

Full wwPDB X-ray Structure Validation Report (i)

Oct 23, 2024 – 05:52 AM EDT

PDB ID	:	2OCC
Title	:	BOVINE HEART CYTOCHROME C OXIDASE AT THE FULLY OXI-
		DIZED STATE
Authors	:	Tsukihara, T.; Yao, M.
Deposited on	:	1998-05-26
Resolution	:	2.30 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	NOT EXECUTED
EDS	:	NOT EXECUTED
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	Similar resolution
wietric	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
Clashscore	180529	6698 (2.30-2.30)
Ramachandran outliers	177936	6640 (2.30-2.30)
Sidechain outliers	177891	6640 (2.30-2.30)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Note EDS was not executed.

Mol	Chain	Length	Quality of chain			
1	А	514	82%	1	16%	•
1	Ν	514	81%	1	18%	•
2	В	227	67% 3	80%		•••
2	Ο	227	67% 3	80%		•••
3	С	261	83%		15%	•
3	Р	261	82%	1	16%	·
4	D	147	69%	27%		•••
4	Q	147	69% 2	27%		•••

Mol	Chain	Length	Quality of chain		
5	Е	109	77%	15%	
5	R	109	75%	18%	
6	F	98	78%	16%	6%
6	S	98	79%	15%	6%
7	G	84	65%	25%	7% •
7	Т	84	69%	21%	8% •
8	Н	85	68%	21%	• 7%
8	U	85	71%	19%	• 7%
9	Ι	73	81%	10	6% •
9	V	73	84%		14% •
10	J	59	76%	17%	5% •
10	W	59	75%	19%	5% •
11	K	56	75%	9% •	12%
11	Х	56	68%	16% •	12%
12	L	47	79%	179	% •
12	Y	47	79%	179	% •
13	М	46	74%	13%	7% 7%
13	Z	46	72%	17%	• 7%

2 Entry composition (i)

There are 19 unique types of molecules in this entry. The entry contains 28864 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	
1	٨	514	Total	С	Ν	0	\mathbf{S}	0	0	
1	A	014	4025	2690	623	677	35	0	0	
1	N	514	Total	С	Ν	0	S	0	0	
1	1N	014	1005	0000	con	077	95	U	0	

2690

• Molecule 1 is a protein called CYTOCHROME C OXIDASE.

• Molecule 2 is a protein called CYTOCHROME C OXIDASE.

4025

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
2	В	227	Total	C 1207	N 288	0 350	S 18	0	5	0
	0	227	Total	C	N	0	S	0	5	0
		221	1863	1207	288	350	18	0	5	0

623

677

35

• Molecule 3 is a protein called CYTOCHROME C OXIDASE.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
3	С	261	Total 2124	C 1420	N 338	O 353	S 13	0	0	0
3	Р	261	Total 2124	C 1420	N 338	O 353	S 13	0	0	0

• Molecule 4 is a protein called CYTOCHROME C OXIDASE.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
4	П	144	Total	С	Ν	Ο	\mathbf{S}	0	0	0
4	D	144	1195	777	196	218	4	0	0	0
4	0	144	Total	С	Ν	0	S	0	0	0
4	V V	144	1195	777	196	218	4			U

• Molecule 5 is a protein called CYTOCHROME C OXIDASE.

Trace

0

0

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
5	F	105	Total	С	Ν	0	S	0	0	0
0	Ľ	105	852	544	144	162	2	0	0	0
5	D	105	Total	С	Ν	0	S	0	0	0
0	n	105	852	544	144	162	2	0	0	0

• Molecule 6 is a protein called CYTOCHROME C OXIDASE.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
6	F	08	Total	С	Ν	Ο	S	0	0	0
0	Г	90	748	464	134	145	5	0	0	0
6	C	08	Total	С	Ν	0	S	0	0	0
0	S	90	748	464	134	145	5		0	U

• Molecule 7 is a protein called CYTOCHROME C OXIDASE.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
7	G	84	Total 672	C 431	N 120	0	S 1	0	0	0
			072 Tutul	431	129 N					
7	Т	84	10tal 672	431	N 129	111	5 1	0	0	0

• Molecule 8 is a protein called CYTOCHROME C OXIDASE.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
8	Ц	70	Total	С	Ν	0	S	0	0	0
0	11	19	662	417	121	119	5	0	0	0
8	II	70	Total	С	Ν	0	S	0	0	0
0	U	19	662	417	121	119	5			U

• Molecule 9 is a protein called CYTOCHROME C OXIDASE.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
0	т	72	Total	С	Ν	Ο	S	0	0	0
9	1	15	598	388	107	99	4	0	0	0
0	V	72	Total	С	Ν	Ο	S	0	0	0
9	v	15	598	388	107	99	4	0	0	0

• Molecule 10 is a protein called CYTOCHROME C OXIDASE.

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
10	J	58	Total 460	C 297	N 78	O 82	${ m S} { m 3}$	0	0	0

Continued from previous page...

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
10	W	58	Total 460	C 297	N 78	O 82	${ m S} { m 3}$	0	0	0

• Molecule 11 is a protein called CYTOCHROME C OXIDASE.

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf	Trace
11	K	40	Total	С	Ν	Ο	S	0	0	0
11	Γ	49	384	250	65	67	2	0	0	0
11	v	40	Total	С	Ν	Ο	S	0	0	0
	Λ	49	384	250	65	67	2	0	U	0

• Molecule 12 is a protein called CYTOCHROME C OXIDASE.

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
19	т	47	Total	С	Ν	Ο	S	0	0	0
		41	386	257	65	62	2	0	0	0
19	V	47	Total	С	Ν	Ο	S	0	0	0
	1	41	386	257	65	62	2	0	0	0

• Molecule 13 is a protein called CYTOCHROME C OXIDASE.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
13	М	/13	Total	С	Ν	Ο	0	0	0
10	IVI	40	335	223	53	59	0	0	0
12	7	12	Total	С	Ν	Ο	0	0	0
10		40	335	223	53	59	0	0	0

• Molecule 14 is COPPER (II) ION (three-letter code: CU) (formula: Cu).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
14	А	1	Total Cu 1 1	0	0
14	В	2	Total Cu 2 2	0	0
14	Ν	1	Total Cu 1 1	0	0
14	Ο	2	Total Cu 2 2	0	0

• Molecule 15 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
15	А	1	Total Mg 1 1	0	0
15	Ν	1	Total Mg 1 1	0	0

• Molecule 16 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
16	А	1	Total Na 1 1	0	0
16	Ν	1	Total Na 1 1	0	0

• Molecule 17 is HEME-A (three-letter code: HEA) (formula: $C_{49}H_{56}FeN_4O_6$).

Mol	Chain	Residues		At	\mathbf{oms}			ZeroOcc	AltConf
17	Λ	1	Total	С	Fe	Ν	0	0	0
11	A	1	60	49	1	4	6	0	0
17	Δ	1	Total	С	Fe	Ν	0	0	0
11	A	1	60	49	1	4	6	0	0
17	N	1	Total	С	Fe	Ν	0	0	0
11	IN	1	60	49	1	4	6	0	0
17	N	1	Total	С	Fe	Ν	0	0	0
11	IN	1	60	49	1	4	6	0	0

• Molecule 18 is PEROXIDE ION (three-letter code: PER) (formula: O_2).

PER	
01 0 ⁻ — 0 ⁻ 02	

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
18	А	1	Total O 2 2	0	0
18	Ν	1	Total O 2 2	0	0

• Molecule 19 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
19	F	1	Total Zn 1 1	0	0
19	S	1	Total Zn 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Note EDS was not executed.

• Molecule 1: CYTOCHROME C OXIDASE

• Molecule 5: CYTOCHROME C OXIDASE

Chain E:	77%	15%	•••
SER HIS GLY SER H5 E6 T7	E10 F11 D12 F11 F11 F12 F30 F30 F30 F47 F44 F44 F44 F44 F44 F44 F44 F44 F44		
• Molecul	e 5: CYTOCHROME C OXIDASE		
Chain R:	75%	18%	••••
SER HIS GLY SER H5 E6 T7	E10 255 225 225 228 230 240 244 243 243 243 243 263 263 263 263 263 263 263 263 263 26		
• Molecul	e 6: CYTOCHROME C OXIDASE		
Chain F:	78%	16%	6%
41 V6 T8 E11	L16 V20 V20 V20 V20 V21 L48 V49 P50 P50 P50 F54 F52 L96 L94 L94 H94 H94 H94 H98 N95 L96 L96 L96 L96 L96 L96		
• Molecul	e 6: CYTOCHROME C OXIDASE		
Chain S:	79%	15%	6%
A1 V6 T8 E11	L16 V20 V20 V20 V20 V21 V31 V31 V31 V31 V31 V31 V31 V31 V32 V32 V32 V32 V32 V32 V32 V32 V32 V32		
• Molecul	e 7: CYTOCHROME C OXIDASE		
Chain G:	65%	25%	7% •
A1 S2 A3 K5 G6 G6 D7	98 99 111 111 111 111 111 1119 119 119 1		
• Molecul	e 7: CYTOCHROME C OXIDASE		
Chain T:	69%	21%	8% •
A1 S2 A3 A4 K5 G6 G7 D7	H H H H H H H H H H H H H H		
• Molecul	e 8: CYTOCHROME C OXIDASE		
Chain H:	68%	21%	• 7%

ALA GLU GLU ASP ALA GLN ALA ALA ALA ALA V11 V11 (12 (12 (12) C12) C12 (12) C12 (12) C12) C12) C12 (12) C12) C12) C12 (12) C12) C12) C12 (12) C12) C12) C12) C12) C12) C12) C12) C	D117 D117 S18 R19 R19 R19 R19 R14 R14 R14 R14 R14 R14 R14 R14 R14 R14	29 19
• Molecule 8: CYT	FOCHROME C OXIDASE	
Chain U:	71%	19% • 7%
ALA ALA GLU GLU GLU GLU GLU CLLE GLU CLLE CLLE CLLE CLLE CLLE CLLE CLLE CL	C29 F36 F36 F36 F37 C29 C29 C29 C29 C29 C29 C53 C53 C53 C53 C53 C53 C53 C53 C53 C53	
• Molecule 9: CYT	FOCHROME C OXIDASE	
Chain I:	81%	16% •
81 12 12 18 18 19 19 19 12 12 12 12 12 12 12 12 12 12 12 12 12	Y47 Y47 B51 B51 B51 F60 F60 F60 F60 K73	
• Molecule 9: CYT	FOCHROME C OXIDASE	
Chain V:	84%	14% •
81 48 816 816 816 816 816 812 823 823 823 823 823 823 823 823 823 82	Y 47 D 55 F 60 F 60 F 69 K 73	
• Molecule 10: CY	TOCHROME C OXIDASE	
Chain J:	76%	17% 5% •
F1 R4 V5 Q9 Q9 112 127 127 121 130 131	M36 L47 L56 L56 H55 K58 LYS	
• Molecule 10: CY	TOCHROME C OXIDASE	
Chain W:	75%	19% 5% •
F1 R4 V5 Q9 D15 D15 T27 L31 L31	V34 T35 M36 L40 L40 L47 L47 L47 L47 L40 L40 L40 L40 L40	
• Molecule 11: CY	TOCHROME C OXIDASE	
Chain K:	75%	9% • 12%
ILE HIS GLN CALN CALN CALN CALN F24 F24 F24 F28 F28 F28 F28 F39 F39 F39 F39 F39 F39 F39 F39 F39 F39	P50 P50 P50 P50 P50 P50 GLN GLN	
• Molecule 11: CY	TOCHROME C OXIDASE	
Chain X:	68%	16% • 12%

• Molecule 12: CYTOCHROME C OXIDASE

Chain L:	79%	1	7%	·
81 H2 V15 L22 L22 P36 P36	R41 L46 K46 K47			
• Molecule 12: C	CYTOCHROME C OXIDASE			
Chain Y:	79%		17%	·
81 H2 V15 122 P36 P36	R41 L46 K46 K47			
• Molecule 13: C	CYTOCHROME C OXIDASE			
Chain M:	74%	13%	7%	7%
11 12 12 124 124 137 135 137 137 138 138 138 138 138 138 138	K 41 8 42 SER ALA ALA			
• Molecule 13: C	CYTOCHROME C OXIDASE			
Chain Z:	72%	17%	·	7%
11 12 124 128 128 128 735 136 136 138	V40 V41 K41 K41 S43 S43 S543 S43 A1A ALA ALA			

4 Data and refinement statistics (i)

Xtriage (Phenix) and EDS were not executed - this section is therefore incomplete.

Property	Value	Source	
Space group	P 21 21 21	Depositor	
Cell constants	189.10Å 210.50Å 178.60Å	Depositor	
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor	
Resolution (Å)	15.00 - 2.30	Depositor	
% Data completeness	88.9 (15.00-2.30)	Depositor	
(in resolution range)	00.3 (15.00-2.50)	Depositor	
R_{merge}	0.06	Depositor	
R_{sym}	(Not available)	Depositor	
Refinement program	X-PLOR 3.84	Depositor	
R, R_{free}	0.209 , 0.244	Depositor	
Estimated twinning fraction	No twinning to report.	Xtriage	
Total number of atoms	28864	wwPDB-VP	
Average B, all atoms $(Å^2)$	40.0	wwPDB-VP	

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: HEA, PER, ZN, NA, MG, CU

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.72	1/4164~(0.0%)	0.80	2/5688~(0.0%)	
1	Ν	0.62	1/4164~(0.0%)	0.77	2/5688~(0.0%)	
2	В	0.70	0/1909	0.91	5/2601~(0.2%)	
2	0	0.64	0/1909	0.89	3/2601~(0.1%)	
3	С	0.68	0/2211	0.71	1/3023~(0.0%)	
3	Р	0.61	0/2211	0.70	1/3023~(0.0%)	
4	D	0.63	0/1229	0.72	1/1658~(0.1%)	
4	Q	0.60	0/1229	0.70	1/1658~(0.1%)	
5	Е	0.62	0/871	0.71	1/1182~(0.1%)	
5	R	0.55	0/871	0.70	1/1182~(0.1%)	
6	F	0.63	0/765	0.79	0/1038	
6	S	0.60	0/765	0.79	0/1038	
7	G	0.80	1/699~(0.1%)	0.84	1/950~(0.1%)	
7	Т	0.74	0/699	0.84	1/950~(0.1%)	
8	Н	0.63	0/682	0.69	0/921	
8	U	0.60	0/682	0.67	0/921	
9	Ι	0.70	0/611	0.69	0/810	
9	V	0.65	0/611	0.67	0/810	
10	J	0.66	0/471	0.69	0/636	
10	W	0.65	0/471	0.69	0/636	
11	Κ	0.70	0/398	0.75	0/546	
11	Х	0.60	0/398	0.72	0/546	
12	L	0.75	0/399	0.64	0/534	
12	Y	0.65	0/399	0.63	0/534	
13	М	0.63	0/345	0.70	0/470	
13	Ζ	0.59	0/345	0.70	0/470	
All	All	0.66	3/29508~(0.0%)	0.76	$20/\overline{40114}~(0.0\%)$	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
1	Ν	0	1
2	0	0	1
3	С	0	1
3	Р	0	1
4	D	0	1
4	Q	0	1
8	Н	0	1
8	U	0	1
All	All	0	9

sidechain that are expected to be planar.

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
7	G	31	CYS	CB-SG	-5.89	1.72	1.81
1	Ν	61	HIS	CG-CD2	5.13	1.44	1.35
1	А	498	CYS	CB-SG	-5.00	1.73	1.81

All (20) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	Q	133	GLY	N-CA-C	7.12	130.91	113.10
4	D	133	GLY	N-CA-C	7.06	130.74	113.10
5	Е	41	LEU	CA-CB-CG	6.75	130.83	115.30
1	А	480	ARG	NE-CZ-NH2	-6.70	116.95	120.30
2	0	103	GLN	CA-C-N	-6.54	102.80	117.20
5	R	41	LEU	CA-CB-CG	6.50	130.25	115.30
3	С	92	LEU	CA-CB-CG	-6.36	100.68	115.30
2	В	103	GLN	CA-C-N	-6.20	103.55	117.20
3	Р	92	LEU	CA-CB-CG	-5.95	101.61	115.30
2	В	104	TRP	N-CA-C	5.67	126.30	111.00
2	В	213	LEU	CA-CB-CG	-5.57	102.48	115.30
1	А	435	GLY	N-CA-C	5.57	127.02	113.10
7	G	11	THR	N-CA-C	5.54	125.96	111.00
7	Т	11	THR	N-CA-C	5.49	125.82	111.00
2	0	104	TRP	N-CA-C	5.48	125.80	111.00
2	В	133	LEU	CA-CB-CG	-5.45	102.76	115.30
2	0	133	LEU	CA-CB-CG	-5.17	103.41	115.30
1	N	378	HIS	CA-CB-CG	-5.11	104.91	113.60
1	Ν	435	GLY	N-CA-C	5.11	125.86	113.10
2	В	188	ARG	NE-CZ-NH2	-5.07	117.77	120.30

There are no chirality outliers.

Mol	Chain	\mathbf{Res}	Type	Group
1	А	240	HIS	Sidechain
3	С	182	TYR	Sidechain
4	D	140	TYR	Sidechain
8	Н	11	TYR	Sidechain
1	Ν	240	HIS	Sidechain
2	0	103	GLN	Mainchain
3	Р	182	TYR	Sidechain
4	Q	140	TYR	Sidechain
8	U	11	TYR	Sidechain

All (9) planarity outliers are listed below:

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	4025	0	4002	62	0
1	N	4025	0	4002	66	0
2	В	1863	0	1867	48	0
2	0	1863	0	1867	45	0
3	С	2124	0	2044	28	0
3	Р	2124	0	2044	28	0
4	D	1195	0	1183	35	0
4	Q	1195	0	1183	39	0
5	Е	852	0	845	17	0
5	R	852	0	845	18	0
6	F	748	0	728	15	0
6	S	748	0	728	13	0
7	G	672	0	645	18	0
7	Т	672	0	645	16	0
8	Н	662	0	623	13	0
8	U	662	0	623	13	0
9	Ι	598	0	612	11	0
9	V	598	0	612	9	0
10	J	460	0	459	5	0
10	W	460	0	459	7	0
11	K	384	0	366	8	0

20	aa
20	$\mathbb{O}\mathbb{O}$

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
11	Х	384	0	366	10	0
12	L	386	0	388	7	0
12	Y	386	0	388	8	0
13	М	335	0	352	8	0
13	Ζ	335	0	352	9	0
14	А	1	0	0	0	0
14	В	2	0	0	0	0
14	Ν	1	0	0	0	0
14	0	2	0	0	0	0
15	А	1	0	0	0	0
15	Ν	1	0	0	0	0
16	А	1	0	0	0	0
16	Ν	1	0	0	0	0
17	А	120	0	108	5	0
17	Ν	120	0	108	4	0
18	А	2	0	0	1	0
18	N	2	0	0	1	0
19	F	1	0	0	0	0
19	S	1	0	0	0	0
All	All	28864	0	28444	443	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (443) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
18:A:520:PER:O2	18:A:520:PER:O1	1.69	1.11
18:N:520:PER:O1	18:N:520:PER:O2	1.63	1.11
3:P:2:THR:HG23	6:S:96:LEU:HD12	1.58	0.85
3:C:2:THR:HG23	6:F:96:LEU:HD12	1.61	0.82
1:N:306:THR:HB	1:N:359:ALA:O	1.82	0.79
1:N:85:LEU:O	1:N:492:LEU:HD13	1.86	0.75
1:A:190:ILE:HG12	7:T:6:GLY:HA3	1.71	0.72
1:A:197:LEU:HD12	7:T:4:ALA:HB2	1.69	0.72
1:N:508:PRO:HG3	3:P:6:HIS:HB3	1.71	0.72
7:G:6:GLY:HA3	1:N:190:ILE:HG12	1.72	0.71
2:B:78:LEU:HB2	2:B:79:PRO:HD3	1.72	0.71
1:A:306:THR:HB	1:A:359:ALA:O	1.90	0.71
3:C:192:VAL:O	3:C:196:THR:HB	1.90	0.71
1:A:508:PRO:HG3	3:C:6:HIS:HB3	1.74	0.69

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
7:G:4:ALA:HB2	1:N:197:LEU:HD12	1.73	0.69
4:Q:52:SER:OG	4:Q:55:GLU:HG3	1.92	0.69
6:F:8:THR:OG1	6:F:11:GLU:HG2	1.92	0.69
2:O:111:THR:HG22	2:0:111:THR:O	1.93	0.68
1:A:85:LEU:O	1:A:492:LEU:HD13	1.94	0.68
1:A:286:ILE:HG22	7:T:1:ALA:HB1	1.74	0.67
1:A:282:PHE:HB2	7:T:5:LYS:HB3	1.75	0.67
2:B:111:THR:HG22	2:B:111:THR:O	1.94	0.67
1:A:197:LEU:HD12	7:T:4:ALA:CB	2.26	0.66
6:S:8:THR:OG1	6:S:11:GLU:HG2	1.94	0.66
4:D:52:SER:OG	4:D:55:GLU:HG3	1.95	0.66
2:B:89[A]:GLU:HB2	2:B:91[A]:ASN:ND2	2.12	0.65
3:C:2:THR:HG22	6:F:52:ILE:HG12	1.79	0.65
3:P:192:VAL:O	3:P:196:THR:HB	1.96	0.65
5:E:82:TYR:HB3	5:E:83:PRO:HD3	1.78	0.65
7:G:4:ALA:HB2	1:N:197:LEU:CD1	2.27	0.65
2:O:89[A]:GLU:HB2	2:O:91[A]:ASN:ND2	2.12	0.64
7:G:5:LYS:HB3	1:N:282:PHE:HB2	1.78	0.64
2:B:14:SER:HB3	2:B:168:LEU:HD23	1.80	0.64
1:A:197:LEU:CD1	7:T:4:ALA:HB2	2.28	0.64
2:O:78:LEU:HB2	2:O:79:PRO:HD3	1.78	0.64
4:Q:138:TRP:CH2	11:X:50:PRO:HG2	2.32	0.64
3:P:119:THR:HG21	8:U:82:PRO:O	1.98	0.63
5:R:82:TYR:HB3	5:R:83:PRO:HD3	1.80	0.63
2:O:14:SER:HB3	2:O:168:LEU:HD23	1.79	0.63
7:G:1:ALA:HB1	1:N:286:ILE:HG22	1.81	0.63
17:A:515:HEA:HBC1	17:A:515:HEA:HMC1	1.80	0.63
4:Q:23:PRO:O	5:R:66:ARG:HD3	1.99	0.63
4:D:23:PRO:O	5:E:66:ARG:HD3	1.99	0.62
1:A:354:THR:CG2	1:A:376:HIS:HB2	2.29	0.62
2:O:52:HIS:CD2	5:R:40:ASP:HB2	2.34	0.62
2:O:186:SER:HB3	2:O:213:LEU:HD22	1.81	0.62
17:N:515:HEA:HMC1	17:N:515:HEA:HBC1	1.81	0.62
2:O:128:LEU:HD11	2:O:134:ARG:HA	1.80	0.62
1:N:347:LEU:HG	1:N:383:MET:CE	2.30	0.62
2:B:128:LEU:HD11	2:B:134:ARG:HA	1.82	0.61
7:G:4:ALA:CB	1:N:197:LEU:HD12	2.29	0.61
1:A:290:HIS:CD2	1:A:291:HIS:CD2	2.88	0.61
8:U:7:LYS:HA	8:U:7:LYS:HE3	1.81	0.61
8:U:39:CYS:CB	8:U:53:CYS:SG	2.88	0.61
8:H:7:LYS:HE3	8:H:7:LYS:HA	1.81	0.61

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:C:119:THR:HG21	8:H:82:PRO:O	2.01	0.61
3:P:2:THR:HG22	6:S:52:ILE:HG12	1.82	0.60
1:N:290:HIS:CD2	1:N:291:HIS:CD2	2.89	0.60
3:P:164:PHE:O	3:P:168:THR:HG23	2.01	0.60
3:P:221:ARG:HE	3:P:226:HIS:HD1	1.48	0.60
2:B:186:SER:HB3	2:B:213:LEU:HD22	1.84	0.59
4:Q:67:SER:OG	4:Q:70:GLU:HG3	2.03	0.59
7:G:67:HIS:HD2	7:G:71:HIS:CD2	2.20	0.59
2:O:136:LEU:HB3	2:O:193:TYR:CD2	2.37	0.59
3:P:34:TRP:CD1	3:P:40:MET:HG2	2.38	0.59
2:B:52:HIS:CD2	5:E:40:ASP:HB2	2.37	0.59
1:N:209:LEU:O	1:N:213:ARG:HG3	2.03	0.59
7:G:40:GLY:O	7:G:41:HIS:HB2	2.02	0.59
1:N:347:LEU:HG	1:N:383:MET:HE2	1.85	0.58
13:Z:38:ASP:O	13:Z:42:LYS:HG2	2.03	0.58
4:Q:102:TYR:CD1	13:Z:35:TYR:HE1	2.22	0.58
2:B:164:ALA:HB2	2:B:171:LYS:HD3	1.85	0.58
1:N:431:LEU:HD21	1:N:450:TRP:HB2	1.85	0.58
1:A:209:LEU:O	1:A:213:ARG:HG3	2.04	0.58
2:O:68:LEU:HB3	2:O:69:PRO:HD3	1.85	0.58
4:Q:107:ILE:CD1	11:X:39:GLU:HG3	2.34	0.58
10:W:56:PRO:HD3	12:Y:46:LYS:HE3	1.85	0.58
4:Q:66:GLU:O	5:R:66:ARG:NH2	2.37	0.58
1:N:354:THR:CG2	1:N:376:HIS:HB2	2.34	0.57
2:O:164:ALA:HB2	2:0:171:LYS:HD3	1.84	0.57
2:0:146:MET:SD	2:O:189:PRO:HB3	2.45	0.57
4:D:66:GLU:O	5:E:66:ARG:NH2	2.37	0.57
1:N:354:THR:HG21	1:N:376:HIS:HA	1.87	0.57
2:O:132:GLU:HA	4:Q:122:ARG:NH1	2.19	0.57
4:D:138:TRP:CH2	11:K:50:PRO:HG2	2.39	0.57
5:E:43:PRO:HB2	5:E:48:ILE:HD11	1.86	0.57
13:M:38:ASP:O	13:M:42:LYS:HG2	2.04	0.57
1:N:36:LEU:HD13	12:Y:40:VAL:HG21	1.87	0.56
1:N:115:SER:O	1:N:121:GLY:HA2	2.05	0.56
5:R:43:PRO:HB2	5:R:48:ILE:HD11	1.87	0.56
1:N:138:HIS:O	1:N:213:ARG:NH2	2.39	0.56
6:F:16:LEU:O	6:F:20:VAL:HG13	2.06	0.56
3:P:160:LEU:HD13	3:P:222:GLN:HG2	1.88	0.56
1:A:354:THR:HG21	1:A:376:HIS:HA	1.88	0.55
1:A:36:LEU:HD13	12:L:40:VAL:HG21	1.88	0.55
3:C:221:ARG:HE	3:C:226:HIS:HD1	1.53	0.55

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:C:154:GLY:HA2	6:F:6:VAL:HG22	1.89	0.55
2:B:58:ALA:O	2:B:62:GLU:HG3	2.07	0.55
3:C:160:LEU:HD13	3:C:222:GLN:HG2	1.89	0.55
9:V:19:PHE:CD1	9:V:19:PHE:C	2.80	0.55
13:M:1:ILE:HG13	13:M:2:THR:H	1.72	0.54
1:N:87:ILE:O	1:N:173:PRO:HD3	2.07	0.54
7:T:40:GLY:O	7:T:41:HIS:HB2	2.08	0.54
2:B:132:GLU:HA	4:D:122:ARG:NH1	2.22	0.54
2:0:58:ALA:O	2:O:62:GLU:HG3	2.07	0.54
2:O:196:CYS:HB2	2:O:207:MET:HG3	1.89	0.54
2:B:136:LEU:HB3	2:B:193:TYR:CD2	2.42	0.54
4:D:102:TYR:CD1	13:M:35:TYR:HE1	2.26	0.54
2:B:193:TYR:HE1	4:D:126:MET:HE1	1.72	0.54
4:D:127:LYS:O	4:D:130:PRO:HD3	2.08	0.54
4:Q:68:PHE:HA	4:Q:71:MET:HG2	1.88	0.54
1:A:128:VAL:HG22	1:A:128:VAL:O	2.07	0.54
6:F:53:THR:HG22	6:F:54:ASN:ND2	2.22	0.54
10:J:56:PRO:HD3	12:L:46:LYS:HE3	1.88	0.54
3:C:34:TRP:CD1	3:C:40:MET:HG2	2.43	0.54
4:D:67:SER:OG	4:D:70:GLU:HG3	2.08	0.54
2:B:68:LEU:HB3	2:B:69:PRO:HD3	1.90	0.54
8:H:60:TYR:CD1	8:H:60:TYR:C	2.81	0.54
2:O:161:HIS:HB2	2:O:174:ALA:HB3	1.90	0.54
1:A:431:LEU:HD21	1:A:450:TRP:HB2	1.88	0.54
3:C:164:PHE:O	3:C:168:THR:HG23	2.08	0.54
4:D:40:LEU:HD13	4:D:59:LEU:HD13	1.88	0.54
9:I:19:PHE:CD1	9:I:19:PHE:C	2.82	0.53
2:O:132:GLU:HB3	2:O:137:GLU:HG3	1.90	0.53
1:A:310:MET:HE1	2:B:77:ALA:HB2	1.89	0.53
9:V:55:ASP:HB3	9:V:58:LYS:HB3	1.90	0.53
10:W:36:MET:O	10:W:40:LEU:HG	2.07	0.53
4:D:107:ILE:CD1	11:K:39:GLU:HG3	2.37	0.53
3:P:1:MET:HB3	6:S:96:LEU:HD11	1.89	0.53
1:N:35:LEU:HD11	1:N:462:LEU:HB2	1.90	0.53
1:A:347:LEU:HG	1:A:383:MET:HE2	1.90	0.53
2:O:191:LEU:HB2	4:Q:126:MET:HE1	1.91	0.53
4:D:110:THR:HG22	4:D:115:TRP:CE2	2.44	0.53
3:P:154:GLY:HA2	6:S:6:VAL:HG22	1.91	0.53
4:Q:23:PRO:O	4:Q:25:PRO:HD3	2.09	0.53
4:Q:127:LYS:O	4:Q:130:PRO:HD3	2.09	0.53
7:T:67:HIS:HD2	7:T:71:HIS:CD2	2.27	0.53

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:138:HIS:O	1:A:213:ARG:NH2	2.42	0.53
12:Y:41:ARG:HD2	13:Z:40:TYR:CZ	2.44	0.53
1:A:35:LEU:HD11	1:A:462:LEU:HB2	1.91	0.52
1:A:290:HIS:HD2	1:A:291:HIS:CD2	2.27	0.52
2:B:90[B]:ILE:HD12	8:H:16:PHE:CZ	2.44	0.52
1:N:128:VAL:HG22	1:N:128:VAL:O	2.08	0.52
13:Z:1:ILE:HG13	13:Z:2:THR:H	1.74	0.52
1:N:456:MET:HG2	4:Q:96:LEU:HD13	1.91	0.52
6:S:16:LEU:O	6:S:20:VAL:HG13	2.09	0.52
1:N:144:ASP:OD1	1:N:213:ARG:HD3	2.10	0.52
3:P:112:LEU:HG	3:P:118:PRO:HG3	1.92	0.52
4:Q:24:LEU:HD12	5:R:30:ARG:HA	1.91	0.52
7:T:9:GLY:HA2	7:T:19:LEU:HD11	1.91	0.52
6:S:53:THR:HG22	6:S:54:ASN:ND2	2.24	0.52
1:A:347:LEU:HG	1:A:383:MET:CE	2.40	0.52
2:B:161:HIS:HB2	2:B:174:ALA:HB3	1.91	0.52
8:H:49:ASP:O	8:H:52:VAL:HG22	2.10	0.52
2:B:226:MET:O	2:B:227:LEU:HB2	2.10	0.52
4:Q:64:PHE:CE1	5:R:66:ARG:HD2	2.45	0.52
5:R:63:SER:O	5:R:67:ILE:HG13	2.10	0.52
1:A:106:PRO:HB2	1:A:107:PRO:HD3	1.92	0.51
12:L:46:LYS:O	12:L:47:LYS:HB2	2.10	0.51
1:N:354:THR:HG23	1:N:376:HIS:HB2	1.93	0.51
1:A:237:PHE:HZ	7:T:2:SER:HB2	1.75	0.51
12:Y:46:LYS:O	12:Y:47:LYS:HB2	2.11	0.51
1:A:354:THR:HG23	1:A:376:HIS:HB2	1.91	0.51
1:A:298:ASP:HB2	1:A:301:THR:HG23	1.92	0.51
2:O:184:LEU:HD11	2:O:211:LEU:HD21	1.93	0.51
1:A:51:ASP:O	1:A:55:ASN:ND2	2.44	0.50
4:D:5:VAL:O	4:D:5:VAL:HG13	2.11	0.50
1:A:87:ILE:O	1:A:173:PRO:HD3	2.11	0.50
11:X:24:PHE:O	11:X:28:VAL:HG23	2.11	0.50
4:D:23:PRO:O	4:D:25:PRO:HD3	2.11	0.50
1:N:290:HIS:CD2	1:N:291:HIS:NE2	2.79	0.50
2:O:226:MET:O	2:O:227:LEU:HB2	2.11	0.50
4:Q:40:LEU:HD13	4:Q:59:LEU:HD13	1.94	0.50
9:V:19:PHE:C	9:V:19:PHE:HD1	2.15	0.50
10:J:36:MET:O	10:J:40:LEU:HG	2.12	0.50
2:O:86:MET:O	2:O:89[A]:GLU:HG2	2.11	0.50
1:A:334:TRP:CH2	2:B:46:LEU:HD13	2.46	0.50
2:B:164:ALA:O	2:B:194:GLY:HA3	2.12	0.50

Atom_1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:C:112:LEU:HG	3:C:118:PRO:HG3	1.94	0.50
7:G:55:ILE:O	7:G:56:ARG:HD3	2.12	0.50
4:Q:110:THR:HG22	4:Q:115:TRP:CE2	2.47	0.50
4:Q:118:LYS:HD2	11:X:53:TRP:HA	1.94	0.50
1:A:115:SER:O	1:A:121:GLY:HA2	2.12	0.49
1:N:32:ALA:HB3	12:Y:36:PRO:HG2	1.95	0.49
1:N:106:PRO:HB2	1:N:107:PRO:HD3	1.94	0.49
4:D:24:LEU:HD12	5:E:30:ARG:HA	1.93	0.49
2:B:196:CYS:HB2	2:B:207:MET:HG3	1.94	0.49
1:N:380:VAL:O	1:N:384:GLY:HA3	2.12	0.49
2:O:90[B]:ILE:HD12	8:U:16:PHE:CZ	2.47	0.49
4:Q:146:LYS:O	4:Q:147:LYS:HG3	2.11	0.49
12:L:41:ARG:HD2	13:M:40:TYR:CZ	2.48	0.49
2:B:132:GLU:HB3	2:B:137:GLU:HG3	1.95	0.49
8:U:60:TYR:CD1	8:U:60:TYR:C	2.86	0.49
10:W:30:ILE:HG13	10:W:31:LEU:N	2.27	0.49
2:B:139:ASP:OD1	2:B:140:ASN:N	2.46	0.49
2:O:89[A]:GLU:HB2	2:O:91[A]:ASN:HD22	1.78	0.49
8:H:52:VAL:HG21	8:U:43:MET:HE1	1.94	0.49
2:O:164:ALA:O	2:O:194:GLY:HA3	2.13	0.49
4:Q:142:LYS:HB2	4:Q:144:GLU:HG2	1.95	0.49
1:N:290:HIS:HD2	1:N:291:HIS:CD2	2.31	0.48
2:0:139:ASP:OD1	2:O:140:ASN:N	2.45	0.48
2:B:104:TRP:CG	2:B:203:ASN:HB2	2.48	0.48
8:U:49:ASP:O	8:U:52:VAL:HG22	2.13	0.48
9:I:19:PHE:C	9:I:19:PHE:HD1	2.17	0.48
4:D:119:GLN:O	4:D:123:MET:HG3	2.14	0.48
1:N:361:SER:OG	2:O:84:LEU:HD13	2.14	0.48
1:A:302:ARG:O	1:A:306:THR:CG2	2.62	0.48
4:D:68:PHE:HA	4:D:71:MET:HG2	1.96	0.48
4:Q:68:PHE:CZ	5:R:70:VAL:HG23	2.49	0.48
1:A:393:PHE:O	1:A:397:PHE:HB2	2.14	0.48
10:J:50:LEU:HD22	10:J:50:LEU:O	2.14	0.48
3:P:41:THR:O	3:P:45:ILE:HG12	2.14	0.48
9:I:2:THR:HG23	9:I:2:THR:O	2.13	0.47
9:I:55:ASP:HB3	9:I:58:LYS:HB3	1.95	0.47
5:R:25:ASP:OD1	5:R:28:GLU:HG3	2.13	0.47
5:R:80:GLU:H	5:R:80:GLU:CD	2.17	0.47
3:C:1:MET:HB3	6:F:96:LEU:HD11	1.96	0.47
4:D:64:PHE:CE1	5:E:66:ARG:HD2	2.49	0.47
8:H:43:MET:HE1	8:U:52:VAL:HG21	1.96	0.47

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:O:191:LEU:HB2	4:Q:126:MET:CE	2.44	0.47
4:Q:112:GLU:O	4:Q:116:VAL:HG13	2.15	0.47
1:A:107:PRO:HB3	3:C:25:LEU:HB2	1.96	0.47
1:N:310:MET:CE	2:O:77:ALA:HB2	2.44	0.47
2:O:104:TRP:CG	2:O:203:ASN:HB2	2.50	0.47
2:O:193:TYR:HE1	4:Q:126:MET:HE1	1.78	0.47
2:O:222:TRP:CZ2	2:O:226:MET:HG3	2.49	0.47
8:U:36:PHE:HD2	8:U:37:HIS:CE1	2.32	0.47
5:E:63:SER:O	5:E:67:ILE:HG13	2.14	0.47
1:A:344:PHE:CD1	1:A:344:PHE:C	2.88	0.47
2:O:162:SER:HB3	2:O:197:SER:C	2.35	0.47
3:P:2:THR:HG23	6:S:96:LEU:CD1	2.40	0.47
7:T:55:ILE:O	7:T:56:ARG:HD3	2.15	0.47
5:E:5:HIS:HB3	5:E:6:GLU:H	1.59	0.47
5:E:40:ASP:O	5:E:41:LEU:HB3	2.15	0.47
1:N:75:ILE:O	1:N:79:GLY:HA3	2.15	0.47
1:A:128:VAL:O	1:A:128:VAL:CG2	2.63	0.47
1:A:240:HIS:O	1:A:243:VAL:HG22	2.15	0.47
1:N:51:ASP:O	1:N:55:ASN:ND2	2.47	0.47
2:B:89[A]:GLU:HB2	2:B:91[A]:ASN:HD22	1.78	0.46
10:J:5:VAL:O	10:J:9:GLN:HG3	2.15	0.46
1:N:459:PHE:O	1:N:462:LEU:HB3	2.14	0.46
1:A:456:MET:HG2	4:D:96:LEU:HD13	1.96	0.46
3:C:146:TRP:CZ2	7:G:17:ARG:HD3	2.50	0.46
4:D:23:PRO:HG3	5:E:70:VAL:HG21	1.97	0.46
1:N:128:VAL:O	1:N:128:VAL:CG2	2.63	0.46
3:C:2:THR:HG22	6:F:52:ILE:CG1	2.44	0.46
3:C:80:ARG:NH2	3:C:236:GLU:OE2	2.49	0.46
5:E:7:THR:HG23	5:E:10:GLU:H	1.81	0.46
1:N:344:PHE:CD1	1:N:344:PHE:C	2.88	0.46
10:W:50:LEU:O	10:W:50:LEU:HD22	2.15	0.46
1:A:75:ILE:O	1:A:79:GLY:HA3	2.15	0.46
1:N:438:ARG:O	1:N:439:ARG:HB2	2.16	0.46
8:U:8:ILE:HB	8:U:10:ASN:OD1	2.15	0.46
5:R:7:THR:HG23	5:R:10:GLU:H	1.81	0.46
7:G:2:SER:HB2	1:N:237:PHE:HZ	1.81	0.46
1:N:107:PRO:HB3	3:P:25:LEU:HB2	1.97	0.46
7:G:9:GLY:HA2	7:G:19:LEU:HD11	1.97	0.46
1:N:476:PHE:HB3	12:Y:15:VAL:CG2	2.46	0.46
4:Q:107:ILE:HD11	11:X:39:GLU:HG3	1.97	0.46
8:U:39:CYS:C	8:U:53:CYS:SG	2.93	0.46

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:82:LEU:O	1:A:86:MET:HG3	2.16	0.46
3:C:65:SER:HB3	3:C:71:HIS:CE1	2.50	0.46
1:N:62:ALA:HB2	17:N:515:HEA:HBD1	1.97	0.46
11:X:43:SER:OG	11:X:45:VAL:HG13	2.16	0.46
11:K:43:SER:OG	11:K:45:VAL:HG13	2.16	0.46
4:D:146:LYS:O	4:D:147:LYS:HG3	2.16	0.46
8:H:39:CYS:C	8:H:53:CYS:SG	2.94	0.46
1:N:3:ILE:N	1:N:3:ILE:HD12	2.31	0.46
3:P:160:LEU:HD13	3:P:222:GLN:CG	2.46	0.46
4:D:107:ILE:HD11	11:K:39:GLU:HG3	1.99	0.45
1:N:240:HIS:O	1:N:243:VAL:HG22	2.16	0.45
1:A:310:MET:CE	2:B:77:ALA:HB2	2.45	0.45
6:F:30:PRO:HG2	6:F:31:TYR:CD2	2.51	0.45
13:M:1:ILE:HG13	13:M:2:THR:N	2.31	0.45
13:M:37:LEU:HA	13:M:37:LEU:HD23	1.76	0.45
1:N:242:GLU:HA	1:N:245:ILE:HD12	1.97	0.45
7:T:37:LEU:O	7:T:38:HIS:ND1	2.50	0.45
9:V:68:ILE:HG13	9:V:69:PHE:N	2.30	0.45
1:A:302:ARG:O	1:A:306:THR:HG23	2.17	0.45
4:D:109:HIS:O	4:D:112:GLU:HG2	2.16	0.45
9:I:23:GLY:O	9:I:27:VAL:HG23	2.16	0.45
1:N:347:LEU:HG	1:N:383:MET:HE3	1.98	0.45
4:D:112:GLU:O	4:D:116:VAL:HG13	2.16	0.45
1:A:229:ILE:HD11	2:B:175:ILE:HD13	1.98	0.45
2:B:222:TRP:CZ2	2:B:226:MET:HG3	2.51	0.45
4:D:142:LYS:HB2	4:D:144:GLU:HG2	1.99	0.45
1:N:413:HIS:CE1	1:N:468:MET:HB2	2.52	0.45
3:P:146:TRP:CZ2	7:T:17:ARG:HD3	2.51	0.45
4:Q:138:TRP:CZ3	11:X:50:PRO:HG2	2.52	0.45
11:K:24:PHE:O	11:K:28:VAL:HG23	2.16	0.45
1:N:74:MET:HB3	1:N:74:MET:HE3	1.84	0.45
3:P:16:TRP:HA	3:P:16:TRP:CE3	2.52	0.45
3:C:160:LEU:HD13	3:C:222:GLN:CG	2.47	0.45
10:J:30:ILE:HG13	10:J:31:LEU:N	2.32	0.45
4:Q:123:MET:HE2	4:Q:134:PHE:CE2	2.52	0.45
1:A:5:ARG:O	1:A:9:SER:HB2	2.16	0.45
1:N:298:ASP:HB2	1:N:301:THR:HG23	1.98	0.45
2:B:184:LEU:HD11	2:B:211:LEU:HD21	1.99	0.44
3:P:30:GLY:HA2	3:P:42:LEU:HB3	1.99	0.44
7:T:3:ALA:O	7:T:4:ALA:HB2	2.16	0.44
1:A:62:ALA:HB2	17:A:515:HEA:HBD1	1.99	0.44

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:0:121:TYR:O	2:O:138:VAL:HA	2.17	0.44
9:V:60:PHE:CE1	9:V:69:PHE:CE2	3.05	0.44
13:Z:1:ILE:HG13	13:Z:2:THR:N	2.32	0.44
2:B:133:LEU:HD23	2:B:133:LEU:HA	1.79	0.44
3:C:154:GLY:O	6:F:6:VAL:HG13	2.17	0.44
3:P:47:LEU:O	3:P:51:MET:HG2	2.17	0.44
9:V:21:ILE:HD12	9:V:21:ILE:HA	1.76	0.44
1:A:144:ASP:OD1	1:A:213:ARG:HD3	2.17	0.44
7:G:37:LEU:O	7:G:38:HIS:ND1	2.50	0.44
2:O:62:GLU:HA	2:O:65:TRP:CD1	2.52	0.44
5:R:90:ARG:HD3	5:R:90:ARG:HA	1.76	0.44
1:N:197:LEU:O	3:P:92:LEU:HD22	2.17	0.44
2:B:62:GLU:HA	2:B:65:TRP:CD1	2.52	0.44
7:G:3:ALA:O	7:G:4:ALA:HB2	2.18	0.44
8:H:7:LYS:HE3	8:H:7:LYS:CA	2.48	0.44
17:N:515:HEA:HMB1	17:N:515:HEA:H11	1.75	0.44
4:Q:128:VAL:O	4:Q:134:PHE:HB3	2.18	0.44
2:B:215:PRO:HD3	9:I:60:PHE:CD1	2.53	0.44
2:O:44:LEU:O	9:V:16:ARG:NH2	2.50	0.44
1:A:426:PHE:N	1:A:427:PRO:HD2	2.33	0.44
1:N:302:ARG:O	1:N:306:THR:CG2	2.66	0.44
2:O:122:MET:HB2	2:O:208:PRO:HD2	2.00	0.44
2:B:44:LEU:O	9:I:16:ARG:NH2	2.51	0.43
4:Q:24:LEU:HB3	5:R:30:ARG:HG2	1.99	0.43
4:Q:131:ILE:HD12	9:V:47:TYR:CE2	2.52	0.43
1:A:197:LEU:O	3:C:92:LEU:HD22	2.19	0.43
12:Y:41:ARG:HG3	13:Z:40:TYR:CE2	2.53	0.43
1:A:38:ARG:HD2	17:A:515:HEA:OMA	2.18	0.43
4:D:68:PHE:CZ	5:E:70:VAL:HG23	2.53	0.43
1:A:380:VAL:O	1:A:384:GLY:HA3	2.18	0.43
7:T:25:LEU:HD23	7:T:25:LEU:HA	1.86	0.43
4:D:48:TRP:CH2	5:E:56:ARG:HA	2.54	0.43
4:D:126:MET:HG3	4:D:128:VAL:HG23	2.00	0.43
8:H:36:PHE:HD2	8:H:37:HIS:CE1	2.37	0.43
1:N:51:ASP:HB3	1:N:55:ASN:ND2	2.34	0.43
4:D:118:LYS:HD2	11:K:53:TRP:HA	2.01	0.43
9:V:23:GLY:O	9:V:27:VAL:HG23	2.18	0.43
1:A:32:ALA:HB3	12:L:36:PRO:HG2	2.01	0.43
2:B:111:THR:O	2:B:111:THR:CG2	2.63	0.43
1:N:289:ALA:HB1	1:N:297:MET:HE1	2.01	0.43
6:S:30:PRO:HG2	6:S:31:TYR:CD2	2.54	0.43

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
11:X:22:ALA:O	11:X:26:VAL:HG23	2.18	0.43
1:A:481:GLU:O	13:M:3:ALA:HB1	2.19	0.43
1:N:334:TRP:CH2	2:O:46:LEU:HD13	2.54	0.43
4:Q:126:MET:HG3	4:Q:128:VAL:HG23	2.00	0.43
1:N:426:PHE:N	1:N:427:PRO:HD2	2.34	0.42
10:W:31:LEU:HD23	10:W:31:LEU:HA	1.89	0.42
1:A:334:TRP:HH2	2:B:46:LEU:HD13	1.84	0.42
3:C:252:LEU:HD23	3:C:252:LEU:HA	1.86	0.42
8:H:57:ARG:O	8:H:61:LYS:HB2	2.19	0.42
4:Q:5:VAL:HG13	4:Q:5:VAL:O	2.18	0.42
10:W:5:VAL:O	10:W:9:GLN:HG3	2.19	0.42
1:A:289:ALA:HB1	1:A:297:MET:HE1	2.02	0.42
2:0:111:THR:O	2:O:111:THR:CG2	2.63	0.42
5:R:40:ASP:O	5:R:41:LEU:HB3	2.19	0.42
1:A:442:ASP:OD2	2:B:134:ARG:NH2	2.53	0.42
2:B:90[A]:ILE:CD1	2:B:151:ARG:HH21	2.33	0.42
8:U:57:ARG:O	8:U:61:LYS:HB2	2.19	0.42
6:F:94:HIS:CD2	6:F:95:GLN:HG3	2.54	0.42
7:G:7:ASP:CG	7:G:8:HIS:H	2.23	0.42
1:N:508:PRO:CG	3:P:6:HIS:HB3	2.47	0.42
3:P:252:LEU:HD23	3:P:252:LEU:HA	1.79	0.42
2:B:102:HIS:O	2:B:104:TRP:N	2.52	0.42
3:C:154:GLY:HA2	6:F:6:VAL:CG2	2.49	0.42
7:G:76:ASN:HA	7:G:77:PRO:HD2	1.94	0.42
2:B:87:MET:HB3	2:B:87:MET:HE2	1.78	0.42
5:E:80:GLU:CD	5:E:80:GLU:H	2.22	0.42
9:I:21:ILE:HA	9:I:21:ILE:HD12	1.71	0.42
3:P:122:HIS:NE2	7:T:45:PRO:HB3	2.35	0.42
3:P:154:GLY:HA2	6:S:6:VAL:CG2	2.49	0.42
4:Q:23:PRO:HG3	5:R:70:VAL:HG21	2.00	0.42
4:Q:118:LYS:HA	11:X:51:LYS:O	2.20	0.42
12:Y:44:LEU:HD12	12:Y:44:LEU:HA	1.86	0.42
13:Z:28:LEU:HB2	13:Z:29:PRO:HD3	2.02	0.42
1:N:374:VAL:HA	1:N:377:PHE:CE2	2.55	0.42
1:N:393:PHE:O	1:N:397:PHE:HB2	2.20	0.42
6:S:48:LEU:O	6:S:50:PRO:HD3	2.19	0.42
1:A:459:PHE:O	1:A:462:LEU:HB3	2.20	0.42
2:B:90[A]:ILE:HD11	2:B:151:ARG:NH2	2.35	0.42
3:P:65:SER:HB3	3:P:71:HIS:CE1	2.55	0.42
10:W:30:ILE:O	10:W:34:VAL:HG23	2.20	0.42
1:N:302:ARG:O	1:N:306:THR:HG23	2.20	0.41

Atom 1			Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:Q:102:TYR:CD1	13:Z:35:TYR:CE1	3.05	0.41
1:A:3:ILE:HD12	1:A:3:ILE:N	2.34	0.41
2:B:146:MET:SD	2:B:189:PRO:HB3	2.60	0.41
2:B:191:LEU:HB2	4:D:126:MET:CE	2.50	0.41
17:N:516:HEA:HMB1	17:N:516:HEA:H11	1.90	0.41
17:A:515:HEA:H212	17:A:515:HEA:H271	1.88	0.41
2:B:92[A]:ASN:HA	2:B:93:PRO:HD2	1.57	0.41
2:O:110:TYR:CD1	2:O:110:TYR:N	2.88	0.41
4:Q:134:PHE:CE1	11:X:44:PRO:HG2	2.56	0.41
3:C:122:HIS:NE2	7:G:45:PRO:HB3	2.35	0.41
4:D:131:ILE:HD12	9:I:47:TYR:CE2	2.55	0.41
1:N:33:LEU:O	1:N:37:ILE:HG13	2.20	0.41
4:Q:119:GLN:O	4:Q:123:MET:HG3	2.20	0.41
3:C:16:TRP:CE3	3:C:16:TRP:HA	2.55	0.41
5:E:12:ASP:HA	5:E:47:ILE:HD11	2.03	0.41
1:A:274:VAL:O	1:A:278:MET:HG3	2.21	0.41
2:B:3:TYR:CZ	2:B:6:GLN:HG3	2.56	0.41
8:H:17:ASP:OD1	8:H:19:ARG:HG3	2.21	0.41
12:L:44:LEU:HA	12:L:44:LEU:HD12	1.88	0.41
2:O:76:ILE:O	2:O:79:PRO:HD2	2.20	0.41
2:O:133:LEU:HD23	2:O:133:LEU:HA	1.81	0.41
3:C:30:GLY:HA2	3:C:42:LEU:HB3	2.02	0.41
6:F:48:LEU:O	6:F:50:PRO:HD3	2.20	0.41
6:S:94:HIS:CD2	6:S:95:GLN:HG3	2.55	0.41
8:U:57:ARG:HA	8:U:60:TYR:CD2	2.56	0.41
1:A:61:HIS:HE1	17:A:515:HEA:C4B	2.34	0.41
1:A:340:TRP:HZ2	1:A:413:HIS:CD2	2.39	0.41
3:C:173:PHE:CD1	3:C:173:PHE:C	2.94	0.41
9:I:58:LYS:O	9:I:62:GLU:HG3	2.20	0.41
9:I:68:ILE:HG13	9:I:69:PHE:N	2.34	0.41
4:Q:48:TRP:CH2	5:R:56:ARG:HA	2.55	0.41
4:Q:48:TRP:HB2	5:R:96:LEU:O	2.20	0.41
1:A:483:LEU:HD23	1:A:483:LEU:HA	1.93	0.41
2:B:41:ILE:O	2:B:45:MET:HG2	2.21	0.41
3:C:42:LEU:HD12	3:C:42:LEU:HA	1.76	0.41
4:D:24:LEU:HB3	5:E:30:ARG:HG2	2.02	0.41
4:D:138:TRP:CZ3	11:K:50:PRO:HG2	2.56	0.41
7:G:44:ARG:HA	7:G:45:PRO:HD3	1.81	0.41
1:N:52:GLN:O	1:N:56:VAL:HG23	2.21	0.41
1:N:310:MET:HE1	2:O:77:ALA:HB2	2.02	0.41
6:F:6:VAL:HA	6:F:7:PRO:HD3	1.90	0.41

Atom 1	Atom 9	Interatomic	\mathbf{Clash}
Atom-1	Atom-2	distance (Å)	overlap (Å)
8:H:8:ILE:HB	8:H:10:ASN:OD1	2.21	0.41
2:O:102:HIS:O	2:O:104:TRP:N	2.54	0.41
2:B:4:PRO:HB2	11:K:43:SER:HA	2.03	0.40
2:B:175:ILE:HA	2:B:176:PRO:HD3	1.98	0.40
4:D:102:TYR:CD1	13:M:35:TYR:CE1	3.08	0.40
2:O:9:PHE:HB2	2:O:21:LEU:HD21	2.02	0.40
6:S:54:ASN:ND2	6:S:54:ASN:N	2.69	0.40
3:P:16:TRP:HA	3:P:16:TRP:HE3	1.85	0.40
3:P:173:PHE:CD1	3:P:173:PHE:C	2.94	0.40
1:A:240:HIS:HB3	1:A:241:PRO:HD3	2.02	0.40
1:A:476:PHE:HB3	12:L:15:VAL:CG2	2.51	0.40
2:B:68:LEU:HD12	2:B:68:LEU:HA	1.91	0.40
1:N:486:ASP:OD1	13:Z:1:ILE:HD11	2.21	0.40
2:O:89[A]:GLU:HG3	2:O:89[A]:GLU:O	2.21	0.40
1:N:54:TYR:O	1:N:57:VAL:HB	2.22	0.40
1:N:274:VAL:O	1:N:278:MET:HG3	2.22	0.40
1:N:449:MET:SD	2:O:5:MET:HG2	2.61	0.40
2:B:191:LEU:HB2	4:D:126:MET:HE1	2.03	0.40
3:C:2:THR:HG23	6:F:96:LEU:CD1	2.42	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Pe	erce	ntile	\mathbf{s}
1	А	512/514~(100%)	494 (96%)	18 (4%)	0	1	.00	100	
1	N	512/514~(100%)	495 (97%)	17 (3%)	0	1	.00	100	
2	В	230/227~(101%)	208 (90%)	20 (9%)	2(1%)		14	17	
2	Ο	230/227~(101%)	208 (90%)	20 (9%)	2(1%)		14	17	
3	С	259/261~(99%)	252~(97%)	6 (2%)	1 (0%)		30	39	

റെ	CC
20	$\mathbf{U}\mathbf{U}$

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
3	Р	259/261~(99%)	252~(97%)	6~(2%)	1 (0%)	30	39
4	D	142/147~(97%)	138 (97%)	4 (3%)	0	100	100
4	Q	142/147~(97%)	137 (96%)	5 (4%)	0	100	100
5	Е	103/109~(94%)	101 (98%)	2(2%)	0	100	100
5	R	103/109~(94%)	101 (98%)	2(2%)	0	100	100
6	F	96/98~(98%)	91~(95%)	3~(3%)	2(2%)	5	5
6	S	96/98~(98%)	91~(95%)	3~(3%)	2(2%)	5	5
7	G	82/84~(98%)	65~(79%)	12~(15%)	5~(6%)	1	0
7	Т	82/84~(98%)	66 (80%)	11 (13%)	5~(6%)	1	0
8	Н	77/85~(91%)	72 (94%)	5~(6%)	0	100	100
8	U	77/85~(91%)	72 (94%)	5~(6%)	0	100	100
9	Ι	71/73~(97%)	68~(96%)	3 (4%)	0	100	100
9	V	71/73~(97%)	68~(96%)	3 (4%)	0	100	100
10	J	56/59~(95%)	54 (96%)	1 (2%)	1 (2%)	7	6
10	W	56/59~(95%)	55~(98%)	0	1 (2%)	7	6
11	K	47/56~(84%)	43~(92%)	4 (8%)	0	100	100
11	X	47/56~(84%)	42 (89%)	5 (11%)	0	100	100
12	L	45/47~(96%)	44 (98%)	1 (2%)	0	100	100
12	Y	45/47~(96%)	44 (98%)	1 (2%)	0	100	100
13	М	41/46 (89%)	41 (100%)	0	0	100	100
13	Z	41/46 (89%)	41 (100%)	0	0	100	100
All	All	3522/3612 (98%)	3343 (95%)	157 (4%)	22 (1%)	22	27

All (22) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
7	G	4	ALA
2	0	134	ARG
7	Т	4	ALA
2	В	104	TRP
2	В	134	ARG
3	С	2	THR
7	G	11	THR
2	0	104	TRP
3	Р	2	THR

Mol	Chain	Res	Type
7	Т	11	THR
7	G	38	HIS
7	G	41	HIS
6	S	97	ALA
7	Т	38	HIS
7	Т	41	HIS
6	F	97	ALA
7	Т	8	HIS
10	W	15	ASP
6	F	64	GLU
7	G	8	HIS
10	J	15	ASP
6	S	64	GLU

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	427/427~(100%)	402 (94%)	25~(6%)	16	23
1	Ν	427/427 (100%)	401 (94%)	26 (6%)	15	22
2	В	216/211~(102%)	193 (89%)	23 (11%)	5	6
2	Ο	$216/211 \ (102\%)$	195 (90%)	21 (10%)	6	8
3	С	226/226~(100%)	209~(92%)	17 (8%)	11	15
3	Р	226/226~(100%)	208 (92%)	18 (8%)	10	13
4	D	128/129~(99%)	120 (94%)	8 (6%)	15	21
4	Q	128/129~(99%)	120 (94%)	8 (6%)	15	21
5	Ε	92/95~(97%)	85 (92%)	7 (8%)	11	14
5	R	92/95~(97%)	85 (92%)	7 (8%)	11	14
6	F	81/81 (100%)	71 (88%)	10 (12%)	4	4
6	S	81/81 (100%)	71 (88%)	10 (12%)	4	4
7	G	$\overline{68/68}\ (100\%)$	59 (87%)	9 (13%)	3	3
7	Т	68/68~(100%)	58 (85%)	10 (15%)	2	2

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
8	Н	71/75~(95%)	65~(92%)	6 (8%)	8 11
8	U	71/75~(95%)	65~(92%)	6 (8%)	8 11
9	Ι	58/58~(100%)	55~(95%)	3~(5%)	19 28
9	V	58/58~(100%)	55~(95%)	3~(5%)	19 28
10	J	49/50~(98%)	42 (86%)	7 (14%)	2 2
10	W	49/50~(98%)	42 (86%)	7 (14%)	2 2
11	Κ	39/46~(85%)	37~(95%)	2(5%)	20 29
11	Х	39/46~(85%)	37~(95%)	2(5%)	20 29
12	L	40/40~(100%)	35~(88%)	5 (12%)	3 4
12	Y	40/40~(100%)	35~(88%)	5 (12%)	3 4
13	М	37/38~(97%)	33~(89%)	4 (11%)	5 6
13	Z	$\overline{37/38}\ (97\%)$	33~(89%)	4 (11%)	5 6
All	All	3064/3088~(99%)	2811 (92%)	253 (8%)	9 12

All (253) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	18	LEU
1	А	46	THR
1	А	96	ARG
1	А	105	LEU
1	А	106	PRO
1	А	109	PHE
1	A	128	VAL
1	А	136	LEU
1	А	150	LEU
1	А	199	LEU
1	А	241	PRO
1	А	295	VAL
1	А	301	THR
1	А	306	THR
1	А	324	LEU
1	А	347	LEU
1	А	353	LEU
1	А	354	THR
1	А	369	ASP
1	А	382	SER
1	А	444	PRO

Mol	Chain	Res	Type
1	А	467	LEU
1	А	474	GLU
1	А	492	LEU
1	А	513	LEU
2	В	7	LEU
2	В	31	VAL
2	В	33	LEU
2	В	60	GLU
2	В	63	THR
2	В	88[A]	ASP
2	В	88[B]	ASP
2	В	90[A]	ILE
2	В	90[B]	ILE
2	В	92[A]	ASN
2	В	92[B]	ASN
2	В	113	TYR
2	В	115	ASP
2	В	125	THR
2	В	130	PRO
2	В	134	ARG
2	В	138	VAL
2	В	142	VAL
2	В	171	LYS
2	В	185	MET
2	В	202	SER
2	В	213	LEU
2	В	216	LEU
3	С	3	HIS
3	С	18	LEU
3	С	22	LEU
3	С	33	MET
3	С	38	ASN
3	С	85	LEU
3	С	111	GLU
3	С	112	LEU
3	С	131	LEU
3	С	132	LEU
3	С	137	LEU
3	С	159	MET
3	С	160	LEU
3	С	163	LEU
3	С	196	THR

Mol	Chain	Res	Type
3	С	213	THR
3	C	210	PHE
<u> </u>	D	$\frac{214}{97}$	VAL
4	D	21	SER
4	D		LEU
4	D	40 50	LEU
4		- <u>19</u> - 62	LEU
4		116	VAL
4	D	110	VAL IVS
4		143	ASN
4 5	D F	5	HIG
5	E F		
5 5	E F	0	GLU
0 E	E F	29 41	
0 F	E F	41	
0 F		70	VAL
5 F	E	79	LYS
C C		80	GLU
0	F	0	VAL
6	F	20	VAL
6	F	37	LYS
6	F	44	GLU
6	F	53	THR
6	F	54	ASN
6	F	68	THR
6	F	74	LEU
6	F	95	GLN
6	F	96	LEU
7	G	5	LYS
7	G	8	HIS
7	G	14	ARG
7	G	36	TRP
7	G	37	LEU
7	G	39	SER
7	G	41	HIS
7	G	54	ARG
7	G	56	ARG
8	Н	7	LYS
8	Н	11	TYR
8	Н	12	GLN
8	Н	29	CYS
8	Н	44	THR
8	Н	60	TYR

Mol	Chain	Res	Type
9	Ι	8	GLN
9	Ι	16	ARG
9	Ι	19	PHE
10	J	4	ARG
10	J	5	VAL
10	J	27	THR
10	J	30	ILE
10	J	47	LEU
10	J	50	LEU
10	J	58	LYS
11	K	43	SER
11	K	45	VAL
12	L	2	HIS
12	L	15	VAL
12	L	22	LEU
12	L	26	THR
12	L	44	LEU
13	М	2	THR
13	М	24	LEU
13	М	37	LEU
13	М	38	ASP
1	Ν	18	LEU
1	Ν	46	THR
1	Ν	96	ARG
1	Ν	105	LEU
1	Ν	109	PHE
1	Ν	128	VAL
1	Ν	136	LEU
1	N	138	HIS
1	N	150	LEU
1	N	173	PRO
1	N	199	LEU
1	N	238	PHE
1	N	241	PRO
1	N	295	VAL
1	N	301	THR
1	N	306	THR
1	N	324	LEU
1	N	347	LEU
1	N	353	LEU
1	N	354	THR
1	Ν	369	ASP

Mol	Chain	Res	Type
1	N	382	SER
1	N	467	LEU
1	N	474	GLU
1	N	492	LEU
1	N	513	LEU
2	0	7	LEU
2	0	31	VAL
2	0	33	LEU
2	0	60	GLU
2	0	63	THR
2	0	88[A]	ASP
2	0	88[B]	ASP
2	0	90[A]	ILE
2	0	90[B]	ILE
2	0	92[A]	ASN
2	0	92[B]	ASN
2	0	113	TYR
2	0	115	ASP
2	0	125	THR
2	0	130	PRO
2	0	134	ARG
2	0	138	VAL
2	Ο	171	LYS
2	0	185	MET
2	0	202	SER
2	0	216	LEU
3	Р	3	HIS
3	Р	18	LEU
3	Р	22	LEU
3	Р	33	MET
3	Р	38	ASN
3	Р	85	LEU
3	Р	92	LEU
3	Р	111	GLU
3	Р	112	LEU
3	Р	131	LEU
3	Р	132	LEU
3	Р	137	LEU
3	Р	159	MET
3	Р	160	LEU
3	Р	163	LEU
3	Р	196	THR

3 P 213 THR 3 P 214 PHE 4 Q 27 VAL 4 Q 36 SER 4 Q 40 LEU 4 Q 59 LEU 4 Q 62 LEU 4 Q 116 VAL 4 Q 127 LYS 4 Q 127 LYS 4 Q 143 ASN 5 R 5 HIS 5 R 70 VAL 5 R 70 VAL 5 R 70 VAL 6 S 6 VAL 6 S 6 VAL 6 S 37 LYS 6 S 53 THR 6 S 54 ASN 6 S 95 GL	Mol	Chain	Res	Type
3 P 214 PHE 4 Q 27 VAL 4 Q 36 SER 4 Q 40 LEU 4 Q 59 LEU 4 Q 62 LEU 4 Q 116 VAL 4 Q 127 LYS 4 Q 143 ASN 5 R 5 HIS 5 R 9 LEU 5 R 70 VAL 5 R 70 VAL 5 R 70 VAL 5 R 70 VAL 6 S 6 VAL 6 S 6 VAL 6 S 37 LYS 6 S 53 THR 6 S 54 ASN 6 S 95 GLN<	3	Р	213	THR
4 Q 27 VAL 4 Q 36 SER 4 Q 40 LEU 4 Q 59 LEU 4 Q 62 LEU 4 Q 116 VAL 4 Q 127 LYS 4 Q 127 LYS 4 Q 143 ASN 5 R 5 HIS 5 R 70 VAL 5 R 70 VAL 5 R 70 VAL 5 R 70 VAL 6 S 6 VAL 6 S 6 VAL 6 S 6 VAL 6 S 37 LYS 6 S 53 THR 6 S 54 ASN 6 S 95 GLN </td <td>3</td> <td>Р</td> <td>214</td> <td>PHE</td>	3	Р	214	PHE
4 Q 36 SER 4 Q 40 LEU 4 Q 59 LEU 4 Q 62 LEU 4 Q 116 VAL 4 Q 127 LYS 4 Q 143 ASN 5 R 5 HIS 5 R 29 LEU 5 R 70 VAL 5 R 70 VAL 5 R 79 LYS 5 R 70 VAL 6 S 6 VAL 6 S 20 VAL 6 S 37 LYS 6 S 53 THR 6 S 54 ASN 6 S 95 GLN 6 S 95 GLN 6 S 95 GLN<	4	Q	27	VAL
4 Q 40 LEU 4 Q 59 LEU 4 Q 62 LEU 4 Q 116 VAL 4 Q 127 LYS 4 Q 143 ASN 5 R 5 HIS 5 R 6 GLU 5 R 7 HIS 5 R 6 GLU 5 R 70 VAL 5 R 70 VAL 5 R 70 VAL 5 R 70 VAL 6 S 6 VAL 6 S 6 VAL 6 S 71 LYS 6 S 53 THR 6 S 54 ASN 6 S 95 GLN 6 S 95 GLN	4	<u> </u>	36	SER
4 Q 59 LEU 4 Q 62 LEU 4 Q 116 VAL 4 Q 127 LYS 4 Q 143 ASN 5 R 5 HIS 5 R 6 GLU 5 R 29 LEU 5 R 70 VAL 5 R 70 VAL 5 R 70 VAL 6 S 6 VAL 6 S 20 VAL 6 S 37 LYS 6 S 37 LYS 6 S 53 THR 6 S 54 ASN 6 S 54 ASN 6 S 95 GLN 6 S 95 GLN 6 S 96 LEU </td <td>4</td> <td>Q</td> <td>40</td> <td>LEU</td>	4	Q	40	LEU
4 Q 62 LEU 4 Q 116 VAL 4 Q 127 LYS 4 Q 143 ASN 5 R 5 HIS 5 R 29 LEU 5 R 29 LEU 5 R 29 LEU 5 R 70 VAL 5 R 70 VAL 5 R 70 VAL 6 S 6 VAL 6 S 6 VAL 6 S 37 LYS 6 S 37 LYS 6 S 53 THR 6 S 54 ASN 6 S 95 GLN 6 S 96 LEU 7 T 36 TRP 7 T 39 SER </td <td>4</td> <td>Q</td> <td>59</td> <td>LEU</td>	4	Q	59	LEU
4 Q 116 VAL 4 Q 127 LYS 4 Q 143 ASN 5 R 5 HIS 5 R 29 LEU 5 R 29 LEU 5 R 41 LEU 5 R 70 VAL 5 R 70 VAL 5 R 70 VAL 6 S 6 VAL 6 S 6 VAL 6 S 37 LYS 6 S 37 LYS 6 S 37 LYS 6 S 53 THR 6 S 54 ASN 6 S 95 GLN 6 S 95 GLN 6 S 96 LEU 7 T 36 TRP </td <td>4</td> <td>Q</td> <td>62</td> <td>LEU</td>	4	Q	62	LEU
4 Q 127 LYS 4 Q 143 ASN 5 R 5 HIS 5 R 29 LEU 5 R 29 LEU 5 R 70 VAL 5 R 70 VAL 5 R 70 VAL 5 R 70 VAL 6 S 6 VAL 6 S 6 VAL 6 S 37 LYS 6 S 37 LYS 6 S 37 LYS 6 S 53 THR 6 S 54 ASN 6 S 68 THR 6 S 95 GLN 6 S 96 LEU 7 T 36 TRP 7 T 39 SER </td <td>4</td> <td>Q</td> <td>116</td> <td>VAL</td>	4	Q	116	VAL
4 Q 143 ASN 5 R 5 HIS 5 R 6 GLU 5 R 29 LEU 5 R 41 LEU 5 R 70 VAL 5 R 79 LYS 5 R 79 LYS 5 R 80 GLU 6 S 6 VAL 6 S 20 VAL 6 S 37 LYS 6 S 53 THR 6 S 54 ASN 6 S 68 THR 6 S 95 GLN 6 S 96 LEU 7 T 5 LYS 7 T 36 TRP 7 T 39 SER 7 T 56 ARG <td>4</td> <td>Q</td> <td>127</td> <td>LYS</td>	4	Q	127	LYS
5 R 5 HIS 5 R 6 GLU 5 R 29 LEU 5 R 41 LEU 5 R 70 VAL 5 R 70 VAL 5 R 70 VAL 5 R 70 VAL 6 S 6 VAL 6 S 20 VAL 6 S 37 LYS 6 S 37 LYS 6 S 53 THR 6 S 53 THR 6 S 68 THR 6 S 95 GLN 6 S 96 LEU 7 T 36 TRP 7 T 39 SER 7 T 39 SER 7 T 56 ARG <td>4</td> <td>Q</td> <td>143</td> <td>ASN</td>	4	Q	143	ASN
5 R 6 GLU 5 R 29 LEU 5 R 41 LEU 5 R 70 VAL 5 R 79 LYS 5 R 79 LYS 5 R 70 VAL 6 S 6 VAL 6 S 20 VAL 6 S 37 LYS 6 S 37 LYS 6 S 37 LYS 6 S 53 THR 6 S 54 ASN 6 S 68 THR 6 S 95 GLN 6 S 96 LEU 7 T 5 LYS 7 T 8 HIS 7 T 36 TRP 7 T 39 SER 7 T 56 ARG 7 T 56 </td <td>5</td> <td>R</td> <td>5</td> <td>HIS</td>	5	R	5	HIS
5 R 29 LEU 5 R 41 LEU 5 R 70 VAL 5 R 79 LYS 5 R 80 GLU 6 S 6 VAL 6 S 20 VAL 6 S 37 LYS 6 S 37 LYS 6 S 37 LYS 6 S 37 LYS 6 S 53 THR 6 S 54 ASN 6 S 68 THR 6 S 95 GLN 6 S 96 LEU 7 T 5 LYS 7 T 8 HIS 7 T 36 TRP 7 T 39 SER 7 T 39 SER 7 T 54 ARG 7 T 56<	5	R	6	GLU
5 R 41 LEU 5 R 70 VAL 5 R 79 LYS 5 R 80 GLU 6 S 6 VAL 6 S 20 VAL 6 S 20 VAL 6 S 37 LYS 6 S 37 LYS 6 S 37 LYS 6 S 37 LYS 6 S 53 THR 6 S 54 ASN 6 S 68 THR 6 S 95 GLN 6 S 96 LEU 7 T 5 LYS 7 T 8 HIS 7 T 36 TRP 7 T 39 SER 7 T 54 ARG <td>5</td> <td>R</td> <td>29</td> <td>LEU</td>	5	R	29	LEU
5 R 70 VAL 5 R 79 LYS 5 R 80 GLU 6 S 6 VAL 6 S 20 VAL 6 S 20 VAL 6 S 20 VAL 6 S 37 LYS 6 S 37 LYS 6 S 53 THR 6 S 54 ASN 6 S 68 THR 6 S 95 GLN 6 S 96 LEU 7 T 5 LYS 7 T 8 HIS 7 T 8 HIS 7 T 36 TRP 7 T 39 SER 7 T 54 ARG 7 T 56 ARG	5	R	41	LEU
5 R 79 LYS 5 R 80 GLU 6 S 6 VAL 6 S 20 VAL 6 S 37 LYS 6 S 37 LYS 6 S 37 LYS 6 S 53 THR 6 S 53 THR 6 S 68 THR 6 S 68 THR 6 S 95 GLN 6 S 96 LEU 7 T 5 LYS 7 T 8 HIS 7 T 8 HIS 7 T 36 TRP 7 T 39 SER 7 T 39 SER 7 T 56 ARG 7 T 56 ARG 7 T 78 LEU 8 U 7 <td>5</td> <td>R</td> <td>70</td> <td>VAL</td>	5	R	70	VAL
5 R 80 GLU 6 S 6 VAL 6 S 20 VAL 6 S 37 LYS 6 S 37 LYS 6 S 37 LYS 6 S 53 THR 6 S 54 ASN 6 S 68 THR 6 S 74 LEU 6 S 95 GLN 6 S 96 LEU 7 T 5 LYS 7 T 8 HIS 7 T 8 HIS 7 T 36 TRP 7 T 39 SER 7 T 56 ARG 7 T 56 ARG 7 T 78 LEU 8 U 11 TYR	5	R	79	LYS
6S 6 VAL 6 S20VAL 6 S37LYS 6 S44GLU 6 S53THR 6 S53THR 6 S54ASN 6 S68THR 6 S95GLN 6 S96LEU 7 T5LYS 7 T8HIS 7 T36TRP 7 T39SER 7 T54ARG 7 T54ARG 7 T56ARG 7 T78LEU 8 U7LYS 8 U11TYR 8 U12GLN 8 U29CYS 8 U44THR	5	R	80	GLU
6S 20 VAL 6 S 37 LYS 6 S 44 GLU 6 S 53 THR 6 S 54 ASN 6 S 68 THR 6 S 74 LEU 6 S 95 GLN 6 S 96 LEU 7 T 5 LYS 7 T 8 HIS 7 T 36 TRP 7 T 36 TRP 7 T 39 SER 7 T 54 ARG 7 T 56 ARG 7 T 56 ARG 7 T 78 LEU 8 U 7 LYS 8 U 11 TYR 8 U 12 GLN 8 U 12 GLN 8 U 44 THR	6	S	6	VAL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	S	20	VAL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	S	37	LYS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	S	44	GLU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	S	53	THR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	S	54	ASN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	S	68	THR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	S	74	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	S	95	GLN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	S	96	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	Т	5	LYS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	Т	8	HIS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	Т	14	ARG
7 T 37 LEU 7 T 39 SER 7 T 41 HIS 7 T 54 ARG 7 T 56 ARG 7 T 78 LEU 8 U 7 LYS 8 U 11 TYR 8 U 29 CYS 8 U 44 THR	7	Т	36	TRP
7 T 39 SER 7 T 41 HIS 7 T 54 ARG 7 T 56 ARG 7 T 78 LEU 8 U 7 LYS 8 U 11 TYR 8 U 29 CYS 8 U 44 THR	7	Т	37	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	Т	39	SER
7 T 54 ARG 7 T 56 ARG 7 T 78 LEU 8 U 7 LYS 8 U 11 TYR 8 U 12 GLN 8 U 29 CYS 8 U 44 THR	7	Т	41	HIS
7 T 56 ARG 7 T 78 LEU 8 U 7 LYS 8 U 11 TYR 8 U 12 GLN 8 U 29 CYS 8 U 44 THR	7	Т	54	ARG
7 T 78 LEU 8 U 7 LYS 8 U 11 TYR 8 U 12 GLN 8 U 29 CYS 8 U 44 THR	7	Т	56	ARG
8 U 7 LYS 8 U 11 TYR 8 U 12 GLN 8 U 29 CYS 8 U 44 THR	7	Т	78	LEU
8 U 11 TYR 8 U 12 GLN 8 U 29 CYS 8 U 44 THR	8	U	7	LYS
8 U 12 GLN 8 U 29 CYS 8 U 44 THR	8	U	11	TYR
8 U 29 CYS 8 U 44 THR	8	U	12	GLN
8 U 44 THR	8	U	29	CYS
	8	U	44	THR

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mol	Chain	Res	Type
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	U	60	TYR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	V	8	GLN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	V	16	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	V	19	PHE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	W	4	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	W	5	VAL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	W	27	THR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	W	30	ILE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	W	47	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	W	50	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	W	58	LYS
11 X 45 VAL 12 Y 2 HIS 12 Y 15 VAL 12 Y 22 LEU 12 Y 26 THR 12 Y 26 THR 12 Y 44 LEU 13 Z 2 THR 13 Z 37 LEU 13 Z 38 ASP	11	Х	43	SER
12 Y 2 HIS 12 Y 15 VAL 12 Y 22 LEU 12 Y 26 THR 12 Y 44 LEU 13 Z 2 THR 13 Z 37 LEU 13 Z 38 ASP	11	Х	45	VAL
12 Y 15 VAL 12 Y 22 LEU 12 Y 26 THR 12 Y 44 LEU 13 Z 2 THR 13 Z 24 LEU 13 Z 37 LEU 13 Z 38 ASP	12	Y	2	HIS
12 Y 22 LEU 12 Y 26 THR 12 Y 44 LEU 13 Z 2 THR 13 Z 24 LEU 13 Z 37 LEU 13 Z 38 ASP	12	Y	15	VAL
12 Y 26 THR 12 Y 44 LEU 13 Z 2 THR 13 Z 24 LEU 13 Z 37 LEU 13 Z 38 ASP	12	Y	22	LEU
12 Y 44 LEU 13 Z 2 THR 13 Z 24 LEU 13 Z 37 LEU 13 Z 38 ASP	12	Y	26	THR
13 Z 2 THR 13 Z 24 LEU 13 Z 37 LEU 13 Z 38 ASP	12	Y	44	LEU
13 Z 24 LEU 13 Z 37 LEU 13 Z 38 ASP	13	Ζ	2	THR
13 Z 37 LEU 13 Z 38 ASP	13	Ζ	24	LEU
13 Z 38 ASP	13	Ζ	37	LEU
	13	Ζ	38	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (17) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	413	HIS
1	А	503	HIS
3	С	38	ASN
3	С	222	GLN
3	С	230	ASN
6	F	54	ASN
7	G	71	HIS
1	Ν	55	ASN
1	Ν	413	HIS
1	Ν	503	HIS
3	Р	38	ASN
3	Р	222	GLN
3	Р	230	ASN
4	Q	109	HIS
6	S	54	ASN
6	S	98	HIS

 $Continued \ from \ previous \ page...$

Mol	Chain	Res	Type
7	Т	71	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 18 ligands modelled in this entry, 12 are monoatomic - leaving 6 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Ros Link		Bond lengths		gths	Bond angles			
	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2	
17	HEA	Ν	516	18,1	58,67,67	1.38	8 (13%)	63,103,103	1.64	14 (22%)	
17	HEA	А	516	18,1	58,67,67	1.62	10 (17%)	63,103,103	1.83	16 (25%)	
17	HEA	А	515	1	58,67,67	1.69	11 (18%)	63,103,103	1.40	7 (11%)	
18	PER	Ν	520	17,14	0,1,1	-	-	-			
17	HEA	Ν	515	1	58,67,67	1.56	8 (13%)	63,103,103	1.41	5 (7%)	
18	PER	А	520	17,14	0,1,1	-	-	-			

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
17	HEA	А	515	1	-	8/32/76/76	-
17	HEA	Ν	516	18,1	-	4/32/76/76	-
17	HEA	А	516	18,1	-	2/32/76/76	-
17	HEA	Ν	515	1	-	7/32/76/76	-

All (37) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
17	А	515	HEA	C11-C3B	-6.54	1.43	1.51
17	N	515	HEA	C11-C3B	-6.51	1.43	1.51
17	А	516	HEA	C3C-C2C	-4.50	1.34	1.40
17	А	516	HEA	C3A-CMA	-4.13	1.36	1.46
17	N	515	HEA	C3A-C4A	4.00	1.47	1.41
17	А	515	HEA	C3A-C4A	3.92	1.47	1.41
17	А	515	HEA	CHD-C1D	3.80	1.43	1.34
17	А	516	HEA	C3A-C2A	-3.78	1.35	1.40
17	А	516	HEA	C4B-NB	3.71	1.46	1.40
17	А	515	HEA	C3A-CMA	-3.50	1.38	1.46
17	А	515	HEA	C3A-C2A	-3.44	1.35	1.40
17	N	516	HEA	C3A-CMA	-3.44	1.38	1.46
17	N	516	HEA	CMD-C2D	3.30	1.57	1.50
17	А	516	HEA	CMD-C2D	3.06	1.57	1.50
17	А	516	HEA	C3A-C4A	3.04	1.45	1.41
17	Ν	516	HEA	C3A-C4A	2.99	1.45	1.41
17	N	515	HEA	CHD-C1D	2.98	1.41	1.34
17	Ν	515	HEA	C3A-CMA	-2.90	1.39	1.46
17	А	516	HEA	C1D-C2D	2.88	1.50	1.44
17	N	516	HEA	CAA-C2A	2.83	1.57	1.52
17	N	516	HEA	C3C-C2C	-2.74	1.36	1.40
17	N	516	HEA	C11-C3B	2.73	1.54	1.51
17	Ν	515	HEA	C3A-C2A	-2.70	1.36	1.40
17	N	515	HEA	C20-C19	-2.66	1.45	1.51
17	N	515	HEA	C3C-C2C	-2.51	1.37	1.40
17	А	515	HEA	C4B-NB	2.50	1.44	1.40
17	А	515	HEA	CHC-C4B	2.33	1.40	1.34
17	N	516	HEA	C1D-C2D	2.28	1.49	1.44
17	N	515	HEA	C1B-NB	2.17	1.43	1.38
17	А	515	HEA	C4C-NC	2.14	1.40	1.36
17	А	516	HEA	FE-ND	-2.13	1.86	1.98
17	N	516	HEA	C4B-C3B	2.09	1.48	1.44
17	А	516	HEA	CHC-C4B	2.09	1.39	1.34
17	А	515	HEA	C4D-ND	2.08	1.42	1.38

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
17	А	515	HEA	C1C-NC	2.06	1.40	1.36
17	А	516	HEA	C4D-ND	2.06	1.42	1.38
17	А	515	HEA	C3C-C2C	-2.05	1.37	1.40

All (42) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
17	N	515	HEA	C13-C14-C15	-5.77	114.41	127.62
17	А	515	HEA	C13-C14-C15	-5.31	115.47	127.62
17	А	516	HEA	C4B-NB-C1B	-4.97	99.32	105.21
17	А	516	HEA	C2D-C1D-ND	4.35	114.84	109.84
17	N	516	HEA	C1D-C2D-C3D	-4.26	102.50	106.98
17	А	516	HEA	C1D-C2D-C3D	-4.13	102.63	106.98
17	А	516	HEA	C3B-C4B-NB	3.77	114.18	109.84
17	А	516	HEA	CMB-C2B-C3B	-3.49	123.53	130.28
17	А	516	HEA	CMD-C2D-C1D	3.46	130.44	125.03
17	N	516	HEA	C3B-C4B-NB	3.41	113.76	109.84
17	N	516	HEA	CMB-C2B-C3B	-3.34	123.81	130.28
17	N	516	HEA	C4B-NB-C1B	-3.18	101.44	105.21
17	N	516	HEA	CMD-C2D-C1D	3.17	129.99	125.03
17	N	516	HEA	C2D-C1D-ND	3.12	113.42	109.84
17	N	516	HEA	C3C-C4C-NC	3.09	113.20	109.21
17	А	516	HEA	C1D-ND-C4D	-3.04	101.60	105.21
17	А	515	HEA	C17-C18-C19	-3.03	120.69	127.62
17	А	516	HEA	C2B-C1B-NB	2.96	113.32	109.90
17	А	516	HEA	C27-C19-C20	2.94	120.32	115.23
17	N	515	HEA	C17-C18-C19	-2.83	121.15	127.62
17	А	516	HEA	C3C-C4C-NC	2.67	112.67	109.21
17	N	515	HEA	C3C-C4C-NC	2.57	112.54	109.21
17	А	516	HEA	CMC-C2C-C1C	-2.49	124.81	128.46
17	N	516	HEA	C2B-C1B-NB	2.43	112.71	109.90
17	N	516	HEA	C4B-C3B-C2B	-2.42	103.37	107.44
17	N	515	HEA	CHC-C4B-NB	-2.37	121.43	124.37
17	А	516	HEA	CHB-C1B-C2B	-2.35	121.32	125.03
17	N	516	HEA	CHB-C1B-C2B	-2.34	121.34	125.03
17	А	516	HEA	CHC-C4B-C3B	-2.24	120.14	125.80
17	А	515	HEA	C4B-NB-C1B	-2.18	102.62	105.21
17	N	516	HEA	C12-C13-C14	-2.16	106.49	112.16
17	N	516	HEA	C20-C19-C18	-2.15	116.34	121.17
17	А	515	HEA	CHB-C1B-NB	2.14	126.74	124.44
17	А	516	HEA	C4B-C3B-C2B	-2.12	103.87	107.44
17	N	516	HEA	CHC-C4B-C3B	-2.08	120.54	125.80

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
17	А	515	HEA	C2D-C1D-ND	2.08	112.23	109.84
17	А	516	HEA	C1B-C2B-C3B	2.07	109.19	106.80
17	А	515	HEA	CMB-C2B-C3B	-2.05	126.31	130.28
17	А	516	HEA	C12-C13-C14	-2.05	106.78	112.16
17	Ν	516	HEA	C1D-ND-C4D	-2.04	102.79	105.21
17	А	515	HEA	CHB-C1B-C2B	-2.02	121.84	125.03
17	Ν	515	HEA	C1B-C2B-C3B	2.00	109.11	106.80

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
17	А	515	HEA	C15-C16-C17-C18
17	N	515	HEA	C15-C16-C17-C18
17	А	515	HEA	C26-C15-C16-C17
17	N	515	HEA	C26-C15-C16-C17
17	N	515	HEA	C14-C15-C16-C17
17	А	515	HEA	C14-C15-C16-C17
17	А	516	HEA	CAD-CBD-CGD-O1D
17	Ν	516	HEA	CAD-CBD-CGD-O1D
17	N	516	HEA	CAD-CBD-CGD-O2D
17	А	516	HEA	CAD-CBD-CGD-O2D
17	А	515	HEA	C27-C19-C20-C21
17	А	515	HEA	CAD-CBD-CGD-O1D
17	Ν	515	HEA	CAD-CBD-CGD-O1D
17	N	515	HEA	CAA-CBA-CGA-O1A
17	А	515	HEA	CAA-CBA-CGA-O1A
17	Ν	515	HEA	CAD-CBD-CGD-O2D
17	А	515	HEA	CAA-CBA-CGA-O2A
17	A	515	HEA	CAD-CBD-CGD-O2D
17	N	516	HEA	CAA-CBA-CGA-O1A
17	N	515	HEA	CAA-CBA-CGA-O2A
17	N	516	HEA	CAA-CBA-CGA-O2A

All (21) torsion outliers are listed below:

There are no ring outliers.

5 monomers are involved in 11 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
17	N	516	HEA	1	0
17	А	515	HEA	5	0
18	N	520	PER	1	0

	3	1	1 5		
Mol	Chain	Res	Type	Clashes	Symm-Clashes
17	Ν	515	HEA	3	0
18	A	520	PER	1	0

Continued from previous page...

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

EDS was not executed - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS was not executed - this section is therefore empty.

6.3 Carbohydrates (i)

EDS was not executed - this section is therefore empty.

6.4 Ligands (i)

EDS was not executed - this section is therefore empty.

6.5 Other polymers (i)

EDS was not executed - this section is therefore empty.

