wwPDB EM Validation Summary Report (i)

Jun 23, 2021 - 06:27 AM BST

```
    PDB ID : 7OF7
EMDB ID : EMD-12872
Title : Structure of a human mitochondrial ribosome large subunit assembly intermediate in complex with MTERF4-NSUN4 and GTPBP5 (dataset1).
Authors : Hillen, H.S.; Lavdovskaia, E.; Nadler, F.; Hanitsch, E.; Linden, A.; Bohnsack, K.E.; Urlaub, H.; Richter-Dennerlein, R.
Deposited on : 2021-05-04
Resolution : \(2.50 \AA\) (reported)
Based on initial model : 5OOL
```

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.
We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (i)) were used in the production of this report:

```
        EMDB validation analysis : 0.0.0.dev75
            Mogul : 1.8.5 (274361), CSD as541be (2020)
            MolProbity : 4.02b-467
            Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)
    Ideal geometry (proteins) : Engh & Huber (2001)
    Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) : 2.20
```


1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:

ELECTRON MICROSCOPY

The reported resolution of this entry is $2.50 \AA$.
Percentile scores (ranging between $0-100$) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (\#Entries)	EM structures (\#Entries)
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $>=3,2,1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $<=5 \%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion $<40 \%$). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	0	108		100%	
2	1	65			
3	2	92	80%	51%	
4	3	188	49%		49%
5	4	103	51%	64%	7%
6	5	423	36%	95%	15%
7	6	380		85%	15%
8	7	338			

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality of chain	
			25\%	
9	8	206	37\%	63\%
10	9	137	85\%	15\%
11	A	1559	68\%	20\% 12\%
12	B	69	- 58\%	23\% 19\%
13	C	384	88\%	12\%
14	D	305	78\%	21\%
15	E	348	89\%	11\%
16	F	311	80\%	20\%
17	G	381	62\%	38\%
18	H	267	36\%	64\%
19	I	261	- 61%	39%
20	J	192	$20 \% \quad 73 \%$	27\%
21	K	178	99\%	
22	L	145	79\%	21\%
23	M	296	96\%	.
24	N	251	81\%	18\%
25	O	175	87\%	13\%
26	P	180	78\%	22\%
27	Q	292	74\%	26\%
28	R	149	78\%	22\%
29	S	205	76\%	24\%
30	T	206	81\%	19\%
31	U	153	9\% 91\%	9\%
32	V	216	22\%	
33	W	148	74\%	26\%

Continued on next page...

Continued from previous page...

2 Entry composition (i)

There are 59 unique types of molecules in this entry. The entry contains 101032 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called 39S ribosomal protein L32, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	0	108	Total 880	C 545	N 172	O 157	S	0	0

- Molecule 2 is a protein called 39S ribosomal protein L33, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace		
2	1	52	$\begin{array}{c}\text { Total } \\ 433\end{array}$	$\begin{array}{c}\text { C } \\ 278\end{array}$	N	O	S	70	2	$) 0$	0
:---:											

- Molecule 3 is a protein called 39S ribosomal protein L34, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	2	45	2 Total C N O 367 227 81 58 1	0	0				

- Molecule 4 is a protein called 39S ribosomal protein L35, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
Trace								
4	3	95	Total	C	N	O	S	0
0	831	539	162	127	3	0		

- Molecule 5 is a protein called 39S ribosomal protein L36, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
5	4	37	Total	C	N	O	S	
	212	71	47	3	0	0		

- Molecule 6 is a protein called 39S ribosomal protein L37, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	5	392	Total 3199	C	N	O	S	0	0

- Molecule 7 is a protein called 39S ribosomal protein L38, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
7	6	324	Total	C	N	O	S	0	0
2723	1743	488	484	8	0				

- Molecule 8 is a protein called 39S ribosomal protein L39, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
8	7	287	Total	C	N	O	S	
	2334		397	425	17	0	0	

- Molecule 9 is a protein called 39S ribosomal protein L40, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	8	77	Total 651	$\begin{gathered} \hline \mathrm{C} \\ 413 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 113 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 123 \end{gathered}$	S	0	0

- Molecule 10 is a protein called 39S ribosomal protein L41, mitochondrial.

| Mol | Chain | Residues | Atoms | | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace.

- Molecule 11 is a RNA chain called 16 S ribosomal RNA.

Mol	Chain	Residues	Atoms					AltConf
Trace								
11	A	1376	Total	C	N	O	P	0
			29222	13113	5273	9460	1376	

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	3107	U	N	conflict	GB 1025814679

- Molecule 12 is a RNA chain called mitochondrial tRNAVal.

Mol	Chain	Residues	Atoms					AltConf	Trace		
12	B	56	$\begin{array}{c}\text { Total } \\ 1191\end{array}$	C	534	214	O	P	387		
56										$) 0$	0
:---:											

- Molecule 13 is a protein called 5-methylcytosine rRNA methyltransferase NSUN4.

Mol	Chain	Residues	Atoms					AltConf
Trace								
13	C	338	Total 2690	C	N	O	S	1
			470	489	16		0	

- Molecule 14 is a protein called 39 S ribosomal protein L2, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf		
Trace										
14	D	240	$\begin{array}{c}\text { Total } \\ 1872\end{array}$	$\begin{array}{c}\mathrm{C} \\ 1165\end{array}$	N	378	320	9	$) 0$	0
:---:										

- Molecule 15 is a protein called 39 S ribosomal protein L3, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
15	E	308	Total 2427	C	N	O	S	0	0

- Molecule 16 is a protein called 39S ribosomal protein L4, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
Trace								
16	F	250	$\begin{array}{c}\text { Total } \\ 2013\end{array}$	$\begin{array}{c}\text { C } \\ 1294\end{array}$	$\begin{array}{c}\text { N } \\ 365\end{array}$	O	S	S

- Molecule 17 is a protein called Transcription termination factor 4 , mitochondrial.

| Mol | Chain | Residues | Atoms | | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace.

- Molecule 18 is a protein called 39S ribosomal protein L9, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace
18	H	95	Total 784	$\begin{gathered} \hline \mathrm{C} \\ 498 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 152 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 134 \end{gathered}$	0	0

- Molecule 19 is a protein called 39S ribosomal protein L10, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
19	I	158	Total 1283	C 828	235	N	210	10	0

- Molecule 20 is a protein called 39S ribosomal protein L11, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace		
20	J	140	$\begin{array}{c}\text { Total } \\ 1061\end{array}$	$\begin{array}{c}\mathrm{C} \\ 680\end{array}$	N	O	S	187	2	$) 0$	0
:---:											

- Molecule 21 is a protein called 39S ribosomal protein L13, mitochondrial.

| Mol | Chain | Residues | Atoms | | | | AltConf | Trace |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21 | K | 177 | $\begin{array}{c}\text { Total } \\ 1451\end{array}$ | $\begin{array}{c}\mathrm{C} \\ 934\end{array}$ | 259 | N | 251 | S |$)$

- Molecule 22 is a protein called 39S ribosomal protein L14, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
Trace								
2	L	115	Total 889	C 559	171	O	S	S
			5	0	0			

- Molecule 23 is a protein called 39S ribosomal protein L15, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
Trace								
23	M	287	Total 2305	C 1472	N	425	O	S
				0	0	0		

- Molecule 24 is a protein called 39S ribosomal protein L16, mitochondrial.

| Mol | Chain | Residues | Atoms | | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace.

- Molecule 25 is a protein called 39S ribosomal protein L17, mitochondrial.

| Mol | Chain | Residues | Atoms | | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace.

- Molecule 26 is a protein called 39S ribosomal protein L18, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
26	P	141	Total 		C	N	O	S	0
	719		203	5		0			

- Molecule 27 is a protein called 39S ribosomal protein L19, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
27	Q	217	Total 1805	C 1159	N 317	O 320	S	0	0

- Molecule 28 is a protein called 39S ribosomal protein L20, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
28	R	116	Total 971	C 616	N 200	O 151	S	0	0

- Molecule 29 is a protein called 39S ribosomal protein L21, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace
29	S	156	Total 1251	C	N	O	S	0
		222	219	4	0	0		

- Molecule 30 is a protein called 39S ribosomal protein L22, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
30	T	166	Total 1368	C	N	O	S	
			254	232	7	0	0	

- Molecule 31 is a protein called 39S ribosomal protein L23, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
31	U	139	Total 1154	C 734	N	O	S	
			197	3	0	0		

- Molecule 32 is a protein called 39S ribosomal protein L24, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
32	V	47	Total 395	C	N	O	S	0	0
			62	75	3				

- Molecule 33 is a protein called 39S ribosomal protein L27, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
33	W	109	Total 859 C N 552 162 142	3	0	0			

- Molecule 34 is a protein called 39S ribosomal protein L28, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
Trace								
34	X	243	Total 2035	C 1317	351	O	S	0
			5	0	0			

- Molecule 35 is a protein called 39 S ribosomal protein L47, mitochondrial.

| Mol | Chain | Residues | Atoms | | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace.

- Molecule 36 is a protein called 39S ribosomal protein L30, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
36	Z	115	Total 937	C 598	N 175	O 161	S 3	0	0

- Molecule 37 is a protein called 39S ribosomal protein L42, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace
37	a	71	Total 597	C 378	N	112	O	S
	103	4	0	0				

- Molecule 38 is a protein called 39S ribosomal protein L43, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
38	b	148	Total 1178	C	N	O	S	

- Molecule 39 is a protein called 39S ribosomal protein L44, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf
Trace								
39	c	275	Total	C	N	O	S	0
			2217	1415	383	410	9	
0								

- Molecule 40 is a protein called 39S ribosomal protein L45, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
40	d	199	Total 1653	C	N 276	O 293	S	0	0

- Molecule 41 is a protein called 39S ribosomal protein L46, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf		
Trace										
41	e	197	$\begin{array}{c}\text { Total } \\ 1599\end{array}$	$\begin{array}{c}\mathrm{C} \\ 1027\end{array}$	N	277	O	S		
290	5								$) 0$	0
:---:										

- Molecule 42 is a protein called 39S ribosomal protein L48, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
42	f	108	Total 857	C 549	\mathbf{N}	O	S	0	0

- Molecule 43 is a protein called 39S ribosomal protein L49, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
43	g	129	Total 1067	C	N 185	O 190		0	0

- Molecule 44 is a protein called 39S ribosomal protein L50, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace
44	h	105	Total 862	C 548	N	151	160	S
			3	0	0			

- Molecule 45 is a protein called 39S ribosomal protein L51, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
45	i	97	Total 827	C 532	N 165	O 126	S	0	0

- Molecule 46 is a protein called 39S ribosomal protein L52, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
46	j	85	Total 684	C	N 133	O 126	S	0	0

- Molecule 47 is a protein called 39S ribosomal protein L53, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
47	k	80	Total 627	C 392	N 116	O	S 5	0	0

- Molecule 48 is a protein called 39S ribosomal protein L55, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace		
48	m	28	$\begin{array}{c}\text { Total } \\ 234\end{array}$	$\begin{array}{c}\mathrm{C} \\ 151\end{array}$	N	O	S	37	2	$) 0$	0
:---:											

- Molecule 49 is a protein called Ribosomal protein 63, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
49	o	93	Total 786	$\begin{gathered} \hline \mathrm{C} \\ 495 \end{gathered}$	$\begin{gathered} \hline N \\ 161 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 127 \end{gathered}$	S 3	0	0

- Molecule 50 is a protein called Peptidyl-tRNA hydrolase ICT1, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
50	p	127	Total 1058	$\begin{gathered} \hline \mathrm{C} \\ 661 \end{gathered}$	N 201	O 192	S	0	0

- Molecule 51 is a protein called Growth arrest and DNA damage-inducible proteins-interacting protein 1.

Mol	Chain	Residues	Atoms					AltConf	Trace
51	q	128	Total 1076	$\begin{gathered} \mathrm{C} \\ 671 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 208 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 192 \end{gathered}$	$\begin{aligned} & \hline \mathrm{S} \\ & 5 \end{aligned}$	0	0

- Molecule 52 is a protein called 39S ribosomal protein S18a, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
52	r	146	Total 1203	C	N 232	O 199	S 8	0	0

- Molecule 53 is a protein called 39S ribosomal protein S30, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
53	S	370	Total 3036	C 1946	542	N	534	14	0
					0				

- Molecule 54 is a protein called Mitochondrial assembly of ribosomal large subunit protein 1.

Mol	Chain	Residues	Atoms					AltConf	Trace		
54	u	111	$\begin{array}{c}\text { Total } \\ 927\end{array}$	$\begin{array}{c}\mathrm{C} \\ 595\end{array}$	$\begin{array}{c}\mathrm{N}\end{array}$	O	S	167	10	$) 0$	0
:---:											

- Molecule 55 is a protein called MIEF1 upstream open reading frame protein.

Mol	Chain	Residues	Atoms				AltConf	Trace
55	v	69	Total 588 C N O 0	0				

- Molecule 56 is a protein called Acyl carrier protein, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace		
56	w	79	$\begin{array}{c}\text { Total } \\ 638\end{array}$	$\begin{array}{c}\mathrm{C} \\ 410\end{array}$	$\begin{array}{c}\text { N }\end{array}$	O	S	128	5	$) 0$	0
:---:											

- Molecule 57 is a protein called Mitochondrial ribosome-associated GTPase 2.

Mol	Chain	Residues	Atoms					AltConf
Trace								
57	x	148	Total 1073	C	N	O	S	20
			205	204	5	0	0	

- Molecule 58 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf	
58	0	1	Total 1	Zn 1	0
58	4	1	Total 1	Zn 1	0
58	r	1	Total 1	Zn 1	0

- Molecule 59 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
59	A	71	Total Mg 71 71	0
59	E	1	$\begin{array}{cc} \text { Total } & \mathrm{Mg} \\ 1 & 1 \end{array}$	0
59	W	1	$\begin{array}{cc}\text { Total } & \mathrm{Mg} \\ 1 & 1\end{array}$	0
59	g	1	$\begin{array}{cc}\text { Total } & \mathrm{Mg} \\ 1 & 1\end{array}$	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green $=0$, yellow $=1$, orange $=2$ and red $=3$ or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion $<40 \%$). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: 39S ribosomal protein L32, mitochondrial

Chain 0:

100\%

There are no outlier residues recorded for this chain.

- Molecule 2: 39S ribosomal protein L33, mitochondrial
$\begin{array}{lll}\text { Chain 1: } & 80 \% & 20 \%\end{array}$

- Molecule 3: 39S ribosomal protein L34, mitochondrial

- Molecule 4: 39S ribosomal protein L35, mitochondrial

Chain 3:

51\%

49\%

- Molecule 5: 39S ribosomal protein L36, mitochondrial

Chain 4:
36\%
64\%

- Molecule 6: 39S ribosomal protein L37, mitochondrial
Chain 5: 92\% 7\%

- Molecule 7: 39S ribosomal protein L38, mitochondrial

- Molecule 8: 39S ribosomal protein L39, mitochondrial

- Molecule 9: 39S ribosomal protein L40, mitochondrial

- Molecule 10: 39S ribosomal protein L41, mitochondrial

- Molecule 11: 16S ribosomal RNA

- Molecule 12: mitochondrial tRNAVal

Chain B:

58\%	23\%	19%

- Molecule 13: 5-methylcytosine rRNA methyltransferase NSUN4

- Molecule 14: 39S ribosomal protein L2, mitochondrial

- Molecule 15: 39S ribosomal protein L3, mitochondrial

- Molecule 16: 39S ribosomal protein L4, mitochondrial

- Molecule 17: Transcription termination factor 4, mitochondrial

Chain G:

- Molecule 18: 39S ribosomal protein L9, mitochondrial

Chain H:

36\%

 64\%

- Molecule 19: 39S ribosomal protein L10, mitochondrial

- Molecule 20: 39S ribosomal protein L11, mitochondrial

- Molecule 21: 39S ribosomal protein L13, mitochondrial

Chain K: \square

- Molecule 22: 39S ribosomal protein L14, mitochondrial

- Molecule 23: 39S ribosomal protein L15, mitochondrial

Chain M:

- Molecule 24: 39S ribosomal protein L16, mitochondrial

- Molecule 25: 39S ribosomal protein L17, mitochondrial

- Molecule 26: 39S ribosomal protein L18, mitochondrial

Chain P:
78\%
22\%

- Molecule 27: 39S ribosomal protein L19, mitochondrial

- Molecule 28: 39S ribosomal protein L20, mitochondrial

Chain R:

22\%

- Molecule 29: 39S ribosomal protein L21, mitochondrial

Chain S:
76\%
24\%

- Molecule 30: 39S ribosomal protein L22, mitochondrial
Chain T: 81\% 19\%

- Molecule 31: 39S ribosomal protein L23, mitochondrial

- Molecule 32: 39S ribosomal protein L24, mitochondrial

- Molecule 33: 39S ribosomal protein L27, mitochondrial

Chain W:
74\%
26\%

- Molecule 34: 39S ribosomal protein L28, mitochondrial

Chain X:

- Molecule 35: 39S ribosomal protein L47, mitochondrial

－Molecule 36：39S ribosomal protein L30，mitochondrial

－Molecule 37：39S ribosomal protein L42，mitochondrial

－Molecule 38：39S ribosomal protein L43，mitochondrial

Chain b：

－Molecule 39：39S ribosomal protein L44，mitochondrial

旌采畄
－Molecule 40：39S ribosomal protein L45，mitochondrial

- Molecule 41: 39S ribosomal protein L46, mitochondrial

- Molecule 42: 39S ribosomal protein L48, mitochondrial

- Molecule 43: 39S ribosomal protein L49, mitochondrial

- Molecule 44: 39S ribosomal protein L50, mitochondrial

－Molecule 45：39S ribosomal protein L51，mitochondrial

```
Chain i：
```


－Molecule 46：39S ribosomal protein L52，mitochondrial

Chain j： 100\％

There are no outlier residues recorded for this chain．
－Molecule 47：39S ribosomal protein L53，mitochondrial

Chain k：

－Molecule 48：39S ribosomal protein L55，mitochondrial

畀荌压咢咢
－Molecule 49：Ribosomal protein 63，mitochondrial

－Molecule 50：Peptidyl－tRNA hydrolase ICT1，mitochondrial

- Molecule 51: Growth arrest and DNA damage-inducible proteins-interacting protein 1

- Molecule 52: 39S ribosomal protein S18a, mitochondrial

Chain r:

- Molecule 53: 39S ribosomal protein S 30 , mitochondrial

- Molecule 54: Mitochondrial assembly of ribosomal large subunit protein 1

- Molecule 55: MIEF1 upstream open reading frame protein

- Molecule 56: Acyl carrier protein, mitochondrial

- Molecule 57: Mitochondrial ribosome-associated GTPase 2

Chain x:

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	98227	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE CORRECTION	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $\left(e^{-} / \AA^{2}\right)$	36	Depositor
Minimum defocus (nm)	300	Depositor
Maximum defocus (nm)	2800	Depositor
Magnification	81000	Depositor
Image detector	GATAN K3 BIOQUANTUM $(6 \mathrm{k} \mathrm{x} \mathrm{4k)}$	Depositor
Maximum map value	0.113	Depositor
Minimum map value	-0.035	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.004	Depositor
Recommended contour level	0.006	Depositor
Map size (\AA)	$367.49997,367.49997,367.49997$	wwPDB
Map dimensions	$350,350,350$	wwPDB
Map angles $\left({ }^{\circ}\right)$	$90.0,90.0,90.0$	wwPDB
Pixel spacing (\AA)	$1.05,1.05,1.05$	Depositor

5 Model quality (i

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: OMU, MG, ZN, OMG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z|>5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles	
		RMSZ	$\#\|Z\|>5$	RMSZ	$\#\|Z\|>5$
1	0	0.36	0/895	0.54	0/1201
2	1	0.26	0/438	0.54	0/583
3	2	0.41	0/373	0.58	0/496
4	3	0.42	0/852	0.54	0/1136
5	4	0.39	0/341	0.59	0/451
6	5	0.33	0/3294	0.50	$0 / 4488$
7	6	0.34	0/2809	0.54	0/3818
8	7	0.32	0/2391	0.47	0/3234
9	8	0.25	0/665	0.51	0/894
10	9	0.37	0/972	0.50	0/1306
11	A	0.78	0/32605	0.80	8/50720 (0.0\%)
12	B	0.26	0/1328	0.75	0/2056
13	C	0.27	0/2754	0.49	0/3734
14	D	0.37	0/1910	0.58	0/2569
15	E	0.41	0/2497	0.49	0/3386
16	F	0.40	0/2071	0.53	0/2817
17	G	0.28	0/1974	0.48	0/2652
18	H	0.33	0/798	0.55	0/1073
19	I	0.27	0/1308	0.51	0/1761
20	J	0.25	0/1077	0.50	0/1452
21	K	0.40	0/1495	0.49	0/2029
22	L	0.37	0/904	0.56	0/1218
23	M	0.41	0/2359	0.54	0/3185
24	N	0.35	0/1697	0.54	0/2281
25	O	0.37	0/1269	0.57	0/1708
26	P	0.33	0/1173	0.55	0/1588
27	Q	0.37	0/1846	0.52	0/2487
28	R	0.42	0/987	0.57	0/1320
29	S	0.38	0/1276	0.53	0/1729
30	T	0.42	0/1402	0.53	0/1886
31	U	0.38	0/1183	0.55	0/1600
32	V	0.36	0/404	0.45	0/545

Mol	Chain	Bond lengths		Bond angles	
		RMSZ	$\#\|Z\|>5$	RMSZ	$\#\|Z\|>5$
33	W	0.44	$0 / 881$	0.52	$0 / 1188$
34	X	0.36	$0 / 2090$	0.48	$0 / 2825$
35	Y	0.36	$0 / 1552$	0.52	$0 / 2079$
36	Z	0.36	$0 / 960$	0.49	$0 / 1295$
37	a	0.38	$0 / 616$	0.52	$0 / 833$
38	b	0.38	$0 / 1202$	0.59	$0 / 1626$
39	c	0.35	$0 / 2264$	0.49	$0 / 3059$
40	d	0.27	$0 / 1702$	0.48	$0 / 2307$
41	e	0.25	$0 / 1633$	0.49	$0 / 2204$
42	f	0.28	$0 / 873$	0.47	$0 / 1180$
43	g	0.40	$0 / 1102$	0.51	$0 / 1503$
44	h	0.27	$0 / 884$	0.48	$0 / 1203$
45	i	0.43	$0 / 849$	0.56	$0 / 1135$
46	j	0.33	$0 / 698$	0.51	$0 / 940$
47	k	0.24	$0 / 635$	0.53	$0 / 855$
48	m	0.23	$0 / 239$	0.59	$0 / 322$
49	o	0.37	$0 / 807$	0.58	$0 / 1083$
50	p	0.28	$0 / 1071$	0.54	$0 / 1433$
51	q	0.30	$0 / 1107$	0.53	$0 / 1498$
52	r	0.35	$0 / 1238$	0.53	$0 / 1676$
53	s	0.39	$0 / 3114$	0.53	$0 / 4225$
54	u	0.31	$0 / 949$	0.50	$0 / 1281$
55	v	0.26	$0 / 597$	0.61	$0 / 796$
56	w	0.26	$0 / 647$	0.44	$0 / 871$
57	x	0.33	$0 / 1091$	0.56	$0 / 1467$
All	All	0.52	$0 / 106148$	0.63	$8 / 150287(0.0 \%)$

There are no bond length outliers.
The worst 5 of 8 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed $\left({ }^{\circ}\right)$	Ideal $\left({ }^{\circ}\right)$
11	A	2215	C	C2-N1-C1'	8.26	127.88	118.80
11	A	2186	C	N1-C2-O2	6.16	122.59	118.90
11	A	2215	C	C6-N1-C1'	-6.16	113.41	120.80
11	A	2215	C	N1-C2-O2	5.99	122.49	118.90
11	A	2163	A	O4'-C1'-N9	5.46	112.57	108.20

There are no chirality outliers.
There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	0	$106 / 108(98 \%)$	$105(99 \%)$	$1(1 \%)$	0	100	100
2	1	$50 / 65(77 \%)$	$49(98 \%)$	$1(2 \%)$	0	100	100
3	2	$43 / 92(47 \%)$	$42(98 \%)$	$1(2 \%)$	0	100	100
4	3	$93 / 188(50 \%)$	$90(97 \%)$	$3(3 \%)$	0	100	100
5	4	$35 / 103(34 \%)$	$34(97 \%)$	$1(3 \%)$	0	100	100
6	5	$390 / 423(92 \%)$	$376(96 \%)$	$14(4 \%)$	0	100	100
7	6	$316 / 380(83 \%)$	$303(96 \%)$	$13(4 \%)$	0	100	100
8	7	$285 / 338(84 \%)$	$268(94 \%)$	$17(6 \%)$	0	100	100
9	8	$75 / 206(36 \%)$	$72(96 \%)$	$3(4 \%)$	0	100	100
10	9	$113 / 137(82 \%)$	$112(99 \%)$	$1(1 \%)$	0	100	100
13	C	$335 / 384(87 \%)$	$317(95 \%)$	$18(5 \%)$	0	100	100
14	D	$238 / 305(78 \%)$	$232(98 \%)$	$6(2 \%)$	0	100	100
15	E	$306 / 348(88 \%)$	$296(97 \%)$	$10(3 \%)$	0	100	100
16	F	$248 / 311(80 \%)$	$242(98 \%)$	$6(2 \%)$	0	100	100
17	G	$236 / 381(62 \%)$	$225(95 \%)$	$11(5 \%)$	0	100	100
18	H	$93 / 267(35 \%)$	$88(95 \%)$	$5(5 \%)$	0	100	100
19	I	$154 / 261(59 \%)$	$146(95 \%)$	$8(5 \%)$	0	100	100
20	J	$138 / 192(72 \%)$	$126(91 \%)$	$12(9 \%)$	0	100	100
21	K	$175 / 178(98 \%)$	$171(98 \%)$	$4(2 \%)$	0	100	100
22	L	$113 / 145(78 \%)$	$109(96 \%)$	$4(4 \%)$	0	100	100
23	M	$285 / 296(96 \%)$	$282(99 \%)$	$3(1 \%)$	0	100	100

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
24	N	$203 / 251(81 \%)$	$191(94 \%)$	$12(6 \%)$	0	100	100
25	O	$150 / 175(86 \%)$	$147(98 \%)$	$3(2 \%)$	0	100	100
26	P	$139 / 180(77 \%)$	$134(96 \%)$	$5(4 \%)$	0	100	100
27	Q	$215 / 292(74 \%)$	$212(99 \%)$	$3(1 \%)$	0	100	100
28	R	$114 / 149(76 \%)$	$113(99 \%)$	$1(1 \%)$	0	100	100
29	S	$154 / 205(75 \%)$	$151(98 \%)$	$3(2 \%)$	0	100	100
30	T	$164 / 206(80 \%)$	$161(98 \%)$	$3(2 \%)$	0	100	100
31	U	$135 / 153(88 \%)$	$133(98 \%)$	$2(2 \%)$	0	100	100
32	V	$45 / 216(21 \%)$	$45(100 \%)$	0	0	100	100
33	W	$107 / 148(72 \%)$	$105(98 \%)$	$2(2 \%)$	0	100	100
34	X	$241 / 256(94 \%)$	$236(98 \%)$	$5(2 \%)$	0	100	100
35	Y	$174 / 250(70 \%)$	$170(98 \%)$	$4(2 \%)$	0	100	100
36	Z	$113 / 161(70 \%)$	$110(97 \%)$	$3(3 \%)$	0	100	100
37	a	$67 / 142(47 \%)$	$67(100 \%)$	0	0	100	100
38	b	$146 / 215(68 \%)$	$141(97 \%)$	$5(3 \%)$	0	100	100
39	c	$271 / 332(82 \%)$	$267(98 \%)$	$4(2 \%)$	0	100	100
40	d	$189 / 306(62 \%)$	$183(97 \%)$	$6(3 \%)$	0	100	100
41	e	$191 / 279(68 \%)$	$179(94 \%)$	$12(6 \%)$	0	100	100
42	f	$102 / 212(48 \%)$	$94(92 \%)$	$8(8 \%)$	0	100	100
43	g	$127 / 166(76 \%)$	$120(94 \%)$	$7(6 \%)$	0	100	100
44	h	$101 / 158(64 \%)$	$99(98 \%)$	$2(2 \%)$	0	100	100
45	i	$95 / 128(74 \%)$	$94(99 \%)$	$1(1 \%)$	0	100	100
46	j	$83 / 85(98 \%)$	$83(100 \%)$	0	0	100	100
47	k	$76 / 112(68 \%)$	$70(92 \%)$	$6(8 \%)$	0	100	100
48	m	$26 / 128(20 \%)$	$20(77 \%)$	$6(23 \%)$	0	100	100
49	o	$91 / 102(89 \%)$	$89(98 \%)$	$2(2 \%)$	0	100	100
53	s	$366 / 439(83 \%)$	$358(98 \%)$	$8(2 \%)$	0	100	100
50	p	$119 / 206(58 \%)$	$116(98 \%)$	$3(2 \%)$	0	100	100
51	q	$126 / 222(57 \%)$	$126(100 \%)$	0	0	100	100
52	r	$140 / 196(71 \%)$	$133(95 \%)$	$7(5 \%)$	0	100	100
2	$109 / 234(47 \%)$	$100(92 \%)$	$9(8 \%)$	0	100	100	

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
55	v	$67 / 70(96 \%)$	$65(97 \%)$	$2(3 \%)$	0	100	100
56	w	$77 / 156(49 \%)$	$73(95 \%)$	$4(5 \%)$	0	100	100
57	x	$146 / 406(36 \%)$	$138(94 \%)$	$8(6 \%)$	0	100	100
All	All	$8496 / 12044(70 \%)$	$8208(97 \%)$	$288(3 \%)$	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	0	$97 / 97(100 \%)$	$97(100 \%)$	0	100	100
2	1	$49 / 60(82 \%)$	$49(100 \%)$	0	100	100
3	2	$39 / 72(54 \%)$	$39(100 \%)$	0	100	100
4	3	$88 / 166(53 \%)$	$88(100 \%)$	0	100	100
5	4	$36 / 89(40 \%)$	$36(100 \%)$	0	100	100
6	5	$353 / 368(96 \%)$	$352(100 \%)$	$1(0 \%)$	92	97
7	6	$286 / 332(86 \%)$	$285(100 \%)$	$1(0 \%)$	92	97
8	7	$263 / 303(87 \%)$	$262(100 \%)$	$1(0 \%)$	91	97
9	8	$70 / 190(37 \%)$	$69(99 \%)$	$1(1 \%)$	67	86
10	9	$99 / 112(88 \%)$	$99(100 \%)$	0	100	100
13	C	$293 / 328(89 \%)$	$292(100 \%)$	$1(0 \%)$	92	97
14	D	$194 / 245(79 \%)$	$193(100 \%)$	$1(0 \%)$	88	96
15	E	$262 / 290(90 \%)$	$262(100 \%)$	0	100	100
16	F	$217 / 262(83 \%)$	$217(100 \%)$	0	100	100
17	G	$221 / 350(63 \%)$	$221(100 \%)$	0	100	100
18	H	$86 / 228(38 \%)$	$86(100 \%)$	0	100	100
19	I	$145 / 232(62 \%)$	$145(100 \%)$	0	100	100
20	J	$113 / 150(75 \%)$	$113(100 \%)$	0	100	100

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
21	K	$155 / 156(99 \%)$	$155(100 \%)$	0	100	100
22	L	$98 / 124(79 \%)$	$98(100 \%)$	0	100	100
23	M	$245 / 249(98 \%)$	$243(99 \%)$	$2(1 \%)$	81	93
24	N	$172 / 211(82 \%)$	$170(99 \%)$	$2(1 \%)$	71	88
25	O	$133 / 150(89 \%)$	$133(100 \%)$	0	100	100
26	P	$123 / 155(79 \%)$	$123(100 \%)$	0	100	100
27	Q	$199 / 256(78 \%)$	$199(100 \%)$	0	100	100
28	R	$101 / 126(80 \%)$	$101(100 \%)$	0	100	100
29	S	$141 / 180(78 \%)$	$141(100 \%)$	0	100	100
30	T	$146 / 176(83 \%)$	$146(100 \%)$	0	100	100
31	U	$124 / 135(92 \%)$	$124(100 \%)$	0	100	100
32	V	$43 / 191(22 \%)$	$43(100 \%)$	0	100	100
33	W	$89 / 119(75 \%)$	$89(100 \%)$	0	100	100
34	X	$219 / 229(96 \%)$	$218(100 \%)$	$1(0 \%)$	88	96
35	Y	$159 / 223(71 \%)$	$159(100 \%)$	0	100	100
36	Z	$106 / 147(72 \%)$	$105(99 \%)$	$1(1 \%)$	78	92
37	a	$67 / 133(50 \%)$	$67(100 \%)$	0	100	100
38	b	$130 / 186(70 \%)$	$130(100 \%)$	0	100	100
39	c	$241 / 288(84 \%)$	$241(100 \%)$	0	100	100
40	d	$184 / 274(67 \%)$	$183(100 \%)$	$1(0 \%)$	88	96
41	e	$171 / 236(72 \%)$	$171(100 \%)$	0	100	100
42	f	$95 / 188(50 \%)$	$95(100 \%)$	0	100	100
43	g	$119 / 148(80 \%)$	$119(100 \%)$	0	100	100
44	h	$100 / 148(68 \%)$	$100(100 \%)$	0	100	100
45	i	$86 / 110(78 \%)$	$86(100 \%)$	0	100	100
46	j	$68 / 68(100 \%)$	$68(100 \%)$	0	100	100
47	k	$71 / 90(79 \%)$	$70(99 \%)$	$1(1 \%)$	67	86
48	m	$26 / 113(23 \%)$	$26(100 \%)$	0	100	100
49	o	$79 / 87(91 \%)$	$78(99 \%)$	$1(1 \%)$	69	87
50	p	$117 / 181(65 \%)$	$117(100 \%)$	0	100	100
51	q	$110 / 178(62 \%)$	$110(100 \%)$	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
52	r	$133 / 169(79 \%)$	$133(100 \%)$	0	100	100
53	s	$326 / 381(86 \%)$	$326(100 \%)$	0	100	100
54	u	$105 / 200(52 \%)$	$104(99 \%)$	$1(1 \%)$	76	90
55	v	$59 / 60(98 \%)$	$58(98 \%)$	$1(2 \%)$	60	82
56	w	$73 / 136(54 \%)$	$72(99 \%)$	$1(1 \%)$	67	86
57	x	$109 / 320(34 \%)$	$109(100 \%)$	0	100	100
All	All	$7633 / 10395(73 \%)$	$7615(100 \%)$	$18(0 \%)$	93	98

5 of 18 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
49	o	15	ARG
56	w	106	LYS
55	v	41	LYS
24	N	133	ARG
47	k	73	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 6 such sidechains are listed below:

Mol	Chain	Res	Type
29	S	118	ASN
47	k	19	GLN
51	q	130	GLN
22	L	33	GLN
13	C	46	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
11	A	$1359 / 1559(87 \%)$	$294(21 \%)$	$21(1 \%)$
12	B	$51 / 69(73 \%)$	$16(31 \%)$	$1(1 \%)$
All	All	$1410 / 1628(86 \%)$	$310(21 \%)$	$22(1 \%)$

5 of 310 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
11	A	1672	C
11	A	1676	A

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type
11	A	1677	C
11	A	1679	U
11	A	1680	A

5 of 22 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
11	A	2695	G
11	A	2905	A
11	A	2837	A
11	A	3092	U
11	A	2182	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

3 non-standard protein/DNA/RNA residues are modelled in this entry.
In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z|>2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Res	Link	Bond lengths			Bond angles		
					Counts	RMSZ	$\#\|Z\|>2$	Counts	RMSZ	$\#\|Z\|>2$
11	OMG	A	2815	11	$18,26,27$	1.26	$2(11 \%)$	$20,38,41$	2.28	$6(30 \%)$
11	OMG	A	3040	11	$18,26,27$	1.16	$2(11 \%)$	$20,38,41$	2.16	$6(30 \%)$
11	OMU	A	3039	11	$14,22,23$	0.94	$1(7 \%)$	$14,31,34$	0.99	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
11	OMG	A	2815	11	-	$2 / 5 / 27 / 28$	$0 / 3 / 3 / 3$
11	OMG	A	3040	11	-	$0 / 5 / 27 / 28$	$0 / 3 / 3 / 3$
11	OMU	A	3039	11	-	$0 / 7 / 27 / 28$	$0 / 2 / 2 / 2$

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed($\AA \mathbf{~})$	Ideal($\AA \mathbf{\AA})$
11	A	2815	OMG	C6-C5	4.12	1.48	1.41
11	A	3040	OMG	C6-C5	3.71	1.47	1.41
11	A	3039	OMU	C2-N3	-2.53	1.33	1.38
11	A	2815	OMG	C5-C4	2.20	1.46	1.40
11	A	3040	OMG	C5-C4	2.01	1.46	1.40

The worst 5 of 12 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed $\left({ }^{\circ}\right)$	Ideal $\left({ }^{\circ}\right)$
11	A	3040	OMG	C2-N3-C4	4.98	121.05	115.36
11	A	2815	OMG	C2-N3-C4	4.93	120.98	115.36
11	A	2815	OMG	C6-C5-C4	-4.24	116.75	120.80
11	A	3040	OMG	C6-C5-C4	-4.07	116.91	120.80
11	A	2815	OMG	C6-N1-C2	4.03	122.34	115.93

There are no chirality outliers.
All (2) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
11	A	2815	OMG	O4'-C4'-C5'-O5'
11	A	2815	OMG	C3'-C4'-C5'-O5'

There are no ring outliers.
No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 77 ligands modelled in this entry, 77 are monoatomic - leaving 0 for Mogul analysis.
There are no bond length outliers.
There are no bond angle outliers.
There are no chirality outliers.
There are no torsion outliers.

There are no ring outliers.
No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation

This section contains visualisations of the EMDB entry EMD-12872. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 175

6.2.2 Raw map

X Index: 175

Y Index: 175

Y Index: 175

Z Index: 175

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 188

6.3.2 Raw map

Y Index: 159

Y Index: 159

Z Index: 178

X Index: 192
ex: 192

Z Index: 177

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.006 . These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.5 Mask visualisation (i)

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure
6.5.1 emd_12872_msk_1.map (i)

X

Y

Z

7 Map analysis

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x -axis. The y -axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is $1175 \mathrm{~nm}^{3}$; this corresponds to an approximate mass of 1062 kDa .

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.
7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of $0.400 \AA^{-1}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC ©

*Reported resolution corresponds to spatial frequency of $0.400 \AA^{-1}$

8.2 Resolution estimates (i)

Resolution estimate (\AA)	Estimation criterion (FSC cut-off)		
	0.143	0.5	Half-bit
Reported by author	2.50	-	-
Author-provided FSC curve	-	-	-
Calculated*	2.95	3.64	3.00

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 2.95 differs from the reported value 2.5 by more than 10%

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-12872 and PDB model 7OF7. Per-residue inclusion information can be found in section 3 on page 14 .

9.1 Map-model overlay

X

Y

The images above show the 3D surface view of the map at the recommended contour level 0.006 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Atom inclusion (i)

At the recommended contour level, 96% of all backbone atoms, 93% of all non-hydrogen atoms, are inside the map.

