

Dec 1, 2021 - 05:49 pm GMT

PDB ID	:	70F1
EMDB ID	:	EMD-12866
Title	:	Nog1-TAP associated immature ribosomal particle population A from S. cere-
		visiae
Authors	:	Milkereit, P.; Poell, G.
Deposited on	:	2021-05-04
Resolution	:	3.10 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	$0.0.0.{ m dev}97$
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.23.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} \textbf{Whole archive} \\ \textbf{(\#Entries)} \end{array}$	EM structures (#Entries)
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	1	3396	• 68%	14%	18%
2	2	158	84%		16%
3	3	121	• 32% •	54%	
4	А	254	20%		18%
5	В	387	5% 		•
6	С	362	98%		•
7	Е	176	90%		• 9%
8	F	244	• 90%		• 9%

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
9	G	256	8%	• 12%
10	Н	191	96%	••
11	L	199	88%	• 11%
12	М	138	94%	5%•
13	Ν	204	9%	·
14	Ο	199	98%	
15	Р	184	• 95%	
16	Q	186	• 	22%
17	R	189	7% 80% •	19%
18	S	172	5% 99%	·
19	Т	160	11% 37% • 62%	
20	U	121	6% 83%	16%
21	V	137	• 99%	••
22	W	236	<u>19%</u> 93%	
23	Х	142	• 82%	15%
24	Y	127	98%	
25	Z	136	98%	
26	a	149	6 2% · 37%	
27	b	647	38% 75% •	23%
28	с	105	5% 92%	8%
29	d	113	9%	• 8%
30	е	130	96%	•••
31	f	107	98%	••
32	g	121	• 82% •	17%
33	h	120	98%	••

Mol	Chain	Length		Quality of cl	nain	
34	i	100	6%	95%		• •
35	j	88	•	95%		• •
36	k	78	21%	99%		·
37	1	51	–	98%		·
38	m	486	27% 46%		53%	
39	р	92	30%	90%		• 9%
40	r	261	37%	·	62%	
41	u	199	68	%	•	31%
42	у	245	•	91%		• 9%

2 Entry composition (i)

There are 43 unique types of molecules in this entry. The entry contains 199300 atoms, of which 84914 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 25S rRNA.

Mol	Chain	Residues				AltConf	Trace			
1	1	2787	Total 89635	C 26644	H 29972	N 10797	0 19435	Р 2787	0	0

• Molecule 2 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues			AltConf	Trace				
2	2	158	Total 5048	C 1500	Н 1695	N 586	O 1109	Р 158	0	0

• Molecule 3 is a RNA chain called 5S rRNA.

Mol	Chain	Residues			AltConf	Trace				
3	3	43	Total 1388	C 412	Н 464	N 170	O 299	Р 43	0	0

• Molecule 4 is a protein called 60S ribosomal protein L2-A.

Mol	Chain	Residues			AltConf	Trace				
4	А	208	Total 3268	C 1006	Н 1663	N 319	0 279	S 1	0	0

• Molecule 5 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues			AltConf	Trace				
5	В	386	Total 6247	C 1956	Н 3166	N 584	O 533	S 8	0	0

• Molecule 6 is a protein called 60S ribosomal protein L4-A.

Mol	Chain	Residues			AltConf	Trace				
6	С	361	Total 5613	C 1730	Н 2864	N 522	0 494	${ m S} { m 3}$	0	0

• Molecule 7 is a protein called 60S ribosomal protein L6-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
7	Е	160	Total 2637	C 820	Н 1363	N 230	O 223	S 1	0	0

• Molecule 8 is a protein called 60S ribosomal protein L7-A.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
8	F	222	Total 3647	C 1151	Н 1863	N 324	O 308	S 1	0	0

• Molecule 9 is a protein called 60S ribosomal protein L8-A.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
9	G	225	Total 3612	C 1127	Н 1853	N 313	0 316	${ m S} { m 3}$	0	0

• Molecule 10 is a protein called 60S ribosomal protein L9-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
10	Н	188	Total 3059	C 948	Н 1566	N 271	0 270	${S \atop 4}$	0	0

• Molecule 11 is a protein called 60S ribosomal protein L13-A.

Mol	Chain	Residues		A	Atoms			AltConf	Trace
11	L	178	Total 2895	C 885	Н 1473	N 296	0 241	0	0

• Molecule 12 is a protein called 60S ribosomal protein L14-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
12	М	137	Total 2214	C 678	Н 1155	N 200	O 179	${ m S} { m 2}$	0	0

• Molecule 13 is a protein called 60S ribosomal protein L15-A.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
13	Ν	203	Total 3500	C 1077	Н 1780	N 361	0 281	S 1	0	0

• Molecule 14 is a protein called 60S ribosomal protein L16-A.

Mol	Chain	Residues			Atom	5			AltConf	Trace
14	О	197	Total 3216	C 1003	Н 1661	N 289	O 262	S 1	0	0

• Molecule 15 is a protein called 60S ribosomal protein L17-A.

Mol	Chain	Residues		A	toms		Atoms						
15	Р	176	Total 2823	C 865	Н 1430	N 278	O 250	0	0				

• Molecule 16 is a protein called 60S ribosomal protein L18-A.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
16	Q	146	Total 2335	С 713	Н 1206	N 218	O 197	S 1	0	0

• Molecule 17 is a protein called 60S ribosomal protein L19-A.

Mol	Chain	Residues		A	Atoms			AltConf	Trace
17	R	154	Total 2572	С 772	Н 1331	N 262	O 207	0	0

• Molecule 18 is a protein called 60S ribosomal protein L20-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
18	S	170	Total 2892	C 916	Н 1467	N 265	0 241	${ m S} { m 3}$	0	0

• Molecule 19 is a protein called 60S ribosomal protein L21-A.

Mol	Chain	Residues		ŀ	Atom	s			AltConf	Trace
19	Т	61	Total 976	C 295	Н 500	N 95	O 85	S 1	0	0

• Molecule 20 is a protein called 60S ribosomal protein L22-A.

Mol	Chain	Residues		Α			AltConf	Trace	
20	U	102	Total 1631	C 524	Н 823	N 132	O 152	0	0

• Molecule 21 is a protein called 60S ribosomal protein L23-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
21	V	136	Total 2052	C 628	H 1049	N 189	O 179	${ m S} 7$	0	0

• Molecule 22 is a protein called Ribosome assembly factor MRT4.

Mol	Chain	Residues			Atoms							
22	W	227	Total 3648	C 1149	Н 1834	N 310	O 350	${ m S}{ m 5}$	0	0		

• Molecule 23 is a protein called 60S ribosomal protein L25.

Mol	Chain	Residues			Atom	.S			AltConf	Trace
23	X	120	Total 1984	C 617	Н 1025	N 168	0 172	${S \over 2}$	0	0

• Molecule 24 is a protein called 60S ribosomal protein L26-A.

Mol	Chain	Residues		A	Atoms			AltConf	Trace
24	Y	126	Total 2075	C 625	Н 1082	N 192	O 176	0	0

• Molecule 25 is a protein called 60S ribosomal protein L27-A.

Mol	Chain	Residues		A	Atoms			AltConf	Trace
25	Ζ	135	Total 2248	C 710	Н 1156	N 202	O 180	0	0

• Molecule 26 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
26	a	94	Total 1528	C 484	Н 786	N 131	0 126	S 1	0	0

• Molecule 27 is a protein called Nucleolar GTP-binding protein 1.

Mol	Chain	Residues			AltConf	Trace				
27	b	497	Total 8098	C 2554	Н 4075	N 698	O 752	S 19	0	0

• Molecule 28 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues			Atom	ns			AltConf	Trace
28	с	97	Total 1541	C 479	Н 798	N 124	O 139	S 1	0	0

• Molecule 29 is a protein called 60S ribosomal protein L31-A.

Mol	Chain	Residues			ıs	AltConf	Trace			
29	d	104	Total 1746	C 539	Н 899	N 162	0 145	S 1	0	0

• Molecule 30 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues			Atom	S			AltConf	Trace
30	е	126	Total 2093	C 641	Н 1081	N 204	O 166	S 1	0	0

• Molecule 31 is a protein called 60S ribosomal protein L33-A.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
31	f	106	Total 1731	C 540	Н 881	N 165	0 144	S 1	0	0

• Molecule 32 is a protein called 60S ribosomal protein L34-A.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
32	g	101	Total 1652	C 493	Н 856	N 164	0 135	S 4	0	0

• Molecule 33 is a protein called 60S ribosomal protein L35-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
33	h	119	Total 2048	C 615	Н 1079	N 186	O 167	S 1	0	0

• Molecule 34 is a protein called 60S ribosomal protein L36-A.

Mol	Chain	Residues			AltConf	Trace				
34	i	96	Total 1566	C 465	Н 823	N 148	0 128	${ m S} { m 2}$	0	0

• Molecule 35 is a protein called 60S ribosomal protein L37-A.

Mol	Chain	Residues			Atom	ns			AltConf	Trace
35	j	85	Total 1348	C 408	Н 678	N 146	0 111	${ m S}{ m 5}$	0	0

• Molecule 36 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues		A	toms			AltConf	Trace
36	k	77	Total 1295	C 391	Н 683	N 115	O 106	0	0

• Molecule 37 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		A	AltConf	Trace				
37	1	50	Total 912	C 272	Н 476	N 97	O 65	${S \over 2}$	0	0

• Molecule 38 is a protein called Nucleolar GTP-binding protein 2.

Mol	Chain	Residues				AltConf	Trace			
38	m	229	Total 3669	C 1162	Н 1855	N 325	O 322	${ m S}{ m 5}$	0	0

• Molecule 39 is a protein called 60S ribosomal protein L43-A.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
39	р	84	Total 1329	C 397	H 687	N 130	0 110	$\frac{S}{5}$	0	0

• Molecule 40 is a protein called Ribosome biogenesis protein NSA2.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
40	r	99	Total 1769	C 531	Н 918	N 181	0 136	${ m S} { m 3}$	0	0

• Molecule 41 is a protein called Ribosome biogenesis protein RLP24.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
41	u	138	Total 2379	C 732	Н 1212	N 235	0 191	S 9	0	0

• Molecule 42 is a protein called Eukaryotic translation initiation factor 6.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
42	У	224	Total 3379	C 1051	Н 1686	N 294	0 342	S 6	0	0

• Molecule 43 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
43	b	1	Total Mg 1 1	0
43	m	1	Total Mg 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 25S rRNA

• Molecule 2: 5.8S rRNA Chain 2: 84% 16% • Molecule 3: 5S rRNA Chain 3: 32% 64% 4 U U D UN DO VA A DOD • Molecule 4: 60S ribosomal protein L2-A 20% Chain A: 81% 18% MET GLY SER GLN LYS LYS THR GLN ASP \bullet Molecule 5: 60S ribosomal protein L3 5% Chain B: 98% K23 K23 L23 • Molecule 6: 60S ribosomal protein L4-A Chain C: 98% • Molecule 7: 60S ribosomal protein L6-A Chain E: 90% 9%

K168

• Molecule 20: 60S ribosomal protein L22-A

6%			
Chain U:	83%	• 16%	
MET ALA ALA PRO ASR ASR LVS CLN LVS LVS LVS K13	V27 N49 E58 A69 A110 A110 CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU		
• Molecule 21: 60S r	ribosomal protein L23-A		
Chain V:	99%		
MET 63 63 63 845 845 845 871 845 871 845 871 845 871 845 845 845 845 845 845 845 845 845 845			
• Molecule 22: Ribo	some assembly factor MRT4		
Chain W:	93%	· ·	
MET PRO R3 R3 R3 R21 F21 F21 Y37 Y37	WEO M61 A61 G62 A61 G62 F59 F59 F107 F119 Y119 Y1120 F121 F123 Y124 F120 ASN THR THR THR THR THR	ALA P132 L133 E133 G140 G140 S144 E152 E153	H159 S160 E161 E162 F163 T164
T173 K176 K176 C178 K179 T180 P185 F190	(192 ♦ 1195 ♦ 1196 ♦ 8204 ♦ 7209 ♦ 7210 8211 8211 € 8212 8 7215 ♦ 7215 8 7216 ♦ 7215 8 7216 8 7216 8 7230 9 8230 9 8200 9 82000 9 82000 9 82000000000000000000000000000000000000		
• Molecule 23: 60S r	ribosomal protein L25		
Chain X:	82%	• 15%	
MET PRO SER SER ALA ALA ALA ALA ALA LYS LYS LYS VAL VAL VAL	LYS GLY THR ASN LYS LYS LZS N25 N26 N26 N26 N26 N26 N26 N26 N26 N26 N26		
• Molecule 24: 60S r	ribosomal protein L26-A		
Chain Y:	98%	<mark></mark>	

• Molecule 25: 60S ribosomal protein L27-A

Chain Z:	989		
MET A2 V14 V14 K27 K27 K34 K52	E 3 3 E 12 0 F 12 6 F 13 6 F 13 6		
• Molecule 26:	60S ribosomal protein L28		
Chain a:	62%	• 37%	
MET PRO SPRO ARG THR THR THR LYS HIS	ARG GLY VAL SER ALA CLYS GLY CLYS CLYS CLYS CLYS CLY CLYS CLY CLYS CLY CLYS CLY CLYS CLY CLYS CLY CLYS CLYS	C C C C C C C C C C C C C C C C C C C	PHE GLY LVS R59 R59
064 065 A149 ◆			
• Molecule 27:	Nucleolar GTP-binding pro	otein 1	
Chain b:	38% 75%	• 23%	
MET GLN LEU S4 D7 M12 M12	A14 4	R4 1 R4 1 R4 1 K5 1 Y5 2 C5 4 C5 4 C5 4 C5 6 C5 6 C5 6 C5 6 C5 6 C5 6 C5 6 C5 6	L 164 K 665 K 79 B 80 L 18 L B 82 B 83 B 83 B 83 B 83 B 83 B 83 B 83 B 83
L95 A96 A97 A100 A101 K102 S103 S104	V105 V108 V116 V116 V124 V124 V128 V128 V128 V128	G134 M135 M137 M136 M137 M140 K141 K142 K143 K143 L143 L150 L150 L160	D164 P165 N166 N166 N168 R168 C171 C172 C173 C173 C173 C173 C174 N175 N175 S181 S181 S182 S182 S182 S182 S182
L184 R185 C186 L187 L187 D191 V192 V192 V193 V193 V193 V193 V193 V193 V193 V193 V193 V193 V193 V193 V193 V193 V193 V194 V186 V196 V	1195 1195 1197 1197 1197 1198 1198 1198 1200 1200 1200 1200 1210 1210 1210 121	L214 R215 F216 F216 F216 T219 F220 F220 F220 F221 F221 F221 F221 F221	N233 (N234 (N234 (N234 (N234 (N234 (N237 (N234 (N237 (N234 (
L261 Y262 F263 M264 M264 L266 S257 S257	0259 C260 C260 C261 F562 T263 E265 A266 Q267 Q267 Q267 Q267 Q267 C213 C273 F271 H272 S273 S273 S273 S273 S273 S273 S273 S	P276 L277 F278 A279 A279 S282 V285 V285 V285 V285 V285 V285 V285 V	11293 R294 P295 E296 E296 E296 E296 E296 E301 R302 E301 R302 A303 A303 A303 C304 C304 C304 C305 K310 K310 K310 K310 K310 K310 K310 K310
V312 P313 C314 V315 S320 S320 C322 C322 C1N	LEU GLU GLU GLU H327 M329 M329 M329 M329 M325 M325 M325 M335 M335 M335 M335 M335	S342 S342 R343 E345 M346 M346 S2R LEU LEU LEU LEU ASN ASN ASN ASN ASN	ILIS ILIS HIS V363 0364 0365 0365 0365 0366 0366 0366 0370 0371 V372 K373 K374
P390 E391 P393 N399 A399 A399 LM37 P399 A399 A399 A399 A399 A399 A399 A399	K439 K439 D472 D472 D473 E475 E475 C480 C480 F481 E485 A488 S484 E485 V486	1489 1489 1489 1494 1494 1495 1495 1495 1495 1495 149	I504 A505 E506 A507 A507 R508 R508 R510 S512 S512 S512 K516 K516 M519 M519 M521
S522 K523 L524 L524 L7S SER PHE CLY L7S MeT	diu Guu Met Met Ser Met Thr Leu Asr Asr Clu Asr Asr Asr Asr Asr Asr	ALA ALA ARG ARG ARG ARG ARG GLV ARG GLV VAL VAL VAL VAL VAL CLU ASP ASP ASP ASP	LEU THR ALA SER SER SER CUU ASN VAL
LYS LEU ARG GLN THR ASP ASP LEU LEU LEU ASP GLY	VAL ALA ALA ALA ALA SER BER ARG ARG ARG ARG ARG ARG ARG ARG ARG AR	ASIX ASIX ARG ALA ALA CLY CLY CLY CLY CLY CLY ASIX ASIX ASIX ASIX ASIX ASIX ASIX ASIX	PHE SER ARA ALYS ALYS ALYS ALYS ALLEU
GLY LYS THR ASP PHE ARG			

WORLDWIDE PROTEIN DATA BANK

• Molecule 28: 60S ribo	osomal protein L30	
Chain c:	92%	8%
MET PRO VAL VAL VAL VAL CYS SS SS SS SS CIU C72 C72 C72	F100 1005 1005	
• Molecule 29: 60S ribo	osomal protein L31-A	
^{9%} Chain d:	89%	• 8%
MET ALA GLY LEU LYS D6 R28 K34 K34 K34 K34 E81	E82 B84 A85 A85 K86 K86 K86 L97 V92 V98 V98 CU09 GLU GLU GLU ALA	
• Molecule 30: 60S ribo	osomal protein L32	
Chain e:	96%	•••
MET A2 A2 A2 B3 K8 B30 A37 L27 LEU ALA ALA ALA		
• Molecule 31: 60S ribo	osomal protein L33-A	
Chain f:	98%	
MET A2 P90 I1107		
• Molecule 32: 60S ribo	osomal protein L34-A	
Chain g:	82%	• 17%
MET A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2	GLU GLU GLU GLU GLU GLU CLY SER CLU CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	
• Molecule 33: 60S ribo	osomal protein L35-A	
Chain h:	98%	
MET 42 449 135 135 130		
• Molecule 34: 60S ribo	osomal protein L36-A	
Chain i:	95%	

• Molecule 35: 60S ribosomal protein L37-A

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	95319	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	84.67	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	0.113	Depositor
Minimum map value	-0.029	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.005	Depositor
Recommended contour level	0.016	Depositor
Map size (Å)	425.40002, 425.40002, 425.40002	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.0635, 1.0635, 1.0635	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	1	0.16	0/66772	0.74	35/104061~(0.0%)	
2	2	0.16	0/3746	0.74	1/5832~(0.0%)	
3	3	0.14	0/1034	0.72	1/1611~(0.1%)	
4	А	0.24	0/1635	0.43	0/2199	
5	В	0.25	0/3152	0.44	1/4239~(0.0%)	
6	С	0.24	0/2801	0.42	0/3792	
7	Е	0.25	0/1295	0.41	0/1740	
8	F	0.25	0/1821	0.39	0/2451	
9	G	0.24	0/1791	0.41	0/2418	
10	Н	0.24	0/1514	0.42	0/2039	
11	L	0.24	0/1446	0.41	0/1943	
12	М	0.23	0/1074	0.39	0/1446	
13	Ν	0.23	0/1757	0.40	0/2354	
14	0	0.24	0/1585	0.39	0/2128	
15	Р	0.24	0/1415	0.40	0/1900	
16	Q	0.24	0/1146	0.40	0/1546	
17	R	0.23	0/1258	0.40	0/1679	
18	S	0.23	0/1460	0.41	0/1962	
19	Т	0.25	0/483	0.40	0/650	
20	U	0.25	0/825	0.43	0/1120	
21	V	0.26	0/1018	0.43	0/1369	
22	W	0.24	0/1843	0.42	0/2483	
23	Х	0.24	0/974	0.39	0/1314	
24	Y	0.24	0/1004	0.40	0/1341	
25	Ζ	0.25	0/1118	0.40	0/1497	
26	a	0.25	0/758	0.39	0/1023	
27	b	0.24	0/4094	0.39	0/5515	
28	с	0.24	0/751	0.39	0/1008	
29	d	0.23	0/861	0.38	0/1156	
30	е	0.23	0/1033	0.39	0/1383	
31	f	0.25	0/868	0.42	0/1168	
32	g	0.24	0/806	0.44	0/1078	

Mal	Chain	Bond	lengths	E	Bond angles
WIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
33	h	0.24	0/978	0.36	0/1301
34	i	0.24	0/749	0.39	0/995
35	j	0.25	0/685	0.42	0/908
36	k	0.25	0/618	0.41	0/826
37	l	0.24	0/443	0.40	0/588
38	m	0.24	0/1847	0.39	0/2483
39	р	0.24	0/649	0.44	0/865
40	r	0.23	0/864	0.40	0/1133
41	u	0.24	0/1189	0.37	0/1581
42	У	0.24	0/1714	0.44	0/2333
All	All	0.20	0/122874	0.63	38/180458~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
10	Н	0	1
22	W	0	1
All	All	0	2

There are no bond length outliers.

All (38) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	2094	С	N3-C2-O2	-7.28	116.80	121.90
5	В	58	ARG	NE-CZ-NH1	-7.04	116.78	120.30
1	1	439	С	C2-N1-C1'	6.86	126.35	118.80
1	1	2824	G	OP1-P-OP2	-6.82	109.38	119.60
1	1	2800	G	OP1-P-OP2	-6.81	109.38	119.60
1	1	3352	U	OP1-P-OP2	-6.81	109.39	119.60
3	3	69	С	OP1-P-OP2	-6.80	109.40	119.60
1	1	2093	А	OP1-P-OP2	-6.80	109.40	119.60
1	1	494	G	OP1-P-OP2	-6.80	109.41	119.60
1	1	1077	U	OP1-P-OP2	-6.79	109.42	119.60
1	1	1354	G	OP1-P-OP2	-6.78	109.42	119.60
1	1	2210	G	OP1-P-OP2	-6.78	109.44	119.60
1	1	2982	А	OP1-P-OP2	-6.77	109.44	119.60
1	1	2503	G	OP1-P-OP2	-6.77	109.45	119.60
1	1	2598	G	OP1-P-OP2	-6.76	109.46	119.60
1	1	2872	A	OP1-P-OP2	-6.76	109.46	119.60

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	2819	A	OP1-P-OP2	-6.75	109.48	119.60
1	1	2319	U	OP1-P-OP2	-6.75	109.48	119.60
1	1	963	G	OP1-P-OP2	-6.74	109.49	119.60
1	1	2411	U	OP1-P-OP2	-6.74	109.49	119.60
2	2	1	А	OP1-P-OP2	-6.74	109.49	119.60
1	1	3	U	OP1-P-OP2	-6.74	109.49	119.60
1	1	1052	U	OP1-P-OP2	-6.74	109.50	119.60
1	1	2768	U	OP1-P-OP2	-6.74	109.50	119.60
1	1	2313	А	OP1-P-OP2	-6.73	109.50	119.60
1	1	1572	U	OP1-P-OP2	-6.72	109.51	119.60
1	1	2545	С	OP1-P-OP2	-6.72	109.51	119.60
1	1	1133	А	OP1-P-OP2	-6.71	109.54	119.60
1	1	2850	G	OP1-P-OP2	-6.70	109.55	119.60
1	1	2113	А	OP1-P-OP2	-6.70	109.55	119.60
1	1	2406	С	OP1-P-OP2	-6.56	109.76	119.60
1	1	1228	С	N3-C2-O2	-6.15	117.59	121.90
1	1	2899	С	C2-N1-C1'	6.09	125.50	118.80
1	1	439	С	N1-C2-O2	5.78	122.37	118.90
1	1	922	U	C2-N1-C1'	5.42	124.20	117.70
1	1	2857	С	N1-C2-O2	5.34	122.10	118.90
1	1	3058	U	C2-N1-C1'	5.25	124.00	117.70
1	1	2899	С	N1-C2-O2	5.03	121.92	118.90

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
10	Н	22	SER	Peptide
22	W	177	ALA	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
4	А	206/254~(81%)	200~(97%)	6~(3%)	0	100	100
5	В	384/387~(99%)	364~(95%)	20~(5%)	0	100	100
6	С	359/362~(99%)	341~(95%)	18 (5%)	0	100	100
7	Е	156/176~(89%)	152 (97%)	4 (3%)	0	100	100
8	F	220/244~(90%)	215 (98%)	5 (2%)	0	100	100
9	G	223/256~(87%)	216 (97%)	7 (3%)	0	100	100
10	Н	186/191~(97%)	179 (96%)	7 (4%)	0	100	100
11	L	176/199~(88%)	167 (95%)	9~(5%)	0	100	100
12	М	135/138~(98%)	133 (98%)	2(2%)	0	100	100
13	Ν	201/204~(98%)	197 (98%)	4 (2%)	0	100	100
14	Ο	195/199~(98%)	192 (98%)	3 (2%)	0	100	100
15	Р	172/184~(94%)	170 (99%)	2 (1%)	0	100	100
16	Q	144/186~(77%)	141 (98%)	3 (2%)	0	100	100
17	R	152/189~(80%)	146 (96%)	6 (4%)	0	100	100
18	S	168/172~(98%)	157 (94%)	11 (6%)	0	100	100
19	Т	59/160~(37%)	54 (92%)	5 (8%)	0	100	100
20	U	100/121~(83%)	96 (96%)	4 (4%)	0	100	100
21	V	134/137~(98%)	134 (100%)	0	0	100	100
22	W	223/236~(94%)	215 (96%)	7(3%)	1 (0%)	34	69
23	Х	118/142 (83%)	115 (98%)	3 (2%)	0	100	100
24	Y	124/127~(98%)	121 (98%)	3 (2%)	0	100	100
25	Z	133/136~(98%)	130 (98%)	3 (2%)	0	100	100
26	a	92/149~(62%)	89~(97%)	3(3%)	0	100	100
27	b	489/647~(76%)	466 (95%)	22 (4%)	1 (0%)	47	79
28	с	95/105 (90%)	94 (99%)	1 (1%)	0	100	100
29	d	102/113~(90%)	101 (99%)	1 (1%)	0	100	100
30	е	124/130~(95%)	120 (97%)	4 (3%)	0	100	100
31	f	104/107~(97%)	100 (96%)	4 (4%)	0	100	100
32	g	99/121~(82%)	96~(97%)	3(3%)	0	100	100
33	h	117/120~(98%)	114 (97%)	3(3%)	0	100	100

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
34	i	94/100~(94%)	93~(99%)	1 (1%)	0	100	100
35	j	83/88~(94%)	82 (99%)	1 (1%)	0	100	100
36	k	75/78~(96%)	74 (99%)	1 (1%)	0	100	100
37	1	48/51~(94%)	47 (98%)	1 (2%)	0	100	100
38	m	215/486~(44%)	207~(96%)	8 (4%)	0	100	100
39	р	82/92~(89%)	81 (99%)	1 (1%)	0	100	100
40	r	93/261~(36%)	86~(92%)	7 (8%)	0	100	100
41	u	136/199~(68%)	134 (98%)	2 (2%)	0	100	100
42	У	222/245~(91%)	217 (98%)	5 (2%)	0	100	100
All	All	6238/7492~(83%)	6036 (97%)	200 (3%)	2 (0%)	100	100

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
27	b	399	ALA
22	W	178	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
4	А	164/196~(84%)	162~(99%)	2(1%)	71	88
5	В	322/323~(100%)	317~(98%)	5(2%)	62	84
6	\mathbf{C}	288/289~(100%)	280~(97%)	8(3%)	43	73
7	Ε	138/153~(90%)	137~(99%)	1 (1%)	84	93
8	F	186/205~(91%)	183~(98%)	3(2%)	62	84
9	G	185/208~(89%)	182 (98%)	3~(2%)	62	84
10	Н	168/171~(98%)	164 (98%)	4 (2%)	49	76
11	L	140/159~(88%)	138 (99%)	2(1%)	67	86
12	М	108/109~(99%)	101 (94%)	7 (6%)	17	47

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	trom	previous	page

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
13	Ν	175/176~(99%)	173~(99%)	2(1%)	73	89
14	Ο	160/162~(99%)	159~(99%)	1 (1%)	86	94
15	Р	141/146~(97%)	139~(99%)	2(1%)	67	86
16	Q	120/151~(80%)	119 (99%)	1 (1%)	81	92
17	R	127/154~(82%)	125~(98%)	2~(2%)	62	84
18	S	154/156~(99%)	154 (100%)	0	100	100
19	Т	50/137~(36%)	48 (96%)	2~(4%)	31	65
20	U	89/107~(83%)	87 (98%)	2(2%)	52	78
21	V	104/105~(99%)	103 (99%)	1 (1%)	76	90
22	W	201/213 (94%)	195~(97%)	6 (3%)	41	71
23	Х	104/118 (88%)	100 (96%)	4 (4%)	33	66
24	Y	109/110 (99%)	108 (99%)	1 (1%)	78	91
25	Ζ	115/116~(99%)	113 (98%)	2(2%)	60	83
26	a	77/119~(65%)	76 (99%)	1 (1%)	69	87
27	b	443/573 (77%)	432 (98%)	11 (2%)	47	75
28	с	81/88~(92%)	81 (100%)	0	100	100
29	d	91/97~(94%)	88~(97%)	3~(3%)	38	69
30	е	108/111~(97%)	107~(99%)	1 (1%)	78	91
31	f	90/91~(99%)	89 (99%)	1 (1%)	73	89
20			. ,			05
32	g	86/103 (84%)	84 (98%)	2 (2%)	50	77
32	g h	$\frac{86/103\ (84\%)}{104/105\ (99\%)}$	84 (98%) 102 (98%)	2 (2%) 2 (2%)	50 57	77 81
$\begin{array}{r} 32\\ 33\\ 34 \end{array}$	g h i	$\frac{86/103\ (84\%)}{104/105\ (99\%)}$ $\frac{78/82\ (95\%)}{78/82\ (95\%)}$	84 (98%) 102 (98%) 77 (99%)	2 (2%) 2 (2%) 1 (1%)	50 57 69	778187
$\begin{array}{c} 32\\ \hline 33\\ \hline 34\\ \hline 35\\ \end{array}$	g h i j	$\begin{array}{r} 86/103 \ (84\%) \\ \hline 104/105 \ (99\%) \\ \hline 78/82 \ (95\%) \\ \hline 69/71 \ (97\%) \end{array}$	84 (98%) 102 (98%) 77 (99%) 68 (99%)	2 (2%) 2 (2%) 1 (1%) 1 (1%)	50 57 69 67	 77 81 87 86
32 33 34 35 36	g h i j k	$\begin{array}{r} 86/103 \ (84\%) \\ \hline 104/105 \ (99\%) \\ \hline 78/82 \ (95\%) \\ \hline 69/71 \ (97\%) \\ \hline 68/69 \ (99\%) \end{array}$	84 (98%) 102 (98%) 77 (99%) 68 (99%) 68 (100%)	2 (2%) 2 (2%) 1 (1%) 1 (1%) 0	50 57 69 67 100	 77 81 87 86 100
$ \begin{array}{r} 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ \end{array} $	g h i j k l	$\begin{array}{r} 86/103 \ (84\%) \\ \hline 104/105 \ (99\%) \\ \hline 78/82 \ (95\%) \\ \hline 69/71 \ (97\%) \\ \hline 68/69 \ (99\%) \\ \hline 45/46 \ (98\%) \end{array}$	84 (98%) 102 (98%) 77 (99%) 68 (99%) 68 (100%) 45 (100%)	2 (2%) 2 (2%) 1 (1%) 1 (1%) 0 0	50 57 69 67 100 100	 77 81 87 86 100 100
$ \begin{array}{r} 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ \end{array} $	g h j k l m	$\begin{array}{c} 86/103 \ (84\%) \\ \hline 104/105 \ (99\%) \\ \hline 78/82 \ (95\%) \\ \hline 69/71 \ (97\%) \\ \hline 68/69 \ (99\%) \\ \hline 45/46 \ (98\%) \\ \hline 197/428 \ (46\%) \end{array}$	84 (98%) 102 (98%) 77 (99%) 68 (99%) 68 (100%) 45 (100%) 192 (98%)	$\begin{array}{c} 2 (2\%) \\ 2 (2\%) \\ 1 (1\%) \\ 1 (1\%) \\ 0 \\ 0 \\ 5 (2\%) \end{array}$	50 57 69 67 100 100 47	 77 81 87 86 100 100 75
32 33 34 35 36 37 38 39	g h i j k l m p	$\begin{array}{c} 86/103 \ (84\%) \\ \hline 104/105 \ (99\%) \\ \hline 78/82 \ (95\%) \\ \hline 69/71 \ (97\%) \\ \hline 68/69 \ (99\%) \\ \hline 45/46 \ (98\%) \\ \hline 197/428 \ (46\%) \\ \hline 66/72 \ (92\%) \end{array}$	84 (98%) 102 (98%) 77 (99%) 68 (99%) 68 (100%) 45 (100%) 192 (98%) 65 (98%)	2 (2%) 2 (2%) 1 (1%) 1 (1%) 0 0 5 (2%) 1 (2%)	50 57 69 67 100 100 47 65	 77 81 87 86 100 100 75 85
$ \begin{array}{r} 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ \end{array} $	g h i g h l k l m p r	$\begin{array}{c} 86/103 \ (84\%) \\ \hline 104/105 \ (99\%) \\ \hline 78/82 \ (95\%) \\ \hline 69/71 \ (97\%) \\ \hline 68/69 \ (99\%) \\ \hline 45/46 \ (98\%) \\ \hline 197/428 \ (46\%) \\ \hline 66/72 \ (92\%) \\ \hline 90/229 \ (39\%) \end{array}$	84 (98%) 102 (98%) 77 (99%) 68 (99%) 68 (100%) 45 (100%) 192 (98%) 65 (98%) 88 (98%)	$\begin{array}{c} 2 (2\%) \\ 2 (2\%) \\ 1 (1\%) \\ 1 (1\%) \\ 0 \\ 0 \\ 0 \\ 5 (2\%) \\ 1 (2\%) \\ 2 (2\%) \end{array}$	50 57 69 67 100 100 47 65 52	 77 81 87 86 100 100 75 85 78
$ \begin{array}{r} 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ \end{array} $	g h i g h f k l m p r u	$\begin{array}{r} 86/103\ (84\%)\\ \hline 104/105\ (99\%)\\ \hline 78/82\ (95\%)\\ \hline 69/71\ (97\%)\\ \hline 68/69\ (99\%)\\ \hline 45/46\ (98\%)\\ \hline 197/428\ (46\%)\\ \hline 66/72\ (92\%)\\ \hline 90/229\ (39\%)\\ \hline 123/180\ (68\%)\\ \end{array}$	84 (98%) 102 (98%) 77 (99%) 68 (99%) 68 (100%) 45 (100%) 192 (98%) 65 (98%) 88 (98%) 120 (98%)	$\begin{array}{c} 2 \ (2\%) \\ 2 \ (2\%) \\ 1 \ (1\%) \\ 1 \ (1\%) \\ 0 \\ 0 \\ 5 \ (2\%) \\ 1 \ (2\%) \\ 2 \ (2\%) \\ 3 \ (2\%) \end{array}$	50 57 69 67 100 100 47 65 52 49	 77 81 87 86 100 100 75 85 78 76
$ \begin{array}{r} 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 42 \end{array} $	g h i g h f k l m p r u y	$\begin{array}{r} 86/103\ (84\%)\\ \hline 104/105\ (99\%)\\ \hline 78/82\ (95\%)\\ \hline 69/71\ (97\%)\\ \hline 68/69\ (99\%)\\ \hline 45/46\ (98\%)\\ \hline 197/428\ (46\%)\\ \hline 66/72\ (92\%)\\ \hline 90/229\ (39\%)\\ \hline 123/180\ (68\%)\\ \hline 192/211\ (91\%)\\ \end{array}$	84 (98%) 102 (98%) 77 (99%) 68 (99%) 68 (100%) 45 (100%) 192 (98%) 65 (98%) 88 (98%) 120 (98%) 190 (99%)	$\begin{array}{c} 2 \ (2\%) \\ 2 \ (2\%) \\ 1 \ (1\%) \\ 1 \ (1\%) \\ 0 \\ 0 \\ 5 \ (2\%) \\ 1 \ (2\%) \\ 2 \ (2\%) \\ 3 \ (2\%) \\ 2 \ (1\%) \end{array}$	50 57 69 67 100 100 47 65 52 49 76	 77 81 87 86 100 100 75 85 78 76 90

Mol	Chain	Res	Type
4	А	70	ARG
4	А	193	ARG
5	В	70	ARG
5	В	84	VAL
5	В	137	TYR
5	В	332	ARG
5	В	385	LYS
6	С	12	THR
6	С	54	GLU
6	С	93	MET
6	С	120	TYR
6	С	182	LEU
6	С	307	GLN
6	С	316	ASN
6	С	343	LYS
7	Е	128	LYS
8	F	25	GLN
8	F	46	GLU
8	F	179	LEU
9	G	48	ARG
9	G	120	LYS
9	G	166	LEU
10	Н	23	ARG
10	Н	41	ILE
10	Н	130	ASP
10	Н	157	ASN
11	L	21	ARG
11	L	174	ARG
12	М	56	GLN
12	М	74	ARG
12	М	91	CYS
12	М	102	LYS
12	М	108	ARG
12	М	124	ARG
12	М	128	ARG
13	N	62	TYR
13	N	153	ASP
14	0	134	LYS
15	Р	3	ARG
15	Р	171	ARG
16	Q	138	LEU
17	R	74	ARG

All (97) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
17	R	98	ARG
19	Т	103	GLN
19	Т	139	ARG
20	U	49	ASN
20	U	70	LYS
21	V	45	ARG
22	W	12	LEU
22	W	45	LEU
22	W	60	TRP
22	W	67	MET
22	W	126	ARG
22	W	161	LEU
23	Х	36	LYS
23	Х	61	LYS
23	Х	73	MET
23	Х	141	TYR
24	Y	74	TYR
25	Ζ	27	LYS
25	Ζ	99	GLU
26	a	60	TYR
27	b	24	ARG
27	b	90	HIS
27	b	168	ARG
27	b	171	LEU
27	b	215	ARG
27	b	216	PHE
27	b	280	ASN
27	b	346	ASN
27	b	367	GLN
27	b	374	ARG
27	b	427	TRP
29	d	28	ARG
29	d	89	LEU
29	d	92	TYR
30	е	87	MET
31	f	90	PRO
32	g	44	CYS
32	g	80	ARG
33	h	49	LYS
33	h	85	THR
34	i	43	LEU
35	j	25	ARG

\mathbf{Mol}	Chain	\mathbf{Res}	Type
38	m	232	ARG
38	m	342	GLN
38	m	358	LEU
38	m	361	ARG
38	m	367	CYS
39	р	60	CYS
40	r	164	ARG
40	r	168	MET
41	u	43	ARG
41	u	80	ARG
41	u	113	ARG
42	У	79	GLN
42	v	101	LEU

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (20) such side chains are listed below:

Mol	Chain	Res	Type
4	А	144	ASN
5	В	371	GLN
6	С	48	GLN
6	С	114	ASN
6	С	221	ASN
6	С	307	GLN
8	F	48	ASN
9	G	38	GLN
9	G	59	GLN
9	G	138	HIS
11	L	102	GLN
15	Р	96	GLN
19	Т	149	GLN
22	W	88	ASN
22	W	167	ASN
27	b	288	ASN
30	е	99	ASN
35	j	12	HIS
38	m	411	HIS
40	r	10	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	1	2762/3396~(81%)	433~(15%)	31 (1%)
2	2	157/158~(99%)	25~(15%)	1 (0%)
3	3	42/121~(34%)	3~(7%)	0
All	All	2961/3675~(80%)	461 (15%)	32 (1%)

All (461) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	1	13	А
1	1	14	U
1	1	26	А
1	1	43	А
1	1	49	А
1	1	60	А
1	1	65	А
1	1	66	А
1	1	67	А
1	1	92	G
1	1	99	А
1	1	100	А
1	1	110	G
1	1	111	С
1	1	113	С
1	1	116	А
1	1	122	А
1	1	133	U
1	1	136	G
1	1	156	G
1	1	157	А
1	1	166	С
1	1	187	А
1	1	190	U
1	1	191	U
1	1	200	С
1	1	213	А
1	1	218	G
1	1	219	А
1	1	221	A
1	1	231	G
1	1	234	G
1	1	240	U
1	1	243	G
1	1	245	U

Mol	Chain	Res	Type
1	1	252	U
1	1	253	А
1	1	269	G
1	1	283	G
1	1	284	A
1	1	286	U
1	1	298	U
1	1	305	U
1	1	315	С
1	1	323	А
1	1	325	А
1	1	329	U
1	1	338	A
1	1	339	С
1	1	350	C
1	1	370	U
1	1	374	А
1	1	375	А
1	1	376	G
1	1	398	А
1	1	401	U
1	1	402	А
1	1	403	С
1	1	404	G
1	1	421	G
1	1	422	А
1	1	429	U
1	1	440	А
1	1	495	G
1	1	503	С
1	1	521	A
1	1	523	A
1	1	535	G
1	1	536	U
1	1	543	C
1	1	544	С
1	1	545	U
1	1	547	G
1	1	548	G
1	1	552	G
1	1	555	U
1	1	557	A

Mol	Chain	Res	Type
1	1	558	U
1	1	559	A
1	1	560	G
1	1	578	A
1	1	579	G
1	1	589	A
1	1	604	G
1	1	611	А
1	1	620	U
1	1	621	А
1	1	636	С
1	1	637	С
1	1	638	С
1	1	677	A
1	1	681	U
1	1	691	A
1	1	705	A
1	1	715	А
1	1	716	А
1	1	719	U
1	1	737	G
1	1	761	А
1	1	764	U
1	1	767	U
1	1	768	С
1	1	769	G
1	1	776	U
1	1	777	U
1	1	780	А
1	1	781	G
1	1	785	G
1	1	787	G
1	1	806	A
1	1	807	A
1	1	817	A
1	1	830	A
1	1	836	A
1	1	847	A
1	1	857	G
1	1	861	C
1	1	874	U
1	1	879	U

Mol	Chain	Res	Type
1	1	880	G
1	1	896	А
1	1	907	G
1	1	908	G
1	1	914	А
1	1	916	G
1	1	917	А
1	1	924	G
1	1	937	G
1	1	944	С
1	1	954	U
1	1	955	U
1	1	959	С
1	1	960	U
1	1	974	G
1	1	979	U
1	1	980	А
1	1	981	U
1	1	982	С
1	1	1063	G
1	1	1064	А
1	1	1065	А
1	1	1072	G
1	1	1081	U
1	1	1082	U
1	1	1093	А
1	1	1094	U
1	1	1095	U
1	1	1096	U
1	1	1097	G
1	1	1098	А
1	1	1103	А
1	1	1104	G
1	1	1114	U
1	1	1116	G
1	1	1117	G
1	1	1153	А
1	1	1159	А
1	1	1180	А
1	1	1181	U
1	1	1182	A
1	1	1189	С

Mol	Chain	Res	Type
1	1	1190	А
1	1	1191	U
1	1	1192	С
1	1	1193	А
1	1	1201	С
1	1	1202	А
1	1	1209	G
1	1	1217	А
1	1	1222	G
1	1	1233	G
1	1	1236	G
1	1	1239	С
1	1	1240	А
1	1	1241	U
1	1	1245	А
1	1	1246	G
1	1	1247	U
1	1	1253	U
1	1	1254	С
1	1	1259	А
1	1	1263	А
1	1	1265	U
1	1	1269	U
1	1	1271	А
1	1	1272	С
1	1	1282	G
1	1	1283	С
1	1	1284	С
1	1	1287	А
1	1	1295	G
1	1	1302	A
1	1	1304	A
1	1	1307	G
1	1	1308	A
1	1	1309	U
1	1	1330	A
1	1	1348	U
1	1	1349	G
1	1	1356	U
1	1	$1\overline{357}$	G
1	1	1386	A
1	1	1392	G

Mol	Chain	Res	Type
1	1	1399	А
1	1	1400	G
1	1	1417	G
1	1	1419	А
1	1	1434	G
1	1	1436	U
1	1	1437	С
1	1	1481	А
1	1	1483	G
1	1	1487	G
1	1	1496	С
1	1	1508	С
1	1	1536	G
1	1	1557	А
1	1	1561	G
1	1	1562	С
1	1	1563	С
1	1	1566	А
1	1	1579	С
1	1	1583	А
1	1	1589	А
1	1	1593	А
1	1	1607	U
1	1	1618	G
1	1	1620	U
1	1	1629	U
1	1	1639	С
1	1	1643	А
1	1	1657	С
1	1	1683	А
1	1	1694	U
1	1	1713	G
1	1	1724	U
1	1	1741	А
1	1	1750	А
1	1	1751	G
1	1	1763	U
1	1	1764	U
1	1	1765	U
1	1	1770	G
1	1	1775	G
1	1	1780	G

Mol	Chain	Res	Type
1	1	1797	А
1	1	1807	G
1	1	1808	G
1	1	1812	G
1	1	1813	А
1	1	1815	U
1	1	1816	А
1	1	1820	U
1	1	1821	U
1	1	1839	А
1	1	1841	А
1	1	1842	А
1	1	1849	С
1	1	1866	С
1	1	1878	G
1	1	1881	А
1	1	1906	G
1	1	1926	С
1	1	2099	А
1	1	2101	С
1	1	2111	G
1	1	2120	А
1	1	2121	G
1	1	2122	G
1	1	2126	А
1	1	2131	А
1	1	2158	А
1	1	2167	А
1	1	2168	А
1	1	2169	G
1	1	2188	A
1	1	2194	G
1	1	2202	С
1	1	$2\overline{2}28$	A
1	1	2244	A
1	1	2335	G
1	1	2336	U
1	1	2356	А
1	1	2372	А
1	1	$2\overline{373}$	A
1	1	2374	С
1	1	2388	U

Mol	Chain	Res	Type
1	1	2393	G
1	1	2394	G
1	1	2397	А
1	1	2399	А
1	1	2418	G
1	1	2432	А
1	1	2433	U
1	1	2435	G
1	1	2440	G
1	1	2442	G
1	1	2507	С
1	1	2510	U
1	1	2511	А
1	1	2512	С
1	1	2514	U
1	1	2515	А
1	1	2522	G
1	1	2523	А
1	1	2524	А
1	1	2525	G
1	1	2532	U
1	1	2536	А
1	1	2547	А
1	1	2549	G
1	1	2552	С
1	1	2562	А
1	1	2570	U
1	1	2572	С
1	1	2573	G
1	1	2585	G
1	1	2586	G
1	1	$2\overline{593}$	A
1	1	2594	С
1	1	2600	С
1	1	2606	G
1	1	2607	G
1	1	$2\overline{771}$	U
1	1	2772	С
1	1	2773	С
1	1	2777	G
1	1	2778	G
1	1	2801	A

Mol	Chain	Res	Type
1	1	2810	С
1	1	2820	А
1	1	2825	С
1	1	2837	А
1	1	2853	А
1	1	2857	С
1	1	2858	U
1	1	2873	U
1	1	2875	U
1	1	2876	С
1	1	2877	G
1	1	2878	G
1	1	2879	С
1	1	2887	А
1	1	2898	G
1	1	2899	С
1	1	2900	А
1	1	2901	G
1	1	2910	А
1	1	2921	U
1	1	2922	G
1	1	2923	U
1	1	2935	U
1	1	2936	А
1	1	2942	С
1	1	2970	С
1	1	2971	А
1	1	2972	G
1	1	2983	С
1	1	2997	G
1	1	3012	A
1	1	3022	G
1	1	3027	A
1	1	3028	G
1	1	3030	G
1	1	3033	А
1	1	3049	A
1	1	3059	G
1	1	3078	U
1	1	3079	U
1	1	3086	A
1	1	3092	С

Mol	Chain	Res	Type
1	1	3093	С
1	1	3099	С
1	1	3101	G
1	1	3109	G
1	1	3117	С
1	1	3121	U
1	1	3127	А
1	1	3128	G
1	1	3130	А
1	1	3131	U
1	1	3142	А
1	1	3143	С
1	1	3153	U
1	1	3155	U
1	1	3156	U
1	1	3157	U
1	1	3158	G
1	1	3163	А
1	1	3165	А
1	1	3170	А
1	1	3173	G
1	1	3174	А
1	1	3176	G
1	1	3179	U
1	1	3181	С
1	1	3187	А
1	1	3196	U
1	1	3198	U
1	1	3207	U
1	1	3217	С
1	1	3218	A
1	1	3219	G
1	1	3229	G
1	1	3239	G
1	1	3245	A
1	1	3247	G
1	1	3253	G
1	1	3259	U
1	1	$3\overline{2}60$	G
1	1	3270	U
1	1	3273	А
1	1	3276	G

\mathbf{Mol}	Chain	Res	Type
1	1	3279	А
1	1	3281	U
1	1	3292	А
1	1	3293	U
1	1	3294	А
1	1	3304	U
1	1	3316	А
1	1	3319	U
1	1	3320	А
1	1	3334	U
1	1	3335	А
1	1	3341	U
1	1	3342	А
1	1	3350	С
1	1	3353	G
1	1	3355	U
1	1	3368	U
1	1	3369	G
1	1	3375	А
1	1	3378	С
2	2	16	G
2	2	21	С
2	2	23	U
2	2	34	U
2	2	35	С
2	2	39	G
2	2	59	А
2	2	62	С
2	2	63	G
2	2	80	A
2	2	81	U
2	2	82	U
2	2	86	U
2	2	90	U
2	2	95	G
2	2	104	А
2	2	106	С
2	2	111	А
2	2	125	U
2	2	126	A
2	2	127	U
2	2	138	A

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type
2	2	151	С
2	2	152	G
2	2	157	U
3	3	76	А
3	3	102	А
3	3	106	U

All (32) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	1	13	А
1	1	65	А
1	1	239	G
1	1	282	G
1	1	547	G
1	1	637	С
1	1	806	А
1	1	846	А
1	1	916	G
1	1	979	U
1	1	981	U
1	1	1064	А
1	1	1097	G
1	1	1103	А
1	1	1268	G
1	1	1270	А
1	1	1303	А
1	1	1307	G
1	1	1355	А
1	1	1562	С
1	1	2166	А
1	1	2593	А
1	1	2857	С
1	1	3078	U
1	1	3218	А
1	1	3228	С
1	1	3269	U
1	1	3291	G
1	1	3292	A
1	1	3349	С
1	1	3352	U
2	2	125	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 2 ligands modelled in this entry, 2 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-12866. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 200

Y Index: 200

Z Index: 200

6.2.2 Raw map

X Index: 200

Y Index: 200

Z Index: 200

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 184

Z Index: 154

6.3.2 Raw map

X Index: 184

Y Index: 179

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.016. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1549 nm^3 ; this corresponds to an approximate mass of 1400 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.323 ${\rm \AA}^{-1}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.323 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estim	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	3.10	-	-	
Author-provided FSC curve	3.06	3.74	3.13	
Unmasked-calculated*	3.64	6.72	3.80	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.64 differs from the reported value 3.1 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-12866 and PDB model 7OF1. Per-residue inclusion information can be found in section 3 on page 12.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.016 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Atom inclusion (i)

At the recommended contour level, 93% of all backbone atoms, 89% of all non-hydrogen atoms, are inside the map.

