

Jul 3, 2024 - 03:02 am BST

PDB ID 704J : EMDB ID EMD-12720 : Title Yeast RNA polymerase II transcription pre-initiation complex (consensus) : Authors Schilbach, S.; Aibara, S.; Dienemann, C.; Grabbe, F.; Cramer, P. : Deposited on 2021-04-06 : 2.90 Å(reported) Resolution : Based on initial model 5OQJ :

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motric	Whole archive	EM structures		
IVIEUTIC	$(\# {\rm Entries})$	$(\# { m Entries})$		
Clashscore	158937	4297		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	0	778	88%		9% •
2	1	645	74%	7%	19%
3	2	517	16%	12%	14%
4	3	324	37% • 60%		
5	4	341	• 73%	13%	14%
6	5	76	83%	•	14%
7	6	464	5% 69% 89	%	23%
8	7	843	• 62% 11%	2	7%

Mol	Chain	Length	Quality of a	chain						
9	А	1733	75%	79	% 17%					
10	В	1224	86%		10% •					
11	С	347	70%	7%	23%					
12	D	221	68%	8%	24%					
13	Е	215	89%		10%					
14	F	155	• 52% •	45	%					
15	G	177	84%		12% •					
16	Н	146	86%		10% •					
17	Ι	122	● 89%		6% 5%					
18	J	70	81%		17% •					
19	K	120	91%		5% •					
20	L	70	61%		36%					
21	М	352	79%		8% 13%					
22	Ν	106	42%	58%						
23	Ο	247	66%	8%	27%					
24	Q	738	6% 27% ·	70%						
25	R	400	5%	8%	33%					
26	Т	106	42%	58%						
27	U	286	30% 7%	63%						
28	V	129	68%	12%	19%					
29	W	492	55%	9%	37%					
30	Х	328	56%	8%	36%					

2 Entry composition (i)

There are 35 unique types of molecules in this entry. The entry contains 73025 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called General transcription and DNA repair factor IIH helicase subunit XPD.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	0	759	Total	С	Ν	Ο	\mathbf{S}	0	0
	U	132	6091	3882	1029	1142	38		U

• Molecule 2 is a protein called General transcription and DNA repair factor IIH subunit TFB1.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	1	522	Total 4214	C 2660	N 734	O 798	S 22	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
1	-2	GLY	-	expression tag	UNP P32776
1	-1	GLY	-	expression tag	UNP P32776
1	0	SER	-	expression tag	UNP P32776

• Molecule 3 is a protein called General transcription and DNA repair factor IIH subunit TFB2.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	2	445	Total 3597	C 2327	N 591	O 663	S 16	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
2	-3	GLY	-	expression tag	UNP Q02939
2	-2	PRO	-	expression tag	UNP Q02939
2	-1	GLY	-	expression tag	UNP Q02939
2	0	SER	-	expression tag	UNP Q02939

• Molecule 4 is a protein called RNA polymerase II transcription factor B subunit 3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
4	3	131	Total 1089	C 692	N 180	O 209	S 8	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
3	-2	GLY	-	expression tag	UNP Q03290
3	-1	PRO	-	expression tag	UNP Q03290
3	0	HIS	-	expression tag	UNP Q03290

• Molecule 5 is a protein called General transcription and DNA repair factor IIH subunit TFB4.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	4	293	Total 2274	C 1454	N 377	0 429	S 14	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
4	-2	SER	-	expression tag	UNP Q12004
4	-1	ASN	-	expression tag	UNP Q12004
4	0	ALA	-	expression tag	UNP Q12004

• Molecule 6 is a protein called General transcription and DNA repair factor IIH subunit TFB5.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	5	65	Total	С	Ν	Ο	\mathbf{S}	0	0
0	5	00	514	326	90	95	3	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
5	-3	GLY	-	expression tag	UNP Q3E7C1
5	-2	PRO	-	expression tag	UNP Q3E7C1
5	-1	GLY	-	expression tag	UNP Q3E7C1
5	0	SER	-	expression tag	UNP Q3E7C1

• Molecule 7 is a protein called General transcription and DNA repair factor IIH subunit SSL1.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	6	356	Total 2794	C 1771	N 482	0 513	S 28	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
6	-2	GLY	-	expression tag	UNP Q04673
6	-1	GLY	-	expression tag	UNP Q04673
6	0	SER	-	expression tag	UNP Q04673

• Molecule 8 is a protein called General transcription and DNA repair factor IIH helicase subunit XPB.

Mol	Chain	Residues		At	AltConf	Trace			
8	7	615	Total 4954	C 3153	N 860	0 914	S 27	0	0

• Molecule 9 is a protein called DNA-directed RNA polymerase II subunit RPB1.

Mol	Chain	Residues		A	AltConf	Trace			
9	А	1430	Total 11254	C 7088	N 1967	0 2137	S 62	0	0

• Molecule 10 is a protein called DNA-directed RNA polymerase II subunit RPB2.

Mol	Chain	Residues		Α	AltConf	Trace			
10	В	1180	Total 9404	C 5946	N 1643	O 1760	${ m S}{55}$	0	0

• Molecule 11 is a protein called DNA-directed RNA polymerase II subunit RPB3.

Mol	Chain	Residues		At	AltConf	Trace			
11	С	266	Total 2092	C 1315	N 348	0 416	S 13	0	0

There are 32 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
С	-28	MET	-	initiating methionine	UNP P16370
С	-27	GLY	-	expression tag	UNP P16370
С	-26	SER	-	expression tag	UNP P16370
С	-25	HIS	-	expression tag	UNP P16370
С	-24	HIS	-	expression tag	UNP P16370
С	-23	HIS	-	expression tag	UNP P16370
С	-22	HIS	-	expression tag	UNP P16370
С	-21	HIS	-	expression tag	UNP P16370
С	-20	HIS	-	expression tag	UNP P16370

Chain	Residue	Modelled	Actual	Comment	Reference
С	-19	SER	-	expression tag	UNP P16370
С	-18	ASN	-	expression tag	UNP P16370
С	-17	SER	-	expression tag	UNP P16370
С	-16	GLY	-	expression tag	UNP P16370
С	-15	LEU	-	expression tag	UNP P16370
С	-14	ASN	-	expression tag	UNP P16370
С	-13	ASP	-	expression tag	UNP P16370
С	-12	ILE	-	expression tag	UNP P16370
С	-11	PHE	-	expression tag	UNP P16370
С	-10	GLU	-	expression tag	UNP P16370
С	-9	ALA	-	expression tag	UNP P16370
С	-8	GLN	-	expression tag	UNP P16370
С	-7	LYS	-	expression tag	UNP P16370
С	-6	ILE	-	expression tag	UNP P16370
С	-5	GLU	-	expression tag	UNP P16370
С	-4	TRP	-	expression tag	UNP P16370
С	-3	HIS	-	expression tag	UNP P16370
С	-2	GLU	-	expression tag	UNP P16370
С	-1	ASP	-	expression tag	UNP P16370
С	0	THR	-	expression tag	UNP P16370
C	1	GLY	-	expression tag	UNP P16370
C	2	SER	-	expression tag	UNP P16370
C	3	SER	-	expression tag	UNP P16370

• Molecule 12 is a protein called DNA-directed RNA polymerase II subunit RPB4.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	D	167	Total 1343	C 829	N 242	0 270	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 13 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC1.

Mol	Chain	Residues		At	AltConf	Trace			
13	Е	214	Total 1752	C 1111	N 309	0 321	S 11	0	0

• Molecule 14 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC2.

Mol	Chain	Residues		At	AltConf	Trace			
14	F	86	Total 697	C 445	N 118	O 131	${ m S} { m 3}$	0	0

• Molecule 15 is a protein called DNA-directed RNA polymerase II subunit RPB7.

Mol	Chain	Residues	Atoms					AltConf	Trace
15	G	171	Total 1339	C 861	N 222	0 248	S 8	0	0

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
G	172	HIS	-	expression tag	UNP P34087
G	173	HIS	-	expression tag	UNP P34087
G	174	HIS	-	expression tag	UNP P34087
G	175	HIS	-	expression tag	UNP P34087
G	176	HIS	-	expression tag	UNP P34087
G	177	HIS	-	expression tag	UNP P34087

• Molecule 16 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC3.

Mol	Chain	Residues		At	AltConf	Trace			
16	Н	140	Total 1120	С 704	N 188	0 224	${S \atop 4}$	0	0

• Molecule 17 is a protein called DNA-directed RNA polymerase II subunit RPB9.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
17	Ι	116	Total 944	C 581	N 172	0 181	S 10	0	0

• Molecule 18 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC5.

Mol	Chain	Residues	Atoms					AltConf	Trace
18	J	69	Total 569	C 362	N 101	O 100	S 6	0	0

• Molecule 19 is a protein called DNA-directed RNA polymerase II subunit RPB11.

Mol	Chain	Residues		At	AltConf	Trace			
19	K	115	Total 924	C 593	N 157	0 172	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 20 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC4.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
20	L	45	Total 359	C 221	N 71	O 63	$\frac{S}{4}$	0	0

• Molecule 21 is a protein called Transcription initiation factor IIB.

Mol	Chain	Residues		At	AltConf	Trace			
21	М	308	Total 2360	C 1489	N 406	0 447	S 18	0	0

There are 7 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
М	346	LYS	-	expression tag	UNP P29055
М	347	HIS	-	expression tag	UNP P29055
М	348	HIS	-	expression tag	UNP P29055
М	349	HIS	-	expression tag	UNP P29055
М	350	HIS	-	expression tag	UNP P29055
М	351	HIS	-	expression tag	UNP P29055
М	352	HIS	-	expression tag	UNP P29055

• Molecule 22 is a DNA chain called Non-template DNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
22	Ν	45	Total 928	C 443	N 169	0 271	Р 45	0	0

• Molecule 23 is a protein called TATA-box-binding protein.

Mol	Chain	Residues	Atoms				AltConf	Trace	
23	О	181	Total 1422	C 925	N 243	0 248	S 6	0	0

There are 7 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
0	241	LYS	-	expression tag	UNP P13393
0	242	HIS	-	expression tag	UNP P13393
0	243	HIS	-	expression tag	UNP P13393
0	244	HIS	-	expression tag	UNP P13393
0	245	HIS	-	expression tag	UNP P13393
0	246	HIS	-	expression tag	UNP P13393
0	247	HIS	-	expression tag	UNP P13393

• Molecule 24 is a protein called Transcription initiation factor IIF subunit alpha.

Mol	Chain	Residues	Atoms					AltConf	Trace
24	Q	221	Total 1871	C 1179	N 346	O 339	S 7	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Q	-2	GLY	-	expression tag	UNP P41895
Q	-1	PRO	-	expression tag	UNP P41895
Q	0	GLY	-	expression tag	UNP P41895

• Molecule 25 is a protein called Transcription initiation factor IIF subunit beta.

Mol	Chain	Residues	Atoms				AltConf	Trace	
25	R	268	Total 2230	C 1409	N 392	O 419	S 10	0	0

• Molecule 26 is a DNA chain called Template DNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
26	Т	45	Total 917	C 439	N 164	O 269	Р 45	0	0

• Molecule 27 is a protein called Transcription initiation factor IIA large subunit.

Mol	Chain	Residues	Atoms					AltConf	Trace
27	U	107	Total 885	C 559	N 147	0 176	${ m S} { m 3}$	0	0

• Molecule 28 is a protein called Transcription initiation factor IIA subunit 2.

Mol	Chain	Residues	Atoms					AltConf	Trace
28	V	104	Total 815	C 511	N 136	0 164	$\frac{S}{4}$	0	0

There are 7 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
V	123	LYS	-	expression tag	UNP P32774
V	124	HIS	-	expression tag	UNP P32774
V	125	HIS	-	expression tag	UNP P32774

Chain	Residue	Modelled	Actual	Comment	Reference
V	126	HIS	-	expression tag	UNP P32774
V	127	HIS	-	expression tag	UNP P32774
V	128	HIS	-	expression tag	UNP P32774
V	129	HIS	_	expression tag	UNP P32774

• Molecule 29 is a protein called Transcription initiation factor IIE subunit alpha.

Mol	Chain	Residues	Atoms					AltConf	Trace
29	W	312	Total 2532	C 1595	N 442	0 488	S 7	0	0

There are 10 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
W	483	ALA	-	expression tag	UNP P36100
W	484	ALA	-	expression tag	UNP P36100
W	485	ALA	-	expression tag	UNP P36100
W	486	LEU	-	expression tag	UNP P36100
W	487	GLU	-	expression tag	UNP P36100
W	488	HIS	-	expression tag	UNP P36100
W	489	HIS	-	expression tag	UNP P36100
W	490	HIS	-	expression tag	UNP P36100
W	491	HIS	-	expression tag	UNP P36100
W	492	HIS	-	expression tag	UNP P36100

• Molecule 30 is a protein called Transcription initiation factor IIE subunit beta.

Mol	Chain	Residues	Atoms				AltConf	Trace	
30	Х	210	Total 1683	C 1075	N 286	0 316	S 6	0	0

• Molecule 31 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe_4S_4).

Mol	Chain	Residues	Atoms	AltConf
31	0	1	Total Fe S 8 4 4	0

• Molecule 32 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
32	3	2	Total Zn 2 2	0
32	4	1	Total Zn 1 1	0
32	6	4	Total Zn 4 4	0
32	А	2	Total Zn 2 2	0
32	В	1	Total Zn 1 1	0
32	С	1	Total Zn 1 1	0
32	Ι	2	Total Zn 2 2	0
32	J	1	Total Zn 1 1	0
32	L	1	Total Zn 1 1	0
32	М	1	Total Zn 1 1	0
32	W	1	Total Zn 1 1	0

• Molecule 33 is BERYLLIUM TRIFLUORIDE ION (three-letter code: BEF) (formula: BeF₃).

Mol	Chain	Residues	Atoms	AltConf
33	7	1	Total Be F 4 1 3	0

• Molecule 34 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
34	7	1	Total Mg 1 1	0
34	А	1	Total Mg 1 1	0

• Molecule 35 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$).

Mol	Chain	Residues	Atoms				AltConf	
25	7	1	Total	С	Ν	Ο	Р	0
- 35	1	L	27	10	5	10	2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: General transcription and DNA repair factor IIH helicase subunit XPD

• Molecule 3: General transcription and DNA repair factor IIH subunit TFB2

• Molecule 4: RNA polymerase II transcription factor B subunit 3

• Molecule 6: General transcription and DNA repair factor IIH subunit TFB5

• Molecule 9: DNA-directed RNA polymerase II subunit RPB1

GLN ASP GLU GLU CGLU ASN ASN GLU ASN SER SER

• Molecule 10: DNA-directed RNA polymerase II subunit RPB2

Chain L:

61%

• Molecule 14: DNA-directed RNA polymerases I, II, and III subunit RPABC2

Chain F:	52%	- · ·	15%
MET SER ASP ASP GLU GLU ASN ASP GLU ASN ASN CLU CLU	ASP ASP ASP ASP CLU CLU CLU CLU CLU CLU CLU	GLU LYS PHE CIN CIN CIN CIN CIU THR ASP ASN ASN	GLY LYS THR THR THE VAL VAL GLY GLY GLY GLY GLU GLU GLU GLN GLN
HIS GLU GLU GLU GLU GLU GLU GLU HR LEU F7 F7 I74 NI04	L111 E112 V133 S147 L155		
• Molecule 15: DNA-	directed RNA poly	merase II subunit H	RPB7
Chain G:	84%		12% ·
M1 72 73 14 14 111 111 134 145 145 145 145	I64 V72 V78 V78 V101 P105 T111 X112	P116 L119 S132 S132 S155 S155 D166 L17	STH STH STH STH STH
• Molecule 16: DNA-	directed RNA poly	merases I, II, and I	II subunit RPABC3
Chain H:	86%		10% ·
MET 82 82 82 13 126 126 126 126 126 126 126 126 126 126	P69 ALA ALA ASN ASP ASE SER SER Y93 K103 K103 D110	R1 24 Y1 29 11 43 11 44 R1 45 R1 45	
• Molecule 17: DNA-	directed RNA poly	merase II subunit F	RPB9
Chain I:	89%		6% 5%
MET 12 12 16 16 16 16 16 16 16 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18	N116 K117 ARG THR CLN PHE SER		
• Molecule 18: DNA-	directed RNA poly	merases I, II, and I	II subunit RPABC5
Chain J:	81%		17% •
M1 12 13 13 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	R48 H52 H53 L61 A89 A89 A89		
• Molecule 19: DNA-	directed RNA poly	merase II subunit F	RPB11
Chain K:	91%	2	5% •
M1 F7 L11 L42 K102 M104 M104 A115 A115	ASP ALA PHE		
• Molecule 20: DNA-	directed RNA poly	merases I, II, and I	II subunit RPABC4

36%

W I D E BANK

MET SER ARG GLU GLU GLV GLN ILE PRO ASN	LEU ASP ALA ALA ALA ALA GLY SER SER GLN	THR THR ALA T26 T26 T26 T26 T26 T26 T26 T26 T26 T26			
• Molecule 21:	Transcription is	nitiation factor]	IIB		
Chain M:		79%		8% 13%	
MET MET THR ARG ARG SER ILE ARG ARG	0LY ARG R14 L22 L22 E36 F38 F38 S39 E30 E30 E30	041 D42 V43 D58 D58 A85 S85 C10 U10 T18P A86 T18P	PHE SER ASP ASP ASP HIS ASP CITY ASP ASP PRD	R78 A82 E100 K161 A173 R181 R181 R181 R181	
F189 E202 F203 F203 F215 E219 E219 D220	PH221 PH221 LEU K2224 D226 D226 T227 D228 N229	0.234 N235 L236 L236 S244 C263 L266	1269 1329 1336 1336 1336 1336 142 142 145 1475	STH STH STH STH	
• Molecule 22:	Non-template I	ONA			
Chain N:	42%	·	58%		
DC DG DG DG DG DG DC DC DC DC DC	A25 DA DA DA DA DA DA DA	DT DC DC DC DC DC DC DC DC DC DC DC DC DC	<mark>872</mark> DC DA DA DA DA DA DA DA	DC DC DC DC DC DC DC DC DC DC DC DC DC D	
00 01 01 01 01 01 02					
• Molecule 23:	TATA-box-bind	ling protein			
Chain O:	e	56%	8%	27%	
Chain O:	GLU ALA ASN ASN ILY ILE VAL PHE PRC PSN ASN ASN ASN	ARG GLN GLN GLN GLN ASS ASS GLN GLN ASS GLN THR	LYS PRA ALA THR THR PHH GLU GLU GLU GLU CLU CLU	ALK ALK ALK ALK ALK PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	
Chain O:	D165 GLU 1165 ASIX V166 ASIX 1170 L/YS 1170 L/XS 1170 V/L 1175 PHE 1175 ASIX 1181 ASIX 1181 THR	1182 4.02 1182 4.03 1183 7.01 1189 7.01 1189 5.01 1189 5.01 1189 5.01 1189 5.01 1139 5.01 1139 5.01 1200 5.01 1234 7.01 1234 7.01 1234 7.01	LYS 1240 LYS LYS HZ HIS HIS HIS HIS CIU KR ASP CIU ASP AIA HIS CIU ASP AIA HIS CIU HIS THR HIS THR HIS THR HIS THR HIS THR HIS THR HIS THR HIS THR HIS THR HIS THR THR THR THR THR THR THR THR	27% VIIII VIII V	
Chain O:	Transcription in	56%	8% XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	27% YTY YTY XYY XYY XYY XYY XYY XYY XYY XYY	
Chain O:	Transcription in	56%	8% 51 & Y & E & H & S & S & S & H & S 51 & Y & E & E & S & S & S & S & H & S 52 & S & S & S & S & S & S & S & S & S &	27% VII VII VII VII VII VII VII VII VII VI	
Chain O:	M1 W1 W1 <td< td=""><td>56% 56% 57% 57% 57% 57% 57% 57% 57% 57</td><td>8%</td><td>222% SER SER SER SER SIT ALL STA SER SER SER SER SER SER SER SER SER SER</td><td>V AL LYS</td></td<>	56% 56% 57% 57% 57% 57% 57% 57% 57% 57	8%	222% SER SER SER SER SIT ALL STA SER SER SER SER SER SER SER SER SER SER	V AL LYS
Chain O:		228.4 K23 Allo Allo Allo Allo Allo Allo Allo All	8% SI Q Q Y H H H H H I S S D D D S Y H H Q SI S S H H H H H S S D D D S Y H H Q SI S S H H H H H H H H UIF subunit alpha 70% SE S S S S S S S S S S S S S S S S S S	227% SHR SHR SHR SHR SHR SHR SHR SHR	LYS
Chain O:	ANN KAN KAN KAN KAN KAN KAN KAN KAN KAN	VILL GLY ASP ARG ASP ARG AS	8% 111 111 111 111 111 111 111 1	ALA NAL NAL NAL NAL NAL NAL NAL	SAT AVE

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	107644	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	43.6	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	4000	Depositor
Magnification	130000	Depositor
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.485	Depositor
Minimum map value	-0.275	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.007	Depositor
Recommended contour level	0.015	Depositor
Map size (Å)	398.99997, 398.99997, 398.99997	wwPDB
Map dimensions	380, 380, 380	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.05, 1.05, 1.05	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: BEF, ZN, MG, ADP, SF4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	0	0.25	0/6209	0.41	0/8384	
2	1	0.24	0/4277	0.39	0/5755	
3	2	0.24	0/3664	0.38	0/4952	
4	3	0.24	0/1109	0.38	0/1492	
5	4	0.24	0/2312	0.41	0/3127	
6	5	0.23	0/520	0.38	0/701	
7	6	0.24	0/2851	0.41	0/3856	
8	7	0.27	0/5059	0.42	0/6841	
9	А	0.25	0/11455	0.42	0/15490	
10	В	0.26	0/9589	0.43	0/12934	
11	С	0.24	0/2130	0.42	0/2887	
12	D	0.23	0/1351	0.40	0/1811	
13	Е	0.24	0/1788	0.40	0/2406	
14	F	0.24	0/709	0.40	0/956	
15	G	0.26	0/1367	0.44	0/1844	
16	Н	0.25	0/1139	0.44	0/1544	
17	Ι	0.26	0/962	0.45	0/1295	
18	J	0.25	0/578	0.42	0/775	
19	Κ	0.25	0/942	0.41	0/1272	
20	L	0.24	0/361	0.43	0/478	
21	М	0.24	0/2387	0.40	0/3211	
22	Ν	0.50	0/1040	0.92	0/1602	
23	0	0.25	0/1449	0.44	0/1952	
24	Q	0.25	0/1907	0.42	0/2556	
25	R	0.24	0/2270	0.42	0/3052	
26	Т	0.53	0/1026	0.93	0/1577	
27	U	0.23	0/898	0.41	0/1212	
28	V	0.22	0/822	0.41	0/1109	
29	W	0.24	0/2575	0.39	0/3473	
30	Х	0.24	0/1714	0.40	0/2307	
All	All	0.26	0/74460	0.44	0/100851	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	0	6091	0	6155	50	0
2	1	4214	0	4288	37	0
3	2	3597	0	3687	45	0
4	3	1089	0	1069	10	0
5	4	2274	0	2332	33	0
6	5	514	0	541	1	0
7	6	2794	0	2815	28	0
8	7	4954	0	4946	63	0
9	А	11254	0	11319	80	0
10	В	9404	0	9398	83	0
11	С	2092	0	2050	18	0
12	D	1343	0	1366	11	0
13	Ε	1752	0	1776	13	0
14	F	697	0	720	4	0
15	G	1339	0	1357	15	0
16	Н	1120	0	1086	9	0
17	Ι	944	0	899	5	0
18	J	569	0	585	12	0
19	K	924	0	934	6	0
20	L	359	0	381	2	0
21	М	2360	0	2467	26	0
22	N	928	0	511	1	0
23	0	1422	0	1500	16	0
24	Q	1871	0	1883	20	0
25	R	2230	0	2254	26	0
26	Т	917	0	510	0	0
27	U	885	0	866	18	0
28	V	815	0	822	15	0
29	W	2532	0	2529	30	0
30	Х	1683	0	1723	21	0

	Chain	Non U	U (model)	U(addad)	Clashes	Summ Clashes
IVIOI	Chain	INOII-II	п(model)	n(added)	Clashes	Symm-Clasnes
31	0	8	0	0	0	0
32	3	2	0	0	0	0
32	4	1	0	0	0	0
32	6	4	0	0	0	0
32	А	2	0	0	0	0
32	В	1	0	0	0	0
32	С	1	0	0	0	0
32	Ι	2	0	0	0	0
32	J	1	0	0	0	0
32	L	1	0	0	0	0
32	М	1	0	0	0	0
32	W	1	0	0	0	0
33	7	4	0	0	0	0
34	7	1	0	0	0	0
34	А	1	0	0	0	0
35	7	27	0	12	0	0
All	All	73025	0	72781	597	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (597) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:0:335:LEU:HD21	1:0:399:LEU:HD12	1.56	0.86
10:B:326:ASP:OD1	10:B:329:THR:OG1	1.92	0.86
25:R:233:TYR:O	25:R:234:HIS:ND1	2.10	0.84
8:7:491:HIS:O	8:7:519:ARG:NH2	2.12	0.83
23:O:179:HIS:O	23:O:183:SER:OG	1.98	0.82
8:7:631:THR:HA	30:X:313:THR:HG21	1.59	0.81
21:M:229:ASN:OD1	21:M:234:GLN:NE2	2.13	0.80
9:A:500:GLU:OE1	10:B:1145:SER:OG	2.01	0.79
9:A:107:CYS:SG	9:A:171:GLN:NE2	2.56	0.79
12:D:32:GLU:O	15:G:5:LYS:NZ	2.13	0.78
10:B:287:ARG:NH1	10:B:292:ILE:O	2.15	0.78
10:B:276:ILE:HG21	10:B:280:ILE:HD11	1.67	0.77
25:R:318:LEU:HD22	25:R:329:LEU:HD21	1.66	0.77
23:O:153:THR:HG22	23:O:154:ASP:H	1.51	0.76
8:7:631:THR:HA	30:X:313:THR:CG2	2.15	0.76
2:1:16:ILE:HD11	2:1:27:LEU:HD11	1.68	0.75
5:4:32:ILE:HD11	5:4:132:LEU:HD23	1.69	0.75

A + 1	A targe D	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
27:U:13:ILE:HG12	28:V:51:THR:HG21	1.69	0.75
7:6:113:LYS:HA	7:6:388:THR:HG21	1.69	0.75
10:B:496:ARG:NH2	10:B:540:SER:O	2.20	0.75
25:R:318:LEU:HD21	25:R:329:LEU:HD11	1.68	0.75
9:A:840:ARG:NH1	9:A:1106:ASN:OD1	2.20	0.74
16:H:48:PRO:O	16:H:146:ARG:NH1	2.20	0.74
25:R:318:LEU:CD2	25:R:329:LEU:HD11	2.17	0.74
4:3:18:THR:HG23	4:3:18:THR:O	1.87	0.73
8:7:649:ILE:HD11	30:X:320:ILE:HG21	1.68	0.73
29:W:72:GLN:NE2	29:W:74:GLU:OE2	2.23	0.72
7:6:230:ARG:NH1	7:6:257:GLU:OE1	2.21	0.72
9:A:469:ARG:NH2	10:B:991:GLY:O	2.22	0.71
29:W:37:VAL:HG12	29:W:88:TYR:HB3	1.71	0.71
10:B:868:MET:SD	21:M:182:ARG:NH1	2.63	0.70
11:C:54:ASN:ND2	11:C:60:ASP:OD1	2.24	0.70
10:B:343:ILE:HD12	10:B:348:ARG:HG3	1.73	0.70
1:0:625:ILE:HG22	1:0:658:ALA:HB1	1.74	0.69
10:B:398:ARG:NH1	10:B:508:LEU:O	2.26	0.69
15:G:46:LEU:HD21	15:G:105:PRO:HG3	1.75	0.69
9:A:120:GLU:OE1	9:A:123:ARG:NH2	2.27	0.68
3:2:200:LEU:HD11	3:2:258:LEU:HD11	1.75	0.68
8:7:832:LEU:HD22	9:A:1266:THR:HG21	1.75	0.68
10:B:151:LEU:HD23	10:B:153:ALA:H	1.58	0.68
3:2:141:ASN:O	3:2:145:THR:HG23	1.94	0.67
13:E:88:VAL:HB	13:E:116:ILE:HG22	1.77	0.67
10:B:848:ARG:NH1	18:J:8:PHE:O	2.28	0.67
27:U:7:SER:OG	27:U:53:THR:O	2.08	0.67
11:C:112:ASN:ND2	18:J:19:GLU:OE2	2.27	0.67
9:A:894:GLU:OE2	9:A:933:TYR:OH	2.12	0.67
8:7:683:GLU:OE1	8:7:722:ARG:NH1	2.28	0.66
10:B:336:ARG:NH1	24:Q:410:GLU:OE2	2.26	0.66
25:R:41:ASP:OD1	25:R:42:GLY:N	2.28	0.65
23:O:107:ARG:NH2	28:V:66:LEU:O	2.29	0.65
10:B:805:THR:HG23	24:Q:22:ILE:HD12	1.79	0.65
8:7:130:ARG:O	8:7:202:LYS:NZ	2.22	0.65
9:A:1287:TYR:OH	9:A:1307:GLU:OE1	2.13	0.65
10:B:427:ASP:OD1	10:B:430:ARG:NH2	2.30	0.65
27:U:14:VAL:HG23	27:U:42:TRP:CE3	2.32	0.65
13:E:24:LYS:NZ	13:E:32:GLN:OE1	2.30	0.65
2:1:512:LYS:NZ	7:6:331:ASP:OD1	2.29	0.64
3:2:144:GLU:OE1	3:2:148:HIS:NE2	2.30	0.64

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
9:A:690:VAL:O	9:A:694:THR:HG23	1.96	0.64
10:B:108:VAL:HG23	21:M:244:SER:HB2	1.79	0.64
23:O:170:ILE:HD13	23:O:234:LEU:HD22	1.79	0.64
30:X:192:LEU:HD13	30:X:210:LEU:HD21	1.79	0.64
1:0:385:VAL:HG13	1:0:390:VAL:HG21	1.77	0.64
7:6:182:VAL:HG11	7:6:199:ILE:HD11	1.79	0.64
29:W:17:VAL:HG21	29:W:29:LEU:HD13	1.79	0.64
1:0:5:ILE:HG22	1:0:6:ASP:H	1.63	0.64
3:2:250:LEU:HD12	3:2:259:VAL:HG11	1.80	0.64
1:0:310:PRO:HB3	1:0:404:THR:HG23	1.79	0.63
9:A:157:ASP:OD1	9:A:160:GLN:NE2	2.31	0.63
9:A:1215:ARG:HG2	9:A:1273:LEU:HD23	1.81	0.63
15:G:11:ILE:HD12	15:G:72:VAL:HG21	1.81	0.63
29:W:95:ILE:HD12	29:W:194:ILE:HD13	1.81	0.63
13:E:169:ARG:HH12	14:F:74:ILE:HD11	1.63	0.62
10:B:617:ARG:NH2	17:I:61:ASP:OD2	2.32	0.62
10:B:98:THR:HG22	25:R:255:LEU:HD12	1.81	0.62
29:W:42:ASP:OD1	29:W:210:GLN:NE2	2.33	0.61
10:B:118:ARG:NH2	10:B:202:TYR:OH	2.32	0.61
1:0:22:TYR:CD1	1:0:744:LEU:HD11	2.35	0.61
5:4:197:MET:HE1	7:6:374:THR:HG22	1.83	0.61
10:B:27:ALA:N	10:B:708:GLU:OE2	2.34	0.61
2:1:198:THR:O	2:1:202:ALA:HB3	2.00	0.61
7:6:413:LEU:O	7:6:422:LEU:N	2.33	0.61
8:7:649:ILE:HD11	30:X:320:ILE:CG2	2.30	0.61
5:4:179:LEU:HD23	5:4:213:VAL:HB	1.82	0.61
2:1:538:VAL:HG21	7:6:344:TYR:CZ	2.36	0.60
23:O:108:GLU:HB3	23:O:109:PRO:HD3	1.82	0.60
10:B:165:VAL:HG11	10:B:448:ILE:HD12	1.82	0.60
11:C:6:PRO:O	19:K:104:ASN:ND2	2.33	0.60
1:0:620:VAL:CG2	1:0:669:VAL:HG21	2.31	0.60
11:C:13:ALA:O	19:K:114:LEU:HD23	2.02	0.60
29:W:352:GLU:OE2	29:W:352:GLU:N	2.35	0.60
10:B:283:VAL:HG21	10:B:318:VAL:HA	1.83	0.60
9:A:514:PRO:HG2	9:A:1067:LEU:HD11	1.82	0.60
1:0:678:VAL:HG11	1:0:717:THR:HG23	1.84	0.59
2:1:170:SER:O	2:1:174:LEU:HD23	2.02	0.59
10:B:810:GLU:OE2	10:B:815:ARG:NH1	2.35	0.59
1:0:666:LEU:HD22	1:0:679:MET:HB3	1.84	0.59
3:2:139:SER:HB2	3:2:272:THR:HG21	1.84	0.59
8:7:579:LEU:HD11	8:7:613:TYR:HD2	1.67	0.59

	A + O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
8:7:603:ASP:OD1	8:7:695:ARG:NH2	2.35	0.59
21:M:329:ILE:HD12	21:M:336:LEU:HD23	1.84	0.59
28:V:47:VAL:O	28:V:51:THR:HG22	2.02	0.59
3:2:239:ILE:HG22	3:2:267:SER:O	2.02	0.59
21:M:181:ARG:O	21:M:229:ASN:ND2	2.35	0.59
1:0:135:ARG:NH1	1:0:391:THR:OG1	2.35	0.59
9:A:1199:ARG:NH2	9:A:1233:ASP:O	2.35	0.59
10:B:657:HIS:O	10:B:661:LEU:HD23	2.01	0.59
8:7:552:VAL:HG12	8:7:703:ALA:HB3	1.84	0.59
30:X:143:LEU:HD23	30:X:177:THR:HG22	1.83	0.59
21:M:229:ASN:O	21:M:234:GLN:NE2	2.36	0.58
1:0:385:VAL:CG1	1:0:390:VAL:HG21	2.34	0.58
28:V:10:TYR:O	28:V:13:SER:OG	2.20	0.58
7:6:429:CYS:O	7:6:433:LYS:N	2.35	0.58
1:0:463:ILE:HG23	1:0:463:ILE:O	2.03	0.58
25:R:205:VAL:HG13	25:R:207:THR:HG23	1.86	0.58
3:2:272:THR:HG22	3:2:273:LYS:H	1.69	0.58
9:A:683:ILE:HG21	9:A:801:GLU:HG3	1.84	0.58
25:R:318:LEU:CD2	25:R:329:LEU:HD21	2.33	0.58
13:E:124:VAL:HG13	13:E:132:ILE:HB	1.85	0.58
2:1:557:CYS:HB3	2:1:623:ILE:HD11	1.86	0.58
15:G:119:LEU:HD23	15:G:132:SER:HB2	1.85	0.58
1:0:413:GLU:N	1:0:413:GLU:OE1	2.37	0.58
1:0:436:ARG:HD3	1:0:634:ILE:HD11	1.86	0.57
11:C:56:THR:HG22	11:C:147:LEU:HD21	1.87	0.57
2:1:18:ILE:CD1	2:1:27:LEU:HD12	2.34	0.57
29:W:32:ILE:HD11	29:W:67:ILE:HG12	1.87	0.57
8:7:413:SER:O	8:7:417:VAL:HG23	2.03	0.57
10:B:884:ARG:NH2	21:M:36:GLU:OE2	2.38	0.57
3:2:201:TRP:CZ2	3:2:278:LEU:HD21	2.39	0.57
8:7:631:THR:CA	30:X:313:THR:HG21	2.30	0.57
9:A:1384:VAL:HG12	9:A:1384:VAL:O	2.03	0.57
12:D:192:LYS:NZ	12:D:204:ASP:OD1	2.30	0.57
27:U:45:LYS:O	27:U:49:THR:HG23	2.04	0.57
10:B:416:LEU:HD23	10:B:457:LEU:HD23	1.88	0.56
25:R:73:LEU:HD21	25:R:81:TRP:CE3	2.40	0.56
4:3:91:VAL:HG12	4:3:136:TYR:HD2	1.70	0.56
21:M:202:GLU:N	21:M:202:GLU:OE1	2.36	0.56
24:Q:375:LEU:CD2	24:Q:389:ALA:HB2	2.35	0.56
9:A:1212:VAL:HG12	9:A:1273:LEU:HD22	1.88	0.56
10:B:620:ARG:NH2	17:I:68:LEU:HD21	2.20	0.56

	A + O	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
23:O:175:LEU:HD11	23:O:234:LEU:HD23	1.88	0.56
30:X:235:THR:OG1	30:X:238:ASP:O	2.22	0.56
22:N:25:DA:OP1	23:O:196:ARG:NH2	2.37	0.55
23:O:129:GLU:OE2	23:O:220:ARG:NH2	2.39	0.55
8:7:601:ARG:NH1	8:7:603:ASP:OD2	2.38	0.55
9:A:1260:LEU:HD23	9:A:1263:ILE:HD11	1.88	0.55
8:7:833:ILE:O	8:7:833:ILE:HG22	2.07	0.55
2:1:602:ASN:OD1	2:1:603:GLY:N	2.40	0.55
8:7:186:VAL:HG13	8:7:186:VAL:O	2.07	0.55
10:B:272:THR:HG22	10:B:279:ASP:OD1	2.06	0.55
27:U:247:LEU:HD23	28:V:118:SER:HA	1.89	0.55
3:2:35:ILE:O	3:2:38:ILE:HG22	2.07	0.55
8:7:589:GLN:HB3	8:7:748:LEU:HD22	1.90	0.54
24:Q:159:ARG:NH1	25:R:201:TYR:OH	2.34	0.54
2:1:462:LEU:HD12	2:1:462:LEU:O	2.06	0.54
3:2:146:ILE:HD11	3:2:167:LEU:HD11	1.88	0.54
19:K:7:PHE:HB2	19:K:11:LEU:HD12	1.90	0.54
3:2:139:SER:CB	3:2:272:THR:HG21	2.38	0.54
8:7:564:GLU:HG3	8:7:760:LEU:HD22	1.89	0.54
8:7:223:VAL:HG13	8:7:337:VAL:HA	1.89	0.54
9:A:216:VAL:O	9:A:220:THR:HG23	2.07	0.54
16:H:2:SER:OG	16:H:3:ASN:N	2.36	0.54
16:H:110:ASP:O	16:H:129:TYR:N	2.40	0.54
2:1:270:TYR:O	2:1:274:VAL:HG23	2.07	0.54
9:A:1192:LEU:HD11	9:A:1239:ARG:HB3	1.90	0.54
8:7:342:ASP:OD2	8:7:345:ASN:ND2	2.40	0.54
11:C:84:ARG:HD2	19:K:11:LEU:HD11	1.89	0.53
9:A:919:ILE:HD11	9:A:925:LEU:HG	1.90	0.53
5:4:276:CYS:SG	5:4:277:TYR:N	2.82	0.53
9:A:335:ARG:HH22	10:B:1114:LEU:HD21	1.72	0.53
10:B:416:LEU:HD21	10:B:460:ALA:HB3	1.90	0.53
4:3:44:ASP:O	4:3:48:SER:OG	2.23	0.53
4:3:18:THR:O	4:3:18:THR:CG2	2.57	0.53
9:A:997:LEU:O	9:A:1011:GLN:NE2	2.41	0.53
30:X:147:LEU:O	30:X:151:LEU:HD23	2.09	0.53
10:B:928:ARG:NH1	10:B:929:THR:O	2.42	0.53
24:Q:432:GLY:O	25:R:198:ARG:NE	2.42	0.53
5:4:68:ASN:OD1	5:4:69:SER:N	2.42	0.53
13:E:26:ARG:NH1	13:E:133:GLU:OE1	2.39	0.53
3:2:369:ARG:HG3	3:2:374:VAL:HG22	1.91	0.52
18:J:3:VAL:HG21	18:J:18:TRP:HB2	1.91	0.52

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
10:B:35:SER:OG	10:B:39:ARG:NH1	2.42	0.52
13:E:84:ASP:O	13:E:113:GLN:NE2	2.42	0.52
25:R:339:LEU:H	25:R:339:LEU:HD23	1.75	0.52
3:2:125:VAL:HG21	3:2:268:ILE:CG2	2.40	0.52
11:C:77:ILE:HD11	11:C:161:LYS:HB3	1.91	0.52
5:4:26:LEU:HD13	5:4:175:ARG:CZ	2.40	0.52
10:B:664:THR:HG21	10:B:679:TYR:H	1.73	0.52
1:0:335:LEU:HD21	1:0:399:LEU:CD1	2.34	0.52
5:4:165:LYS:NZ	7:6:439:ASP:OD1	2.42	0.52
8:7:832:LEU:HD23	9:A:1263:ILE:HG22	1.91	0.52
18:J:3:VAL:HG21	18:J:18:TRP:CG	2.45	0.52
27:U:13:ILE:O	27:U:17:VAL:HG23	2.10	0.52
8:7:609:SER:HB3	8:7:615:LEU:HD13	1.92	0.52
3:2:256:TYR:HB2	3:2:258:LEU:HD13	1.91	0.52
9:A:598:LEU:HD11	16:H:124:ARG:HB2	1.91	0.52
10:B:512:ARG:NH1	10:B:533:CYS:O	2.43	0.52
7:6:109:ARG:NH2	7:6:441:ASP:OD2	2.43	0.51
9:A:376:TYR:OH	9:A:495:GLU:OE2	2.24	0.51
9:A:417:TYR:OH	21:M:37:ARG:NH1	2.43	0.51
9:A:584:ASN:O	9:A:637:LYS:NZ	2.37	0.51
21:M:22:LEU:HD13	21:M:43:VAL:HG11	1.91	0.51
5:4:197:MET:CE	7:6:374:THR:HG22	2.41	0.51
7:6:427:TYR:O	7:6:436:PHE:N	2.41	0.51
9:A:806:ARG:NH2	10:B:727:LYS:O	2.40	0.51
11:C:40:GLU:OE1	11:C:254:LYS:NZ	2.31	0.51
1:0:78:GLU:OE1	1:0:81:LYS:NZ	2.43	0.51
1:0:620:VAL:HG23	1:0:669:VAL:HG21	1.92	0.51
5:4:109:ILE:HG21	5:4:126:VAL:HG11	1.92	0.51
9:A:1143:LEU:HD22	9:A:1268:LEU:HD23	1.92	0.51
8:7:356:LEU:HD22	8:7:360:THR:HG21	1.91	0.51
12:D:167:LEU:HB3	12:D:177:VAL:HG23	1.92	0.51
29:W:21:TYR:OH	29:W:64:ASP:OD2	2.21	0.51
3:2:99:ASN:OD1	3:2:100:LEU:N	2.43	0.51
21:M:14:ARG:NH2	29:W:126:ILE:O	2.43	0.51
27:U:5:GLU:OE1	28:V:58:SER:OG	2.23	0.51
11:C:56:THR:HG22	11:C:147:LEU:CD2	2.40	0.51
24:Q:118:LEU:HB2	24:Q:392:VAL:HG22	1.93	0.51
9:A:881:GLN:NE2	9:A:958:VAL:O	2.43	0.51
7:6:291:LEU:H	7:6:291:LEU:HD23	1.75	0.51
10:B:806:THR:HG22	10:B:808:ALA:H	1.76	0.51
2:1:45:ILE:HB	2:1:108:ILE:HD12	1.92	0.50

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:2:184:ILE:HD13	3:2:362:LEU:HD21	1.91	0.50
9:A:1289:ARG:HG3	9:A:1291:VAL:HG13	1.93	0.50
10:B:323:VAL:HG23	10:B:324:ILE:HD12	1.92	0.50
11:C:36:VAL:HG21	11:C:251:LEU:HD13	1.93	0.50
9:A:537:ARG:NH2	9:A:599:SER:O	2.40	0.50
15:G:9:LEU:HD22	15:G:34:VAL:CG2	2.42	0.50
2:1:538:VAL:HG21	7:6:344:TYR:OH	2.10	0.50
2:1:561:LEU:HD21	2:1:622:SER:OG	2.12	0.50
8:7:454:VAL:HG13	8:7:454:VAL:O	2.12	0.50
9:A:261:ASP:OD1	9:A:316:GLN:NE2	2.45	0.50
3:2:272:THR:HG22	3:2:273:LYS:N	2.26	0.50
8:7:493:VAL:N	8:7:494:PRO:CD	2.75	0.50
10:B:199:MET:SD	10:B:199:MET:N	2.83	0.50
12:D:217:LEU:HD12	12:D:217:LEU:O	2.11	0.50
25:R:250:GLU:OE1	25:R:250:GLU:N	2.45	0.50
3:2:250:LEU:CD1	3:2:259:VAL:HG11	2.41	0.50
5:4:293:LEU:HD11	7:6:122:ILE:HG21	1.93	0.50
8:7:743:GLU:N	8:7:743:GLU:OE1	2.44	0.50
9:A:5:GLN:O	10:B:1159:ARG:NH2	2.45	0.50
30:X:143:LEU:HA	30:X:177:THR:HG22	1.94	0.50
3:2:228:LEU:HD21	3:2:275:ALA:HA	1.93	0.50
9:A:890:ASP:OD1	9:A:940:ARG:NH1	2.44	0.50
15:G:116:PRO:HD2	15:G:119:LEU:HD12	1.93	0.50
8:7:241:ILE:CG2	8:7:245:LEU:HD13	2.42	0.50
10:B:416:LEU:HD21	10:B:460:ALA:CB	2.42	0.50
1:0:83:LEU:HD13	1:0:177:SER:HA	1.94	0.50
3:2:67:ASN:OD1	3:2:68:SER:N	2.45	0.49
10:B:789:MET:HG3	10:B:953:LEU:HD21	1.94	0.49
28:V:87:VAL:O	28:V:103:GLN:N	2.45	0.49
24:Q:336:ASP:OD1	24:Q:339:ALA:HB3	2.12	0.49
10:B:1033:LYS:NZ	10:B:1070:GLU:OE2	2.29	0.49
12:D:47:LEU:HD21	15:G:3:PHE:CD2	2.47	0.49
2:1:445:THR:N	5:4:280:GLY:O	2.42	0.49
8:7:236:THR:OG1	8:7:314:HIS:NE2	2.44	0.49
8:7:424:PHE:CE2	8:7:452:LEU:HD11	2.47	0.49
9:A:471:ASN:OD1	9:A:472:LEU:N	2.45	0.49
9:A:1227:ILE:HD11	9:A:1239:ARG:HD3	1.94	0.49
29:W:176:MET:HA	29:W:179:ILE:HG22	1.94	0.49
1:0:438:THR:HG22	2:1:352:ASN:OD1	2.13	0.49
14:F:111:LEU:HD21	14:F:120:ILE:HG23	1.93	0.49
21:M:189:PHE:CE2	23:O:189:LEU:HD11	2.48	0.49

	1 · · · · ·	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
25:R:50:THR:HG23	25:R:51:LYS:HG2	1.94	0.49
29:W:13:LEU:O	29:W:17:VAL:HG23	2.13	0.49
9:A:1151:GLU:OE2	17:I:45:ARG:NH1	2.46	0.49
25:R:240:ARG:HA	25:R:243:ILE:HD12	1.94	0.49
18:J:3:VAL:HG21	18:J:18:TRP:CB	2.42	0.49
2:1:270:TYR:CZ	2:1:274:VAL:HG21	2.48	0.49
2:1:476:VAL:HG23	5:4:51:ILE:HG12	1.95	0.49
29:W:38:LEU:CD1	29:W:209:PRO:HG3	2.43	0.49
10:B:173:MET:O	10:B:176:SER:OG	2.17	0.49
1:0:289:LEU:HD21	1:0:383:LEU:HD13	1.94	0.48
8:7:121:LEU:HD13	8:7:203:VAL:HB	1.94	0.48
8:7:557:VAL:HB	8:7:708:LEU:HD23	1.94	0.48
10:B:870:ILE:HG23	10:B:917:PRO:HG2	1.94	0.48
27:U:42:TRP:O	27:U:46:LEU:HD23	2.13	0.48
1:0:270:ARG:NH1	1:0:389:GLU:O	2.45	0.48
5:4:210:ILE:HG21	5:4:227:THR:HG22	1.95	0.48
8:7:190:THR:HG21	8:7:214:LYS:HD3	1.94	0.48
9:A:1342:GLU:OE2	13:E:212:ARG:NE	2.42	0.48
7:6:221:LEU:HD13	7:6:230:ARG:HB3	1.95	0.48
7:6:266:LEU:HA	7:6:291:LEU:HD21	1.95	0.48
29:W:18:ARG:NH1	29:W:30:ASP:OD2	2.45	0.48
3:2:125:VAL:HG22	3:2:238:LYS:HB2	1.94	0.48
8:7:217:THR:HG22	8:7:217:THR:O	2.12	0.48
9:A:1198:ASP:OD2	9:A:1201:ALA:N	2.46	0.48
10:B:262:GLU:OE2	10:B:262:GLU:N	2.46	0.48
30:X:292:THR:HG22	30:X:292:THR:O	2.13	0.48
23:O:129:GLU:OE1	23:O:220:ARG:NE	2.47	0.48
27:U:14:VAL:HG23	27:U:42:TRP:CZ3	2.48	0.48
5:4:316:VAL:HG11	7:6:318:THR:OG1	2.14	0.48
8:7:220:TYR:CE1	8:7:338:LEU:HD13	2.49	0.48
27:U:18:VAL:HG11	27:U:39:LYS:HD3	1.96	0.48
3:2:217:ASP:OD1	3:2:218:LEU:N	2.47	0.48
5:4:31:GLU:OE1	5:4:149:LEU:HD13	2.12	0.48
9:A:253:ASN:OD1	9:A:256:GLN:N	2.46	0.48
9:A:888:GLY:O	9:A:940:ARG:NH2	2.47	0.48
29:W:102:VAL:HG22	29:W:179:ILE:HD11	1.95	0.48
2:1:237:ILE:HD11	2:1:255:LYS:HD3	1.95	0.48
10:B:136:THR:O	10:B:152:ILE:HG22	2.14	0.48
2:1:469:MET:HA	5:4:38:THR:HG21	1.96	0.47
8:7:490:VAL:HG22	8:7:490:VAL:O	2.14	0.47
29:W:37:VAL:HG13	29:W:202:ALA:HB3	1.96	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
12:D:26:THR:HG22	12:D:26:THR:O	2.14	0.47
10:B:429:PHE:CZ	24:Q:331:GLN:HB3	2.49	0.47
18:J:48:ARG:O	18:J:52:THR:OG1	2.23	0.47
15:G:51:TYR:HA	15:G:54:ILE:HD11	1.96	0.47
25:R:233:TYR:O	25:R:234:HIS:CG	2.67	0.47
1:0:526:LEU:HD11	1:0:597:ILE:HD11	1.97	0.47
1:0:607:SER:O	1:0:664:GLN:NE2	2.48	0.47
5:4:27:THR:HB	5:4:176:LEU:HD23	1.96	0.47
9:A:709:THR:HG22	9:A:710:LEU:N	2.30	0.47
18:J:3:VAL:HG22	18:J:53:HIS:CE1	2.49	0.47
4:3:16:CYS:SG	4:3:18:THR:HB	2.55	0.47
7:6:96:ALA:O	7:6:100:ALA:N	2.42	0.47
7:6:182:VAL:HG21	7:6:199:ILE:HD11	1.95	0.47
3:2:50:MET:HE3	3:2:62:LEU:HD11	1.97	0.47
3:2:50:MET:CE	3:2:62:LEU:HD11	2.45	0.47
9:A:326:ARG:HG3	9:A:1406:VAL:HG21	1.95	0.47
24:Q:327:ARG:O	24:Q:328:LYS:HG2	2.14	0.47
9:A:993:LEU:HD22	9:A:1046:LEU:HD22	1.97	0.47
8:7:241:ILE:HG23	8:7:245:LEU:HD13	1.96	0.47
9:A:512:VAL:HG23	9:A:634:THR:HG21	1.97	0.47
9:A:559:VAL:HG11	16:H:75:ALA:HB1	1.96	0.47
9:A:992:ASP:OD1	9:A:993:LEU:N	2.48	0.47
9:A:1231:ASP:OD1	9:A:1232:ASN:N	2.48	0.47
10:B:639:ILE:HD11	10:B:691:GLU:HB2	1.97	0.47
10:B:904:ARG:NH2	20:L:66:GLN:O	2.47	0.47
27:U:228:ASP:OD1	27:U:229:TYR:N	2.45	0.47
28:V:32:ILE:HG23	28:V:36:LEU:HD23	1.96	0.47
8:7:439:THR:HG23	8:7:441:ASP:H	1.80	0.46
9:A:579:SER:HA	9:A:582:ILE:HD12	1.97	0.46
10:B:898:LEU:O	20:L:58:LYS:NZ	2.48	0.46
13:E:190:LEU:HD11	13:E:196:VAL:HG11	1.98	0.46
24:Q:328:LYS:O	24:Q:329:THR:HG23	2.15	0.46
24:Q:375:LEU:HD12	25:R:68:VAL:HG11	1.97	0.46
3:2:368:ALA:HB3	3:2:375:LEU:HD21	1.98	0.46
8:7:351:ASP:OD1	8:7:405:LYS:NZ	2.48	0.46
27:U:25:PHE:CD1	28:V:36:LEU:HD11	2.50	0.46
29:W:38:LEU:HD21	29:W:46:LEU:HD12	1.98	0.46
1:0:303:GLU:OE2	1:0:386:ARG:NE	2.47	0.46
9:A:493:GLN:N	10:B:1149:GLU:OE2	2.46	0.46
23:O:153:THR:HG22	23:O:154:ASP:N	2.26	0.46
1:0:523:GLY:HA3	1:0:559:ILE:HD13	1.98	0.46

	••• F •• 5	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:1:473:LEU:HA	2:1:476:VAL:HG12	1.98	0.46
8:7:631:THR:O	8:7:636:ARG:NH2	2.49	0.46
9:A:1074:GLU:HB3	9:A:1075:PRO:HD3	1.98	0.46
1:0:634:ILE:HD12	1:0:634:ILE:H	1.80	0.46
18:J:29:GLU:OE1	24:Q:26:ARG:NH2	2.49	0.46
24:Q:141:ARG:O	25:R:208:ILE:N	2.44	0.46
27:U:17:VAL:HG22	28:V:47:VAL:HG21	1.98	0.46
30:X:258:GLU:N	30:X:258:GLU:OE2	2.48	0.46
29:W:133:GLN:O	29:W:137:VAL:HG23	2.15	0.46
3:2:125:VAL:HG21	3:2:268:ILE:HG21	1.98	0.46
9:A:1264:GLU:OE2	9:A:1268:LEU:HD11	2.16	0.46
8:7:709:VAL:HG11	8:7:719:SER:OG	2.16	0.46
9:A:1220:PHE:CD1	9:A:1224:LEU:HD21	2.51	0.46
1:0:366:LEU:HD11	4:3:72:ILE:HG21	1.97	0.46
5:4:79:TYR:CG	5:4:132:LEU:HD11	2.51	0.46
10:B:640:VAL:HG22	10:B:651:LEU:HD23	1.98	0.46
5:4:254:ILE:O	5:4:259:ARG:NH2	2.49	0.45
9:A:694:THR:HG22	9:A:714:PHE:CZ	2.50	0.45
13:E:116:ILE:HD11	13:E:121:MET:CE	2.45	0.45
13:E:135:PHE:HB3	13:E:140:LEU:HD11	1.97	0.45
29:W:282:GLU:OE2	29:W:285:ARG:NH1	2.46	0.45
1:0:290:VAL:HG22	1:0:326:ARG:HD3	1.98	0.45
3:2:139:SER:OG	3:2:257:GLY:O	2.17	0.45
10:B:732:SER:O	10:B:733:HIS:HB3	2.16	0.45
21:M:39:SER:OG	21:M:40:GLU:OE1	2.32	0.45
21:M:215:ARG:NH2	21:M:226:ASP:OD2	2.49	0.45
1:0:211:HIS:NE2	1:0:246:GLU:OE1	2.50	0.45
15:G:111:THR:HG22	15:G:112:LYS:N	2.30	0.45
8:7:237:THR:HG23	8:7:238:GLN:HG2	1.98	0.45
8:7:498:PHE:O	8:7:501:VAL:HG22	2.16	0.45
24:Q:149:PHE:HB3	25:R:201:TYR:HA	1.98	0.45
1:0:345:ARG:NH2	1:0:354:GLU:OE1	2.50	0.45
9:A:1038:THR:HG22	9:A:1039:LYS:N	2.32	0.45
2:1:249:VAL:CG1	29:W:262:ILE:HG22	2.47	0.45
2:1:251:LEU:HD11	2:1:288:PHE:CE2	2.51	0.45
8:7:437:VAL:HG13	8:7:437:VAL:O	2.17	0.45
9:A:252:PHE:CZ	21:M:82:ALA:HB2	2.52	0.45
11:C:44:LEU:HB2	11:C:77:ILE:HD13	1.99	0.45
5:4:220:GLU:N	5:4:220:GLU:OE1	2.50	0.45
8:7:662:ILE:O	8:7:689:ARG:NH1	2.48	0.45
12:D:50:LEU:HD11	15:G:4:ILE:HG13	1.99	0.45

	••• F •• 5	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:1:499:ILE:HG23	5:4:247:TYR:CE1	2.52	0.45
15:G:45:ILE:HA	15:G:78:VAL:HG12	1.99	0.45
16:H:15:VAL:HG12	16:H:26:ILE:HG22	1.99	0.45
1:0:612:PHE:O	1:0:669:VAL:HA	2.17	0.45
9:A:932:GLU:OE1	9:A:1028:THR:OG1	2.32	0.45
9:A:1348:LEU:HD23	9:A:1372:VAL:HG13	1.97	0.45
2:1:180:LEU:HD21	2:1:221:ALA:HB2	1.99	0.45
10:B:244:LEU:HD23	10:B:244:LEU:H	1.81	0.45
10:B:590:HIS:CD2	10:B:596:LEU:HD22	2.51	0.45
18:J:31:ASP:OD1	18:J:34:THR:OG1	2.27	0.45
25:R:301:ASP:OD2	30:X:121:LYS:NZ	2.50	0.45
1:0:571:VAL:HG11	2:1:375:LEU:HD22	1.98	0.44
5:4:155:ALA:O	5:4:158:THR:OG1	2.32	0.44
7:6:347:TYR:CD1	7:6:359:LEU:HD13	2.51	0.44
11:C:254:LYS:HE3	19:K:42:LEU:HD11	1.99	0.44
14:F:133:VAL:HG12	14:F:147:SER:HA	1.99	0.44
23:O:165:ASP:OD1	23:O:165:ASP:N	2.51	0.44
29:W:6:ASP:OD2	29:W:205:ARG:NH2	2.50	0.44
23:O:166:VAL:HG21	23:O:170:ILE:HD11	2.00	0.44
24:Q:335:LEU:H	24:Q:335:LEU:HD23	1.82	0.44
8:7:632:PRO:HD2	30:X:313:THR:HG23	2.00	0.44
15:G:155:SER:O	15:G:155:SER:OG	2.33	0.44
17:I:70:ARG:HD3	17:I:84:VAL:HG12	1.99	0.44
27:U:253:ARG:HA	27:U:257:ARG:O	2.18	0.44
3:2:151:VAL:O	3:2:184:ILE:HD11	2.18	0.44
9:A:412:ARG:NH2	21:M:42:ASP:OD1	2.51	0.44
10:B:628:THR:HG22	10:B:628:THR:O	2.18	0.44
3:2:211:ILE:HD13	3:2:221:VAL:HG21	1.99	0.44
9:A:1209:MET:HA	9:A:1212:VAL:HG22	2.00	0.44
29:W:102:VAL:HG21	29:W:182:ILE:HG21	1.99	0.44
30:X:242:ARG:O	30:X:243:TYR:C	2.56	0.44
1:0:52:LEU:HD11	1:0:459:THR:HG21	2.00	0.44
9:A:694:THR:HG22	9:A:714:PHE:CE1	2.53	0.44
24:Q:118:LEU:HD21	24:Q:375:LEU:HD21	1.99	0.44
8:7:324:GLU:OE1	8:7:499:ARG:NE	2.43	0.44
9:A:402:ALA:HA	9:A:434:ARG:HA	2.00	0.44
10:B:292:ILE:N	10:B:293:PRO:CD	2.81	0.44
10:B:1152:MET:O	10:B:1157:ALA:HB2	2.17	0.44
28:V:16:GLY:O	28:V:20:VAL:HG23	2.17	0.44
29:W:95:ILE:HD13	29:W:189:ILE:HG21	1.99	0.44
30:X:231:LEU:CD2	30:X:252:LEU:HD21	2.47	0.44

A 4 1	A 4 area 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
10:B:63:ILE:CD1	10:B:95:ILE:HD12	2.47	0.43
10:B:136:THR:HG23	10:B:152:ILE:HG22	1.99	0.43
8:7:166:ARG:NH1	8:7:539:ASN:OD1	2.51	0.43
9:A:1206:ASP:C	9:A:1207:LEU:HD12	2.39	0.43
12:D:129:LEU:O	12:D:133:THR:HG22	2.18	0.43
27:U:52:THR:HG22	27:U:53:THR:N	2.33	0.43
3:2:151:VAL:HG22	3:2:192:LEU:HD11	2.01	0.43
9:A:1262:LYS:O	9:A:1266:THR:HG23	2.19	0.43
30:X:172:ASP:O	30:X:176:GLY:N	2.50	0.43
1:0:436:ARG:CD	1:0:634:ILE:HD11	2.47	0.43
7:6:260:ARG:HA	7:6:280:THR:HG22	2.01	0.43
9:A:926:GLN:NE2	9:A:930:ASP:OD1	2.51	0.43
21:M:266:ILE:HB	21:M:269:ILE:HG22	2.00	0.43
1:0:374:LEU:HD23	1:0:410:SER:HB3	2.00	0.43
5:4:228:THR:HG21	5:4:235:TYR:HB2	2.01	0.43
10:B:957:ASN:OD1	10:B:961:LEU:N	2.52	0.43
27:U:277:GLN:HB2	28:V:56:THR:HG23	1.99	0.43
1:0:267:LEU:HD21	1:0:384:LEU:HD23	2.00	0.43
3:2:231:LEU:HD22	3:2:237:TYR:CD2	2.54	0.43
5:4:200:ILE:HG23	5:4:231:THR:HG23	2.01	0.43
1:0:5:ILE:O	1:0:6:ASP:C	2.56	0.43
5:4:84:LYS:HE2	5:4:132:LEU:HD13	2.01	0.43
8:7:660:THR:OG1	8:7:685:GLN:NE2	2.52	0.43
12:D:144:THR:HG21	15:G:46:LEU:HD13	2.00	0.43
13:E:65:THR:HG23	13:E:68:SER:H	1.84	0.43
25:R:299:ILE:HD13	25:R:324:GLN:OE1	2.19	0.43
2:1:469:MET:O	2:1:473:LEU:HD13	2.19	0.43
3:2:272:THR:O	3:2:275:ALA:N	2.51	0.43
24:Q:373:TYR:O	25:R:82:ARG:NH1	2.52	0.43
29:W:198:THR:HG22	29:W:199:PHE:N	2.33	0.43
30:X:193:LEU:HD21	30:X:229:LYS:HB3	2.01	0.43
1:0:28:ILE:HD13	1:0:52:LEU:HD23	2.01	0.43
2:1:473:LEU:HD11	5:4:34:PRO:HB3	2.01	0.43
3:2:278:LEU:O	3:2:278:LEU:HD23	2.19	0.43
5:4:236:LEU:HD21	5:4:247:TYR:CD1	2.54	0.43
5:4:273:ARG:NH2	7:6:326:THR:HG23	2.34	0.43
23:O:186:GLU:CD	23:O:189:LEU:HD12	2.39	0.43
29:W:17:VAL:CG2	29:W:29:LEU:HD13	2.49	0.43
1:0:190:LEU:HB3	1:0:195:ILE:HD11	2.00	0.42
2:1:274:VAL:HB	2:1:275:PRO:HD3	2.00	0.42
2:1:536:LEU:HG	2:1:536:LEU:O	2.19	0.42

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
7:6:291:LEU:HD13	7:6:297:LEU:HB2	2.01	0.42	
9:A:170:THR:HG21	29:W:226:THR:HG21	2.00	0.42	
9:A:549:MET:HE2	9:A:577:ILE:HG21	2.01	0.42	
10:B:764:SER:OG	10:B:765:PRO:HD3	2.19	0.42	
29:W:36:SER:O	29:W:37:VAL:C	2.57	0.42	
2:1:185:LEU:HD23	29:W:357:LEU:HD11	2.01	0.42	
4:3:64:ARG:NE	15:G:166:ASP:OD2	2.52	0.42	
5:4:26:LEU:HD13	5:4:175:ARG:NH1	2.33	0.42	
8:7:338:LEU:HD23	8:7:338:LEU:H	1.84	0.42	
10:B:344:LYS:HG3	10:B:345:LYS:H	1.85	0.42	
2:1:204:LEU:HD12	2:1:205:PRO:HD2	2.02	0.42	
3:2:42:LEU:HD11	5:4:262:ILE:HD11	2.01	0.42	
7:6:392:VAL:HG12	7:6:428:ARG:NH2	2.35	0.42	
8:7:123:LEU:HD21	8:7:127:HIS:CG	2.54	0.42	
9:A:35:ILE:HG22	9:A:270:LEU:HD11	2.01	0.42	
9:A:516:SER:O	9:A:517:ASN:OD1	2.37	0.42	
1:0:108:LEU:HB3	1:0:208:TYR:HB3	2.01	0.42	
2:1:214:ILE:N	2:1:215:PRO:HD2	2.34	0.42	
10:B:298:LEU:HD13	10:B:311:LEU:HD22	2.00	0.42	
10:B:343:ILE:HD12	10:B:348:ARG:CG	2.47	0.42	
10:B:924:GLU:O	10:B:924:GLU:HG3	2.20	0.42	
10:B:1106:ARG:NH2	10:B:1111:MET:SD	2.92	0.42	
1:0:289:LEU:HD22	1:0:321:ILE:HG13	2.01	0.42	
2:1:110:ARG:NE	2:1:286:ARG:HE	2.16	0.42	
3:2:6:LEU:HD11	3:2:197:ASN:HB3	2.01	0.42	
9:A:76:GLU:OE2	10:B:1159:ARG:NH1	2.49	0.42	
9:A:103:CYS:HB3	9:A:174:ILE:HD13	2.00	0.42	
3:2:375:LEU:HD23	3:2:375:LEU:H	1.85	0.42	
21:M:173:ALA:HB1	21:M:203:PHE:CE2	2.54	0.42	
23:O:90:ARG:NE	28:V:68:THR:OG1	2.52	0.42	
30:X:185:ASP:N	30:X:185:ASP:OD1	2.51	0.42	
2:1:168:SER:O	2:1:168:SER:OG	2.34	0.42	
8:7:589:GLN:OE1	8:7:748:LEU:HD13	2.20	0.42	
10:B:954:VAL:HG12	10:B:964:VAL:HG12	2.00	0.42	
16:H:40:LEU:HD21	16:H:144:ILE:HD11	2.02	0.42	
21:M:215:ARG:HD3	23:O:181:THR:HG22	2.02	0.42	
8:7:669:CYS:SG	8:7:670:LEU:N	2.92	0.42	
9:A:346:ASP:OD1	10:B:1106:ARG:NE	2.42	0.42	
12:D:180:LEU:HD21	12:D:198:LEU:HD11	2.01	0.42	
15:G:101:VAL:HG21	15:G:145:VAL:HG21	2.01	0.42	
1:0:238:HIS:O	1:0:660:ARG:NH2	2.47	0.42	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
8:7:561:MET:CE	8:7:713:THR:HG21	2.50	0.42
9:A:251:SER:HB2	9:A:254:GLU:HA	2.02	0.42
16:H:93:TYR:CD1	16:H:143:LEU:HD23	2.55	0.42
1:0:277:VAL:HG23	1:0:278:ASP:N	2.35	0.42
8:7:490:VAL:HG21	8:7:531:ILE:CD1	2.50	0.42
10:B:254:LEU:HD23	10:B:361:LEU:HD21	2.02	0.42
11:C:25:VAL:HG22	11:C:26:ASP:N	2.34	0.41
1:0:404:THR:OG1	2:1:350:ARG:NH2	2.53	0.41
3:2:155:LEU:HD23	3:2:157:LYS:N	2.34	0.41
10:B:1120:GLU:O	10:B:1124:ARG:NH1	2.51	0.41
9:A:279:LEU:O	9:A:284:ALA:HB2	2.20	0.41
9:A:597:LEU:HD13	16:H:103:LYS:HG2	2.01	0.41
1:0:391:THR:HG23	1:0:392:GLU:N	2.34	0.41
3:2:13:TYR:CE2	3:2:208:LEU:HD13	2.54	0.41
21:M:14:ARG:O	21:M:14:ARG:NE	2.52	0.41
8:7:184:VAL:HG22	8:7:220:TYR:HB3	2.01	0.41
9:A:450:LEU:HD13	9:A:1077:THR:HG21	2.01	0.41
24:Q:420:VAL:HG13	24:Q:424:LEU:HD22	2.02	0.41
25:R:336:VAL:HG23	25:R:337:ALA:N	2.35	0.41
3:2:221:VAL:HA	3:2:249:MET:HE1	2.03	0.41
8:7:242:LEU:HD12	8:7:243:GLN:N	2.36	0.41
8:7:578:MET:HA	8:7:581:TYR:CE1	2.56	0.41
10:B:221:ASN:OD1	10:B:243:ALA:N	2.43	0.41
21:M:234:GLN:O	21:M:234:GLN:HG3	2.20	0.41
25:R:95:ILE:HD12	25:R:122:LEU:HD11	2.03	0.41
4:3:16:CYS:SG	4:3:18:THR:HG22	2.61	0.41
8:7:115:SER:O	8:7:115:SER:OG	2.34	0.41
8:7:407:VAL:CG1	8:7:452:LEU:HD12	2.51	0.41
9:A:1192:LEU:HD12	9:A:1241:ARG:HG3	2.02	0.41
10:B:135:ARG:NE	10:B:155:GLU:OE1	2.53	0.41
10:B:899:ILE:HD12	10:B:911:ILE:HG22	2.02	0.41
21:M:263:CYS:SG	21:M:269:ILE:HG21	2.60	0.41
3:2:357:ILE:HG12	3:2:374:VAL:HG21	2.03	0.41
1:0:145:LEU:HD12	1:0:149:PRO:HA	2.03	0.41
1:0:218:ILE:HD13	2:1:346:ASP:CG	2.40	0.41
2:1:226:GLN:HG3	7:6:178:LEU:HD22	2.02	0.41
4:3:19:ASP:OD1	4:3:20:ARG:N	2.53	0.41
4:3:91:VAL:HG12	4:3:136:TYR:CD2	2.52	0.41
5:4:210:ILE:CG2	5:4:227:THR:HG22	2.50	0.41
7:6:264:LEU:HD22	7:6:300:LEU:HD13	2.02	0.41
8:7:493:VAL:HG12	8:7:494:PRO:HD3	2.03	0.41

	1 · · · ·	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
8:7:598:HIS:HB2	8:7:605:ILE:HD11	2.03	0.41
10:B:401:PHE:CE2	10:B:521:LEU:HD13	2.56	0.41
10:B:788:ARG:O	10:B:967:ARG:NH1	2.53	0.41
10:B:977:GLY:HA3	10:B:1099:VAL:HB	2.02	0.41
11:C:66:ARG:NH1	18:J:3:VAL:O	2.45	0.41
11:C:148:ARG:NH1	18:J:61:LEU:O	2.54	0.41
12:D:164:ILE:O	12:D:168:LYS:HG2	2.21	0.41
13:E:74:ASP:N	13:E:74:ASP:OD1	2.50	0.41
13:E:156:LEU:HD11	13:E:197:LYS:HB2	2.03	0.41
27:U:24:ASP:OD2	28:V:39:ARG:NH2	2.53	0.41
30:X:227:ASP:OD1	30:X:227:ASP:O	2.38	0.41
3:2:402:THR:HG23	3:2:403:HIS:ND1	2.34	0.41
10:B:679:TYR:OH	10:B:687:GLU:OE1	2.36	0.41
10:B:273:LEU:HB2	10:B:276:ILE:HG13	2.03	0.40
11:C:248:ILE:HG21	19:K:102:LYS:HB2	2.03	0.40
21:M:225:ILE:HG13	21:M:226:ASP:N	2.35	0.40
24:Q:149:PHE:O	25:R:202:ILE:N	2.43	0.40
29:W:208:PRO:HA	29:W:209:PRO:HD3	1.93	0.40
29:W:412:GLU:OE1	29:W:412:GLU:N	2.44	0.40
3:2:48:MET:O	3:2:51:VAL:HG12	2.20	0.40
3:2:253:MET:HG3	3:2:258:LEU:HD22	2.02	0.40
5:4:227:THR:O	5:4:231:THR:OG1	2.27	0.40
6:5:12:CYS:HB2	6:5:16:ILE:HB	2.03	0.40
9:A:350:ARG:HB2	10:B:1128:LEU:HD11	2.03	0.40
17:I:87:GLN:O	17:I:89:GLN:NE2	2.47	0.40
27:U:25:PHE:HD1	28:V:36:LEU:HD11	1.85	0.40
1:0:669:VAL:O	1:0:669:VAL:HG12	2.21	0.40
3:2:116:GLU:OE1	3:2:116:GLU:N	2.50	0.40
3:2:268:ILE:HD12	3:2:270:TYR:OH	2.20	0.40
7:6:111:ALA:O	7:6:114:ASN:ND2	2.54	0.40
9:A:156:ASP:OD1	9:A:157:ASP:N	2.51	0.40
10:B:976:ILE:HG22	10:B:976:ILE:O	2.21	0.40
11:C:46:ILE:HG13	11:C:72:LEU:HD11	2.03	0.40
14:F:104:ASN:O	14:F:104:ASN:ND2	2.55	0.40
21:M:173:ALA:HB1	21:M:203:PHE:HE2	1.86	0.40
21:M:233:ALA:O	21:M:234:GLN:C	2.58	0.40
25:R:129:VAL:HG21	25:R:221:GLU:HG3	2.04	0.40
30:X:202:PHE:O	30:X:245:TRP:NE1	2.51	0.40
1:0:5:ILE:HG22	1:0:6:ASP:N	2.33	0.40
5:4:28:VAL:HG21	5:4:61:LEU:HD21	2.04	0.40
8:7:330:CYS:HA	8:7:333:ILE:HG22	2.02	0.40

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
8:7:751:ALA:O	29:W:306:ARG:NE	2.44	0.40
1:0:487:LEU:H	1:0:487:LEU:HD23	1.87	0.40
10:B:26:THR:OG1	10:B:29:ASP:OD2	2.32	0.40
10:B:72:GLU:OE2	24:Q:330:ARG:NH2	2.53	0.40
11:C:142:VAL:HG11	18:J:5:VAL:HG13	2.02	0.40
21:M:236:LEU:HA	21:M:239:ILE:HD12	2.04	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	0	750/778~(96%)	732 (98%)	18 (2%)	0	100	100
2	1	508/645~(79%)	498 (98%)	10 (2%)	0	100	100
3	2	435/517~(84%)	431 (99%)	4 (1%)	0	100	100
4	3	129/324~(40%)	127~(98%)	2(2%)	0	100	100
5	4	287/341~(84%)	284 (99%)	3~(1%)	0	100	100
6	5	63/76~(83%)	61~(97%)	2(3%)	0	100	100
7	6	352/464~(76%)	350 (99%)	2(1%)	0	100	100
8	7	609/843~(72%)	595~(98%)	14 (2%)	0	100	100
9	А	1422/1733~(82%)	1391 (98%)	31 (2%)	0	100	100
10	В	1168/1224~(95%)	1131 (97%)	37~(3%)	0	100	100
11	С	264/347~(76%)	258~(98%)	6 (2%)	0	100	100
12	D	163/221~(74%)	162 (99%)	1 (1%)	0	100	100
13	Е	212/215~(99%)	208~(98%)	4 (2%)	0	100	100
14	F	$8\overline{4}/155~(54\%)$	83~(99%)	1 (1%)	0	100	100
15	G	169/177~(96%)	167 (99%)	2 (1%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
16	Н	136/146~(93%)	134~(98%)	2(2%)	0	100	100
17	Ι	114/122~(93%)	105 (92%)	9 (8%)	0	100	100
18	J	67/70~(96%)	66~(98%)	1 (2%)	0	100	100
19	K	113/120~(94%)	112 (99%)	1 (1%)	0	100	100
20	L	43/70~(61%)	42 (98%)	1 (2%)	0	100	100
21	М	302/352~(86%)	291 (96%)	11 (4%)	0	100	100
23	Ο	179/247~(72%)	174 (97%)	5 (3%)	0	100	100
24	Q	215/738~(29%)	208 (97%)	7(3%)	0	100	100
25	R	264/400~(66%)	252 (96%)	12 (4%)	0	100	100
27	U	101/286~(35%)	98~(97%)	3 (3%)	0	100	100
28	V	100/129~(78%)	98~(98%)	2 (2%)	0	100	100
29	W	304/492~(62%)	293 (96%)	11 (4%)	0	100	100
30	Х	206/328~(63%)	192 (93%)	14 (7%)	0	100	100
All	All	8759/11560 (76%)	8543 (98%)	216 (2%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	0	684/707~(97%)	684 (100%)	0	100	100
2	1	483/590~(82%)	483 (100%)	0	100	100
3	2	408/470~(87%)	408 (100%)	0	100	100
4	3	125/305~(41%)	125~(100%)	0	100	100
5	4	260/302~(86%)	259~(100%)	1 (0%)	91	97
6	5	59/68~(87%)	59~(100%)	0	100	100
7	6	323/419~(77%)	323 (100%)	0	100	100
8	7	547/737~(74%)	546 (100%)	1 (0%)	93	98

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
9	А	1251/1520~(82%)	1250 (100%)	1 (0%)	93	98
10	В	1024/1061~(96%)	1022 (100%)	2 (0%)	93	98
11	С	234/299~(78%)	234 (100%)	0	100	100
12	D	149/200~(74%)	148 (99%)	1 (1%)	84	95
13	Е	196/197~(100%)	196 (100%)	0	100	100
14	F	76/137~(56%)	76 (100%)	0	100	100
15	G	152/158~(96%)	152 (100%)	0	100	100
16	Н	123/128~(96%)	123 (100%)	0	100	100
17	Ι	110/116~(95%)	110 (100%)	0	100	100
18	J	64/65~(98%)	64 (100%)	0	100	100
19	К	99/102~(97%)	99 (100%)	0	100	100
20	L	40/57~(70%)	40 (100%)	0	100	100
21	М	265/306~(87%)	265 (100%)	0	100	100
23	Ο	153/212 (72%)	153 (100%)	0	100	100
24	Q	204/642~(32%)	204 (100%)	0	100	100
25	R	252/363~(69%)	251 (100%)	1 (0%)	91	97
27	U	99/260~(38%)	99 (100%)	0	100	100
28	V	94/115 (82%)	94 (100%)	0	100	100
29	W	281/436~(64%)	281 (100%)	0	100	100
30	Х	188/295~(64%)	188 (100%)	0	100	100
All	All	7943/10267~(77%)	7936 (100%)	7 (0%)	93	98

All (7) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
5	4	264	LYS
8	7	424	PHE
9	А	252	PHE
10	В	466	TRP
10	В	928	ARG
12	D	14	ARG
25	R	313	TRP

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such side chains are listed below:

Mol	Chain	Res	Type	
7	6	114	ASN	

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 22 ligands modelled in this entry, 19 are monoatomic - leaving 3 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dec	Timle	Bo	ond leng	$_{\rm ths}$	В	ond ang	les
MOI		Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
33	BEF	7	901	35	0,3,3	-	-	-		
35	ADP	7	903	34,33	24,29,29	0.68	0	29,45,45	0.71	0
31	SF4	0	801	1	0,12,12	-	-	-		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
35	ADP	7	903	34,33	-	1/12/32/32	0/3/3/3
31	SF4	0	801	1	-	-	0/6/5/5

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (1) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
35	7	903	ADP	PA-O3A-PB-O2B

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-12720. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 190

Y Index: 190

Z Index: 190

6.2.2 Raw map

X Index: 190

Y Index: 190

Z Index: 190

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

Z Index: 127

6.3.2 Raw map

X Index: 162

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.015. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{12720}_{msk}_{1.map}$ (i) 6.6.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 536 $\rm nm^3;$ this corresponds to an approximate mass of 484 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.345 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.345 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.90	-	-
Author-provided FSC curve	2.84	3.22	2.88
Unmasked-calculated*	3.04	3.50	3.10

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-12720 and PDB model 7O4J. Per-residue inclusion information can be found in section 3 on page 15.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.015 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.015).

9.4 Atom inclusion (i)

At the recommended contour level, 94% of all backbone atoms, 85% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.015) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.8490	0.5180
0	0.9210	0.5730
1	0.8080	0.4760
2	0.6620	0.3920
3	0.8400	0.4800
4	0.8450	0.4930
5	0.5110	0.2870
6	0.8610	0.5220
7	0.7830	0.4560
А	0.9330	0.5900
В	0.9250	0.5970
С	0.9460	0.6260
D	0.8020	0.5000
Е	0.9350	0.5870
F	0.9380	0.6150
G	0.9170	0.5660
Н	0.8930	0.5750
Ι	0.8610	0.5210
J	0.9530	0.6320
К	0.9540	0.6260
L	0.8960	0.5740
М	0.8480	0.5140
Ν	0.8200	0.3800
О	0.8640	0.4710
Q	0.6580	0.4010
R	0.7370	0.3880
Т	0.7810	0.3850
U	0.5890	0.2990
V	0.6130	0.3280
W	0.7770	0.4870
Х	0.7440	0.4010

1.0

