

Apr 16, 2024 – 06:30 am BST

PDB ID 80IS : EMDB ID : EMD-16898 Title : 28S human mitochondrial small ribosomal subunit with mtRF1 and P-site tRNA Saurer, M.; Leibundgut, M.; Scaiola, A.; Schoenhut, T.; Ban, N. Authors : Deposited on 2023-03-23 : 3.00 Å(reported) Resolution : ., 7QI4 Based on initial models :

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | 0.0.1.dev92                                                        |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.4, CSD as541be (2020)                                          |
| MolProbity                     | : | 4.02b-467                                                          |
| buster-report                  | : | 1.1.7 (2018)                                                       |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| $\operatorname{MapQ}$          | : | FAILED                                                             |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.36                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 3.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $\begin{array}{c} \textbf{Whole archive} \\ \textbf{(\#Entries)} \end{array}$ | ${f EM} {f structures} \ (\#{f Entries})$ |  |  |
|-----------------------|-------------------------------------------------------------------------------|-------------------------------------------|--|--|
| Ramachandran outliers | 154571                                                                        | 4023                                      |  |  |
| Sidechain outliers    | 154315                                                                        | 3826                                      |  |  |
| RNA backbone          | 4643                                                                          | 859                                       |  |  |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

| Mol | Chain | Length | Quality of chain |     |
|-----|-------|--------|------------------|-----|
| 1   | BX    | 292    | 5% 95%           |     |
| 2   | Bd    | 128    | 20% 80%          |     |
| 3   | AA    | 955    | 87%              | 13% |
| 4   | AB    | 323    | 86%              | 14% |
| 5   | AC    | 167    | 79%              | 21% |
| 6   | AD    | 199    | • 65%            |     |
| 7   | AE    | 125    | 97%              | ••• |
| 8   | AF    | 242    | 86%              | 14% |
| 9   | AG    | 71     | 80%              | 20% |



| Mol | Chain | Length | Quality of chain |     |
|-----|-------|--------|------------------|-----|
| 10  | AH    | 201    | 69%              | 30% |
| 11  | AI    | 33     | 97%              | •   |
| 12  | AJ    | 138    | 78%              | 22% |
| 13  | AK    | 128    | 79%              | 21% |
| 14  | AL    | 257    | 67%              | 32% |
| 15  | AM    | 137    | 87%              | 13% |
| 16  | AN    | 130    | 85%              | 15% |
| 17  | AO    | 258    | 75%              | 25% |
| 18  | AP    | 142    | 68% •            | 32% |
| 19  | AQ    | 87     | 99%              | ·   |
| 20  | AR    | 360    | 82%              | 18% |
| 21  | AS    | 190    | 71%              | 29% |
| 22  | AT    | 173    | 97%              | •   |
| 23  | AU    | 205    | 86%              | 14% |
| 24  | AV    | 414    | 87%              | 13% |
| 25  | AW    | 187    | 53% 47%          |     |
| 26  | AX    | 398    | 88%              | 12% |
| 27  | AY    | 395    | 38% 62%          |     |
| 28  | AZ    | 106    | 94%              | 6%  |
| 29  | Aa    | 484    | 79%              | 21% |
| 30  | Ab    | 296    | 76%              | 24% |
| 31  | Ac    | 118    | 99%              | ·   |
| 32  | Ad    | 430    | 80%              | 20% |
| 33  | Ae    | 689    | 85%              | 15% |
| 34  | Ag    | 396    | 82%              | 17% |



| Mol | Chain | Length | Quality of chain |   |     |  |  |  |  |
|-----|-------|--------|------------------|---|-----|--|--|--|--|
| 35  | Ai    | 194    | 70%              | • | 29% |  |  |  |  |
| 36  | Aj    | 218    | 99%              |   |     |  |  |  |  |



# 2 Entry composition (i)

There are 44 unique types of molecules in this entry. The entry contains 72671 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 39S ribosomal protein L19, mitochondrial.

| Mol | Chain | Residues | Atoms        |         |         |         | AltConf | Trace |
|-----|-------|----------|--------------|---------|---------|---------|---------|-------|
| 1   | BX    | 14       | Total<br>113 | С<br>74 | N<br>22 | 0<br>17 | 0       | 0     |

• Molecule 2 is a protein called 39S ribosomal protein L55, mitochondrial.

| Mol | Chain | Residues | Atoms        |          |         |         | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------|---------|---------|-------|
| 2   | Bd    | 26       | Total<br>241 | C<br>150 | N<br>45 | O<br>46 | 0       | 0     |

• Molecule 3 is a RNA chain called 12S rRNA.

| Mol | Chain | Residues | Atoms          |           |           |           |          | AltConf | Trace |
|-----|-------|----------|----------------|-----------|-----------|-----------|----------|---------|-------|
| 3   | AA    | 955      | Total<br>20283 | C<br>9098 | N<br>3652 | O<br>6578 | Р<br>955 | 0       | 0     |

There is a discrepancy between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment | Reference     |
|-------|---------|----------|--------|---------|---------------|
| AA    | 62      | G        | А      | variant | GB OM714795.1 |

• Molecule 4 is a protein called 28S ribosomal protein S35, mitochondrial.

| Mol | Chain | Residues | Atoms         |           |          |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 4   | AB    | 279      | Total<br>2265 | C<br>1435 | N<br>387 | 0<br>432 | S<br>11 | 0       | 0     |

• Molecule 5 is a protein called 28S ribosomal protein S24, mitochondrial.

| Mol | Chain | Residues | Atoms         |          |          |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---------|-------|
| 5   | AC    | 132      | Total<br>1083 | C<br>699 | N<br>195 | 0<br>185 | $\frac{S}{4}$ | 0       | 0     |

• Molecule 6 is a protein called Aurora kinase A-interacting protein.



| Mol | Chain | Residues | Atoms        |          |          |         |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|---------|--------|---------|-------|
| 6   | AD    | 70       | Total<br>625 | C<br>401 | N<br>134 | O<br>89 | S<br>1 | 0       | 0     |

• Molecule 7 is a protein called 28S ribosomal protein S6, mitochondrial.

| Mol | Chain | Residues |              | At       | AltConf  | Trace    |               |   |   |
|-----|-------|----------|--------------|----------|----------|----------|---------------|---|---|
| 7   | AE    | 122      | Total<br>972 | C<br>614 | N<br>177 | 0<br>177 | $\frac{S}{4}$ | 0 | 0 |

• Molecule 8 is a protein called 28S ribosomal protein S7, mitochondrial.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 8   | AF    | 208      | Total<br>1725 | C<br>1104 | N<br>312 | 0<br>298 | S<br>11 | 0 | 0 |

• Molecule 9 is a RNA chain called P-site Met-tRNA(Met).

| Mol | Chain | Residues |               | A        | toms     | AltConf  | Trace   |   |   |
|-----|-------|----------|---------------|----------|----------|----------|---------|---|---|
| 9   | AG    | 71       | Total<br>1504 | С<br>674 | N<br>264 | 0<br>495 | Р<br>71 | 0 | 0 |

There are 2 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment   | Reference      |
|-------|---------|----------|--------|-----------|----------------|
| AG    | 69      | С        | -      | insertion | GB NC_012920.1 |
| AG    | 70      | С        | -      | insertion | GB NC_012920.1 |

• Molecule 10 is a protein called 28S ribosomal protein S10, mitochondrial.

| Mol | Chain | Residues |       | At  | oms |     |   | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|-----|---|---------|-------|
| 10  | AH    | 140      | Total | С   | N   | 0   | S | 0       | 0     |
| -   |       | _        | 1152  | 745 | 194 | 210 | 3 | -       | -     |

• Molecule 11 is a RNA chain called mRNA.

| Mol | Chain | Residues |              | At       | oms     | AltConf  | Trace   |   |   |
|-----|-------|----------|--------------|----------|---------|----------|---------|---|---|
| 11  | AI    | 33       | Total<br>463 | C<br>198 | N<br>29 | O<br>203 | Р<br>33 | 0 | 0 |

• Molecule 12 is a protein called 28S ribosomal protein S12, mitochondrial.



| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|--------------|----------|----------|----------|--------|---|---|
| 12  | AJ    | 108      | Total<br>839 | C<br>521 | N<br>169 | 0<br>143 | S<br>6 | 0 | 0 |

• Molecule 13 is a protein called 28S ribosomal protein S14, mitochondrial.

| Mol | Chain | Residues |              | At       | AltConf  | Trace    |                |   |   |
|-----|-------|----------|--------------|----------|----------|----------|----------------|---|---|
| 13  | AK    | 101      | Total<br>862 | C<br>537 | N<br>179 | 0<br>141 | ${ m S}{ m 5}$ | 0 | 0 |

• Molecule 14 is a protein called 28S ribosomal protein S15, mitochondrial.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace      |   |   |
|-----|-------|----------|---------------|----------|----------|----------|------------|---|---|
| 14  | AL    | 174      | Total<br>1453 | C<br>925 | N<br>270 | 0<br>251 | ${f S}{7}$ | 0 | 0 |

• Molecule 15 is a protein called 28S ribosomal protein S16, mitochondrial.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|--------------|----------|----------|----------|--------|---|---|
| 15  | AM    | 119      | Total<br>942 | C<br>594 | N<br>185 | 0<br>157 | S<br>6 | 0 | 0 |

• Molecule 16 is a protein called 28S ribosomal protein S17, mitochondrial.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace           |   |   |
|-----|-------|----------|--------------|----------|----------|----------|-----------------|---|---|
| 16  | AN    | 110      | Total<br>868 | C<br>562 | N<br>156 | 0<br>147 | ${ m S} { m 3}$ | 0 | 0 |

• Molecule 17 is a protein called 28S ribosomal protein S18b, mitochondrial.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |            |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|------------|---|---|
| 17  | AO    | 193      | Total<br>1592 | C<br>1014 | N<br>294 | 0<br>277 | ${ m S} 7$ | 0 | 0 |

• Molecule 18 is a protein called 28S ribosomal protein S18c, mitochondrial.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|--------------|----------|----------|----------|--------|---|---|
| 18  | AP    | 97       | Total<br>781 | C<br>501 | N<br>134 | 0<br>138 | S<br>8 | 0 | 0 |

• Molecule 19 is a protein called 28S ribosomal protein S21, mitochondrial.



| Mol | Chain | Residues |              | At       | Atoms    |          |        |   |   |  |  |
|-----|-------|----------|--------------|----------|----------|----------|--------|---|---|--|--|
| 19  | AQ    | 86       | Total<br>744 | C<br>460 | N<br>150 | 0<br>126 | S<br>8 | 0 | 0 |  |  |

There is a discrepancy between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment | Reference  |
|-------|---------|----------|--------|---------|------------|
| AQ    | 50      | ARG      | CYS    | variant | UNP P82921 |

• Molecule 20 is a protein called 28S ribosomal protein S22, mitochondrial.

| Mol | Chain | Residues |               | At        | oms      |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---------|-------|
| 20  | AR    | 295      | Total<br>2409 | C<br>1533 | N<br>413 | O<br>455 | S<br>8 | 0       | 0     |

• Molecule 21 is a protein called 28S ribosomal protein S23, mitochondrial.

| Mol | Chain | Residues |               | At       | $\mathbf{oms}$ | AltConf  | Trace  |   |   |
|-----|-------|----------|---------------|----------|----------------|----------|--------|---|---|
| 21  | AS    | 135      | Total<br>1111 | C<br>716 | N<br>198       | 0<br>196 | S<br>1 | 0 | 0 |

• Molecule 22 is a protein called 28S ribosomal protein S25, mitochondrial.

| Mol | Chain | Residues |               | $\mathbf{A}^{\dagger}$ | toms     |          |         | AltConf | Trace |
|-----|-------|----------|---------------|------------------------|----------|----------|---------|---------|-------|
| 22  | AT    | 168      | Total<br>1371 | C<br>877               | N<br>239 | 0<br>244 | S<br>11 | 0       | 0     |

• Molecule 23 is a protein called 28S ribosomal protein S26, mitochondrial.

| Mol | Chain | Residues |               | At       | AltConf  | Trace    |               |   |   |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---|---|
| 23  | AU    | 176      | Total<br>1488 | C<br>916 | N<br>301 | 0<br>267 | $\frac{S}{4}$ | 0 | 0 |

• Molecule 24 is a protein called 28S ribosomal protein S27, mitochondrial.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 24  | AV    | 362      | Total<br>2969 | C<br>1904 | N<br>495 | O<br>558 | S<br>12 | 0 | 0 |

• Molecule 25 is a protein called 28S ribosomal protein S28, mitochondrial.



| Mol | Chain | Residues |              | At       | oms      |          |               | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------------|---------|-------|
| 25  | AW    | 100      | Total<br>789 | C<br>498 | N<br>141 | O<br>146 | $\frac{S}{4}$ | 0       | 0     |

• Molecule 26 is a protein called 28S ribosomal protein S29, mitochondrial.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 26  | AX    | 352      | Total<br>2849 | C<br>1822 | N<br>499 | 0<br>517 | S<br>11 | 0 | 0 |

• Molecule 27 is a protein called 28S ribosomal protein S31, mitochondrial.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace         |   |   |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---|---|
| 27  | AY    | 149      | Total<br>1246 | C<br>801 | N<br>207 | 0<br>234 | $\frac{S}{4}$ | 0 | 0 |

• Molecule 28 is a protein called 28S ribosomal protein S33, mitochondrial.

| Mol | Chain | Residues |              | At       | oms      |          |               | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------------|---------|-------|
| 28  | AZ    | 100      | Total<br>839 | C<br>534 | N<br>153 | 0<br>148 | $\frac{S}{4}$ | 0       | 0     |

• Molecule 29 is a protein called Peptide chain release factor 1, mitochondrial, mtRF1(AAQ).

| Mol | Chain | Residues |               | At        | oms      |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 29  | Aa    | 381      | Total<br>3114 | C<br>1940 | N<br>569 | O<br>592 | S<br>13 | 0       | 0     |

There are 2 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment             | Reference  |
|-------|---------|----------|--------|---------------------|------------|
| Aa    | 311     | ALA      | GLY    | engineered mutation | UNP 075570 |
| Aa    | 312     | ALA      | GLY    | engineered mutation | UNP 075570 |

• Molecule 30 is a protein called 28S ribosomal protein S2, mitochondrial.

| Mol | Chain | Residues | Atoms         |           |          |          | AltConf | Trace |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|-------|---|
| 30  | Ab    | 225      | Total<br>1828 | C<br>1164 | N<br>331 | 0<br>323 | S<br>10 | 0     | 0 |

• Molecule 31 is a protein called Coiled-coil-helix-coiled-coil-helix domain-containing protein 1.



| Mol | Chain | Residues | Atoms        |          |          |          | AltConf | Trace |   |
|-----|-------|----------|--------------|----------|----------|----------|---------|-------|---|
| 31  | Ac    | 117      | Total<br>935 | C<br>579 | N<br>182 | O<br>166 | S<br>8  | 0     | 0 |

• Molecule 32 is a protein called 28S ribosomal protein S5, mitochondrial.

| Mol | Chain | Residues | Atoms         |           |          |          | AltConf | Trace |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|-------|---|
| 32  | Ad    | 343      | Total<br>2731 | C<br>1713 | N<br>518 | O<br>487 | S<br>13 | 0     | 0 |

• Molecule 33 is a protein called Pentatricopeptide repeat domain-containing protein 3, mitochondrial.

| Mol | Chain | Residues | Atoms         |           |          |          | AltConf | Trace |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|-------|---|
| 33  | Ae    | 588      | Total<br>4768 | C<br>3053 | N<br>808 | 0<br>879 | S<br>28 | 0     | 0 |

• Molecule 34 is a protein called 28S ribosomal protein S9, mitochondrial.

| Mol | Chain | Residues | Atoms         |           |          |          | AltConf | Trace |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|-------|---|
| 34  | Ag    | 327      | Total<br>2688 | C<br>1710 | N<br>477 | 0<br>487 | S<br>14 | 0     | 0 |

• Molecule 35 is a protein called 28S ribosomal protein S11, mitochondrial.

| Mol | Chain | Residues | Atoms         |          |          | AltConf  | Trace         |   |   |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---|---|
| 35  | Ai    | 137      | Total<br>1020 | C<br>642 | N<br>192 | 0<br>182 | $\frac{S}{4}$ | 0 | 0 |

There is a discrepancy between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment | Reference  |
|-------|---------|----------|--------|---------|------------|
| Ai    | 184     | 5F0      | ASN    | variant | UNP P82912 |

• Molecule 36 is a protein called 28S ribosomal protein S34, mitochondrial.

| Mol | Chain | Residues | Atoms         |           |          |          | AltConf       | Trace |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------------|-------|---|
| 36  | Aj    | 215      | Total<br>1787 | C<br>1130 | N<br>339 | 0<br>313 | $\frac{S}{5}$ | 0     | 0 |

• Molecule 37 is POTASSIUM ION (three-letter code: K) (formula: K).



| Mol | Chain | Residues | Atoms            | AltConf |
|-----|-------|----------|------------------|---------|
| 37  | AA    | 16       | Total K<br>16 16 | 0       |
| 37  | Ae    | 1        | Total K<br>1 1   | 0       |

• Molecule 38 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

| I | Mol | Chain | Residues | Atoms                                      | AltConf |
|---|-----|-------|----------|--------------------------------------------|---------|
|   | 38  | АА    | 120      | Total         Mg           120         120 | 0       |
|   | 38  | AD    | 1        | Total Mg<br>1 1                            | 0       |
|   | 38  | AG    | 1        | Total Mg<br>1 1                            | 0       |
|   | 38  | AU    | 1        | Total Mg<br>1 1                            | 0       |
|   | 38  | AX    | 1        | Total Mg<br>1 1                            | 0       |
|   | 38  | Ab    | 1        | Total Mg<br>1 1                            | 0       |
|   | 38  | Ad    | 1        | Total Mg<br>1 1                            | 0       |

• Molecule 39 is METHIONINE (three-letter code: MET) (formula:  $C_5H_{11}NO_2S$ ).



| Mol | Chain | Residues | Atoms      |        |        | AltConf |        |   |
|-----|-------|----------|------------|--------|--------|---------|--------|---|
| 39  | AG    | 1        | Total<br>8 | С<br>5 | N<br>1 | 0<br>1  | S<br>1 | 0 |



• Molecule 40 is ZINC ION (three-letter code: ZN) (formula: Zn).

| Mol | Chain | Residues | Ator       | $\mathbf{ns}$ | AltConf |
|-----|-------|----------|------------|---------------|---------|
| 40  | AO    | 1        | Total<br>1 | Zn<br>1       | 0       |

• Molecule 41 is FE-S-O HYBRID CLUSTER (three-letter code: FS2) (formula:  $Fe_4O_3S_2$ ).



| Mol | Chain       | Residues | Atoms      | AltConf |
|-----|-------------|----------|------------|---------|
| 41  | AР          | 1        | Total Fe S | 0       |
|     | 111         | 1        | 4 2 2      | 0       |
| 41  | $\Lambda T$ | 1        | Total Fe S | 0       |
| ±1  |             | I        | 4 2 2      | 0       |

• Molecule 42 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula:  $C_{10}H_{16}N_5O_{13}P_3$ ).





| Mol | Chain | Residues | Atoms |    |   | AltConf |   |   |
|-----|-------|----------|-------|----|---|---------|---|---|
| 49  | ٨v    | 1        | Total | С  | Ν | Ο       | Р | 0 |
| 42  | АЛ    | AA I     | 31    | 10 | 5 | 13      | 3 | 0 |

• Molecule 43 is GUANOSINE-5'-DIPHOSPHATE (three-letter code: GDP) (formula:  $\rm C_{10}H_{15}N_5O_{11}P_2).$ 



| Mol | Chain | Residues |             | Ate     | oms    |         |        | AltConf |
|-----|-------|----------|-------------|---------|--------|---------|--------|---------|
| 43  | AX    | 1        | Total<br>28 | C<br>10 | N<br>5 | 0<br>11 | Р<br>2 | 0       |

• Molecule 44 is water.



| Mol | Chain | Residues | Atoms          | AltConf |
|-----|-------|----------|----------------|---------|
| 44  | AX    | 3        | Total O<br>3 3 | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 39S ribosomal protein L19, mitochondrial



#### 

• Molecule 4: 28S ribosomal protein S35, mitochondrial

| Chain AB:                                             | 86%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14%                                           |     |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----|
| MET<br>ALA<br>ALA<br>ALA<br>ALA<br>LEU<br>PRO<br>ALA  | TRP<br>THRP<br>SER<br>SER<br>CLRU<br>SER<br>CLRU<br>SER<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>THR<br>THR<br>THR<br>THR<br>THR<br>THR<br>THR<br>THR<br>THR<br>THR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |     |
| • Molecule                                            | 5: 28S ribosomal protein S24, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |     |
| Chain AC:                                             | 79%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21%                                           |     |
| MET<br>ALA<br>ALA<br>SER<br>VAL<br>CYS<br>SER<br>GLY  | LEU<br>LEU<br>GLY<br>ARG<br>VAL<br>LEU<br>LEU<br>LEU<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |     |
| • Molecule                                            | e 6: Aurora kinase A-interacting protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |     |
| Chain AD:                                             | · 65%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |     |
| MET<br>LEU<br>LEU<br>GLY<br>ARG<br>LEU<br>THR<br>SER  | CLN<br>CLEU<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>CLY<br>ARG<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>ARG<br>CLY<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | LEU<br>PRO<br>ARG<br>LYS<br>GLY<br>GLN<br>LEU | GLU |
| GLU<br>GLU<br>MET<br>LEU<br>VAL<br>PRO<br>ARG<br>LYS  | MET<br>VAL<br>VAL<br>VAL<br>VAL<br>VAL<br>VAL<br>VAL<br>VAL<br>VAL<br>VAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ALA<br>ALA<br>GLU<br>ASP<br>ASP<br>ASP<br>CLU | VAL |
| ASP<br>ALA<br>PRO<br>GLN<br>ILE<br>GLN<br>CYS<br>K128 | R155<br>R197<br>GIY<br>LYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |     |
| • Molecule                                            | 7: 28S ribosomal protein S6, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |     |
| Chain AE:                                             | 97%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               |     |
| MET<br>P2<br>V109<br>LYS<br>LYS                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |     |
| • Molecule                                            | e 8: 28S ribosomal protein S7, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |     |
| Chain AF:                                             | 86%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14%                                           |     |
| MET<br>ALA<br>ALA<br>PRO<br>ALA<br>VAL<br>LYS<br>VAL  | ALA<br>ALA<br>ARG<br>CITRP<br>SER<br>CILEU<br>CLEU<br>ARG<br>ALA<br>ARG<br>CLY<br>ARG<br>CLY<br>CLEU<br>CLEU<br>CLEU<br>CLEU<br>CLEU<br>CLEU<br>CLEU<br>CLEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |     |
| • Molecule                                            | 9: P-site Met-tRNA(Met)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |     |
| Chain AG:                                             | 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20%                                           |     |
| A1<br>G7<br>C9<br>A10<br>G11<br>G11                   | U17<br>146<br>146<br>146<br>146<br>146<br>146<br>146<br>146<br>146<br>146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |     |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |     |



| • Molecule 10                                                              | ): 28S ribosomal protein S10, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Chain AH:                                                                  | 69%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30%                                                                                                                |
| MET<br>ALA<br>ALA<br>ARG<br>ARG<br>ALA<br>ALA<br>GLY<br>ALA<br>VAL         | CYS<br>ARG<br>ARG<br>ARG<br>GLN<br>GLN<br>GLN<br>GLY<br>GLY<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VAL<br>PHE<br>SER<br>ASN<br>ASN<br>1126<br>LI20<br>GIU<br>THR<br>THR<br>THR<br>SER<br>SER                          |
| LYS<br>GLU<br>GLU<br>SER<br>LYS<br>SER                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |
| • Molecule 11                                                              | l: mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    |
| Chain AI:                                                                  | 97%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                                                                                                  |
| N 26                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |
| • Molecule 12                                                              | 2: 28S ribosomal protein S12, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    |
| Chain AJ:                                                                  | 78%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22%                                                                                                                |
| MET<br>SER<br>TRP<br>SER<br>GLY<br>LEU<br>LEU<br>GLY<br>LEU<br>LEU         | ASN<br>STRR<br>TTRR<br>TTRR<br>TTRR<br>TTRR<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |
| • Molecule 13                                                              | 3: 28S ribosomal protein S14, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    |
| Chain AK:                                                                  | 79%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21%                                                                                                                |
| MET<br>ALA<br>ALA<br>ALA<br>ALA<br>MET<br>MET<br>LEU<br>CLY<br>SER<br>LEU  | ARG<br>THR<br>CLYS<br>GLN<br>MET<br>MET<br>SER<br>SER<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                    |
| • Molecule 14                                                              | 4: 28S ribosomal protein S15, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    |
| Chain AL:                                                                  | 67%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32%                                                                                                                |
| MET<br>LEU<br>ARG<br>VAL<br>ARG<br>TRP<br>ARG<br>THR<br>LEU<br>SER         | LEU<br>ARG<br>ARA<br>ARA<br>ARA<br>ARA<br>ARA<br>ARA<br>CALU<br>VAL<br>CALU<br>PRO<br>CALY<br>CALU<br>PRO<br>CALU<br>PRO<br>CALU<br>PRO<br>CALU<br>PRO<br>CALU<br>PRO<br>CALU<br>PRO<br>CALU<br>PRO<br>CALU<br>PRO<br>CALU<br>PRO<br>CALU<br>PRO<br>CALU<br>VALA<br>ARA<br>ARA<br>ARA<br>ARA<br>ARA<br>ARA<br>ARA<br>ARA<br>CALU<br>VALA<br>ARA<br>ARA<br>CALU<br>VALA<br>ARA<br>CALU<br>VALA<br>ARA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALA<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>CALU<br>VALO<br>VALO<br>VALO<br>VALO<br>VALO<br>VALO<br>VALO<br>VALO | LEU<br>LEU<br>LEU<br>CLN<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ARG<br>CY<br>VAL<br>VAL<br>VAL<br>VAL<br>ARG<br>ARA |
| SER<br>ARG<br>L63<br>L63<br>L209<br>Q236<br>ALA<br>ALA<br>ARG              | ARG<br>ASN<br>ASN<br>ASN<br>ASN<br>SER<br>PNO<br>LLYS<br>LLYS<br>PNO<br>LLEU<br>LLEU<br>CLEU<br>GLN<br>GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                    |
| • Molecule 15                                                              | 5: 28S ribosomal protein S16, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    |
| Chain AM:                                                                  | 87%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13%                                                                                                                |
| MET<br>VAL<br>VAL<br>HIS<br>LEU<br>THR<br>THR<br>LEU<br>LEU<br>COTS<br>K10 | EH 28<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>GLU<br>THR<br>GLU<br>THR<br>THR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    |
| • Molecule 16                                                              | 5: 28S ribosomal protein S17, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    |
| Chain AN:                                                                  | 85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15%                                                                                                                |
|                                                                            | WORLDWIDE<br>PROTEIN DATA BANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                    |

| MET<br>SER<br>VAL<br>V4<br>E113<br>THR<br>THR<br>GLN<br>LEU                | SER<br>LEU<br>GLU<br>GLU<br>GLU<br>GLU<br>ASN<br>SER<br>ALA<br>ALA<br>GLN                                                                                                                 |                                                                                                              |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| • Molecule 17                                                              | : 28S ribosomal protein S18b, mitochondrial                                                                                                                                               |                                                                                                              |
| Chain AO:                                                                  | 75%                                                                                                                                                                                       | 25%                                                                                                          |
| MET<br>ALA<br>ALA<br>SER<br>VAL<br>LEU<br>ASN<br>VAL<br>THR<br>VAL<br>LEU  | ARG<br>ARG<br>LEU<br>NET<br>NET<br>NET<br>NET<br>NET<br>NET<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN                      | P47<br>P239<br>P239<br>PR0<br>ALA<br>ALA<br>ALA<br>ALA<br>GLV<br>GLV<br>CLV<br>CLV<br>CLV<br>CLV             |
| GLN<br>THR<br>GLY<br>PRO<br>GLN<br>SER<br>ALA<br>LEU                       |                                                                                                                                                                                           |                                                                                                              |
| • Molecule 18                                                              | : 28S ribosomal protein S18c, mitochondrial                                                                                                                                               |                                                                                                              |
| Chain AP:                                                                  | 68% ·                                                                                                                                                                                     | 32%                                                                                                          |
| MET<br>ALA<br>ALA<br>ALA<br>VAL<br>VAL<br>VAL<br>CYS<br>GLY<br>GLY         | LEU<br>LVS<br>LVS<br>LVS<br>LVS<br>LVS<br>LLV<br>LLU<br>VAL<br>THR<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                   |                                                                                                              |
| • Molecule 19                                                              | : 28S ribosomal protein S21, mitochondrial                                                                                                                                                |                                                                                                              |
| Chain AQ:                                                                  | 99%                                                                                                                                                                                       |                                                                                                              |
| MET<br>A2<br>C87                                                           |                                                                                                                                                                                           |                                                                                                              |
| • Molecule 20                                                              | : 28S ribosomal protein S22, mitochondrial                                                                                                                                                |                                                                                                              |
| Chain AR:                                                                  | 82%                                                                                                                                                                                       | 18%                                                                                                          |
| MET<br>ALA<br>PRO<br>CLEU<br>GLY<br>THR<br>THR<br>THR<br>VAL<br>LEU<br>LEU | TRP<br>TRP<br>LEU<br>LEU<br>ERR<br>SER<br>SER<br>SER<br>SER<br>PRO<br>CLN<br>VAL<br>CVS<br>CVS<br>ARG<br>CLN<br>VAL<br>CVS<br>CVS<br>CVS<br>CVS<br>CVS<br>CVS<br>CVS<br>CVS<br>CVS<br>CVS | GLY<br>LEU<br>PRO<br>ARG<br>ARG<br>ARG<br>ARG<br>SER<br>SER<br>SER<br>ALA<br>ALA<br>ALA<br>SER<br>SER<br>SER |
| GLY<br>SER<br>FRO<br>E64<br>A358<br>A358<br>A358<br>SER<br>SER             |                                                                                                                                                                                           |                                                                                                              |
| • Molecule 21                                                              | : 28S ribosomal protein S23, mitochondrial                                                                                                                                                |                                                                                                              |
| Chain AS:                                                                  | 71%                                                                                                                                                                                       | 29%                                                                                                          |
| MET<br>A2<br>G136<br>GLU<br>ALA<br>ARG<br>THR<br>GLN<br>HIS                | OLY<br>SER<br>SER<br>SER<br>SER<br>SER<br>ARG<br>CLUS<br>CLUS<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU                                                       | ALA<br>PRO<br>ALA<br>ALA<br>ALA<br>ALA<br>GLN<br>CLY<br>CLY<br>LEU<br>PRO<br>PRO                             |
| • Molecule 22                                                              | : 28S ribosomal protein S25, mitochondrial                                                                                                                                                |                                                                                                              |
| Chain AT:                                                                  | 97%                                                                                                                                                                                       | <del>.</del>                                                                                                 |
| MET<br>P2<br>ASP<br>ALA<br>ALA<br>GLN<br>ASP                               |                                                                                                                                                                                           |                                                                                                              |



| • Molecule 23:                                                                          | 28S ribosomal protein S26, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Chain AU:                                                                               | 86%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14%                                                                                            |
| MET<br>LEU<br>ARG<br>ALA<br>SER<br>SER<br>ARG<br>CLU<br>GLY<br>GLY<br>GLY               | THR<br>THR<br>CYS<br>CYS<br>CYS<br>ARG<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ARG<br>ARG<br>ARG<br>ASP<br>SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                |
| • Molecule 24:                                                                          | 28S ribosomal protein S27, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                |
| Chain AV:                                                                               | 87%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13%                                                                                            |
| MET<br>ALA<br>ALA<br>ALA<br>ALA<br>SER<br>TLE<br>VAL<br>ARG<br>ARG<br>GLY<br>MET<br>LEU | ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>CLU<br>CLY<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aan<br>E311<br>148<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>1                |
| • Molecule 25:                                                                          | 28S ribosomal protein S28, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                |
| Chain AW:                                                                               | 53% 47%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |
| MET<br>ALA<br>ALA<br>ALA<br>LEU<br>CYS<br>CYS<br>CYS<br>THR<br>THR<br>ALA<br>ALA        | ALA<br>ALA<br>SER<br>HIE<br>CUU<br>SER<br>HIE<br>PHE<br>PHE<br>PHE<br>PHE<br>PHE<br>PHE<br>PHE<br>CUU<br>CUV<br>CUV<br>CUV<br>CUV<br>CUV<br>CUV<br>CUV<br>CUV<br>CUV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALA<br>GLY<br>GLY<br>GLY<br>PHE<br>ALA<br>ALA<br>LEU<br>GLU<br>GLU<br>GLU<br>SER<br>SER        |
| GLU<br>LEU<br>LEU<br>GLN<br>CLYS<br>PLU<br>PRO<br>CLU<br>CLU<br>CLU<br>CLV<br>CLV       | GLI<br>SER<br>PRO<br>LLYS<br>NT6<br>LLYS<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                |
| • Molecule 26:                                                                          | 28S ribosomal protein S29, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                |
| Chain AX:                                                                               | 88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12%                                                                                            |
| MET<br>MET<br>LEU<br>LYS<br>CLYS<br>CLY<br>THR<br>ARG<br>LEU<br>LEU<br>SER<br>SER       | ARC<br>ILEU<br>LEU<br>LEU<br>ARC<br>ARC<br>ARC<br>ARC<br>ARC<br>ARC<br>ARC<br>ARC<br>ARC<br>ARC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1338<br>1338                                                                                   |
| • Molecule 27:                                                                          | 28S ribosomal protein S31, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                |
| Chain AY:                                                                               | 38% 62%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |
| MET<br>PHE<br>PRO<br>ARG<br>VAL<br>SER<br>THR<br>FHE<br>FHE<br>FLEU<br>LEU              | ARG<br>PRO<br>LEU<br>PRO<br>LEU<br>PRO<br>PRO<br>PRO<br>SER<br>SER<br>SER<br>SER<br>SER<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LEU<br>ALA<br>ARG<br>ARG<br>LEU<br>CLEU<br>ARG<br>ARG<br>GLN<br>TYR<br>PHE                     |
| GLY<br>THR<br>ASN<br>SER<br>VAL<br>ILE<br>CYS<br>SER<br>LYS<br>LYS<br>ASP               | LYS<br>CLU<br>SER<br>VAL<br>ARG<br>CLU<br>CLU<br>CLU<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLYS<br>CLYS<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLYS<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU | VAL<br>GLU<br>LEU<br>SER<br>SER<br>VAL<br>ASN<br>VAL<br>ARG<br>THR<br>THR<br>THR<br>THR<br>THR |
| PRO<br>LYS<br>ARG<br>ARG<br>PRO<br>LEU<br>LYS<br>SER<br>LEU<br>GLU<br>ALA               | THR<br>CLEU<br>CLEU<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>CLU<br>CLYS<br>ARG<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASP<br>LYS<br>CLN<br>GLN<br>THR<br>THR<br>LYS<br>SER<br>GLU<br>LEU<br>LEU<br>SER<br>SER<br>SER |
| LEU<br>GLN<br>GLN<br>HIS<br>GLU<br>GLU<br>GLU<br>SER<br>ALA<br>GLN<br>GLN               | ARG<br>ARG<br>ARG<br>ARS<br>ARS<br>ARS<br>ARS<br>ARS<br>SER<br>TILE<br>TILE<br>TILE<br>ARS<br>ARG<br>ARA<br>ARG<br>ARA<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A THE<br>ASP<br>GLV<br>GLV<br>CLY<br>ASP<br>ASP<br>ASP<br>PRO<br>PRO<br>CLN<br>CLN<br>LV       |
| THR<br>ASP<br>LASP<br>LASP<br>LYS<br>LYS<br>R247<br>N395                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                |

• Molecule 28: 28S ribosomal protein S33, mitochondrial



| Chain AZ:                                                   | 94%                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6%                                                                        |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| MET<br>SER<br>S3<br>A102<br>A1A<br>LYS<br>ARG               | SAT                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |
| • Molecule                                                  | 29: Peptide chain release factor 1, mitochondrial,mtRF                                                                                                                                                                                                                                                                                                                                                                                | 1(AAQ)                                                                    |
| Chain Aa:                                                   | 79%                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21%                                                                       |
| MET<br>ASN<br>ARG<br>HIS<br>LEU<br>CYS<br>VAL<br>TRP        | LEU<br>PHE<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>CLR<br>CLEU<br>CLEU<br>CLEU<br>CLEU<br>CLEU<br>CLEU<br>CLEU<br>CLEU                                                                                                                                                                                                                                                                                                           | LEU<br>HIS<br>LEU<br>LEU<br>SER<br>ASN<br>SER<br>ASN<br>ARG<br>ARG        |
| TYR<br>CYS<br>HIS<br>GLN<br>D65<br>M272                     | K445<br>K445<br>GLY<br>GLY<br>GLY<br>GLY<br>GLY<br>GLY<br>GLY<br>GLY<br>GLY<br>GLY                                                                                                                                                                                                                                                                                                                                                    |                                                                           |
| • Molecule                                                  | 30: 28S ribosomal protein S2, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |
| Chain Ab:                                                   | 76%                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24%                                                                       |
| MET<br>ALA<br>THR<br>SER<br>SER<br>ALA<br>ALA<br>LEU        | PR0<br>ARC<br>ARC<br>ARC<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                                                                                                                                                                                                                                                                                                         | ARG<br>GLU<br>SER<br>E53<br>H247<br>H247<br>GLU<br>PR0<br>GLY             |
| ASP<br>GLN<br>GLY<br>PRO<br>HIS<br>PRO<br>PRO               | ALA<br>ASP<br>MET<br>SER<br>HIS<br>SER<br>LEU                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           |
| • Molecule                                                  | 31: Coiled-coil-helix-coiled-coil-helix domain-containing                                                                                                                                                                                                                                                                                                                                                                             | g protein 1                                                               |
| Chain Ac:                                                   | 99%                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |
| MET<br>A2<br>S118                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| • Molecule                                                  | 32: 28S ribosomal protein S5, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |
| Chain Ad:                                                   | 80%                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20%                                                                       |
| MET<br>ALA<br>THR<br>ALA<br>VAL<br>VAL<br>ALA<br>ALA<br>VAL | GLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>C                                                                                                                                                                                                                                                                                                                                                               | SER<br>SER<br>LEU<br>GLY<br>THR<br>ARG<br>ASP<br>THR<br>HIS<br>PRO<br>TYR |
| ALA<br>SER<br>LEU<br>SER<br>ARG<br>ALA<br>LEU<br>GLN        | THR<br>CYS<br>CYS<br>CYS<br>SER<br>SER<br>FRO<br>FRO<br>CLN<br>MET<br>TAR<br>ARG<br>CLN<br>CLN<br>MET<br>TAR<br>FRO<br>FRO<br>FRO<br>FRO<br>FRO                                                                                                                                                                                                                                                                                       |                                                                           |
| • Molecule                                                  | 33: Pentatricopeptide repeat domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                | n 3, mitochondrial                                                        |
| Chain Ae:                                                   | 85%                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15%                                                                       |
| MET<br>ALA<br>VAL<br>VAL<br>SER<br>ALA<br>ALA<br>ARG        | TRP<br>LEU<br>GLEV<br>GLEV<br>GLEV<br>GLEV<br>GLEV<br>GLV<br>GLV<br>GLV<br>GLV<br>GLV<br>GLV<br>CYS<br>SER<br>ARG<br>GLV<br>GLV<br>CYS<br>SER<br>ARG<br>GLV<br>CYS<br>SER<br>ARG<br>GLV<br>CYS<br>SER<br>CYS<br>SER<br>CYS<br>SER<br>CYS<br>SER<br>CYS<br>CYS<br>SER<br>CYS<br>CYS<br>SER<br>CYS<br>CYS<br>SER<br>CYS<br>CYS<br>SER<br>CYS<br>CYS<br>CYS<br>SER<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS | ASP<br>VAL<br>THR<br>GLY<br>LLE<br>ESS<br>PHE<br>CLN<br>GLN<br>GLN        |
| THR<br>GLY<br>GLN<br>SER<br>GLU<br>LEU<br>GLU               | CLU<br>CLU<br>ASP<br>ASP<br>ASP<br>ASP<br>ARG<br>ASP<br>ARG<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>ASP<br>SER<br>ASP<br>SER<br>ASP<br>SER<br>ASP<br>SER<br>ASP<br>SER<br>ASP<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY                                                                                                                                                                              |                                                                           |
|                                                             | PROTEIN DATA BANK                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |

MET ALA ARG K<del>4</del>

| • Molecule                                                  | 34: 28S ribosomal protein S9, mitochondrial                                                                         |                                                                                                                          |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Chain Ag:                                                   | 82%                                                                                                                 | 17%                                                                                                                      |
| MET<br>ALA<br>ALA<br>PRO<br>CYS<br>VAL<br>SER<br>TYR        | GLY<br>GLY<br>ALA<br>ALA<br>SER<br>ARA<br>CLY<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU | ILE<br>LEU<br>LEU<br>ARG<br>ARG<br>ARG<br>HIS<br>THR<br>AG3<br>CI<br>RES<br>FER<br>HIS<br>CEU<br>ALA                     |
| LYS<br>SER<br>LEU<br>LEU<br>PRO<br>GLU<br>LYS<br>THR        | VAL<br>THR<br>ARG<br>V194<br>F315<br>F315<br>F336                                                                   |                                                                                                                          |
| • Molecule                                                  | 35: 28S ribosomal protein S11, mitochondrial                                                                        |                                                                                                                          |
| Chain Ai:                                                   | 70% •                                                                                                               | 29%                                                                                                                      |
| MET<br>GLN<br>GLN<br>VAL<br>ARG<br>ASN<br>ALA<br>ALA<br>ALA | A A A A A A A A A A A A A A A A A A A                                                                               | LYS<br>GLN<br>CLN<br>LYS<br>VAL<br>GLU<br>GLU<br>GLU<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>A |
| L194                                                        |                                                                                                                     |                                                                                                                          |
| • Molecule                                                  | 36: 28S ribosomal protein S34, mitochondrial                                                                        |                                                                                                                          |
| Chain Aj:                                                   | 99%                                                                                                                 | •                                                                                                                        |



# 4 Experimental information (i)

| Property                           | Value                        | Source    |
|------------------------------------|------------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE              | Depositor |
| Imposed symmetry                   | POINT, Not provided          |           |
| Number of particles used           | 41288                        | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF            | Depositor |
| CTF correction method              | PHASE FLIPPING AND AMPLITUDE | Depositor |
|                                    | CORRECTION                   |           |
| Microscope                         | FEI TITAN KRIOS              | Depositor |
| Voltage (kV)                       | 300                          | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 60                           | Depositor |
| Minimum defocus (nm)               | 600                          | Depositor |
| Maximum defocus (nm)               | 3000                         | Depositor |
| Magnification                      | 81000                        | Depositor |
| Image detector                     | GATAN K3 $(6k \times 4k)$    | Depositor |



# 5 Model quality (i)

# 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MA6, 5F0, 5MU, ZN, ATP, FS2, GDP, AYA, B8T, MG, Y5P, 5MC, RSQ, PSU, K

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| N/1-1 | Mol Chain Bond lengths |      | Bond angles         |      |                     |
|-------|------------------------|------|---------------------|------|---------------------|
| NIOI  | Chain                  | RMSZ | # Z  > 5            | RMSZ | # Z  > 5            |
| 1     | BX                     | 0.23 | 0/118               | 0.47 | 0/162               |
| 2     | Bd                     | 0.22 | 0/246               | 0.52 | 0/329               |
| 3     | AA                     | 0.21 | 1/22563~(0.0%)      | 0.67 | 1/35124~(0.0%)      |
| 4     | AB                     | 0.24 | 0/2313              | 0.43 | 0/3129              |
| 5     | AC                     | 0.24 | 0/1113              | 0.46 | 0/1505              |
| 6     | AD                     | 0.23 | 0/636               | 0.52 | 0/839               |
| 7     | AE                     | 0.25 | 0/989               | 0.49 | 0/1335              |
| 8     | AF                     | 0.24 | 0/1767              | 0.44 | 0/2373              |
| 9     | AG                     | 0.30 | 1/1588~(0.1%)       | 0.69 | 0/2466              |
| 10    | AH                     | 0.24 | 0/1178              | 0.45 | 0/1598              |
| 11    | AI                     | 0.16 | 0/149               | 0.65 | 0/231               |
| 12    | AJ                     | 0.25 | 0/855               | 0.53 | 0/1148              |
| 13    | AK                     | 0.23 | 0/880               | 0.53 | 0/1182              |
| 14    | AL                     | 0.23 | 0/1477              | 0.45 | 0/1974              |
| 15    | AM                     | 0.24 | 0/963               | 0.50 | 0/1295              |
| 16    | AN                     | 0.25 | 0/886               | 0.47 | 0/1199              |
| 17    | AO                     | 0.24 | 0/1648              | 0.46 | 0/2243              |
| 18    | AP                     | 0.24 | 0/798               | 0.43 | 0/1070              |
| 19    | AQ                     | 0.25 | 0/748               | 0.53 | 0/994               |
| 20    | AR                     | 0.24 | 0/2456              | 0.43 | 0/3317              |
| 21    | AS                     | 0.25 | 0/1138              | 0.47 | 0/1533              |
| 22    | AT                     | 0.25 | 0/1402              | 0.44 | 0/1883              |
| 23    | AU                     | 0.23 | 0/1510              | 0.50 | 0/2025              |
| 24    | AV                     | 0.23 | 0/3030              | 0.38 | 0/4093              |
| 25    | AW                     | 0.25 | 0/801               | 0.50 | 0/1079              |
| 26    | AX                     | 0.24 | 0/2921              | 0.42 | 0/3954              |
| 27    | AY                     | 0.24 | 0/1280              | 0.38 | 0/1725              |
| 28    | AZ                     | 0.24 | 0/857               | 0.45 | 0/1141              |
| 29    | Aa                     | 0.23 | 0/3162              | 0.46 | 0/4253              |
| 30    | Ab                     | 0.25 | 0/1871              | 0.46 | 0/2531              |
| 31    | Ac                     | 0.23 | 0/941               | 0.49 | 0/1257              |
| 32    | Ad                     | 0.24 | $0/2\overline{783}$ | 0.49 | $0/3\overline{724}$ |



| Mol Chain |     | Bo   | nd lengths     | Bond angles |                      |
|-----------|-----|------|----------------|-------------|----------------------|
|           |     | RMSZ | # Z  > 5       | RMSZ        | # Z  > 5             |
| 33        | Ae  | 0.23 | 0/4877         | 0.40        | 0/6598               |
| 34        | Ag  | 0.24 | 0/2746         | 0.46        | 0/3681               |
| 35        | Ai  | 0.25 | 0/1030         | 0.48        | 0/1386               |
| 36        | Aj  | 0.23 | 0/1834         | 0.51        | 0/2484               |
| All       | All | 0.23 | 2/75554~(0.0%) | 0.54        | $1/106860 \ (0.0\%)$ |

All (2) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Z      | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|--------|-------------|----------|
| 3   | AA    | 1   | A    | OP3-P | -10.59 | 1.48        | 1.61     |
| 9   | AG    | 1   | A    | OP3-P | -10.53 | 1.48        | 1.61     |

All (1) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms     | Z    | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|------|------------------|---------------|
| 3   | AA    | 118 | С    | C2-N1-C1' | 5.73 | 125.11           | 118.80        |

There are no chirality outliers.

There are no planarity outliers.

#### 5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

## 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Favoured  | Allowed | Outliers | Perce | ntiles |
|-----|-------|---------------|-----------|---------|----------|-------|--------|
| 1   | BX    | 12/292~(4%)   | 12 (100%) | 0       | 0        | 100   | 100    |
| 2   | Bd    | 24/128~(19%)  | 23~(96%)  | 1 (4%)  | 0        | 100   | 100    |
| 4   | AB    | 277/323 (86%) | 275 (99%) | 2 (1%)  | 0        | 100   | 100    |



| Mol | Chain | Analysed        | Favoured   | Allowed | Outliers | Perce | entiles |
|-----|-------|-----------------|------------|---------|----------|-------|---------|
| 5   | AC    | 130/167~(78%)   | 128~(98%)  | 2(2%)   | 0        | 100   | 100     |
| 6   | AD    | 68/199~(34%)    | 67~(98%)   | 1 (2%)  | 0        | 100   | 100     |
| 7   | AE    | 120/125~(96%)   | 118 (98%)  | 2(2%)   | 0        | 100   | 100     |
| 8   | AF    | 206/242~(85%)   | 206 (100%) | 0       | 0        | 100   | 100     |
| 10  | AH    | 138/201 (69%)   | 133 (96%)  | 4 (3%)  | 1 (1%)   | 22    | 60      |
| 12  | AJ    | 106/138~(77%)   | 105 (99%)  | 1 (1%)  | 0        | 100   | 100     |
| 13  | AK    | 99/128~(77%)    | 98 (99%)   | 1 (1%)  | 0        | 100   | 100     |
| 14  | AL    | 172/257~(67%)   | 172 (100%) | 0       | 0        | 100   | 100     |
| 15  | AM    | 117/137~(85%)   | 117 (100%) | 0       | 0        | 100   | 100     |
| 16  | AN    | 108/130~(83%)   | 106 (98%)  | 2(2%)   | 0        | 100   | 100     |
| 17  | AO    | 191/258~(74%)   | 189 (99%)  | 2(1%)   | 0        | 100   | 100     |
| 18  | AP    | 95/142~(67%)    | 95 (100%)  | 0       | 0        | 100   | 100     |
| 19  | AQ    | 84/87~(97%)     | 82 (98%)   | 2(2%)   | 0        | 100   | 100     |
| 20  | AR    | 293/360~(81%)   | 288 (98%)  | 5 (2%)  | 0        | 100   | 100     |
| 21  | AS    | 133/190 (70%)   | 132 (99%)  | 1 (1%)  | 0        | 100   | 100     |
| 22  | AT    | 166/173~(96%)   | 164 (99%)  | 2(1%)   | 0        | 100   | 100     |
| 23  | AU    | 174/205~(85%)   | 174 (100%) | 0       | 0        | 100   | 100     |
| 24  | AV    | 358/414 (86%)   | 354 (99%)  | 4 (1%)  | 0        | 100   | 100     |
| 25  | AW    | 98/187~(52%)    | 95~(97%)   | 3(3%)   | 0        | 100   | 100     |
| 26  | AX    | 350/398~(88%)   | 345 (99%)  | 5 (1%)  | 0        | 100   | 100     |
| 27  | AY    | 147/395~(37%)   | 146 (99%)  | 1 (1%)  | 0        | 100   | 100     |
| 28  | AZ    | 98/106~(92%)    | 97~(99%)   | 1 (1%)  | 0        | 100   | 100     |
| 29  | Aa    | 379/484~(78%)   | 376 (99%)  | 3 (1%)  | 0        | 100   | 100     |
| 30  | Ab    | 223/296~(75%)   | 222 (100%) | 1 (0%)  | 0        | 100   | 100     |
| 31  | Ac    | 115/118 (98%)   | 113 (98%)  | 2(2%)   | 0        | 100   | 100     |
| 32  | Ad    | 341/430~(79%)   | 333 (98%)  | 8 (2%)  | 0        | 100   | 100     |
| 33  | Ae    | 584/689~(85%)   | 580 (99%)  | 4 (1%)  | 0        | 100   | 100     |
| 34  | Ag    | 323/396~(82%)   | 318 (98%)  | 5 (2%)  | 0        | 100   | 100     |
| 35  | Ai    | 134/194~(69%)   | 132 (98%)  | 2(2%)   | 0        | 100   | 100     |
| 36  | Aj    | 213/218~(98%)   | 211 (99%)  | 2 (1%)  | 0        | 100   | 100     |
| All | All   | 6076/8207~(74%) | 6006 (99%) | 69 (1%) | 1 (0%)   | 100   | 100     |



All (1) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 10  | AH    | 126 | ILE  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed                    | Rotameric  | Outliers | Percentiles |
|-----|-------|-----------------------------|------------|----------|-------------|
| 1   | BX    | 14/256~(6%)                 | 14 (100%)  | 0        | 100 100     |
| 2   | Bd    | 26/113~(23%)                | 26 (100%)  | 0        | 100 100     |
| 4   | AB    | 257/291~(88%)               | 257 (100%) | 0        | 100 100     |
| 5   | AC    | 115/143~(80%)               | 115 (100%) | 0        | 100 100     |
| 6   | AD    | 65/166~(39%)                | 64 (98%)   | 1 (2%)   | 65 87       |
| 7   | AE    | 104/107~(97%)               | 103 (99%)  | 1 (1%)   | 76 91       |
| 8   | AF    | 185/209~(88%)               | 185 (100%) | 0        | 100 100     |
| 10  | AH    | 130/180~(72%)               | 130 (100%) | 0        | 100 100     |
| 12  | AJ    | 93/118~(79%)                | 93 (100%)  | 0        | 100 100     |
| 13  | AK    | 91/113 (80%)                | 91 (100%)  | 0        | 100 100     |
| 14  | AL    | 158/226~(70%)               | 157 (99%)  | 1 (1%)   | 86 95       |
| 15  | AM    | 97/113~(86%)                | 97~(100%)  | 0        | 100 100     |
| 16  | AN    | 96/115~(84%)                | 96 (100%)  | 0        | 100 100     |
| 17  | AO    | 174/230~(76%)               | 174 (100%) | 0        | 100 100     |
| 18  | AP    | 88/123~(72%)                | 87~(99%)   | 1 (1%)   | 73 90       |
| 19  | AQ    | 78/79~(99%)                 | 78 (100%)  | 0        | 100 100     |
| 20  | AR    | 264/318~(83%)               | 264 (100%) | 0        | 100 100     |
| 21  | AS    | 116/164~(71%)               | 116 (100%) | 0        | 100 100     |
| 22  | AT    | 153/157~(98%)               | 153 (100%) | 0        | 100 100     |
| 23  | AU    | 152/174~(87%)               | 152 (100%) | 0        | 100 100     |
| 24  | AV    | 325/364~(89%)               | 325 (100%) | 0        | 100 100     |
| 25  | AW    | $\overline{87/158}\ (55\%)$ | 87 (100%)  | 0        | 100 100     |



| Mol | Chain | Analysed        | Rotameric   | Outliers | Perce | ntiles |
|-----|-------|-----------------|-------------|----------|-------|--------|
| 26  | AX    | 311/351~(89%)   | 311 (100%)  | 0        | 100   | 100    |
| 27  | AY    | 137/357~(38%)   | 137 (100%)  | 0        | 100   | 100    |
| 28  | AZ    | 90/95~(95%)     | 90 (100%)   | 0        | 100   | 100    |
| 29  | Aa    | 338/427~(79%)   | 337 (100%)  | 1 (0%)   | 92    | 97     |
| 30  | Ab    | 198/249~(80%)   | 197 (100%)  | 1 (0%)   | 88    | 96     |
| 31  | Ac    | 100/101~(99%)   | 100 (100%)  | 0        | 100   | 100    |
| 32  | Ad    | 286/357~(80%)   | 286 (100%)  | 0        | 100   | 100    |
| 33  | Ae    | 526/609~(86%)   | 526 (100%)  | 0        | 100   | 100    |
| 34  | Ag    | 285/342~(83%)   | 284 (100%)  | 1 (0%)   | 91    | 97     |
| 35  | Ai    | 104/146~(71%)   | 104 (100%)  | 0        | 100   | 100    |
| 36  | Aj    | 188/190~(99%)   | 188 (100%)  | 0        | 100   | 100    |
| All | All   | 5431/7141 (76%) | 5424 (100%) | 7 (0%)   | 93    | 98     |

All (7) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | $\operatorname{Res}$ | Type |
|-----|-------|----------------------|------|
| 6   | AD    | 155                  | ARG  |
| 7   | AE    | 109                  | VAL  |
| 14  | AL    | 209                  | LEU  |
| 18  | AP    | 126                  | ASP  |
| 29  | Aa    | 272                  | MET  |
| 30  | Ab    | 247                  | HIS  |
| 34  | Ag    | 315                  | PHE  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (39) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 4   | AB    | 268 | GLN  |
| 7   | AE    | 58  | HIS  |
| 7   | AE    | 92  | ASN  |
| 8   | AF    | 127 | HIS  |
| 8   | AF    | 147 | GLN  |
| 8   | AF    | 151 | ASN  |
| 10  | AH    | 125 | HIS  |
| 12  | AJ    | 105 | HIS  |
| 14  | AL    | 162 | GLN  |
| 15  | AM    | 50  | GLN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 17  | AO    | 169 | GLN  |
| 20  | AR    | 224 | HIS  |
| 20  | AR    | 288 | GLN  |
| 22  | AT    | 14  | GLN  |
| 22  | AT    | 33  | ASN  |
| 22  | AT    | 51  | ASN  |
| 22  | AT    | 56  | GLN  |
| 24  | AV    | 380 | GLN  |
| 26  | AX    | 170 | GLN  |
| 26  | AX    | 211 | ASN  |
| 28  | AZ    | 56  | HIS  |
| 28  | AZ    | 76  | GLN  |
| 28  | AZ    | 82  | GLN  |
| 29  | Aa    | 124 | GLN  |
| 29  | Aa    | 258 | HIS  |
| 29  | Aa    | 368 | GLN  |
| 30  | Ab    | 134 | HIS  |
| 30  | Ab    | 265 | GLN  |
| 30  | Ab    | 276 | GLN  |
| 32  | Ad    | 155 | GLN  |
| 32  | Ad    | 415 | GLN  |
| 33  | Ae    | 257 | HIS  |
| 33  | Ae    | 306 | ASN  |
| 33  | Ae    | 453 | HIS  |
| 33  | Ae    | 491 | GLN  |
| 33  | Ae    | 562 | GLN  |
| 34  | Ag    | 77  | GLN  |
| 34  | Ag    | 176 | GLN  |
| 35  | Ai    | 129 | GLN  |

#### 5.3.3 RNA (i)

| Mol | Chain | Analysed        | Backbone Outliers | Pucker Outliers |
|-----|-------|-----------------|-------------------|-----------------|
| 11  | AI    | 5/33~(15%)      | 1 (20%)           | 0               |
| 3   | AA    | 951/955~(99%)   | 120 (12%)         | 0               |
| 9   | AG    | 69/71~(97%)     | 10 (14%)          | 0               |
| All | All   | 1025/1059~(96%) | 131 (12%)         | 0               |

All (131) RNA backbone outliers are listed below:



| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 3   | AA    | 2              | А    |
| 3   | AA    | 4              | А    |
| 3   | AA    | 33             | U    |
| 3   | AA    | 41             | А    |
| 3   | AA    | 57             | U    |
| 3   | AA    | 74             | U    |
| 3   | AA    | 90             | С    |
| 3   | AA    | 91             | А    |
| 3   | AA    | 106            | А    |
| 3   | AA    | 114            | А    |
| 3   | AA    | 119            | G    |
| 3   | AA    | 144            | G    |
| 3   | AA    | 147            | U    |
| 3   | AA    | 149            | G    |
| 3   | AA    | 183            | U    |
| 3   | AA    | 185            | U    |
| 3   | AA    | 188            | С    |
| 3   | AA    | 189            | А    |
| 3   | AA    | 213            | А    |
| 3   | AA    | 214            | U    |
| 3   | AA    | 221            | С    |
| 3   | AA    | 224            | А    |
| 3   | AA    | 243            | С    |
| 3   | AA    | 254            | G    |
| 3   | AA    | 257            | С    |
| 3   | AA    | 260            | А    |
| 3   | AA    | 272            | А    |
| 3   | AA    | 276            | А    |
| 3   | AA    | 282            | А    |
| 3   | AA    | 285            | С    |
| 3   | AA    | 291            | А    |
| 3   | AA    | 292            | А    |
| 3   | AA    | 293            | А    |
| 3   | AA    | 294            | G    |
| 3   | AA    | 295            | А    |
| 3   | AA    | 307            | С    |
| 3   | AA    | 313            | С    |
| 3   | AA    | 315            | С    |
| 3   | AA    | 320            | А    |
| 3   | AA    | 346            | А    |
| 3   | AA    | 355            | С    |
| 3   | AA    | 365            | А    |
| 3   | AA    | 368            | A    |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | AA    | 384 | G    |
| 3   | AA    | 395 | U    |
| 3   | AA    | 400 | А    |
| 3   | AA    | 401 | С    |
| 3   | AA    | 434 | U    |
| 3   | AA    | 435 | А    |
| 3   | AA    | 456 | А    |
| 3   | AA    | 458 | С    |
| 3   | AA    | 460 | U    |
| 3   | AA    | 462 | A    |
| 3   | AA    | 471 | A    |
| 3   | AA    | 472 | U    |
| 3   | AA    | 474 | A    |
| 3   | AA    | 479 | A    |
| 3   | AA    | 490 | А    |
| 3   | AA    | 504 | С    |
| 3   | AA    | 506 | С    |
| 3   | AA    | 513 | А    |
| 3   | AA    | 520 | А    |
| 3   | AA    | 540 | U    |
| 3   | AA    | 542 | U    |
| 3   | AA    | 543 | С    |
| 3   | AA    | 553 | G    |
| 3   | AA    | 568 | U    |
| 3   | AA    | 573 | A    |
| 3   | AA    | 576 | C    |
| 3   | AA    | 578 | С    |
| 3   | AA    | 582 | U    |
| 3   | AA    | 599 | U    |
| 3   | AA    | 600 | G    |
| 3   | AA    | 601 | C    |
| 3   | AA    | 604 | A    |
| 3   | AA    | 624 | С    |
| 3   | AA    | 637 | U    |
| 3   | AA    | 638 | G    |
| 3   | AA    | 643 | С    |
| 3   | AA    | 644 | U    |
| 3   | AA    | 645 | A    |
| 3   | AA    | 650 | G    |
| 3   | AA    | 679 | A    |
| 3   | AA    | 680 | G    |
| 3   | AA    | 696 | A    |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | AA    | 697 | U    |
| 3   | AA    | 706 | A    |
| 3   | AA    | 709 | A    |
| 3   | AA    | 731 | С    |
| 3   | AA    | 740 | A    |
| 3   | AA    | 743 | A    |
| 3   | AA    | 744 | U    |
| 3   | AA    | 758 | С    |
| 3   | AA    | 759 | U    |
| 3   | AA    | 760 | U    |
| 3   | AA    | 783 | А    |
| 3   | AA    | 816 | G    |
| 3   | AA    | 819 | С    |
| 3   | AA    | 831 | A    |
| 3   | AA    | 834 | С    |
| 3   | AA    | 872 | А    |
| 3   | AA    | 878 | С    |
| 3   | AA    | 879 | U    |
| 3   | AA    | 880 | А    |
| 3   | AA    | 886 | С    |
| 3   | AA    | 890 | С    |
| 3   | AA    | 891 | G    |
| 3   | AA    | 892 | С    |
| 3   | AA    | 893 | А    |
| 3   | AA    | 897 | А    |
| 3   | AA    | 904 | G    |
| 3   | AA    | 911 | А    |
| 3   | AA    | 912 | G    |
| 3   | AA    | 920 | А    |
| 3   | AA    | 921 | U    |
| 3   | AA    | 924 | U    |
| 3   | AA    | 935 | G    |
| 3   | AA    | 947 | G    |
| 3   | AA    | 948 | G    |
| 3   | AA    | 952 | A    |
| 9   | AG    | 7   | G    |
| 9   | AG    | 8   | U    |
| 9   | AG    | 10  | A    |
| 9   | AG    | 11  | G    |
| 9   | AG    | 17  | U    |
| 9   | AG    | 18  | A    |
| 9   | AG    | 45  | G    |



Continued from previous page...

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 9   | AG    | 52  | А    |
| 9   | AG    | 53  | U    |
| 9   | AG    | 55  | С    |
| 11  | AI    | 2   | G    |

There are no RNA pucker outliers to report.

## 5.4 Non-standard residues in protein, DNA, RNA chains (i)

13 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol  | Type | Chain   | Bos | Link | Bo             | ond leng | ths      | hs Bond angles |      |          |  |
|------|------|---------|-----|------|----------------|----------|----------|----------------|------|----------|--|
| WIOI | Type | Ullalli | nes |      | Counts         | RMSZ     | # Z  > 2 | Counts         | RMSZ | # Z  > 2 |  |
| 9    | PSU  | AG      | 46  | 9    | 18,21,22       | 1.32     | 2 (11%)  | 22,30,33       | 1.86 | 3 (13%)  |  |
| 3    | B8T  | AA      | 839 | 37,3 | 19,22,23       | 0.43     | 0        | 26,31,34       | 0.37 | 0        |  |
| 9    | RSQ  | AG      | 31  | 9,11 | 20,23,24       | 0.48     | 0        | 26,33,36       | 0.56 | 0        |  |
| 19   | AYA  | AQ      | 2   | 19   | 6,7,8          | 0.76     | 0        | $5,\!8,\!10$   | 0.22 | 0        |  |
| 3    | MA6  | AA      | 937 | 3    | $18,\!26,\!27$ | 1.10     | 2 (11%)  | 19,38,41       | 1.97 | 3 (15%)  |  |
| 3    | 5MU  | AA      | 429 | 3    | 19,22,23       | 1.39     | 6 (31%)  | 28,32,35       | 2.06 | 6 (21%)  |  |
| 31   | AYA  | Ac      | 2   | 31   | 6,7,8          | 0.79     | 0        | 5,8,10         | 0.38 | 0        |  |
| 9    | PSU  | AG      | 24  | 9    | $18,\!21,\!22$ | 1.33     | 2 (11%)  | 22,30,33       | 1.85 | 3 (13%)  |  |
| 3    | 5MC  | AA      | 841 | 3    | 18,22,23       | 0.93     | 2 (11%)  | 26,32,35       | 1.08 | 2 (7%)   |  |
| 3    | MA6  | AA      | 936 | 3    | $18,\!26,\!27$ | 1.10     | 2 (11%)  | 19,38,41       | 1.97 | 3 (15%)  |  |
| 9    | PSU  | AG      | 51  | 9    | 18,21,22       | 1.35     | 2 (11%)  | 22,30,33       | 1.80 | 3 (13%)  |  |
| 35   | 5F0  | Ai      | 184 | 35   | 8,8,9          | 1.46     | 2 (25%)  | 7,9,11         | 1.66 | 1 (14%)  |  |
| 11   | Y5P  | AI      | 4   | 11   | 14,19,20       | 0.49     | 0        | 18,26,29       | 0.54 | 0        |  |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.



| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 9   | PSU  | AG    | 46  | 9    | -       | 0/7/25/26 | 0/2/2/2 |
| 3   | B8T  | AA    | 839 | 37,3 | -       | 0/7/27/28 | 0/2/2/2 |
| 9   | RSQ  | AG    | 31  | 9,11 | -       | 1/9/27/28 | 0/2/2/2 |
| 19  | AYA  | AQ    | 2   | 19   | -       | 0/4/6/8   | -       |
| 3   | MA6  | AA    | 937 | 3    | -       | 2/7/29/30 | 0/3/3/3 |
| 3   | 5MU  | AA    | 429 | 3    | -       | 0/7/25/26 | 0/2/2/2 |
| 31  | AYA  | Ac    | 2   | 31   | -       | 2/4/6/8   | -       |
| 9   | PSU  | AG    | 24  | 9    | -       | 0/7/25/26 | 0/2/2/2 |
| 3   | 5MC  | AA    | 841 | 3    | -       | 0/7/25/26 | 0/2/2/2 |
| 3   | MA6  | AA    | 936 | 3    | -       | 0/7/29/30 | 0/3/3/3 |
| 9   | PSU  | AG    | 51  | 9    | -       | 2/7/25/26 | 0/2/2/2 |
| 35  | 5F0  | Ai    | 184 | 35   | -       | 4/9/9/10  | -       |
| 11  | Y5P  | AI    | 4   | 11   | -       | 5/7/33/34 | 0/2/2/2 |

All (20) bond length outliers are listed below:

| Mol | Chain | Res | Type            | Atoms   | Ζ     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|-----------------|---------|-------|-------------|----------|
| 3   | AA    | 937 | MA6             | C5-N7   | 3.35  | 1.51        | 1.39     |
| 3   | AA    | 936 | MA6             | C5-N7   | 3.33  | 1.51        | 1.39     |
| 9   | AG    | 51  | PSU             | C6-C5   | 3.23  | 1.39        | 1.35     |
| 9   | AG    | 46  | PSU             | C6-C5   | 3.21  | 1.39        | 1.35     |
| 9   | AG    | 24  | PSU             | C6-C5   | 3.13  | 1.39        | 1.35     |
| 35  | Ai    | 184 | 5F0             | OD1-C1  | 2.86  | 1.40        | 1.33     |
| 3   | AA    | 429 | 5MU             | C4-N3   | -2.65 | 1.33        | 1.38     |
| 9   | AG    | 24  | PSU             | C4-N3   | -2.64 | 1.33        | 1.38     |
| 3   | AA    | 429 | 5MU             | C6-C5   | 2.63  | 1.38        | 1.34     |
| 3   | AA    | 841 | 5MC             | C6-C5   | 2.61  | 1.38        | 1.34     |
| 9   | AG    | 46  | PSU             | C4-N3   | -2.56 | 1.34        | 1.38     |
| 9   | AG    | 51  | PSU             | C4-N3   | -2.54 | 1.34        | 1.38     |
| 3   | AA    | 429 | $5 \mathrm{MU}$ | C6-N1   | -2.32 | 1.34        | 1.38     |
| 3   | AA    | 841 | 5MC             | C6-N1   | -2.26 | 1.34        | 1.38     |
| 3   | AA    | 429 | $5 \mathrm{MU}$ | C4-C5   | 2.22  | 1.48        | 1.44     |
| 3   | AA    | 936 | MA6             | C4-N3   | -2.18 | 1.32        | 1.35     |
| 3   | AA    | 937 | MA6             | C4-N3   | -2.16 | 1.32        | 1.35     |
| 35  | Ai    | 184 | 5F0             | OD1-CXT | -2.12 | 1.40        | 1.45     |
| 3   | AA    | 429 | 5MU             | C2-N3   | -2.06 | 1.34        | 1.38     |
| 3   | AA    | 429 | 5MU             | C2-N1   | 2.06  | 1.41        | 1.38     |

All (24) bond angle outliers are listed below:

|     |       | s = JPs | 11001113 |      | Observeu() | Ideal() |
|-----|-------|---------|----------|------|------------|---------|
| 9 A | .G 46 | PSU     | N1-C2-N3 | 5.88 | 121.79     | 115.13  |



| Mol | Chain | Res | Type | Atoms     | Ζ     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 9   | AG    | 24  | PSU  | N1-C2-N3  | 5.87  | 121.78           | 115.13        |
| 3   | AA    | 937 | MA6  | C4-C5-N7  | -5.74 | 103.42           | 109.40        |
| 9   | AG    | 51  | PSU  | N1-C2-N3  | 5.70  | 121.58           | 115.13        |
| 3   | AA    | 936 | MA6  | C4-C5-N7  | -5.67 | 103.49           | 109.40        |
| 3   | AA    | 429 | 5MU  | C4-N3-C2  | -5.15 | 120.68           | 127.35        |
| 3   | AA    | 429 | 5MU  | N3-C2-N1  | 4.84  | 121.31           | 114.89        |
| 3   | AA    | 429 | 5MU  | C5-C4-N3  | 4.50  | 119.15           | 115.31        |
| 3   | AA    | 937 | MA6  | C1'-N9-C4 | -4.39 | 118.92           | 126.64        |
| 3   | AA    | 936 | MA6  | C1'-N9-C4 | -4.36 | 118.98           | 126.64        |
| 3   | AA    | 936 | MA6  | N3-C2-N1  | -4.28 | 121.99           | 128.68        |
| 3   | AA    | 937 | MA6  | N3-C2-N1  | -4.16 | 122.18           | 128.68        |
| 3   | AA    | 429 | 5MU  | O4-C4-C5  | -4.05 | 120.20           | 124.90        |
| 9   | AG    | 24  | PSU  | C4-N3-C2  | -3.86 | 120.78           | 126.34        |
| 9   | AG    | 46  | PSU  | C4-N3-C2  | -3.86 | 120.78           | 126.34        |
| 3   | AA    | 429 | 5MU  | C5-C6-N1  | -3.67 | 119.56           | 123.34        |
| 9   | AG    | 51  | PSU  | C4-N3-C2  | -3.58 | 121.19           | 126.34        |
| 3   | AA    | 841 | 5MC  | C5-C6-N1  | -3.40 | 119.84           | 123.34        |
| 9   | AG    | 51  | PSU  | O2-C2-N1  | -3.30 | 119.16           | 122.79        |
| 9   | AG    | 46  | PSU  | O2-C2-N1  | -3.29 | 119.17           | 122.79        |
| 35  | Ai    | 184 | 5F0  | OD1-C1-CA | 3.28  | 119.91           | 111.52        |
| 9   | AG    | 24  | PSU  | O2-C2-N1  | -3.27 | 119.19           | 122.79        |
| 3   | AA    | 841 | 5MC  | C5-C4-N3  | -2.46 | 119.03           | 121.67        |
| 3   | AA    | 429 | 5MU  | O2-C2-N1  | -2.45 | 119.53           | 122.79        |

There are no chirality outliers.

All (16) torsion outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type | Atoms           |
|-----|-------|----------------|------|-----------------|
| 9   | AG    | 51             | PSU  | O4'-C1'-C5-C4   |
| 9   | AG    | 51             | PSU  | O4'-C1'-C5-C6   |
| 35  | Ai    | 184            | 5F0  | OD1-C1-CA-CB    |
| 35  | Ai    | 184            | 5F0  | CA-C1-OD1-CXT   |
| 35  | Ai    | 184            | 5F0  | O1-C1-OD1-CXT   |
| 11  | AI    | 4              | Y5P  | C2'-C1'-N1-C2   |
| 35  | Ai    | 184            | 5F0  | O1-C1-CA-CB     |
| 11  | AI    | 4              | Y5P  | C2'-C1'-N1-C6   |
| 11  | AI    | 4              | Y5P  | O4'-C4'-C5'-O5' |
| 11  | AI    | 4              | Y5P  | O4'-C1'-N1-C2   |
| 31  | Ac    | 2              | AYA  | CM-CT-N-CA      |
| 3   | AA    | 937            | MA6  | C4'-C5'-O5'-P   |
| 3   | AA    | 937            | MA6  | C3'-C4'-C5'-O5' |
| 11  | AI    | 4              | Y5P  | O4'-C1'-N1-C6   |



Continued from previous page...

| Mol | Chain | Res | Type | Atoms         |
|-----|-------|-----|------|---------------|
| 31  | Ac    | 2   | AYA  | OT-CT-N-CA    |
| 9   | AG    | 31  | RSQ  | C2'-C1'-N1-C2 |

There are no ring outliers.

No monomer is involved in short contacts.

# 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

# 5.6 Ligand geometry (i)

Of 149 ligands modelled in this entry, 144 are monoatomic - leaving 5 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Type Chain |      | Dec   | Link | Bond lengths |          |      | Bond angles |          |      |         |
|----------------|------|-------|------|--------------|----------|------|-------------|----------|------|---------|
| INIOI          | Type | Chain | nes  |              | Counts   | RMSZ | # Z  > 2    | Counts   | RMSZ | # Z >2  |
| 41             | FS2  | AT    | 201  | 22,15        | 0,5,14   | -    | -           | -        |      |         |
| 42             | ATP  | AX    | 501  | 38           | 26,33,33 | 0.62 | 0           | 31,52,52 | 0.73 | 2 (6%)  |
| 43             | GDP  | AX    | 503  | -            | 24,30,30 | 0.95 | 1 (4%)      | 30,47,47 | 1.30 | 4 (13%) |
| 39             | MET  | AG    | 101  | 9            | 6,7,8    | 0.48 | 0           | 2,7,9    | 0.14 | 0       |
| 41             | FS2  | AP    | 201  | 7,18         | 0,5,14   | -    | -           | -        |      |         |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link      | Chirals | Torsions   | Rings   |
|-----|------|-------|-----|-----------|---------|------------|---------|
| 41  | FS2  | AT    | 201 | $22,\!15$ | -       | -          | 0/2/2/6 |
| 42  | ATP  | AX    | 501 | 38        | -       | 0/18/38/38 | 0/3/3/3 |
| 43  | GDP  | AX    | 503 | -         | -       | 4/12/32/32 | 0/3/3/3 |
| 39  | MET  | AG    | 101 | 9         | -       | 1/5/6/8    | -       |



| Mol | Type | Chain | Res | Link | Chirals | Torsions | Rings   |
|-----|------|-------|-----|------|---------|----------|---------|
| 41  | FS2  | AP    | 201 | 7,18 | -       | -        | 0/2/2/6 |

All (1) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|-------|-------------|----------|
| 43  | AX    | 503 | GDP  | C6-N1 | -2.39 | 1.34        | 1.37     |

All (6) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 43  | AX    | 503 | GDP  | PA-O3A-PB   | -3.46 | 120.94           | 132.83        |
| 43  | AX    | 503 | GDP  | C3'-C2'-C1' | 3.11  | 105.65           | 100.98        |
| 43  | AX    | 503 | GDP  | C8-N7-C5    | 2.34  | 107.45           | 102.99        |
| 42  | AX    | 501 | ATP  | C5-C6-N6    | 2.30  | 123.85           | 120.35        |
| 43  | AX    | 503 | GDP  | C5-C6-N1    | 2.21  | 117.85           | 113.95        |
| 42  | AX    | 501 | ATP  | PB-O3B-PG   | 2.00  | 139.70           | 132.83        |

There are no chirality outliers.

All (5) torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 43  | AX    | 503 | GDP  | C5'-O5'-PA-O3A  |
| 43  | AX    | 503 | GDP  | C5'-O5'-PA-O2A  |
| 43  | AX    | 503 | GDP  | C3'-C4'-C5'-O5' |
| 39  | AG    | 101 | MET  | N-CA-CB-CG      |
| 43  | AX    | 503 | GDP  | O4'-C4'-C5'-O5' |

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.







# 5.7 Other polymers (i)

There are no such residues in this entry.

# 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-16898. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

## 6.1 Orthogonal projections (i)

This section was not generated.

## 6.2 Central slices (i)

This section was not generated.

## 6.3 Largest variance slices (i)

This section was not generated.

### 6.4 Orthogonal standard-deviation projections (False-color) (i)

This section was not generated.

## 6.5 Orthogonal surface views (i)

This section was not generated.

### 6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



# 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

## 7.1 Map-value distribution (i)

This section was not generated.

### 7.2 Volume estimate versus contour level (i)

This section was not generated.

## 7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum had issues being displayed.



# 8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.



# 9 Map-model fit (i)

This section was not generated.

