83	2 (4%)
13	BCL	AX	101	-	58,74,74	1.24	3 (5%)	69,115,115	1.40	9 (13%)
14	LMT	BX	1002	-	36,36,36	1.10	5 (13%)	47,47,47	0.87	2 (4%)
18	V75	М	409	17,12	15,18,18	1.89	6 (40%)	19,25,25	1.67	2 (10%)
13	BCL	ab	1001	-	58,74,74	1.27	4 (6%)	69,115,115	1.37	11 (15%)
14	LMT	AN	103	-	36,36,36	1.05	<mark>5 (13%)</mark>	47,47,47	0.97	2 (4%)
13	BCL	AL	103	-	58,74,74	1.30	5 (8%)	69,115,115	1.52	13 (18%)
14	LMT	AB	102	-	36,36,36	1.11	4 (11%)	47,47,47	0.82	2 (4%)
13	BCL	bo	102	-	58,74,74	1.24	3 (5%)	69,115,115	1.31	10 (14%)
14	LMT	AT	101	-	36,36,36	1.09	5 (13%)	47,47,47	0.86	2 (4%)
15	V7N	BQ	1001	-	40,44,44	2.07	9 (22%)	40,54,54	1.48	8 (20%)
14	LMT	BW	1004	-	36,36,36	1.08	4 (11%)	47,47,47	0.88	0
13	BCL	AU	102	-	58,74,74	1.25	5 (8%)	69,115,115	1.50	13 (18%)
14	LMT	М	402	-	36,36,36	1.11	<mark>5 (13%)</mark>	47,47,47	0.92	2 (4%)
13	BCL	BG	1004	-	58,74,74	1.25	3 (5%)	69,115,115	1.40	11 (15%)
13	BCL	bj	104	-	58,74,74	1.24	3 (5%)	69,115,115	1.33	11 (15%)
15	V7N	AH	105	-	40,44,44	2.10	9 (22%)	40,54,54	1.41	7 (17%)
16	HEC	С	1004	3	26,50,50	2.15	3 (11%)	18,82,82	2.26	5 (27%)
15	V7N	BP	1001	-	40,44,44	2.04	10 (25%)	40,54,54	1.65	9 (22%)
15	V7N	BB	101	-	40,44,44	2.05	10 (25%)	40,54,54	1.54	7 (17%)
14	LMT	BF	101	-	36,36,36	1.08	5 (13%)	47,47,47	1.10	3 (6%)
13	BCL	AH	101	-	58,74,74	1.26	4 (6%)	69,115,115	1.43	10 (14%)
13	BCL	М	403	-	58,74,74	1.21	3 (5%)	69,115,115	1.30	11 (15%)

Mol	Type	Chain	Dog	Link	Bond lengths		Bond angles			
	туре	Ullain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
14	LMT	BC	102	-	36,36,36	1.08	5 (13%)	47,47,47	0.90	1 (2%)
15	V7N	BW	1001	-	40,44,44	2.06	10 (25%)	40,54,54	1.49	8 (20%)
14	LMT	BK	1005	-	36,36,36	1.11	5 (13%)	47,47,47	0.95	2 (4%)
13	BCL	AE	1001	-	58,74,74	1.26	4 (6%)	69,115,115	1.35	10 (14%)
14	LMT	bo	103	-	36,36,36	1.08	5 (13%)	47,47,47	0.88	1 (2%)
15	V7N	BV	1001	-	40,44,44	2.11	10 (25%)	40,54,54	1.43	8 (20%)
14	LMT	BH	1002	-	36,36,36	1.08	5 (13%)	47,47,47	0.87	0
14	LMT	AK	101	-	36,36,36	1.11	5 (13%)	47,47,47	0.95	1 (2%)
20	0V9	bj	103	-	44,44,46	0.78	1 (2%)	47,49,51	0.92	2 (4%)
13	BCL	BF	104	-	58,74,74	1.22	3 (5%)	69,115,115	1.29	10 (14%)
13	BCL	bc	103	-	58,74,74	1.26	3 (5%)	69,115,115	1.35	12 (17%)
13	BCL	bl	105	-	58,74,74	1.26	3 (5%)	69,115,115	1.30	10 (14%)
13	BCL	AK	103	-	58,74,74	1.25	4 (6%)	69,115,115	1.35	11 (15%)
26	V7B	af	101	-	59,59,59	0.87	3 (5%)	75,75,75	1.12	5 (6%)
14	LMT	BN	1005	-	36,36,36	1.09	5 (13%)	47,47,47	0.93	2 (4%)
16	HEC	С	1003	3	26,50,50	2.11	3 (11%)	18,82,82	2.10	4 (22%)
15	V7N	bp	102	-	40,44,44	2.17	10 (25%)	40,54,54	1.51	7 (17%)
13	BCL	bn	103	-	58,74,74	1.25	3 (5%)	69,115,115	1.30	10 (14%)
13	BCL	AQ	102	28	58,74,74	1.25	4 (6%)	69,115,115	1.33	11 (15%)
13	BCL	AP	103	28	58,74,74	1.27	3 (5%)	69,115,115	1.40	11 (15%)
14	LMT	BI	105	-	36,36,36	1.10	5 (13%)	47,47,47	0.89	1 (2%)
14	LMT	AG	101	-	36,36,36	1.13	5 (13%)	47,47,47	1.09	3 (6%)
13	BCL	AM	102	-	58,74,74	1.24	4 (6%)	69,115,115	1.35	9 (13%)
20	0V9	H1	1002	-	44,44,46	0.76	1 (2%)	47,49,51	0.82	2 (4%)
15	V7N	bg	101	-	40,44,44	2.13	10 (25%)	40,54,54	1.62	9 (22%)
15	V7N	BK	1001	-	40,44,44	2.10	10 (25%)	40,54,54	1.48	8 (20%)
13	BCL	AO	101	-	58,74,74	1.32	5 (8%)	69,115,115	1.31	9 (13%)
13	BCL	AC	1001	-	58,74,74	1.24	4 (6%)	69,115,115	1.32	9 (13%)
15	V7N	AT	103	-	40,44,44	2.22	10 (25%)	40,54,54	1.60	9 (22%)
14	LMT	BG	1002	-	36,36,36	1.09	4 (11%)	47,47,47	0.82	0
13	BCL	AB	101	-	58,74,74	1.24	3 (5%)	69,115,115	1.46	11 (15%)
13	BCL	BP	1004	-	58,74,74	1.21	3 (5%)	69,115,115	1.43	13 (18%)
13	BCL	М	405	-	58,74,74	1.19	3 (5%)	69,115,115	1.40	9 (13%)
14	LMT	ac	101	-	36,36,36	1.10	4 (11%)	47,47,47	0.85	1 (2%)
13	BCL	ai	102	-	58,74,74	1.23	3 (5%)	69,115,115	1.41	12 (17%)

Mal	Turne	Chain	Dec	Tink	В	ond leng	gths	Bo	ond ang	les
	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
13	BCL	BU	1004	-	58,74,74	1.22	3 (5%)	69,115,115	1.34	10 (14%)
13	BCL	L	308	-	58,74,74	1.20	3 (5%)	69,115,115	1.25	10 (14%)
14	LMT	bg	103	-	36,36,36	1.08	5 (13%)	47,47,47	1.01	2 (4%)
16	HEC	С	1001	3	$26,\!50,\!50$	2.11	3 (11%)	18,82,82	2.26	5 (27%)
14	LMT	bl	104	-	36,36,36	1.08	<mark>5 (13%)</mark>	47,47,47	0.90	2(4%)
14	LMT	bm	104	-	36,36,36	1.08	4 (11%)	47,47,47	0.96	2 (4%)
14	LMT	bf	104	-	36,36,36	1.11	5 (13%)	47,47,47	0.85	2 (4%)
13	BCL	AW	103	-	58,74,74	1.23	3 (5%)	69,115,115	1.37	9 (13%)
20	0V9	bc	102	-	44,44,46	0.75	1 (2%)	47,49,51	0.89	3 (6%)
13	BCL	aj	102	-	58,74,74	1.23	3 (5%)	69,115,115	1.47	13 (18%)
15	V7N	BR	1001	-	40,44,44	2.08	9 (22%)	40,54,54	1.72	10 (25%)
14	LMT	BU	1003	-	36,36,36	1.09	5 (13%)	47,47,47	1.03	3 (6%)
14	LMT	BH	1004	-	36,36,36	1.08	5 (13%)	47,47,47	0.91	1 (2%)
15	V7N	BS	1001	-	40,44,44	2.05	10 (25%)	40,54,54	1.60	9 (22%)
14	LMT	AH	103	-	36,36,36	1.12	<mark>5 (13%)</mark>	47,47,47	0.80	0
14	LMT	BF	102	-	36,36,36	1.09	5 (13%)	47,47,47	0.99	2 (4%)
14	LMT	L	307	-	36,36,36	1.08	4 (11%)	47,47,47	0.95	2 (4%)
14	LMT	BL	1005	-	36,36,36	1.06	5 (13%)	47,47,47	1.00	2 (4%)
21	CD4	ai	103	-	83,83,83	0.49	0	89,95,95	1.07	7 (7%)
13	BCL	BC	103	-	58,74,74	1.22	3 (5%)	69,115,115	1.34	10 (14%)
15	V7N	BC	101	-	40,44,44	2.11	9 (22%)	40,54,54	1.56	7 (17%)
14	LMT	BP	1003	-	36,36,36	1.10	5 (13%)	47,47,47	0.86	1 (2%)
17	NDG	С	1005	18	14,14,15	0.64	0	17,19,21	1.05	2 (11%)
14	LMT	BI	102	-	36,36,36	1.08	5 (13%)	47,47,47	0.82	0
14	LMT	BD	102	-	36,36,36	1.08	5 (13%)	47,47,47	0.92	2 (4%)
14	LMT	AN	101	-	36,36,36	1.09	4 (11%)	47,47,47	1.00	3 (6%)
14	LMT	BA	105	-	36,36,36	1.08	4 (11%)	47,47,47	0.92	2 (4%)
13	BCL	AC	1002	-	58,74,74	1.27	5 (8%)	69,115,115	1.44	11 (15%)
13	BCL	BT	1004	-	58,74,74	1.23	3 (5%)	69,115,115	1.45	15 (21%)
14	LMT	AH	106	-	36,36,36	1.11	5 (13%)	47,47,47	1.07	5 (10%)
13	BCL	AE	1002	-	58,74,74	1.22	3 (5%)	69,115,115	1.32	9 (13%)
14	LMT	BO	1003	-	36,36,36	1.06	5 (13%)	47,47,47	0.93	2 (4%)
13	BCL	an	102	-	58,74,74	1.24	4 (6%)	69,115,115	1.35	10 (14%)
20	0V9	be	103	-	44,44,46	0.75	1 (2%)	47,49,51	0.82	0
14	LMT	BK	1006	-	36,36,36	1.08	5 (13%)	47,47,47	1.00	2 (4%)

Mal	Trung	Chain	Dec	Timle	Bond lengths		gths	Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
14	LMT	BM	1003	-	36,36,36	1.09	5 (13%)	47,47,47	0.85	1 (2%)
14	LMT	AV	101	-	36,36,36	1.12	4 (11%)	47,47,47	1.02	3 (6%)
14	LMT	BP	1005	-	36,36,36	1.08	5 (13%)	47,47,47	0.82	1 (2%)
14	LMT	AB	104	-	36,36,36	1.10	5 (13%)	47,47,47	0.97	2 (4%)
15	V7N	bj	101	-	40,44,44	2.12	9 (22%)	40,54,54	1.48	7 (17%)
13	BCL	ah	1001	-	58,74,74	1.26	4 (6%)	69,115,115	1.33	9 (13%)
13	BCL	BO	1004	-	58,74,74	1.22	3 (5%)	69,115,115	1.34	11 (15%)
14	LMT	bb	102	-	36,36,36	1.13	5 (13%)	47,47,47	0.93	3 (6%)
14	LMT	AO	103	-	36,36,36	1.08	5 (13%)	47,47,47	0.92	0
14	LMT	BX	1003	-	36,36,36	1.07	5 (13%)	47,47,47	0.93	1 (2%)
14	LMT	BE	106	-	36,36,36	1.12	5 (13%)	47,47,47	0.93	2 (4%)
14	LMT	L	302	-	36,36,36	1.10	5 (13%)	47,47,47	0.97	1 (2%)
14	LMT	AU	101	-	36,36,36	1.10	5 (13%)	47,47,47	0.83	0
14	LMT	bk	101	-	36,36,36	1.08	5 (13%)	47,47,47	0.97	2 (4%)
13	BCL	ba	103	-	58,74,74	1.26	3 (5%)	69,115,115	1.34	10 (14%)
14	LMT	BR	1004	-	36,36,36	1.08	5 (13%)	47,47,47	0.98	2 (4%)
14	LMT	bn	102	-	36,36,36	1.10	5 (13%)	47,47,47	0.86	1 (2%)
13	BCL	BK	1003	-	58,74,74	1.20	3 (5%)	69,115,115	1.38	9 (13%)
21	CD4	ad	101	-	83,83,83	0.47	0	89,95,95	1.07	5 (5%)
13	BCL	AD	1001	28	58,74,74	1.25	4 (6%)	69,115,115	1.39	10 (14%)
13	BCL	AJ	101	-	58,74,74	1.24	3 (5%)	69,115,115	1.34	9 (13%)
14	LMT	BN	1002	-	36,36,36	1.08	5 (13%)	47,47,47	0.96	2 (4%)
20	0V9	bm	102	-	44,44,46	0.75	1 (2%)	47,49,51	0.91	1 (2%)
13	BCL	AG	103	-	58,74,74	1.23	3 (5%)	69,115,115	1.36	9 (13%)
20	0V9	bl	103	-	44,44,46	0.76	1 (2%)	47,49,51	0.85	0
14	LMT	L	304	-	36,36,36	1.05	4 (11%)	47,47,47	0.93	1 (2%)
14	LMT	BQ	1004	-	36,36,36	1.11	5 (13%)	47,47,47	0.89	2 (4%)
20	0V9	bi	102	-	44,44,46	0.76	1 (2%)	47,49,51	0.82	2 (4%)
15	V7N	BM	1001	-	40,44,44	2.05	10 (25%)	40,54,54	1.70	8 (20%)
13	BCL	BB	104	-	58,74,74	1.22	3 (5%)	69,115,115	1.42	12 (17%)
14	LMT	BG	1003	-	36,36,36	1.10	4 (11%)	47,47,47	0.84	1 (2%)
14	LMT	bh	103	-	36,36,36	1.08	5 (13%)	47,47,47	0.98	1 (2%)
13	BCL	al	1001	-	58,74,74	1.27	4 (6%)	69,115,115	1.40	9 (13%)
14	LMT	BS	1004	-	36,36,36	1.09	4 (11%)	47,47,47	0.88	1 (2%)
13	BCL	ар	1001	-	58,74,74	1.26	4 (6%)	69,115,115	1.34	9 (13%)

Mal	Turne	Chain	Dec	Tink	В	ond leng	gths	Bo	ond ang	les
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
14	LMT	AD	1003	-	36,36,36	1.07	5 (13%)	47,47,47	0.95	3 (6%)
13	BCL	ae	1001	-	58,74,74	1.24	4 (6%)	69,115,115	1.38	9 (13%)
14	LMT	BW	1002	-	36,36,36	1.09	5 (13%)	47,47,47	0.92	0
13	BCL	AQ	101	-	58,74,74	1.21	3 (5%)	69,115,115	1.34	9 (13%)
14	LMT	BA	106	-	36,36,36	1.07	5 (13%)	47,47,47	1.02	3 (6%)
13	BCL	AT	102	-	58,74,74	1.23	3 (5%)	69,115,115	1.38	9 (13%)
13	BCL	AP	101	-	58,74,74	1.23	4 (6%)	69,115,115	1.38	9 (13%)
14	LMT	BD	104	-	36,36,36	1.08	4 (11%)	47,47,47	0.86	1 (2%)
15	V7N	bb	101	-	40,44,44	2.15	10 (25%)	40,54,54	1.73	8 (20%)
15	V7N	bk	103	-	40,44,44	2.21	10 (25%)	40,54,54	1.37	6 (15%)
13	BCL	AA	1002	28	58,74,74	1.26	3 (5%)	69,115,115	1.41	12 (17%)
13	BCL	L	303	-	58,74,74	1.23	3 (5%)	69,115,115	1.30	10 (14%)
15	V7N	bh	102	-	40,44,44	2.09	9 (22%)	40,54,54	1.53	7 (17%)
20	0V9	aj	101	-	44,44,46	0.76	1 (2%)	47,49,51	0.85	2 (4%)
13	BCL	AO	102	-	58,74,74	1.23	4 (6%)	69,115,115	1.36	9 (13%)
15	V7N	BJ	1001	-	40,44,44	2.06	10 (25%)	40,54,54	1.52	8 (20%)
14	LMT	BE	102	-	36,36,36	1.09	5 (13%)	47,47,47	0.90	2 (4%)
14	LMT	BP	1006	-	36,36,36	1.07	4 (11%)	47,47,47	0.99	2 (4%)
13	BCL	AK	102	-	58,74,74	1.22	3 (5%)	69,115,115	1.35	9 (13%)
15	V7N	bn	101	-	40,44,44	2.15	9 (22%)	40,54,54	1.50	9 (22%)
13	BCL	AF	1002	-	58,74,74	1.27	4 (6%)	69,115,115	1.35	11 (15%)
27	UYH	ai	101	-	55,55,55	2.11	14 (25%)	63,63,63	1.01	3 (4%)
14	LMT	bj	102	-	36,36,36	1.11	5 (13%)	47,47,47	0.90	2 (4%)
13	BCL	AI	103	-	58,74,74	1.21	4 (6%)	69,115,115	1.34	9 (13%)
20	0V9	bb	104	-	44,44,46	0.76	1 (2%)	47,49,51	0.86	1 (2%)
13	BCL	BS	1005	-	58,74,74	1.24	4 (6%)	69,115,115	1.41	11 (15%)
20	0V9	be	102	-	44,44,46	0.77	1 (2%)	47,49,51	0.95	3 (6%)
13	BCL	AF	1001	-	58,74,74	1.23	3 (5%)	69,115,115	1.41	11 (15%)
13	BCL	AL	101	-	58,74,74	1.22	4 (6%)	69,115,115	1.36	9 (13%)
15	V7N	BT	1001	-	40,44,44	2.10	10 (25%)	40,54,54	1.47	8 (20%)
13	BCL	BW	1003	-	58,74,74	1.24	3 (5%)	69,115,115	1.38	11 (15%)
14	LMT	BR	1002	-	36,36,36	1.09	5 (13%)	47,47,47	0.91	1 (2%)
14	LMT	BC	104	-	36,36,36	1.08	4 (11%)	47,47,47	0.89	1 (2%)
14	LMT	BN	1004	-	36,36,36	1.11	5 (13%)	47,47,47	0.86	0
14	LMT	BE	105	-	36,36,36	1.07	5 (13%)	47,47,47	0.88	1 (2%)

Mal	Turne	Chain	Dec	Link	Bond lengths		Bond angles			
	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
21	CD4	af	104	-	83,83,83	0.49	0	$89,\!95,\!95$	1.04	4 (4%)
14	LMT	AD	1004	-	36,36,36	1.10	4 (11%)	47,47,47	0.86	2 (4%)
15	V7N	be	101	-	40,44,44	2.05	10 (25%)	40,54,54	1.57	7 (17%)
16	HEC	С	1002	3	$26,\!50,\!50$	2.15	3 (11%)	18,82,82	2.04	6 (33%)
13	BCL	af	102	-	58,74,74	1.28	4 (6%)	69,115,115	1.35	10 (14%)
15	V7N	bi	101	-	40,44,44	2.12	10 (25%)	40,54,54	1.49	8 (20%)
14	LMT	BT	1005	-	36,36,36	1.07	5 (13%)	47,47,47	0.97	2 (4%)
13	BCL	AA	1001	-	58,74,74	1.22	3 (5%)	69,115,115	1.40	10 (14%)
22	BPH	М	406	-	64,70,70	0.85	3 (4%)	76,101,101	1.09	6 (7%)
13	BCL	AI	102	-	58,74,74	1.29	5 (8%)	69,115,115	1.37	9 (13%)
14	LMT	BW	1005	-	36,36,36	1.08	5 (13%)	47,47,47	1.40	4 (8%)
15	V7N	bf	102	-	40,44,44	2.13	11 (27%)	40,54,54	1.48	8 (20%)
21	CD4	af	103	-	83,83,83	0.49	0	89,95,95	1.07	5 (5%)
14	LMT	BK	1004	-	36,36,36	1.08	5 (13%)	47,47,47	1.12	3 (6%)
13	BCL	ao	1001	-	58,74,74	1.24	3 (5%)	69,115,115	1.37	9 (13%)
13	BCL	ag	1001	-	58,74,74	1.25	4 (6%)	69,115,115	1.35	10 (14%)
14	LMT	AA	1003	-	36,36,36	1.07	5 (13%)	47,47,47	0.99	1 (2%)
14	LMT	BQ	1002	-	36,36,36	1.10	4 (11%)	47,47,47	0.91	3 (6%)
13	BCL	bb	103	-	58,74,74	1.23	3 (5%)	69,115,115	1.29	11 (15%)
14	LMT	BT	1003	-	36,36,36	1.09	5 (13%)	47,47,47	0.85	1 (2%)
18	V75	С	1006	17,12	15,18,18	1.81	6 (40%)	19,25,25	1.71	2(10%)
13	BCL	BJ	1004	-	58,74,74	1.23	3 (5%)	69,115,115	1.44	12 (17%)
15	V7N	BO	1001	-	40,44,44	2.10	10 (25%)	40,54,54	1.41	7 (17%)
20	0V9	bg	102	-	44,44,46	0.75	1 (2%)	47,49,51	0.82	2 (4%)
25	CRT	М	408	-	41,43,43	0.55	0	50,54,54	0.65	0
14	LMT	AL	102	-	36,36,36	1.09	4 (11%)	47,47,47	0.82	0
13	BCL	AS	101	-	58,74,74	1.23	3 (5%)	69,115,115	1.34	9 (13%)
15	V7N	BL	1001	-	40,44,44	2.12	10 (25%)	40,54,54	1.45	7 (17%)
20	0V9	bn	104	-	44,44,46	0.75	1 (2%)	$47,\!49,\!51$	0.92	2 (4%)
13	BCL	am	1001	-	58,74,74	1.23	3 (5%)	69,115,115	1.35	9 (13%)
13	BCL	BD	106	-	58,74,74	1.24	3 (5%)	69,115,115	1.36	10 (14%)
14	LMT	AJ	103	-	36,36,36	1.09	5 (13%)	47,47,47	0.85	1 (2%)
23	MQ8	an	101	-	54,54,54	0.63	0	66,69,69	1.15	7 (10%)
13	BCL	AM	101	28	58,74,74	1.29	5 (8%)	69,115,115	1.44	13 (18%)
15	V7N	bm	101	-	40,44,44	2.11	9 (22%)	40,54,54	1.53	8 (20%)

Mol	Tuno	Chain	Dog	Link	Bond lengths		gths	Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
21	CD4	М	404	-	83,83,83	0.46	0	$89,\!95,\!95$	1.06	5 (5%)
15	V7N	BH	1001	-	40,44,44	2.11	11 (27%)	40,54,54	1.60	9 (22%)
14	LMT	BU	1001	-	36,36,36	1.07	4 (11%)	47,47,47	0.89	1 (2%)
13	BCL	BI	104	-	58,74,74	1.23	3 (5%)	69,115,115	1.39	10 (14%)
14	LMT	BF	103	-	36,36,36	1.08	5 (13%)	47,47,47	0.90	1 (2%)
20	0V9	bk	102	-	44,44,46	0.77	1 (2%)	47,49,51	0.80	1 (2%)
14	LMT	AR	102	-	36,36,36	1.08	4 (11%)	47,47,47	1.06	3 (6%)
14	LMT	L	305	-	36,36,36	1.11	5 (13%)	47,47,47	0.83	0
13	BCL	bh	105	-	58,74,74	1.23	3 (5%)	69,115,115	1.32	11 (15%)
14	LMT	BJ	1002	-	36,36,36	1.06	5 (13%)	47,47,47	1.02	2 (4%)
15	V7N	BG	1001	-	40,44,44	2.12	10 (25%)	40,54,54	1.54	7 (17%)
14	LMT	L	306	-	36,36,36	1.09	5 (13%)	47,47,47	0.85	1 (2%)
14	LMT	bd	102	-	36,36,36	1.11	5 (13%)	47,47,47	0.86	1 (2%)
13	BCL	BX	1004	-	58,74,74	1.22	3 (5%)	69,115,115	1.34	11 (15%)
13	BCL	AW	101	28	58,74,74	1.27	4 (6%)	69,115,115	1.42	12 (17%)
13	BCL	bi	103	-	58,74,74	1.22	3 (5%)	69,115,115	1.33	12 (17%)
14	LMT	BJ	1003	-	36,36,36	1.07	5 (13%)	47,47,47	0.80	1 (2%)
13	BCL	AJ	102	28	58,74,74	1.27	3 (5%)	69,115,115	1.52	14 (20%)
14	LMT	BS	1003	-	36,36,36	1.08	5 (13%)	47,47,47	0.88	0
14	LMT	BA	102	-	36,36,36	1.09	4 (11%)	47,47,47	0.93	2 (4%)
14	LMT	BR	1006	-	36,36,36	1.10	5 (13%)	47,47,47	1.02	2 (4%)
14	LMT	BI	101	-	36,36,36	1.09	5 (13%)	47,47,47	0.91	1 (2%)
13	BCL	AV	102	-	58,74,74	1.23	4 (6%)	69,115,115	1.33	9 (13%)
13	BCL	BL	1004	-	58,74,74	1.21	3 (5%)	69,115,115	1.33	10 (14%)
14	LMT	AS	103	-	36,36,36	1.09	5 (13%)	47,47,47	0.94	2 (4%)
14	LMT	bf	101	-	36,36,36	1.14	5 (13%)	47,47,47	0.92	2 (4%)
14	LMT	BW	1006	-	36,36,36	1.07	4 (11%)	47,47,47	1.15	4 (8%)
14	LMT	AH	104	_	36,36,36	1.10	4 (11%)	47,47,47	0.81	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
13	BCL	AV	103	28	-	6/37/137/137	-

	J		1 5				-
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
13	BCL	ak	1001	-	-	6/37/137/137	-
15	V7N	AE	1003	-	-	3/49/53/53	-
20	0V9	ba	102	-	-	8/48/48/50	-
14	LMT	bl	101	-	-	2/21/61/61	0/2/2/2
13	BCL	ac	102	-	-	2/37/137/137	-
14	LMT	AP	102	-	-	7/21/61/61	0/2/2/2
13	BCL	AN	104	-	-	1/37/137/137	-
13	BCL	AW	104	-	-	14/37/137/137	-
13	BCL	AG	102	-	-	12/37/137/137	-
14	LMT	BS	1002	-	-	3/21/61/61	0/2/2/2
14	LMT	BI	103	-	-	2/21/61/61	0/2/2/2
13	BCL	BV	1004	-	-	9/37/137/137	-
14	LMT	BL	1002	-	-	10/21/61/61	0/2/2/2
14	LMT	BT	1002	-	-	5/21/61/61	0/2/2/2
23	MQ8	L	309	-	-	10/47/67/67	0/2/2/2
14	LMT	BD	105	-	-	8/21/61/61	0/2/2/2
13	BCL	bf	105	-	-	3/37/137/137	-
13	BCL	bk	105	-	-	8/37/137/137	-
15	V7N	BN	1001	-	-	8/49/53/53	-
13	BCL	AD	1002	-	-	2/37/137/137	-
13	BCL	bg	104	-	-	8/37/137/137	-
14	LMT	BM	1002	-	-	1/21/61/61	0/2/2/2
13	BCL	AQ	103	-	-	10/37/137/137	-
13	BCL	BH	1003	-	-	9/37/137/137	-
14	LMT	BB	103	-	-	5/21/61/61	0/2/2/2
20	0V9	L	310	-	-	10/48/48/50	-
23	MQ8	М	407	-	-	0/47/67/67	0/2/2/2
14	LMT	BR	1005	-	-	3/21/61/61	0/2/2/2
13	BCL	aa	1001	-	-	3/37/137/137	-
14	LMT	BV	1002	-	-	2/21/61/61	0/2/2/2
13	BCL	AH	102	-	-	0/37/137/137	-
15	V7N	BD	101	-	-	3/49/53/53	-
14	LMT	BN	1003	-	-	5/21/61/61	0/2/2/2
14	LMT	BL	1003	-	-	4/21/61/61	0/2/2/2
13	BCL	BM	1004	-	-	3/37/137/137	-

00.000		I P P P P P P P P P P P P P P P P P P P	-I J				
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
15	V7N	BX	1001	-	-	5/49/53/53	-
13	BCL	AS	104	28	-	9/37/137/137	-
14	LMT	BE	103	-	-	3/21/61/61	0/2/2/2
15	V7N	BA	101	-	-	4/49/53/53	-
13	BCL	BE	104	-	-	3/37/137/137	-
14	LMT	BH	1005	-	-	4/21/61/61	0/2/2/2
17	NDG	C1	301	18	-	0/6/23/26	0/1/1/1
20	0V9	bk	104	-	-	11/48/48/50	-
26	V7B	ag	1002	-	-	15/48/88/88	0/2/2/2
13	BCL	bp	103	-	-	11/37/137/137	-
13	BCL	be	104	-	-	6/37/137/137	-
14	LMT	bh	101	-	-	9/21/61/61	0/2/2/2
15	V7N	bd	101	-	-	5/49/53/53	-
14	LMT	AF	1003	-	-	5/21/61/61	0/2/2/2
13	BCL	AS	102	28	-	7/37/137/137	-
22	BPH	L	301	-	-	4/54/105/105	0/5/6/6
14	LMT	BV	1003	-	-	1/21/61/61	0/2/2/2
13	BCL	AU	103	-	-	4/37/137/137	-
15	V7N	bc	104	-	-	9/49/53/53	-
19	PGW	H1	1001	-	-	15/55/55/55	-
14	LMT	BA	103	-	-	7/21/61/61	0/2/2/2
13	BCL	BA	104	-	-	9/37/137/137	-
14	LMT	AI	101	-	-	4/21/61/61	0/2/2/2
14	LMT	BK	1002	-	-	5/21/61/61	0/2/2/2
14	LMT	BB	102	-	-	3/21/61/61	0/2/2/2
13	BCL	BQ	1003	-	-	7/37/137/137	-
20	0V9	bf	103	-	-	11/48/48/50	-
13	BCL	AR	101	-	-	3/37/137/137	-
15	V7N	bl	102	_	-	8/49/53/53	-
14	LMT	BO	1002	-	-	5/21/61/61	0/2/2/2
15	V7N	bo	101	-	-	3/49/53/53	-
13	BCL	ad	102	_	-	6/37/137/137	-
20	0V9	bo	104	-	-	8/48/48/50	-
21	CD4	H1	1003	-	-	17/94/94/94	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
14	LMT	bc	101	-	-	11/21/61/61	0/2/2/2
13	BCL	bd	103	-	-	4/37/137/137	-
14	LMT	BD	103	-	-	4/21/61/61	0/2/2/2
14	LMT	BP	1002	-	-	5/21/61/61	0/2/2/2
13	BCL	AB	103	28	-	7/37/137/137	_
13	BCL	bm	103	-	-	8/37/137/137	-
13	BCL	BN	1006	-	-	9/37/137/137	-
20	0V9	ba	104	-	-	12/48/48/50	-
14	LMT	bp	101	-	-	9/21/61/61	0/2/2/2
14	LMT	AW	102	-	-	3/21/61/61	0/2/2/2
15	V7N	BE	101	-	-	3/49/53/53	-
15	V7N	ba	101	-	-	7/49/53/53	-
14	LMT	BU	1002	-	-	1/21/61/61	0/2/2/2
13	BCL	AN	102	28	-	6/37/137/137	-
13	BCL	BR	1003	-	-	7/37/137/137	-
20	0V9	bh	104	-	-	11/48/48/50	-
13	BCL	AX	101	-	-	4/37/137/137	-
14	LMT	BX	1002	-	-	3/21/61/61	0/2/2/2
18	V75	М	409	17,12	-	0/8/29/29	0/1/1/1
13	BCL	ab	1001	-	-	4/37/137/137	-
14	LMT	AN	103	-	-	6/21/61/61	0/2/2/2
13	BCL	AL	103	-	-	8/37/137/137	-
14	LMT	AB	102	-	-	3/21/61/61	0/2/2/2
13	BCL	bo	102	-	-	4/37/137/137	-
14	LMT	AT	101	-	-	3/21/61/61	0/2/2/2
15	V7N	BQ	1001	-	-	4/49/53/53	-
14	LMT	BW	1004	-	-	4/21/61/61	0/2/2/2
13	BCL	AU	102	-	-	7/37/137/137	-
14	LMT	М	402	-	-	3/21/61/61	0/2/2/2
13	BCL	BG	1004	-	-	12/37/137/137	-
13	BCL	bj	104	-	-	10/37/137/137	-
15	V7N	AH	105	-	-	6/49/53/53	-
16	HEC	С	1004	3	-	0/6/54/54	-
15	V7N	BP	1001	-	-	4/49/53/53	-
15	V7N	BB	101	-	-	3/49/53/53	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
14	LMT	BF	101	-	-	3/21/61/61	0/2/2/2
13	BCL	AH	101	-	-	12/37/137/137	-
13	BCL	М	403	-	-	5/37/137/137	-
14	LMT	BC	102	-	-	3/21/61/61	0/2/2/2
15	V7N	BW	1001	-	-	5/49/53/53	-
14	LMT	BK	1005	-	-	2/21/61/61	0/2/2/2
13	BCL	AE	1001	-	-	11/37/137/137	-
14	LMT	bo	103	-	-	3/21/61/61	0/2/2/2
15	V7N	BV	1001	-	-	5/49/53/53	-
14	LMT	BH	1002	-	-	2/21/61/61	0/2/2/2
14	LMT	AK	101	-	-	5/21/61/61	0/2/2/2
20	0V9	bj	103	-	-	6/48/48/50	-
13	BCL	BF	104	-	-	6/37/137/137	-
13	BCL	bc	103	-	-	7/37/137/137	-
13	BCL	bl	105	-	-	8/37/137/137	-
13	BCL	AK	103	-	-	14/37/137/137	-
26	V7B	af	101	-	-	14/48/88/88	0/2/2/2
14	LMT	BN	1005	-	-	2/21/61/61	0/2/2/2
16	HEC	С	1003	3	-	0/6/54/54	-
15	V7N	bp	102	-	-	5/49/53/53	-
13	BCL	bn	103	-	-	5/37/137/137	-
13	BCL	AQ	102	28	-	6/37/137/137	-
13	BCL	AP	103	28	-	6/37/137/137	-
14	LMT	BI	105	-	-	2/21/61/61	0/2/2/2
14	LMT	AG	101	-	-	6/21/61/61	0/2/2/2
13	BCL	AM	102	-	-	6/37/137/137	-
20	0V9	H1	1002	-	-	10/48/48/50	-
15	V7N	bg	101	-	-	6/49/53/53	-
15	V7N	BK	1001	-	-	3/49/53/53	-
13	BCL	AO	101	-	-	11/37/137/137	-
13	BCL	AC	1001	-	-	6/37/137/137	-
15	V7N	AT	103	-	-	6/49/53/53	-
14	LMT	BG	1002	-	-	4/21/61/61	0/2/2/2
13	BCL	AB	101	-	-	2/37/137/137	-

00.000		ne proceee	pago.				
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
13	BCL	BP	1004	-	-	8/37/137/137	-
13	BCL	М	405	-	-	4/37/137/137	-
14	LMT	ac	101	-	-	4/21/61/61	0/2/2/2
13	BCL	ai	102	-	-	6/37/137/137	-
13	BCL	BU	1004	-	-	12/37/137/137	-
13	BCL	L	308	-	-	1/37/137/137	-
14	LMT	bg	103	-	-	6/21/61/61	0/2/2/2
16	HEC	С	1001	3	-	0/6/54/54	-
14	LMT	bl	104	-	-	3/21/61/61	0/2/2/2
14	LMT	bm	104	-	-	7/21/61/61	0/2/2/2
14	LMT	bf	104	-	-	6/21/61/61	0/2/2/2
13	BCL	AW	103	-	-	4/37/137/137	-
20	0V9	bc	102	-	-	15/48/48/50	-
13	BCL	aj	102	-	-	5/37/137/137	-
15	V7N	BR	1001	-	-	5/49/53/53	-
14	LMT	BU	1003	-	-	4/21/61/61	0/2/2/2
14	LMT	BH	1004	-	-	4/21/61/61	0/2/2/2
15	V7N	BS	1001	-	-	6/49/53/53	-
14	LMT	AH	103	-	-	3/21/61/61	0/2/2/2
14	LMT	BF	102	-	-	5/21/61/61	0/2/2/2
14	LMT	L	307	-	-	6/21/61/61	0/2/2/2
14	LMT	BL	1005	-	-	5/21/61/61	0/2/2/2
21	CD4	ai	103	-	-	19/94/94/94	-
13	BCL	BC	103	-	-	3/37/137/137	-
15	V7N	BC	101	-	-	3/49/53/53	-
14	LMT	BP	1003	-	-	5/21/61/61	0/2/2/2
17	NDG	С	1005	18	-	0/6/23/26	0/1/1/1
14	LMT	BI	102	-	-	4/21/61/61	0/2/2/2
14	LMT	BD	102	-	-	3/21/61/61	0/2/2/2
14	LMT	AN	101	-	-	2/21/61/61	0/2/2/2
14	LMT	BA	105	-	-	4/21/61/61	0/2/2/2
13	BCL	AC	1002	-	-	10/37/137/137	-
13	BCL	BT	1004	-	-	9/37/137/137	-
14	LMT	AH	106	-	-	3/21/61/61	0/2/2/2
13	BCL	AE	1002	_	-	1/37/137/137	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
14	LMT	BO	1003	-	-	4/21/61/61	0/2/2/2
13	BCL	an	102	-	-	3/37/137/137	-
20	0V9	be	103	-	-	12/48/48/50	-
14	LMT	BK	1006	-	-	3/21/61/61	0/2/2/2
14	LMT	BM	1003	-	-	2/21/61/61	0/2/2/2
14	LMT	AV	101	-	-	3/21/61/61	0/2/2/2
14	LMT	BP	1005	-	-	4/21/61/61	0/2/2/2
14	LMT	AB	104	-	-	7/21/61/61	0/2/2/2
15	V7N	bj	101	-	-	2/49/53/53	-
13	BCL	ah	1001	-	-	7/37/137/137	-
13	BCL	BO	1004	-	-	8/37/137/137	-
14	LMT	bb	102	-	-	6/21/61/61	0/2/2/2
14	LMT	AO	103	-	-	4/21/61/61	0/2/2/2
14	LMT	BX	1003	-	-	8/21/61/61	0/2/2/2
14	LMT	BE	106	-	-	2/21/61/61	0/2/2/2
14	LMT	L	302	-	-	6/21/61/61	0/2/2/2
14	LMT	AU	101	-	-	5/21/61/61	0/2/2/2
14	LMT	bk	101	-	-	7/21/61/61	0/2/2/2
13	BCL	ba	103	-	-	10/37/137/137	-
14	LMT	BR	1004	-	-	7/21/61/61	0/2/2/2
14	LMT	bn	102	-	-	2/21/61/61	0/2/2/2
13	BCL	BK	1003	-	-	12/37/137/137	-
21	CD4	ad	101	-	-	21/94/94/94	-
13	BCL	AD	1001	28	-	5/37/137/137	-
13	BCL	AJ	101	-	-	0/37/137/137	-
14	LMT	BN	1002	-	-	8/21/61/61	0/2/2/2
20	0V9	bm	102	-	-	11/48/48/50	-
13	BCL	AG	103	-	-	5/37/137/137	-
20	0V9	bl	103	-	-	12/48/48/50	-
14	LMT	L	304	-	-	3/21/61/61	0/2/2/2
14	LMT	BQ	1004	-	-	3/21/61/61	0/2/2/2
20	0V9	bi	102	-	-	7/48/48/50	-
15	V7N	BM	1001	-	-	7/49/53/53	-
13	BCL	BB	104	-	-	7/37/137/137	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
14	LMT	BG	1003	-	-	4/21/61/61	0/2/2/2
14	LMT	bh	103	-	-	1/21/61/61	0/2/2/2
13	BCL	al	1001	-	-	6/37/137/137	-
14	LMT	BS	1004	-	-	3/21/61/61	0/2/2/2
13	BCL	ар	1001	-	-	11/37/137/137	-
14	LMT	AD	1003	-	-	6/21/61/61	0/2/2/2
13	BCL	ae	1001	-	-	9/37/137/137	-
14	LMT	BW	1002	-	-	3/21/61/61	0/2/2/2
13	BCL	AQ	101	-	-	3/37/137/137	-
14	LMT	BA	106	-	-	7/21/61/61	0/2/2/2
13	BCL	AT	102	-	-	1/37/137/137	-
13	BCL	AP	101	-	-	5/37/137/137	-
14	LMT	BD	104	-	-	2/21/61/61	0/2/2/2
15	V7N	bb	101	-	-	17/49/53/53	-
15	V7N	bk	103	-	-	8/49/53/53	-
13	BCL	AA	1002	28	-	9/37/137/137	-
13	BCL	L	303	-	-	4/37/137/137	-
15	V7N	bh	102	-	-	5/49/53/53	-
20	0V9	aj	101	-	-	16/48/48/50	-
13	BCL	AO	102	-	-	3/37/137/137	-
15	V7N	BJ	1001	-	-	4/49/53/53	-
14	LMT	BE	102	-	-	5/21/61/61	0/2/2/2
14	LMT	BP	1006	-	-	3/21/61/61	0/2/2/2
13	BCL	AK	102	-	-	1/37/137/137	_
15	V7N	bn	101	-	-	5/49/53/53	-
13	BCL	AF	1002	-	-	10/37/137/137	-
27	UYH	ai	101	-	-	9/50/70/70	0/1/1/1
14	LMT	bj	102	-	-	5/21/61/61	0/2/2/2
13	BCL	AI	103	-	-	6/37/137/137	-
20	0V9	bb	104	-	-	10/48/48/50	-
13	BCL	BS	1005	-	-	8/37/137/137	-
20	0V9	be	102	-	-	16/48/48/50	-
13	BCL	AF	1001	-	_	7/37/137/137	_
13	BCL	AL	101	_	-	1/37/137/137	_
15	V7N	BT	1001	-	-	3/49/53/53	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
13	BCL	BW	1003	-	-	5/37/137/137	-
14	LMT	BR	1002	-	-	5/21/61/61	0/2/2/2
14	LMT	BC	104	-	-	6/21/61/61	0/2/2/2
14	LMT	BN	1004	-	-	4/21/61/61	0/2/2/2
14	LMT	BE	105	_	-	2/21/61/61	0/2/2/2
21	CD4	af	104	_	-	20/94/94/94	-
14	LMT	AD	1004	-	-	1/21/61/61	0/2/2/2
15	V7N	be	101	-	-	6/49/53/53	-
16	HEC	С	1002	3	-	0/6/54/54	-
13	BCL	af	102	-	-	3/37/137/137	-
15	V7N	bi	101	-	-	3/49/53/53	-
14	LMT	BT	1005	-	-	6/21/61/61	0/2/2/2
13	BCL	AA	1001	-	-	3/37/137/137	-
22	BPH	М	406	-	-	6/54/105/105	0/5/6/6
13	BCL	AI	102	-	-	8/37/137/137	-
14	LMT	BW	1005	-	-	6/21/61/61	0/2/2/2
15	V7N	bf	102	-	-	3/49/53/53	-
21	CD4	af	103	-	-	30/94/94/94	-
14	LMT	BK	1004	-	-	7/21/61/61	0/2/2/2
13	BCL	ao	1001	-	-	7/37/137/137	-
13	BCL	ag	1001	-	-	5/37/137/137	-
14	LMT	AA	1003	-	_	7/21/61/61	0/2/2/2
14	LMT	BQ	1002	_	-	1/21/61/61	0/2/2/2
13	BCL	bb	103	-	-	5/37/137/137	-
14	LMT	BT	1003	-	-	4/21/61/61	0/2/2/2
18	V75	С	1006	17,12	-	0/8/29/29	0/1/1/1
13	BCL	BJ	1004	-	-	8/37/137/137	-
15	V7N	BO	1001	-	-	6/49/53/53	-
20	0V9	bg	102	-	-	15/48/48/50	-
25	CRT	М	408	-	-	3/51/51/51	-
14	LMT	AL	102	-	-	5/21/61/61	0/2/2/2
13	BCL	AS	101	-	-	7/37/137/137	-
15	V7N	BL	1001	-	-	7/49/53/53	-
20	0V9	bn	104	-	-	12/48/48/50	-
13	BCL	am	1001	_	-	2/37/137/137	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
13	BCL	BD	106	-	-	6/37/137/137	-
14	LMT	AJ	103	-	-	2/21/61/61	0/2/2/2
23	MQ8	an	101	-	-	4/47/67/67	0/2/2/2
13	BCL	AM	101	28	-	10/37/137/137	-
15	V7N	bm	101	-	-	4/49/53/53	-
21	CD4	М	404	-	-	21/94/94/94	-
15	V7N	BH	1001	-	-	4/49/53/53	-
14	LMT	BU	1001	-	-	5/21/61/61	0/2/2/2
13	BCL	BI	104	-	-	12/37/137/137	-
14	LMT	BF	103	-	-	1/21/61/61	0/2/2/2
20	0V9	bk	102	-	-	12/48/48/50	-
14	LMT	AR	102	-	-	11/21/61/61	0/2/2/2
14	LMT	L	305	-	-	7/21/61/61	0/2/2/2
13	BCL	bh	105	-	-	6/37/137/137	-
14	LMT	BJ	1002	-	-	6/21/61/61	0/2/2/2
15	V7N	BG	1001	-	-	5/49/53/53	-
14	LMT	L	306	-	-	3/21/61/61	0/2/2/2
14	LMT	bd	102	-	-	8/21/61/61	0/2/2/2
13	BCL	BX	1004	-	-	6/37/137/137	-
13	BCL	AW	101	28	-	8/37/137/137	-
13	BCL	bi	103	-	-	6/37/137/137	-
14	LMT	BJ	1003	-	-	2/21/61/61	0/2/2/2
13	BCL	AJ	102	28	-	11/37/137/137	-
14	LMT	BS	1003	-	-	6/21/61/61	0/2/2/2
14	LMT	BA	102	-	-	2/21/61/61	0/2/2/2
14	LMT	BR	1006	-	-	2/21/61/61	0/2/2/2
14	LMT	BI	101	-	-	2/21/61/61	0/2/2/2
13	BCL	AV	102	-	-	3/37/137/137	-
13	BCL	BL	1004	-	-	6/37/137/137	-
14	LMT	AS	103	-	-	8/21/61/61	0/2/2/2
14	LMT	bf	101	-	-	7/21/61/61	0/2/2/2
14	LMT	BW	1006	-	-	9/21/61/61	0/2/2/2
14	LMT	AH	104	-	-	2/21/61/61	0/2/2/2

The worst 5 of 1406 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(\text{\AA})$	$\mathrm{Ideal}(\mathrm{\AA})$
15	ba	101	V7N	C28-C27	7.01	1.52	1.34
15	BV	1001	V7N	C28-C27	7.01	1.52	1.34
15	bp	102	V7N	C28-C27	7.00	1.52	1.34
15	bl	102	V7N	C28-C27	6.99	1.52	1.34
15	bg	101	V7N	C28-C27	6.99	1.52	1.34

The worst 5 of 1771 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
13	BA	104	BCL	C1-C2-C3	6.57	137.41	126.04
13	AQ	103	BCL	C1-O2A-CGA	6.47	133.42	116.44
15	bb	101	V7N	C28-C27-C26	-6.45	108.29	126.42
15	BG	1001	V7N	C28-C27-C26	-6.35	108.57	126.42
14	BW	1005	LMT	C1-O1'-C1'	5.92	123.66	113.84

There are no chirality outliers.

5 of 1852 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
13	AB	103	BCL	C1A-C2A-CAA-CBA
13	AB	103	BCL	C3A-C2A-CAA-CBA
13	AD	1001	BCL	C3A-C2A-CAA-CBA
13	AF	1002	BCL	C1A-C2A-CAA-CBA
13	AG	102	BCL	C1A-C2A-CAA-CBA

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-12682. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

Primary map 6.1.1

The images above show the map projected in three orthogonal directions.

6.2Central slices (i)

6.2.1Primary map

X Index: 200

Y Index: 200

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 206

Y Index: 210

Z Index: 214

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0292. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 327 nm^3 ; this corresponds to an approximate mass of 296 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.410 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.410 \AA^{-1}

8.2 Resolution estimates (i)

Resolution estimate (Å)	Estimation criterion (FSC cut-off)		
	0.143	0.5	Half-bit
Reported by author	2.44	-	-
Author-provided FSC curve	2.44	2.97	2.51
Unmasked-calculated*	-	-	_

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-12682 and PDB model 700X. Per-residue inclusion information can be found in section 3 on page 39.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0292 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Atom inclusion (i)

At the recommended contour level, 95% of all backbone atoms, 87% of all non-hydrogen atoms, are inside the map.

