

Oct 28, 2024 - 02:39 pm GMT

PDB ID 700D : EMDB ID EMD-11999 : Title : Mycoplasma pneumoniae 50S subunit of ribosomes in chloramphenicol-treate d cells Xue, L.; Lenz, S.; Rappsilber, J.; Mahamid, J. Authors : 2021-05-27Deposited on 3.40 Å(reported) Resolution : Based on initial models 3J9W, 4YBB, 1DIV, 1ZAV :

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	3	2907	64% 29%	6% ••
2	4	108	62% 27%	7% • •
3	W	111	85%	5% 11%
4	a	287	97%	••
5	с	212	95%	
6	е	184	94%	
7	k	151	95%	

Mol	Chain	Length	Quality of chain	
8	i	146	97%	••
9	m	124	95%	
10	q	100	95%	
11	u	104	82%	• 17%
12	у	57	89%	9% •
13	0	48	75%	23% •
14	2	37	38% 57%	5%
15	1	59	64%	32% •
16	О	119	92%	
17	S	237	39% 61%	
18	V	65	89%	8% •
19	x	97	45% 55%	
20	Z	53	94%	6%
21	d	180	94%	
22	b	287	78%	• 20%
23	1	139	97%	•••
24	р	127	87%	• 10%
25	j	122	96%	•
26	n	116	97%	
27	t	111	86%	• 14%
28	r	159	82%	5% 13%
29	f	149	96%	
30	h	137	92%	•• 7%
31	g	161	75%	22%

2 Entry composition (i)

There are 35 unique types of molecules in this entry. The entry contains 89509 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 23S ribosomal RNA.

Mol	Chain	Residues			AltConf	Trace			
1	3	2879	Total 61690	C 27566	N 11236	O 20009	Р 2879	0	0

• Molecule 2 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		A	AltConf	Trace			
2	4	105	Total 2245	C 1003	N 409	0 728	Р 105	0	0

• Molecule 3 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
3	W	99	Total 798	C 505	N 149	0 144	0	0

• Molecule 4 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	a	285	Total 2199	C 1370	N 433	O 390	S 6	0	0

• Molecule 5 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	С	210	Total 1613	C 1026	N 294	O 290	${ m S} { m 3}$	0	0

• Molecule 6 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
6	е	176	Total 1349	C 867	N 240	O 242	0	0

• Molecule 7 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
7	k	148	Total 1138	C 722	N 223	O 193	0	0

• Molecule 8 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
8	i	144	Total 1158	C 733	N 212	O 208	${ m S}{ m 5}$	0	0

• Molecule 9 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms			AltConf	Trace
9	m	119	Total 957	C 609	N 175	0 170	${ m S} { m 3}$	0	0

• Molecule 10 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	q	99	Total 809	C 525	N 148	0 133	${ m S} { m 3}$	0	0

• Molecule 11 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	u	86	Total 641	C 397	N 127	0 116	S 1	0	0

• Molecule 12 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace	
12	У	56	Total 436	C 262	N 96	O 73	${ m S}{ m 5}$	0	0

• Molecule 13 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
13	0	47	Total 377	C 234	N 81	O 61	S 1	0	0

• Molecule 14 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
14	2	37	Total 303	C 189	N 65	0 45	${f S}$ 4	0	0

• Molecule 15 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
15	1	59	Total 477	C 300	N 99	O 77	S 1	0	0

• Molecule 16 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	О	115	Total 895	C 568	N 169	0 157	S 1	0	0

• Molecule 17 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	S	92	Total 714	C 470	N 121	0 122	S 1	0	0

• Molecule 18 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
18	v	63	Total 504	C 312	N 107	0 84	S 1	0	0

• Molecule 19 is a protein called 50S ribosomal protein L31.

Mol	Chain	Residues		Aton	ıs		AltConf	Trace
19	х	44	Total	С	N	0	0	0
			218	130	44	44		

• Molecule 20 is a protein called 50S ribosomal protein L33 1.

Mol	Chain	Residues		Atc	\mathbf{ms}		AltConf	Trace	
20	Z	50	Total 408	C 255	N 81	O 68	${S \atop 4}$	0	0

• Molecule 21 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues	Atoms					AltConf	Trace
21	d	175	Total 1244	C 797	N 214	0 229	$\frac{S}{4}$	0	0

• Molecule 22 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues	Atoms					AltConf	Trace
22	b	229	Total 1758	C 1116	N 317	0 318	${ m S} 7$	0	0

• Molecule 23 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues	Atoms					AltConf	Trace
23	1	136	Total 1057	C 680	N 193	0 177	${f S}{7}$	0	0

• Molecule 24 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues	Atoms				AltConf	Trace	
24	р	114	Total 941	C 600	N 185	0 154	${ m S} { m 2}$	0	0

• Molecule 25 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues	Atoms				AltConf	Trace	
25	j	122	Total 944	C 595	N 178	0 167	S 4	0	0

• Molecule 26 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues	Atoms					AltConf	Trace
26	n	112	Total 853	С 534	N 169	0 149	S 1	0	0

• Molecule 27 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues	Atoms					AltConf	Trace
27	t	96	Total 706	C 449	N 132	0 122	${ m S} { m 3}$	0	0

• Molecule 28 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues	Atoms					AltConf	Trace
28	r	139	Total 1068	C 663	N 207	0 191	${ m S} 7$	0	0

• Molecule 29 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues	Atoms				AltConf	Trace
29	f	144	Total 713	C 425	N 144	0 144	0	0

• Molecule 30 is a protein called 50S ribosomal protein L11.

Mol	Chain	Residues	Atoms				AltConf	Trace
30	h	128	Total 630	C 374	N 128	O 128	0	0

• Molecule 31 is a protein called 50S ribosomal protein L10.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
31	g	125	Total 617	C 367	N 125	O 125	0	0

• Molecule 32 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
32	3	1	Total K 1 1	0

• Molecule 33 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
33	3	24	TotalMg2424	0
33	У	1	Total Mg 1 1	0

• Molecule 34 is CHLORAMPHENICOL (three-letter code: CLM) (formula: $C_{11}H_{12}Cl_2N_2O_5$).

Mol	Chain	Residues		AltConf				
34	3	1	Total 20	C 11	Cl 2	N 2	O 5	0

• Molecule 35 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
35	У	1	Total Zn 1 1	0
35	2	1	Total Zn 1 1	0
35	Z	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Chain 3:	64%	29%	6% ••
U A A A A A A A A A A A A A A A A A A A	U22 28 28 28 28 428 428 434 451 451 451 455 455 465 465 465 465 465 470 470	A/3 677 677 677 677 687 687 687 6102 6103 6103	G111 G118 A119 A120 U121 A124 A124 G125
C126 C132 C132 C132 C132 A133 A149 A149 A152 A153	4164 U165 U165 U165 A180 A186 C187 G187 G187 G187 G187 A200 A200 A200 A203 A203 A203 A203 A203	4209 1210 1210 1229 1220 1220 1220 1220 1	C234 A237 C242 C242 C244 C245 C246 C246
9251 9352 9352 9355 9355 9256 9256 9258 9258 9265 9264 9265	2270 2277 2277 2277 2277 2277 2283 2283 2286 2287 2286 2287 2286 2287 2296 2297 2296 2297 2296 2297 2296 2297 2296 2297 2296 2310 2310 2310 2310 2310 2310 2310 2310	0.312 0.312 0.314 0.315 0.316 0.316 0.316 0.316 0.313 0.333 0.336 0.341 0.342	A343 A344 A345 C347 C347 C347 C346 C351 C351 C353 C354
A355 A356 A356 A356 A358 A364 A364 A365 A365 A365 C368 C368 C368 C369	6372 6372 6397 6401 7402 6403 6404 6418 6410 6418 6418 6418 6418 6418 6418 6428 6428 6428 6428	0425 0432 0432 0433 0433 0433 0447 0447 0447	A4 51 64 56 64 60 14 67 A4 68 A4 83
U484 0486 6486 6486 6488 6488 6489 8499 6499 6	A5 02 65 03 65 03 65 03 65 03 65 03 65 13 A5 15 A5 15 A5 15 A5 15 A5 15 A5 15 A5 15 A5 15 A5 15 A5 19 A5 24 A5 24 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5	Ub 43 UB 46 05 47 A5 53 A5 53 C5 62 C5 62 C5 62 C5 62 C5 62 C5 62	U567 G568 A571 G572 A573 A573 A573 A581 A581 A582
U 583 U 583 A 589 A 589 A 589 G 599 G 599 G 503 G 503 A 604 A 604	0506 0508 0509 0509 0511 0514 0515 0515 0515 0515 0525 0525 0525 0525	A049 (650 (652 (1652 (663 (666 (666 (671	6672 4673 4682 4681 4682 0687 0688 0689 0689
G691 U692 U693 U693 C706 C706 G709 G709 A711 A711 A711	CT 19 CT 21 CT 22 CT 22 CT 22 CT 22 CT 22 CT 72 CT 71 CT 72 CT 72	A7 85 A7 85 A7 85 A7 86 A7 89 A7 89 C300 C300 C300 C300 C300 C300 C310 C310	G811 G812 G812 A817 A818 V819 U820 C821 C822 C822 A823
A824 0825 0825 0826 0827 0826 0826 0828 0828 0828 0835 0836 A837	G840 C841 U846 U846 A854 A854 A856 A856 A856 C880 C880 C880 C880 C882 C882 C882 C882	4894 (4994 (2901 (1902 (1902 (1902 (1905 (1914 (1915 (1915 (1915 (1915) (1915) (1915) (1915) (1915) (1915) (1917)	6918 0919 0920 0921 0920 0921 0926 0926 0926 0926
(1928) (1932) (1932) (1932) (1935) (1	C949 U950 C951 U952 C953 C953 C953 C955 C955 C955 C955 C951 C954 C954 C954 C954 C954 C954 C954 C954	6997 6997 6997 6998 10000 10000 61005 61010 61010 61015 61015	A1016 C1023 C1023 A1026 V1027 A1032 A1032
A1036 C1041 A1048 U1049 A1052 A1055 A1055 C1057	A1061 A1063 A1063 A1063 C1076 C1078 A1078 A1078 A1078 A1078 A1079 A1081 A1081 A1082 A1081 A1082 C1099 C1099 U1100 U1100	G1102 G1103 A1104 G1106 C1106 A1106 A112 U1118 U1118 A1121 C1122	A1123 6124 01125 61126 61128 61128 A1131 A1131 C1132 A1133
C1137 A1138 A1146 A1146 C1147 U1151 U1154 C1160 A1161	Al164 V1165 01166 01166 01167 A1167 A1166 01170 01176 A1177 A1177 A1177 A1177 A1177 A1186 C1188 C1188 C1188 C1188 C1188 C1188 C1188 V1204	A1208 41210 41210 11211 11215 61215 61215 61218 41220 41220 A1220 A1222	U1234 U1235 G1242 A1249 A1250 G1251 C1252

• Molecule 1: 23S ribosomal RNA

G1253	A1256	10715	G1266 A1267	U1268	C1270	A1271	A1276	A1277 G1278	U1279	G1280	61282	A1283 A1284	U1285	G1286 C1287		A1292 111293	G1294	A1295	01297 U1297	A1298	G1301	C1302	01303 01304		G1311	A1314	A1315 U1316	C1205		A1328 111329	U1330	G1337	G1338	C1349	A1350	C1355	U1360	
G1366 G1367	U1368	01369 A1370	G1371 U1372		U1380	G1383		G1388 G1389	C1390	U1391	41 392 A1 393	A1394 A1395		G1399	G1402	41406	U1407	G1408	A1412		01422 A1423	U1424	A1431	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	01434	A1437	C1444	U1445 C1446	A1447	U1448	A1455	C1456 A1457		A1462 G1463	111 467		C1475	A1480
U1481 U1482	G1483	U1486	U1487	U1494	A1497	A 1502	A1503	G1504	G15 07	G1508	01509 A1510	41513	U1514	A1515	C1518	A1519 A1520	A1521	U1522	A1532	U1533 A1534		A1541	A1548		G1557 A1558	A1559	D U	A	'n	ບ ຈ	n	υ 4	A1570	G1571	A1577	G1580	01581 G1582	G1583
U1584 A1585	U1586	0158/ A1588	A1589	A1592	A1601	G1602 A1603	A1604	A1605	C1611	U1612	61614 G1614	G1615 C1616	U1617	U1618 A1619		A1637	A1641	G1642	A1043 A1644	C1645 C1646	A1647	A1648	C1649 A1650	C1651	A1652 C1653	G1654	01655 A1656	C1650	A1660	C1668		C1672 U1673	A1674	A1675 G1676	G1677 11678	01679	A1680 G1681	C1682
A1688		01691 A1692	U1693 A1694	14	A1090 A1699	A1702	A1703	C1704	C1706	U1707	00/Th	A1723	U1727	A1730	G1733	A1734 A1735	G1736	G1737	U1748	A1761		C1761	G1763	U1764	61/69	A1769	A1770 C1771	A1780		G1783 111784	U1785	U1786 A1787	A1788	C1789 U1790	A1791	C1807	C1808 A1809	A1810
111815	A1816	U1820	G1821 A1822	U1823	U1825	A1826	G1831	G1832 G1833	U1834	G1835	A1630 C1837	111841	G1842	C1845		A1854	A1865	G1866 C1967	A1868	G1869 C1870		A1873	G1876		A1879 G1880		U1890 A1891	C1808		A1903	G1906	A1907 A1908	C1909	G1910	G1913	A1920	C1921	A1926
A1934	A1935	61937 G1937	U1938	A1945	G1952	111 958		U1962	C1970	G1971	01972 U1973	U1974	A1977	U1978 C1979		C1987 A1988	01989	111 000	01990 G1999	U2000	C2003	G2004	62006 C2006	U2007	A2008 U2009	A2010	G2011 A2012	C2013	G2016	G2017 112018	G2019	A2020	U2023	C2024 C2025	A2026 G2027	G2028	02029	<mark>G2</mark> 036
A2037 A2038	G2039	A2040 C2041	A2042 C2043		00075	C2054 A7055	A2056	C2057 C2058	G2059	G2060	A2061 C2062	G2063	A2067	G2068 A7069		C2073	G2076	A2077	0 /0 V	U2083 A2084	1007W	A2097	02098 02099	G2100	G2106	A2107	U2110	U2111 A2112	U2113	C2114 A2115	U2116	G2117 U2118		G2122 A2123	A2124 112125		G2128 U2129	A2130
G2131 G2132	A2133	C2139	G2140 A2141		C2152	U2153 A2154	F0194	G2164 A7165	U2166	60	42109 A2170	A2171	G2174	U2175	U2180	A2181 C2182		U2193	U2195	G2196	G2198	C2199	02200 G2201	U2202	02203	A2207	G2211	U2212	U2219	A2220 112221	C2222	C2223	A2231	G2232 A2233	(12246	G2247	C2256	
G2259	<mark>C2266</mark>	U2273	A2274 A2275	A2276	A2281	47286		C2289 C2289	U2291	A2292	42294 A2294	A2295 A7796	G2297	G2298		U2304 C2305	A2306		U2313	0.0316	A2317		G2322 G2322	U2323	A2324 U2325	G2326	U2327 A2328	G2329 A2330	G2331	U2332 C2333	U2334	A2335	G2341	U2342 A2343	A2344 G2345	G2346	U2351	U2352
G2353 A 2354	C2355	U2358	42366	C2367	G2370	112380	G2381	A2382 G2383		A2386	G2390	G2391 117397	C2393	A 7306	G2397	4000		C2410	TT 570	U2414 A2415		G2418	G2422		G2429 C2430	U2431	C2432 A2433	A2434 C2435	G2436	G2437 A7438	U2439	A2440 A2441	A2442	U2446	A2447 C2448	U2449	C2450 C2451	G2452
G2453 G2454	G2455	A2450 U2457	A2458 A2459	C2460	G2463	C2464 U2465	00170	C2474 C2475	A2476	A2477	A2484	U2485 A2486	U2487	C2488	G2492	G2493	U2499		A2505	C2506	U2508	C2509	42510 A2511	U2512	62513	G2516	A2521	U2522 C2523	04040	A2526 112527	C2528	G2540	C2541	A2542 G2543	CDE47	G2548	U2555	C2556
G2557 G2558		U2563 U2563	C2564	U2570	42572	A2573 A2574	G2575	47580	C2581		42004 A2585	G2586	<mark>G2590</mark>	117593	C2594	112604	G2605	A2606	A2610	117617	C2618		U2621 A2622	U2623	A2626		G2631	U2636 A2637	G2638	G2639	G2642	G2646		U2654 U2655	G2656	G2663	02664	A2668
G2669 A2670	G2671	77017	A2687	C2691	U2693	A2694	C2697	U2698 C2699	C2700	0110706	07/00	C2721 G2733	44	A2729	U2731	A2732 A7733	C2734	G2735 117736	G2737		02741 A2741		02/4/ A2748	A2749	A2750 C2751	G2752	C2753	A2756	C2760	CD763	U2764	A2765	A2772	A2784	G2785 A2786	U2787	N2788	C2795
C2796 C2797	A2798	U2800	U2801	ت ت	A	A G2807	A2808	A2809	G2811	U2812	A2814	G2815	C2822	A2823	A2825	G2826 47877	C2828	62829	G2835		AC024	G2850	02851 G2852	U2853	G2861	U2862	G2863 A2864		G2871	CD876		C2884 U2885	A2886	A2887 U2888	U2889 (12890		G2894 A2895	G2896

 \bullet Molecule 2: 5S ribosomal RNA

Chain 4:	62%	27% 7% ••	
U1 U2 U3 A11 C10 A11 C13 C13 C13 C13 C13 C13	A23 631 033 033 033 033 033 033 033 033 043 043	665 665 665 665 665 67 67 7 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8	G9 6 A99
C108			
• Molecule 3:	50S ribosomal protein L29		
Chain w:	85%	5% 11%	1
MET 12 E37 E37 039 066 066 667 667	AFO LYS TYR TYR TYR THR LYS THR N80 A00 LYS LYS		
• Molecule 4:	50S ribosomal protein L2		
Chain a:	97%		
MET P2 D89 L210 K215 T227	V249 C550 D252 TYR TYR		
• Molecule 5:	50S ribosomal protein L4		
Chain c:	95%	· ·	
MET A2 444 W45 W45 W46 Q47 V58 R46 Q47 R59	K63 K64 R67 R67 R69 R69 R69 LVS		
• Molecule 6:	50S ribosomal protein L6		
Chain e:	94%		
MET SER K161 L166 V171	THR ALA GLU CYS LYS LYS		
• Molecule 7:	50S ribosomal protein L15		
Chain k:	95%		
MET GLU L3 K30 K30 K34 K34 K119	E160 LYS		

• Molecule 8: 50S ribosomal protein L13

Chain i:	97%		••
MET GLN GLN 15 15 131 131 132 8146 8146			
• Molecule 9: 50S ribosomal protein	n L17		
Chain m:	95%		• •
NET NET DI20 ALA LIYS LIYS			
• Molecule 10: 50S ribosomal prote	in L21		
Chain q:	95%		• •
V94 896 896 897 ASP ASP			
• Molecule 11: 50S ribosomal prote	in L27		
Chain u: 8	2%	·	17%
MET ASIN ASIN ASIN ASIN TYR PHE CLEU CLEU CLEU ASIP ALA ALA ALA ALA			
• Molecule 12: 50S ribosomal prote	in L32		
Chain y:	89%		9% •
MET M10 M110 M2 M10			
• Molecule 13: 50S ribosomal prote	in L34		
Chain 0: 75%		23	% •
M1 14 14 14 14 112 124 124 124 124 124 12			
• Molecule 14: 50S ribosomal prote	in L36		
Chain 2: 38%		57%	5%
M1 M1 M2 M2 M5 M5 M5 M2 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	T29 H32 K33 Q34 Q36 Q36 G37		
• Molecule 15: 50S ribosomal prote	in L35		

Chain 1:	64%	32% ·	I
M1 K4 K10 F11 K15 G18 Q18	119 119 121 135 135 135 135 135 135 135 135 135 13		
• Molecule 16:	50S ribosomal protein L19		
Chain o:	92%	· ·	I
MET LYS K3 80 980 186 186 587 587 188	KIIT LYS GLN		
• Molecule 17:	50S ribosomal protein L23		
Chain s:	39%	61%	
MET D2 D2 C D2 C D2 C D3 C C D C C C C C C C C C C C C C C	THR LASP LASP LASP LASP ASP ASP LASP LASP L	ALIA SER SER GLU GLU GLU CAL CLY CAL CLY CLY CLY CLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	PRU VAL THR THR ALA PRO
LEU GLN THR ALA ALA LYS LYS LYS ALA LYS CLU GLU	VAL VAL CLYS GLU VAL VAL VAL CLYS PLYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS C	LYS LYS CLU CLV LYS LYS LYS LYS LYS CLU CLV CLV CLV CLV CLV CLV CLV CLV CLV CLV	LTS VAL ALA LYS GLU THR
LYS THR GLU LYS SER ALA LYS THR THR LYS THR	THR THR THR THR THR THR THR THR THR THR		
• Molecule 18:	50S ribosomal protein L28		
Chain v:	89%	8% •	-
MET A2 145 146 148 148 148 148 168 851			
• Molecule 19:	50S ribosomal protein L31		
Chain x:	45%	55%	-
MET LYS LYS LYS ASP ASP F5 G48 G48 G48 G48 C48 C14 LU LTHR LYS	DIAN THR VAL ATR ATR ATR ATR ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ASIN ASIN PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	LEU
• Molecule 20:	$50\mathrm{S}$ ribosomal protein L33 1		
Chain z:	94%	6%	
MET A2 K51 ARG LYS			
• Molecule 21:	50S ribosomal protein L5		
Chain d:	94%	· ·	-

• Molecule 22: 50S ribosomal protein L3

Chain b:	78% .	20%
M1 R117 K124 V176 Q177	A226 PRO GPRO GPRO GPRO GPRO CPRO GPRO CPRO GPRO CPRO CPRO GPRO GPRO GPRO GPRO GPRO GPRO GPRO G	GLU PRO LYS PRO CLU THR GLU VAL LYS ALA ALA ALA PRO VAL
VAL GLU LYS LYS GLY GLU ASP LYS		
• Molecule 2	23: 50S ribosomal protein L16	
Chain l:	97%	
M1 816 E136 VAL SER ALA		
• Molecule 2	24: 50S ribosomal protein L20	
Chain p:	87%	• 10%
M1 R50 K84 N86 V93	S114 GLN PRO PRO PRO PRO ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 2	25: 50S ribosomal protein L14	
Chain j:	96%	·
M1 122 K23 V24 L25 K113 K113 T114	11 <mark>112</mark>	
• Molecule 2	26: 50S ribosomal protein L18	
Chain n:	97%	·
M1 N64 GLY ASN LYS ASP N69	en la constanta de la constanta	
• Molecule 2	27: 50S ribosomal protein L24	
Chain t:	86%	• 14%
M1 H45 K46 K47 LYS ASP GLN THR	LTR ALA ALA ALA ALA CVS SER CIN CIN CIN CIN CIN CIN CIN CIN CIN CIN	
• Molecule 2	28: 50S ribosomal protein L22	

Chain r:	82%	5%	13%
M1 K6 R9 R9 R9 R12	S13 818 M137 M137 M139 CLIN VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL		
• Molecule	e 29: 50S ribosomal protein L9		
Chain f:	96%		• •
M1 PTHR TTHR E76 D115	D145 ASN VAL LYS		
• Molecule	e 30: 50S ribosomal protein L11		
Chain h:	92%		•• 7%
MET ALA LYS LYS LYS THR THR THR ABG	19 19 11 11 13 19 10 10 10 10 10 10 10 10 10 10 10 10 10		
• Molecule	e 31: 50S ribosomal protein L10		
Chain g:	75% .	22'	%
MET GLU GLU A3 A3 F45 K46 N47 N47	NEG B B B B B B B B B B B B B	ALA ALA LYS	

4 Experimental information (i)

Property	Value	Source		
EM reconstruction method	SUBTOMOGRAM AVERAGING	Depositor		
Imposed symmetry	POINT, C1	Depositor		
Number of subtomograms used	17890	Depositor		
Resolution determination method	FSC 0.143 CUT-OFF	Depositor		
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor		
	CORRECTION			
Microscope	FEI TITAN KRIOS	Depositor		
Voltage (kV)	300	Depositor		
Electron dose $(e^-/\text{\AA}^2)$	3.2	Depositor		
Minimum defocus (nm)	1500	Depositor		
Maximum defocus (nm)	3750	Depositor		
Magnification	81000	Depositor		
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor		

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, K, CLM, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles				
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5			
1	3	0.89	68/69100~(0.1%)	0.93	141/107749~(0.1%)			
2	4	0.60	0/2511	0.82	1/3910~(0.0%)			
3	W	0.41	0/806	0.61	0/1080			
4	a	0.46	1/2241~(0.0%)	0.59	0/3013			
5	с	0.41	0/1639	0.65	1/2209~(0.0%)			
6	е	0.36	0/1373	0.55	0/1854			
7	k	0.40	0/1155	0.59	0/1541			
8	i	0.43	0/1180	0.54	0/1585			
9	m	0.41	0/972	0.55	0/1308			
10	q	0.42	0/826	0.59	0/1109			
11	u	0.45	0/649	0.55	0/867			
12	у	0.48	0/440	0.79	1/582~(0.2%)			
13	0	0.41	0/380	0.50	0/501			
14	2	0.57	1/305~(0.3%)	0.77	2/401~(0.5%)			
15	1	0.44	0/484	0.56	0/637			
16	0	0.42	0/905	0.63	1/1211~(0.1%)			
17	s	0.39	0/726	0.51	0/981			
18	V	0.39	0/510	0.59	0/684			
19	Х	0.25	0/217	0.48	0/301			
20	Z	0.39	0/412	0.58	0/547			
21	d	0.32	0/1264	0.57	1/1719~(0.1%)			
22	b	0.42	0/1791	0.57	0/2408			
23	1	0.45	0/1082	0.54	0/1456			
24	р	0.49	0/955	0.55	0/1271			
25	j	0.49	0/953	0.60	0/1275			
26	n	0.35	0/861	0.51	0/1156			
27	t	0.35	0/712	0.52	0/954			
28	r	0.50	1/1077~(0.1%)	0.57	0/1441			
29	f	0.44	0/711	0.78	0/988			
30	h	0.62	0/629	1.00	1/873~(0.1%)			
31	g	0.76	0/616	1.03	1/856~(0.1%)			
All	All	0.79	71/97482~(0.1%)	0.86	$15\overline{0/146467}~(0.1\%)$			

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
4	a	89	ASP	C-N	8.41	1.50	1.34
1	3	2735	G	O3'-P	-7.74	1.51	1.61
1	3	611	А	P-OP2	7.73	1.62	1.49
1	3	1281	А	C5-C6	-7.67	1.34	1.41
1	3	2057	С	O3'-P	-7.63	1.51	1.61
1	3	1222	А	O3'-P	-7.42	1.52	1.61
1	3	979	U	O3'-P	-7.23	1.52	1.61
28	r	13	SER	CA-CB	-7.20	1.42	1.52
1	3	2606	А	P-OP2	7.11	1.61	1.49
1	3	1704	С	O3'-P	-7.00	1.52	1.61
1	3	614	С	O3'-P	-6.98	1.52	1.61
1	3	2358	U	O3'-P	-6.97	1.52	1.61
1	3	784	А	O3'-P	-6.97	1.52	1.61
1	3	2851	U	O3'-P	-6.83	1.52	1.61
1	3	197	U	O3'-P	-6.70	1.53	1.61
1	3	875	G	O3'-P	-6.52	1.53	1.61
1	3	2509	С	O3'-P	6.50	1.69	1.61
1	3	30	А	O3'-P	-6.47	1.53	1.61
1	3	2475	С	O3'-P	-6.31	1.53	1.61
1	3	2558	G	O3'-P	-6.27	1.53	1.61
1	3	587	U	O3'-P	-6.25	1.53	1.61
1	3	2026	А	C5-C6	-6.22	1.35	1.41
1	3	999	U	O3'-P	-6.18	1.53	1.61
14	2	12	LYS	C-N	6.01	1.47	1.34
1	3	546	U	P-OP2	5.99	1.59	1.49
1	3	803	G	O3'-P	-5.99	1.53	1.61
1	3	1220	А	O3'-P	-5.98	1.53	1.61
1	3	1784	U	P-O5'	-5.96	1.53	1.59
1	3	518	А	O3'-P	5.92	1.68	1.61
1	3	846	U	O3'-P	-5.92	1.54	1.61
1	3	1692	А	O3'-P	-5.91	1.54	1.61
1	3	2465	U	O3'-P	-5.89	1.54	1.61
1	3	604	А	C5-C6	-5.88	1.35	1.41
1	3	2460	С	O3'-P	-5.86	1.54	1.61
1	3	711	А	O3'-P	-5.86	1.54	1.61
1	3	719	G	O3'-P	-5.86	1.54	1.61
1	3	2005	G	O3'-P	-5.79	1.54	1.61
1	3	2097	A	O3'-P	-5.78	1.54	1.61
1	3	652	U	03'-P	-5.76	1.54	1.61
1	3	258	G	03'-P	-5.75	1.54	1.61
1	3	2687	A	03'-P	-5.72	1.54	1.61
1	3	1820	U	03'-P	-5.63	1.54	1.61

All (71) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	3	2433	А	P-OP1	-5.57	1.39	1.49
1	3	2507	С	O3'-P	-5.55	1.54	1.61
1	3	1284	А	O3'-P	-5.55	1.54	1.61
1	3	255	А	P-OP2	5.54	1.58	1.49
1	3	1703	А	P-O5'	-5.54	1.54	1.59
1	3	566	G	O3'-P	-5.52	1.54	1.61
1	3	2073	С	O3'-P	-5.47	1.54	1.61
1	3	2626	А	O3'-P	-5.46	1.54	1.61
1	3	2694	А	P-O5'	-5.43	1.54	1.59
1	3	711	А	P-OP2	5.39	1.58	1.49
1	3	1692	А	C5-C6	-5.30	1.36	1.41
1	3	2274	А	P-OP1	5.25	1.57	1.49
1	3	1014	G	O3'-P	-5.23	1.54	1.61
1	3	926	U	C1'-N1	5.22	1.56	1.48
1	3	616	G	O3'-P	5.22	1.67	1.61
1	3	2850	G	O3'-P	-5.19	1.54	1.61
1	3	991	G	O3'-P	-5.16	1.54	1.61
1	3	786	А	P-OP1	5.15	1.57	1.49
1	3	1958	U	O3'-P	5.15	1.67	1.61
1	3	1216	U	O3'-P	5.12	1.67	1.61
1	3	893	А	O3'-P	-5.12	1.55	1.61
1	3	242	G	O3'-P	-5.10	1.55	1.61
1	3	824	А	P-OP2	5.10	1.57	1.49
1	3	1234	U	N3-C4	-5.09	1.33	1.38
1	3	1188	С	P-OP2	5.08	1.57	1.49
1	3	2397	G	O3'-P	-5.08	1.55	1.61
1	3	789	А	C5-C6	-5.06	1.36	1.41
1	3	254	G	03'-P	-5.05	1.55	1.61
1	3	1190	A	P-OP2	5.04	1.57	1.49

All (150) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	3	2506	С	O5'-P-OP1	-12.90	94.09	105.70
1	3	1399	G	O5'-P-OP1	-12.79	94.19	105.70
1	3	205	С	O5'-P-OP1	-12.26	94.67	105.70
1	3	372	G	O5'-P-OP2	-11.34	95.49	105.70
1	3	2060	G	O5'-P-OP1	11.10	124.02	110.70
1	3	1822	А	O5'-P-OP1	-10.96	95.83	105.70
1	3	503	G	O5'-P-OP1	-9.91	96.78	105.70
1	3	1810	A	O5'-P-OP1	-9.75	96.92	105.70
1	3	1355	С	O5'-P-OP1	-9.60	97.06	105.70

 $Ideal(^{o})$

105.70

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$
1	3	779	С	O5'-P-OP1	-9.32	97.31
1	3	822	С	O5'-P-OP1	9.08	121.59
1	3	201	А	O5'-P-OP2	-8.93	97.67
1	3	991	G	O5'-P-OP1	-8.88	97.71
1	3	1821	G	O5'-P-OP2	8.88	121.35
1	3	984	С	O5'-P-OP1	8.81	121.28
1	3	554	U	O5'-P-OP2	-8.69	97.88
1	3	1508	G	O5'-P-OP2	-8.57	97.98
1	3	2370	G	O5'-P-OP1	-8.18	98.34
1	3	1783	G	O5'-P-OP2	8.12	120.44
1	3	1507	G	O4'-C1'-N9	8.09	114.67
1	3	1293	U	O5'-P-OP1	-8.07	98.44
1	3	2523	С	O5'-P-OP1	-8.06	98.45
1	3	1269	С	O5'-P-OP1	-7.91	98.59
1	3	2731	U	O5'-P-OP1	-7.83	98.65
1	3	2722	G	O5'-P-OP2	7.80	120.06
1	3	2054	С	O5'-P-OP1	-7.60	98.86
1	3	1297	II	$P_{-}O_{3'}C_{3'}$	7 59	128.81

Continued from previous page...

1	3	822	С	O5'-P-OP1	9.08	121.59	110.70
1	3	201	А	O5'-P-OP2	-8.93	97.67	105.70
1	3	991	G	O5'-P-OP1	-8.88	97.71	105.70
1	3	1821	G	O5'-P-OP2	8.88	121.35	110.70
1	3	984	С	O5'-P-OP1	8.81	121.28	110.70
1	3	554	U	O5'-P-OP2	-8.69	97.88	105.70
1	3	1508	G	O5'-P-OP2	-8.57	97.98	105.70
1	3	2370	G	O5'-P-OP1	-8.18	98.34	105.70
1	3	1783	G	O5'-P-OP2	8.12	120.44	110.70
1	3	1507	G	O4'-C1'-N9	8.09	114.67	108.20
1	3	1293	U	O5'-P-OP1	-8.07	98.44	105.70
1	3	2523	С	O5'-P-OP1	-8.06	98.45	105.70
1	3	1269	С	O5'-P-OP1	-7.91	98.59	105.70
1	3	2731	U	O5'-P-OP1	-7.83	98.65	105.70
1	3	2722	G	O5'-P-OP2	7.80	120.06	110.70
1	3	2054	С	O5'-P-OP1	-7.60	98.86	105.70
1	3	1297	U	P-O3'-C3'	7.59	128.81	119.70
1	3	434	G	O5'-P-OP1	7.59	119.81	110.70
1	3	840	G	O5'-P-OP1	-7.43	99.01	105.70
1	3	1297	U	C2'-C3'-O3'	7.41	125.81	109.50
1	3	2016	G	O5'-P-OP1	-7.35	99.08	105.70
1	3	2397	G	O5'-P-OP1	7.35	119.52	110.70
1	3	486	G	O5'-P-OP1	-7.33	99.10	105.70
14	2	12	LYS	C-N-CA	-7.28	103.50	121.70
1	3	1325	С	O5'-P-OP1	-7.28	99.15	105.70
1	3	786	А	O5'-P-OP2	-7.24	99.18	105.70
1	3	875	G	O5'-P-OP1	-7.20	99.22	105.70
1	3	2606	А	O5'-P-OP2	-7.17	99.25	105.70
1	3	615	G	O5'-P-OP1	-6.99	99.41	105.70
1	3	483	А	O5'-P-OP1	-6.94	99.45	105.70
1	3	614	С	O5'-P-OP1	-6.90	99.49	105.70
1	3	2493	G	O5'-P-OP1	-6.77	99.61	105.70
1	3	2005	G	O5'-P-OP1	-6.76	99.62	105.70
1	3	708	С	O5'-P-OP1	-6.75	99.63	105.70
1	3	1831	G	O5'-P-OP1	-6.65	99.71	105.70
1	3	619	A	C5'-C4'-O4'	-6.63	101.14	109.10
1	3	1287	С	O5'-P-OP1	-6.61	99.75	105.70
5	с	47	GLN	CB-CA-C	-6.61	97.19	110.40
1	3	1821	G	OP1-P-OP2	-6.45	109.93	119.60
1	3	706	С	O5'-P-OP1	-6.44	99.90	105.70
1	3	1281	А	O5'-P-OP1	-6.42	99.92	105.70

α \cdot \cdot \cdot	C		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	3	1026	А	O5'-P-OP1	-6.37	99.97	105.70
1	3	1703	А	P-O5'-C5'	-6.34	110.76	120.90
1	3	2007	U	O5'-P-OP1	-6.34	100.00	105.70
1	3	1371	G	C4-N9-C1'	6.32	134.71	126.50
14	2	12	LYS	O-C-N	6.31	132.80	122.70
1	3	2732	А	O5'-P-OP1	-6.30	100.03	105.70
1	3	1371	G	N9-C1'-C2'	6.30	122.19	114.00
1	3	1380	U	O5'-P-OP1	-6.26	100.06	105.70
1	3	1166	G	O5'-P-OP2	-6.24	100.08	105.70
1	3	1234	U	C2-N1-C1'	6.24	125.19	117.70
1	3	1371	G	C8-N9-C1'	-6.23	118.91	127.00
1	3	14	U	N1-C1'-C2'	6.18	122.03	114.00
1	3	14	U	C2-N1-C1'	6.17	125.11	117.70
1	3	2506	С	O5'-P-OP2	6.14	118.07	110.70
1	3	1190	А	O5'-P-OP2	-6.09	100.22	105.70
1	3	2729	А	O5'-P-OP1	-6.07	100.24	105.70
1	3	2541	С	O5'-P-OP1	6.03	117.93	110.70
1	3	22	U	O5'-P-OP1	6.01	117.91	110.70
1	3	2636	U	P-O5'-C5'	-5.95	111.38	120.90
2	4	59	А	C2'-C3'-O3'	5.90	123.15	113.70
1	3	1372	U	O5'-P-OP2	-5.90	100.39	105.70
1	3	2060	G	OP1-P-OP2	-5.90	110.75	119.60
1	3	2256	С	O5'-P-OP1	-5.88	100.40	105.70
1	3	693	U	O5'-P-OP1	-5.87	100.42	105.70
1	3	2083	U	O5'-P-OP2	5.86	117.73	110.70
1	3	2069	А	O5'-P-OP1	5.80	117.66	110.70
1	3	625	G	O5'-P-OP2	5.75	117.61	110.70
1	3	1825	U	O5'-P-OP2	-5.74	100.54	105.70
1	3	1486	U	C2-N1-C1'	5.71	124.56	117.70
1	3	2691	С	O5'-P-OP2	5.68	117.51	110.70
1	3	1673	U	O5'-P-OP2	5.67	117.50	110.70
16	0	83	ASN	CB-CA-C	-5.66	99.08	110.40
1	3	1368	U	P-O5'-C5'	-5.64	111.87	120.90
1	3	1486	U	N1-C1'-C2'	5.64	121.33	114.00
1	3	1673	U	O5'-P-OP1	-5.64	100.62	105.70
1	3	2693	U	P-O5'-C5'	-5.64	111.87	120.90
1	3	2059	G	O5'-P-OP1	-5.63	100.63	105.70
1	3	1189	G	O5'-P-OP1	-5.63	100.64	105.70
1	3	980	С	P-O5'-C5'	-5.62	111.91	120.90
1	3	1370	A	O5'-P-OP1	-5.60	100.66	105.70
1	3	$2\overline{465}$	U	P-O5'-C5'	-5.57	111.99	120.90
1	3	1699	А	P-O5'-C5'	-5.54	112.03	120.90

α \cdot \cdot \cdot	C		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	3	598	G	P-O5'-C5'	-5.54	112.04	120.90
1	3	1035	U	O5'-P-OP2	5.53	117.34	110.70
1	3	2018	U	O5'-P-OP1	-5.51	100.74	105.70
1	3	1303	U	C2'-C3'-O3'	5.50	122.50	113.70
1	3	2509	С	C5'-C4'-O4'	-5.49	102.52	109.10
1	3	710	А	O4'-C1'-N9	-5.47	103.82	108.20
1	3	2606	А	O5'-P-OP1	5.47	117.26	110.70
1	3	2396	А	O5'-P-OP2	-5.44	100.81	105.70
12	У	48	TYR	CB-CA-C	-5.42	99.56	110.40
1	3	1970	C	N1-C1'-C2'	5.42	121.05	114.00
1	3	358	А	O5'-P-OP2	-5.41	100.83	105.70
1	3	1648	A	O5'-P-OP1	5.39	117.17	110.70
1	3	1235	U	P-O5'-C5'	-5.38	112.29	120.90
1	3	1350	А	O5'-P-OP1	-5.37	100.86	105.70
30	h	23	PRO	CA-C-N	5.35	128.96	117.20
1	3	1698	А	N9-C1'-C2'	5.34	120.94	114.00
1	3	1360	U	O5'-P-OP2	-5.33	100.90	105.70
1	3	488	G	O5'-P-OP2	-5.32	100.92	105.70
1	3	1368	U	P-O3'-C3'	5.30	126.06	119.70
1	3	1219	U	O5'-P-OP2	-5.30	100.93	105.70
1	3	1845	C	C3'-C2'-C1'	-5.29	97.26	101.50
1	3	881	A	C2'-C3'-O3'	5.28	122.15	113.70
1	3	2795	C	O5'-P-OP1	-5.27	100.95	105.70
1	3	1836	A	C2'-C3'-O3'	5.27	122.13	113.70
1	3	1583	G	C2'-C3'-O3'	5.22	122.05	113.70
1	3	513	A	C2'-C3'-O3'	5.22	122.05	113.70
31	g	56	ASN	CB-CA-C	-5.22	99.97	110.40
1	3	426	U	N1-C1'-C2'	5.21	120.78	114.00
1	3	524	G	O5'-P-OP1	-5.21	101.01	105.70
1	3	1388	G	O5'-P-OP2	5.18	116.92	110.70
1	3	616	G	P-O5'-C5'	-5.18	112.61	120.90
21	d	108	LEU	CA-CB-CG	5.18	127.21	115.30
1	3	2558	G	O5'-P-OP2	-5.16	101.05	105.70
1	3	688	U	C4'-C3'-O3'	5.15	123.31	113.00
1	3	467	U	O5'-P-OP1	-5.15	101.06	105.70
1	3	828	A	$N9-\overline{C1'-C2'}$	5.15	120.69	114.00
1	3	230	G	O5'-P-OP1	-5.14	101.08	105.70
1	3	2886	A	P-O5'-C5'	-5.13	112.70	120.90
1	3	1188	C	O5'-P-OP1	-5.12	101.09	105.70
1	3	2735	G	C8-N9-C1'	-5.11	120.35	127.00
1	3	1790	U	OP1-P-OP2	5.10	127.25	119.60
1	3	1271	A	O5'-P-OP1	5.10	116.81	110.70

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	3	1810	А	OP1-P-OP2	5.09	127.24	119.60
1	3	1845	С	N1-C1'-C2'	5.09	120.62	114.00
1	3	1219	U	P-O5'-C5'	-5.08	112.76	120.90
1	3	1833	G	O5'-P-OP1	-5.08	101.13	105.70
1	3	29	G	O5'-P-OP1	-5.07	101.13	105.70
1	3	2735	G	C4-N9-C1'	5.06	133.08	126.50
1	3	1691	U	O5'-P-OP1	5.05	116.77	110.70
1	3	1257	G	O5'-P-OP1	-5.05	101.16	105.70
1	3	2023	U	O5'-P-OP1	-5.05	101.16	105.70
1	3	711	A	O5'-P-OP2	-5.05	101.16	105.70
1	3	1295	A	C4'-C3'-O3'	-5.04	98.81	109.40
1	3	1316	U	C2-N1-C1'	5.04	123.75	117.70
1	3	711	A	OP1-P-OP2	5.03	127.15	119.60
1	3	1276	А	O5'-P-OP1	-5.03	101.18	105.70
1	3	2734	С	C5'-C4'-O4'	-5.01	103.08	109.10

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	3	61690	0	30961	237	0
2	4	2245	0	1135	7	0
3	W	798	0	838	0	0
4	a	2199	0	2248	0	0
5	с	1613	0	1676	0	0
6	е	1349	0	1373	0	0
7	k	1138	0	1223	0	0
8	i	1158	0	1176	0	0
9	m	957	0	1008	0	0
10	q	809	0	852	0	0
11	u	641	0	650	0	0
12	У	436	0	441	0	0
13	0	377	0	422	14	0
14	2	303	0	348	22	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
15	1	477	0	530	30	0
16	0	895	0	932	0	0
17	s	714	0	785	0	0
18	V	504	0	542	0	0
19	Х	218	0	90	0	0
20	Z	408	0	436	0	0
21	d	1244	0	1160	0	0
22	b	1758	0	1797	0	0
23	1	1057	0	1088	0	0
24	р	941	0	1017	0	0
25	j	944	0	1019	0	0
26	n	853	0	873	0	0
27	t	706	0	726	0	0
28	r	1068	0	1150	0	0
29	f	713	0	313	0	0
30	h	630	0	309	0	0
31	g	617	0	308	0	0
32	3	1	0	0	0	0
33	3	24	0	0	0	0
33	У	1	0	0	0	0
34	3	20	0	10	4	0
35	2	1	0	0	0	0
35	у	1	0	0	0	0
35	Z	1	0	0	0	0
All	All	89509	0	57436	272	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (272) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
14:2:11:CYS:SG	14:2:32:HIS:HE1	1.46	1.35
14:2:14:CYS:SG	14:2:27:CYS:HB2	1.99	1.03
1:3:254:G:OP2	15:1:10:ARG:NH2	2.01	0.93
1:3:253:C:O2	15:1:9:LYS:NZ	2.09	0.86
14:2:16:ILE:HG12	14:2:25:VAL:HG12	1.62	0.78
1:3:1507:G:O2'	1:3:1508:G:OP1	2.05	0.74
1:3:1462:A:O2'	1:3:1463:G:O4'	2.07	0.73
1:3:780:G:O2'	1:3:783:G:O2'	2.08	0.71
1:3:2123:A:N7	1:3:2169:G:O2'	2.24	0.71

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:3:1370:A:O2'	1:3:1372:U:OP2	2.09	0.71
1:3:2400:A:H5'	15:1:25:TYR:CE2	2.26	0.71
1:3:2826:G:O2'	1:3:2828:C:OP2	2.08	0.71
1:3:1128:G:H21	1:3:1133:A:H62	1.39	0.71
1:3:1647:A:H61	1:3:1651:C:H2'	1.55	0.70
1:3:1446:G:N2	1:3:1613:A:OP2	2.24	0.70
1:3:1906:G:H22	1:3:1909:C:H41	1.40	0.70
1:3:1055:A:N1	1:3:1176:U:O2'	2.25	0.69
1:3:2460:C:C2	34:3:3026:CLM:H11	2.27	0.69
1:3:343:A:N3	1:3:363:G:O2'	2.24	0.69
1:3:2668:A:O2'	1:3:2669:G:O5'	2.10	0.69
1:3:1971:G:O2'	1:3:1974:U:OP2	2.11	0.68
1:3:1647:A:N6	1:3:1651:C:H2'	2.09	0.68
1:3:1646:G:C4	1:3:1654:G:N2	2.62	0.68
1:3:1063:A:OP2	1:3:1161:A:N6	2.27	0.68
1:3:1099:C:N4	1:3:1105:A:OP1	2.27	0.67
1:3:2593:U:O2'	1:3:2594:C:OP2	2.12	0.67
1:3:2013:C:H6	1:3:2013:C:O5'	1.78	0.67
1:3:500:U:HO2'	13:0:12:ARG:HH12	1.43	0.66
1:3:608:A:OP2	1:3:2507:C:O2'	2.11	0.66
1:3:1100:U:O2'	1:3:1101:U:O4'	2.08	0.66
1:3:558:C:O2	1:3:587:U:O2'	2.13	0.65
1:3:1389:G:O2'	1:3:2223:C:O2'	2.15	0.65
1:3:2141:A:N6	1:3:2164:G:O2'	2.30	0.65
1:3:2400:A:H5'	15:1:25:TYR:HE2	1.59	0.65
2:4:3:U:OP1	2:4:59:A:O2'	2.15	0.65
1:3:2266:C:O2'	1:3:2435:C:OP2	2.15	0.64
1:3:2122:G:O2'	1:3:2175:U:O2	2.15	0.64
1:3:2861:G:N2	1:3:2864:A:OP2	2.30	0.64
1:3:2669:G:O2'	1:3:2670:A:O4'	2.13	0.64
1:3:2400:A:C5'	15:1:25:TYR:CE2	2.81	0.64
1:3:2383:G:N2	1:3:2386:A:OP2	2.30	0.64
1:3:666:G:N2	1:3:669:A:OP2	2.31	0.63
1:3:2429:G:N7	15:1:28:HIS:CE1	2.67	0.63
1:3:2732:A:O2'	1:3:2733:A:H5'	1.98	0.63
1:3:608:A:O2'	1:3:2509:C:OP1	2.16	0.63
1:3:1242:G:O2'	1:3:1266:G:N2	2.29	0.63
1:3:85:U:O4	1:3:103:G:O2'	2.16	0.63
1:3:1392:G:N2	1:3:1395:A:OP2	2.32	0.63
1:3:1558:A:OP2	1:3:1571:G:N2	2.32	0.62
1:3:2516:G:O2'	1:3:2562:U:O2'	2.17	0.62

	in a pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:3:2700:C:O2	1:3:2851:U:O2'	2.16	0.62
1:3:1000:U:O2'	1:3:2281:A:N3	2.28	0.62
1:3:366:A:O2'	1:3:368:C:OP2	2.14	0.62
1:3:2446:U:O2'	1:3:2448:C:OP1	2.17	0.62
1:3:663:A:O4'	1:3:673:A:N6	2.32	0.62
1:3:1890:U:O2'	1:3:1891:A:O4'	2.18	0.61
1:3:1962:U:O4	1:3:2564:C:N4	2.33	0.61
1:3:2460:C:N3	34:3:3026:CLM:H11	2.15	0.61
1:3:421:A:N6	1:3:424:G:OP2	2.32	0.61
1:3:874:U:O2'	1:3:1222:A:N3	2.34	0.61
1:3:1702:A:O2'	1:3:1708:G:N7	2.29	0.61
1:3:824:A:H2	13:0:3:ARG:NH2	1.99	0.61
1:3:1585:A:O2'	1:3:1586:U:OP1	2.16	0.60
1:3:2750:A:H5"	14:2:1:MET:CE	2.31	0.60
1:3:2400:A:C5'	15:1:25:TYR:CD2	2.85	0.60
1:3:2400:A:H5"	15:1:25:TYR:HD2	1.67	0.60
1:3:824:A:N6	1:3:1648:A:OP2	2.35	0.60
13:0:24:THR:HG23	13:0:27:GLY:H	1.66	0.60
1:3:1296:G:N2	1:3:2020:A:OP2	2.31	0.59
1:3:2289:C:O2'	1:3:2290:G:H5'	2.01	0.59
14:2:27:CYS:HG	14:2:29:THR:HG1	1.47	0.59
1:3:1786:U:OP2	1:3:1791:A:N6	2.32	0.59
2:4:12:U:O4'	2:4:96:G:N2	2.36	0.58
1:3:518:A:N6	1:3:541:G:O2'	2.37	0.58
1:3:721:G:N2	13:0:5:TYR:HE1	2.01	0.58
1:3:34:C:N4	1:3:483:A:OP2	2.36	0.58
1:3:806:A:O2'	1:3:1383:G:O2'	2.22	0.58
1:3:2390:G:H21	15:1:39:ARG:HH12	1.52	0.58
1:3:251:G:O6	15:1:9:LYS:NZ	2.32	0.57
1:3:1104:A:OP1	1:3:1131:A:O2'	2.21	0.57
1:3:2274:A:N6	1:3:2281:A:OP2	2.37	0.57
14:2:27:CYS:SG	14:2:29:THR:OG1	2.53	0.57
1:3:740:A:OP2	1:3:761:G:N2	2.32	0.57
1:3:828:A:OP2	1:3:2078:A:O2'	2.22	0.57
1:3:2663:G:O2'	1:3:2672:G:O6	2.19	0.57
2:4:40:U:HO2'	2:4:41:C:P	2.27	0.56
1:3:2798:A:H5'	1:3:2896:G:H21	1.70	0.56
1:3:524:G:N2	1:3:527:A:OP2	2.39	0.56
1:3:998:C:O2'	1:3:2504:C:O2'	2.20	0.56
1:3:1723:A:OP2	1:3:1732:A:N6	2.38	0.56
1:3:1128:G:N2	1:3:1133:A:H62	2.04	0.56

	the as page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
14:2:25:VAL:HG22	14:2:34:GLN:HB2	1.87	0.56
15:1:4:LYS:HE2	15:1:58:LEU:HD11	1.87	0.56
1:3:780:G:HO2'	1:3:783:G:HO2'	1.50	0.56
1:3:580:U:OP1	1:3:1249:A:O2'	2.14	0.55
1:3:54:A:OP2	1:3:120:A:N6	2.34	0.55
1:3:514:A:N7	1:3:516:A:N6	2.54	0.55
1:3:2400:A:H4'	15:1:25:TYR:CE2	2.42	0.55
1:3:518:A:OP2	1:3:542:A:N6	2.40	0.55
1:3:1444:C:O2'	1:3:1445:U:O5'	2.20	0.55
1:3:1587:U:O2'	1:3:1588:A:OP1	2.22	0.55
1:3:2455:G:N2	1:3:2458:A:OP2	2.36	0.55
1:3:2151:G:H1'	1:3:2154:A:H61	1.71	0.55
1:3:1295:A:C8	1:3:1297:U:C4	2.94	0.55
1:3:2123:A:OP1	1:3:2174:G:N2	2.40	0.55
1:3:499:G:N2	1:3:502:A:OP2	2.36	0.54
1:3:491:A:N6	1:3:508:A:N7	2.54	0.54
1:3:1325:C:H42	1:3:1677:G:H1	1.54	0.54
1:3:1987:C:O2'	1:3:1989:U:OP2	2.20	0.54
1:3:2511:A:O2'	1:3:2513:G:OP2	2.25	0.54
1:3:503:G:O2'	1:3:831:U:O2'	2.26	0.54
1:3:824:A:C2	13:0:3:ARG:CZ	2.91	0.53
1:3:666:G:OP2	15:1:20:LYS:NZ	2.40	0.53
1:3:918:G:O6	1:3:932:U:N3	2.42	0.53
1:3:140:G:N2	1:3:143:A:OP2	2.41	0.53
1:3:451:A:O2'	1:3:1873:A:OP1	2.26	0.53
1:3:2572:A:OP1	1:3:2656:G:O2'	2.25	0.53
1:3:1329:U:H5	1:3:1675:A:H61	1.57	0.53
1:3:1650:A:H3'	1:3:1651:C:H5"	1.89	0.53
14:2:27:CYS:SG	14:2:28:LYS:N	2.82	0.53
1:3:827:G:O2'	1:3:2448:C:N3	2.39	0.53
1:3:824:A:H2	13:0:3:ARG:CZ	2.22	0.52
1:3:1298:A:N3	1:3:2020:A:C6	2.77	0.52
1:3:1907:A:O2'	1:3:1908:A:OP1	2.24	0.52
1:3:2400:A:H5"	15:1:25:TYR:CD2	2.45	0.52
1:3:1295:A:O4'	1:3:1297:U:C6	2.62	0.52
1:3:603:G:N1	1:3:2507:C:OP1	2.42	0.52
1:3:500:U:O2'	1:3:501:G:OP1	2.25	0.51
1:3:635:G:O2'	1:3:638:A:O2'	2.24	0.51
1:3:2586:G:H4'	1:3:2586:G:OP2	2.10	0.51
1:3:721:G:O6	13:0:16:HIS:NE2	2.43	0.51
1:3:2429:G:N7	15:1:28:HIS:HE1	2.08	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:3:501:G:OP1	13:0:12:ARG:NH2	2.42	0.51
1:3:1298:A:C2	1:3:2020:A:C5	2.99	0.51
1:3:2351:U:HO2'	1:3:2381:G:HO2'	1.58	0.51
14:2:8:LYS:HB2	14:2:8:LYS:NZ	2.25	0.51
1:3:402:A:O2'	1:3:403:U:O5'	2.27	0.51
1:3:1298:A:C2	1:3:2020:A:C4	2.99	0.50
1:3:1447:A:OP2	1:3:1611:C:N4	2.44	0.50
1:3:824:A:C2	13:0:3:ARG:NH2	2.78	0.50
1:3:980:C:HO2'	1:3:981:A:P	2.35	0.50
1:3:1367:G:H21	1:3:1637:A:H1'	1.76	0.50
1:3:2888:U:O2'	1:3:2889:U:O5'	2.25	0.50
1:3:504:G:OP2	13:0:37:LYS:NZ	2.38	0.50
1:3:553:A:H2'	1:3:554:U:H5'	1.92	0.50
1:3:869:U:H5'	15:1:54:ARG:HH11	1.77	0.50
1:3:184:A:O2'	1:3:186:A:N7	2.43	0.49
14:2:2:LYS:O	14:2:34:GLN:HA	2.13	0.49
1:3:923:A:H3'	1:3:924:C:C6	2.47	0.49
2:4:10:C:O2'	2:4:11:A:O5'	2.26	0.49
15:1:35:THR:O	15:1:39:ARG:HG2	2.13	0.49
1:3:2111:U:N3	1:3:2112:A:N7	2.59	0.49
1:3:610:G:H5'	1:3:610:G:H8	1.76	0.49
1:3:54:A:OP2	1:3:118:G:N1	2.46	0.49
1:3:1097:G:O6	1:3:1112:A:N6	2.45	0.49
2:4:40:U:O2'	2:4:41:C:O5'	2.31	0.49
1:3:856:A:N6	1:3:1008:A:O2'	2.46	0.48
1:3:928:G:H2'	1:3:929:G:H8	1.78	0.48
1:3:2474:C:H5'	14:2:5:ALA:HB3	1.95	0.48
1:3:2751:C:OP2	1:3:2763:C:N4	2.46	0.48
1:3:263:C:O2'	1:3:657:A:O2'	2.28	0.48
1:3:2367:C:O2'	15:1:51:ASP:OD1	2.29	0.48
1:3:227:A:O2'	1:3:456:G:N3	2.44	0.48
1:3:1091:G:O2'	1:3:1138:A:N6	2.46	0.48
1:3:1445:U:O4	1:3:1614:G:O6	2.31	0.48
1:3:1672:C:O2	1:3:2706:U:O2'	2.30	0.48
1:3:2275:A:H5"	1:3:2276:A:H5"	1.95	0.48
14:2:14:CYS:HA	14:2:26:ILE:O	2.14	0.48
1:3:880:C:H4'	1:3:881:A:C5	2.49	0.48
1:3:70:G:N2	1:3:76:A:O4'	2.47	0.47
1:3:1278:G:H3'	1:3:1279:U:C5'	2.44	0.47
1:3:2297:G:C2'	1:3:2298:G:H5'	2.44	0.47
13:0:34:ARG:NE	13:0:42:LEU:O	2.34	0.47

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:3:1104:A:O2'	1:3:1108:A:N6	2.32	0.47	
1:3:1311:G:N2	1:3:1314:A:OP2	2.46	0.47	
1:3:2122:G:H2'	1:3:2124:A:H62	1.79	0.47	
1:3:1278:G:H3'	1:3:1279:U:H5'	1.96	0.47	
1:3:2400:A:C5'	15:1:25:TYR:HE2	2.22	0.47	
1:3:2458:A:OP1	1:3:2505:A:O2'	2.20	0.47	
15:1:21:ARG:HD3	15:1:47:VAL:HG12	1.97	0.47	
1:3:1297:U:H2'	1:3:1297:U:O2	2.15	0.47	
1:3:2429:G:C8	15:1:28:HIS:HE1	2.32	0.47	
1:3:730:G:OP1	1:3:1408:G:O2'	2.32	0.47	
1:3:922:C:H2'	1:3:923:A:C8	2.49	0.47	
1:3:1431:A:HO2'	1:3:1497:A:HO2'	1.63	0.47	
1:3:2547:C:C5'	14:2:3:VAL:HG11	2.44	0.47	
14:2:19:ARG:HG2	14:2:20:HIS:ND1	2.30	0.47	
15:1:18:GLN:OE1	15:1:18:GLN:HA	2.14	0.47	
15:1:21:ARG:HG2	15:1:45:GLY:O	2.15	0.46	
1:3:903:A:O2'	1:3:904:C:OP1	2.29	0.46	
1:3:187:C:O2'	1:3:468:A:N3	2.46	0.46	
15:1:11:PHE:CE2	15:1:55:ILE:HD12	2.51	0.46	
1:3:2400:A:C4'	15:1:25:TYR:CE2	2.98	0.46	
1:3:1653:C:H6	1:3:1653:C:O5'	1.98	0.46	
1:3:1023:C:O2'	1:3:1036:A:N3	2.46	0.46	
1:3:251:G:N2	1:3:255:A:OP2	2.42	0.46	
1:3:341:G:N1	1:3:344:A:OP2	2.42	0.46	
1:3:2013:C:O2'	1:3:2827:A:N3	2.48	0.45	
1:3:2009:U:O4	1:3:2010:A:N6	2.48	0.45	
1:3:2390:G:N2	15:1:39:ARG:HH12	2.14	0.45	
1:3:185:U:O4'	13:0:36:LYS:CE	2.64	0.45	
1:3:1659:C:H2'	1:3:1660:A:C5'	2.47	0.45	
1:3:1369:U:OP2	1:3:1422:U:O2'	2.23	0.45	
1:3:1659:C:H2'	1:3:1660:A:H5'	1.98	0.45	
1:3:2460:C:C2	34:3:3026:CLM:C11	2.96	0.45	
1:3:780:G:H21	1:3:785:A:H61	1.64	0.45	
1:3:1815:U:O2'	1:3:1816:A:O5'	2.31	0.45	
1:3:2306:A:H62	1:3:2326:G:H21	1.65	0.45	
1:3:29:G:N2	1:3:548:A:OP2	2.50	0.44	
1:3:2400:A:H4'	15:1:25:TYR:CD2	2.53	0.44	
15:1:44:GLN:H	15:1:44:GLN:HG2	1.47	0.44	
1:3:687:G:OP1	15:1:15:LYS:O	2.35	0.44	
1:3:980:C:O2'	1:3:981:A:OP2	2.30	0.44	
1:3:2547:C:H5'	14:2:3:VAL:HG11	2.00	0.44	

	Atom_2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:3:819:U:H3	1:3:828:A:H62	1.65	0.44	
1:3:2439:U:N3	1:3:2442:A:OP2	2.48	0.44	
1:3:2273:U:H3'	1:3:2274:A:H5"	2.00	0.44	
1:3:553:A:C2'	1:3:554:U:H5'	2.48	0.44	
1:3:880:C:H1'	1:3:968:U:H3	1.82	0.43	
1:3:1278:G:C3'	1:3:1279:U:C5'	2.97	0.43	
1:3:2299:U:O2'	1:3:2382:A:N3	2.52	0.43	
1:3:401:G:O2'	1:3:402:A:OP1	2.31	0.43	
1:3:1876:G:N2	1:3:1879:A:OP2	2.38	0.43	
1:3:1104:A:HO2'	1:3:1108:A:H62	1.59	0.43	
1:3:1475:C:O2'	1:3:1577:A:N3	2.49	0.43	
1:3:2721:C:H3'	1:3:2722:G:H5"	2.00	0.43	
1:3:2321:C:N4	1:3:2322:G:O6	2.52	0.43	
1:3:2513:G:O5'	34:3:3026:CLM:O4	2.37	0.43	
1:3:916:U:O4	1:3:936:G:N2	2.52	0.43	
1:3:2548:G:O2'	1:3:2748:A:N3	2.44	0.43	
2:4:78:C:H41	2:4:86:G:H1	1.67	0.43	
1:3:86:A:N6	1:3:101:C:O4'	2.52	0.42	
1:3:710:A:N3	1:3:2451:C:O2'	2.47	0.42	
1:3:893:A:H61	1:3:957:G:H1	1.68	0.42	
1:3:1444:C:HO2'	1:3:1445:U:P	2.43	0.42	
1:3:1360:U:C5	1:3:1643:A:C4	3.07	0.42	
1:3:1825:U:HO2'	1:3:1826:A:P	2.42	0.42	
1:3:2006:C:O2'	1:3:2007:U:H5'	2.19	0.42	
1:3:2750:A:H5"	14:2:1:MET:HE3	2.02	0.42	
1:3:252:G:O2'	1:3:2440:A:OP1	2.20	0.42	
1:3:333:A:N3	1:3:353:G:O2'	2.42	0.42	
13:0:27:GLY:HA2	13:0:30:VAL:HG12	2.02	0.42	
14:2:12:LYS:HB2	14:2:12:LYS:HE3	1.85	0.42	
15:1:11:PHE:HE2	15:1:55:ILE:HD12	1.84	0.42	
1:3:770:A:H1'	1:3:1668:G:H21	1.85	0.42	
1:3:2814:A:H62	1:3:2894:G:H21	1.68	0.42	
1:3:2118:U:OP2	1:3:2152:C:N4	2.53	0.41	
14:2:2:LYS:HB2	14:2:34:GLN:HG3	2.02	0.41	
1:3:357:A:H2'	1:3:357:A:N3	2.36	0.41	
1:3:2540:G:N2	1:3:2671:G:O2'	2.54	0.41	
14:2:7:VAL:HG23	14:2:7:VAL:O	2.20	0.41	
1:3:605:A:H61	1:3:2036:G:H21	1.67	0.41	
1:3:672:G:O2'	1:3:673:A:O5'	2.39	0.41	
14:2:17:ILE:CD1	14:2:26:ILE:HD11	2.51	0.41	
14:2:20:HIS:O	14:2:22:ILE:HG12	2.21	0.41	

Atom-1	Atom-2	Interatomic	$\operatorname{Clash}_{\circ}$
	1100111 =	distance (A)	overlap (Å)
1:3:185:U:C6	13:0:36:LYS:NZ	2.74	0.41
1:3:1379:C:O2'	1:3:1605:A:N3	2.52	0.41
1:3:1698:A:H61	1:3:2003:C:N4	2.19	0.41
1:3:2813:A:H3'	1:3:2814:A:H5'	2.03	0.41
2:4:39:U:O2	2:4:39:U:H2'	2.20	0.41
1:3:571:A:H2'	1:3:572:G:H5'	2.03	0.41
14:2:25:VAL:CG2	14:2:34:GLN:HB2	2.49	0.41
1:3:85:U:O2'	1:3:86:A:H5'	2.21	0.40
1:3:721:G:H3'	1:3:722:C:H5'	2.02	0.40
1:3:923:A:C2	1:3:924:C:H1'	2.56	0.40
1:3:1406:A:O2'	1:3:1407:U:OP2	2.19	0.40
1:3:2038:A:N3	1:3:2463:G:O2'	2.37	0.40
1:3:289:U:O4	1:3:290:A:N6	2.53	0.40
1:3:1391:U:O2'	1:3:1816:A:N3	2.45	0.40
1:3:1481:U:O2'	1:3:1482:U:OP2	2.36	0.40
1:3:715:G:OP2	1:3:811:G:N2	2.54	0.40
1:3:1160:G:O6	1:3:1161:A:N6	2.55	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
3	W	95/111~(86%)	89 (94%)	6 (6%)	0	100	100
4	a	283/287~(99%)	253~(89%)	30 (11%)	0	100	100
5	с	208/212~(98%)	186 (89%)	22 (11%)	0	100	100
6	е	174/184~(95%)	165~(95%)	9~(5%)	0	100	100
7	k	146/151~(97%)	126 (86%)	20 (14%)	0	100	100
8	i	142/146~(97%)	134 (94%)	8 (6%)	0	100	100
9	m	117/124~(94%)	111 (95%)	6(5%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
10	q	97/100~(97%)	85 (88%)	12 (12%)	0	100	100
11	u	84/104 (81%)	76 (90%)	8 (10%)	0	100	100
12	У	54/57~(95%)	48 (89%)	6 (11%)	0	100	100
13	0	45/48~(94%)	43 (96%)	2 (4%)	0	100	100
14	2	35/37~(95%)	34 (97%)	1 (3%)	0	100	100
15	1	57/59~(97%)	53 (93%)	4 (7%)	0	100	100
16	0	113/119~(95%)	95 (84%)	18 (16%)	0	100	100
17	s	90/237~(38%)	82 (91%)	8 (9%)	0	100	100
18	V	61/65~(94%)	53 (87%)	8 (13%)	0	100	100
19	x	42/97~(43%)	31 (74%)	11 (26%)	0	100	100
20	Z	48/53~(91%)	45 (94%)	3 (6%)	0	100	100
21	d	173/180~(96%)	154 (89%)	19 (11%)	0	100	100
22	b	227/287~(79%)	199 (88%)	28 (12%)	0	100	100
23	1	134/139~(96%)	118 (88%)	16 (12%)	0	100	100
24	р	112/127~(88%)	104 (93%)	8 (7%)	0	100	100
25	j	120/122~(98%)	105 (88%)	15 (12%)	0	100	100
26	n	108/116~(93%)	91 (84%)	17 (16%)	0	100	100
27	t	92/111 (83%)	84 (91%)	8 (9%)	0	100	100
28	r	137/159~(86%)	123 (90%)	14 (10%)	0	100	100
29	f	140/149~(94%)	121 (86%)	18 (13%)	1 (1%)	19	47
30	h	126/137~(92%)	116 (92%)	8 (6%)	2 (2%)	8	29
31	g	123/161 (76%)	115 (94%)	4 (3%)	4 (3%)	3	18
All	All	3383/3879~(87%)	3039 (90%)	337 (10%)	7 (0%)	45	72

All (7) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
29	f	115	ASP
30	h	20	LYS
31	g	45	PHE
31	g	110	CYS
30	h	23	PRO
31	g	88	GLU
31	g	47	ASN

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
3	W	83/98~(85%)	78~(94%)	5~(6%)	16	41
4	a	233/243~(96%)	226~(97%)	7 (3%)	36	61
5	с	174/184~(95%)	166~(95%)	8 (5%)	23	49
6	е	138/159~(87%)	135~(98%)	3 (2%)	47	68
7	k	118/126 (94%)	114 (97%)	4 (3%)	32	57
8	i	124/128~(97%)	121 (98%)	3 (2%)	44	66
9	m	104/109~(95%)	103 (99%)	1 (1%)	73	83
10	q	88/91~(97%)	84 (96%)	4 (4%)	23	50
11	u	64/85~(75%)	63~(98%)	1 (2%)	58	75
12	У	45/49~(92%)	41 (91%)	4 (9%)	8	27
13	0	39/41~(95%)	39 (100%)	0	100	100
14	2	35/35~(100%)	32 (91%)	3 (9%)	8	29
15	1	51/51~(100%)	47 (92%)	4 (8%)	10	33
16	О	91/105~(87%)	87~(96%)	4 (4%)	24	50
17	s	80/208~(38%)	80 (100%)	0	100	100
18	V	55/60~(92%)	50 (91%)	5 (9%)	7	26
20	Z	47/50~(94%)	47 (100%)	0	100	100
21	d	111/154 (72%)	107 (96%)	4 (4%)	30	56
22	b	185/233~(79%)	181 (98%)	4 (2%)	47	68
23	1	107/115~(93%)	106 (99%)	1 (1%)	75	86
24	р	99/108~(92%)	95~(96%)	4 (4%)	27	52
25	j	103/103 (100%)	98~(95%)	5 (5%)	21	48
26	n	85/99~(86%)	85 (100%)	0	100	100
27	t	69/96~(72%)	68 (99%)	1 (1%)	62	77
28	r	116/132 (88%)	109 (94%)	7 (6%)	16	41
All	All	2444/2862~(85%)	2362 (97%)	82 (3%)	34	57

4

4

4

4

5

5

5

5

5

5

5

5

6

6

6

7

7

7

7

8

8

8

9

10

10

10

10

11

12

12

12

12

14

14

All (82) residues	s with a	a non-rotan	neric sidechain a
Mol	Chain	Res	Type	
3	W	37	GLU	
3	W	39	ASP	
3	W	65	TRP	
3	W	66	GLN	
3	W	68	GLU	
4	а	89	ASP	
4	а	210	LEU	
4	а	215	LYS	

THR

VAL

ARG

ASP

SER

TRP

VAL

ARG

LYS

LYS

LYS

LYS

LYS

LEU

VAL

LYS

ARG

LYS

LYS

ARG

ASP

LYS

TYR

VAL

ARG

PHE

HIS

GLN

LYS

LYS

CYS

ASP

GLN

227

249

251

252

44

45

58

59

63

64

67

69

161

166

171

30

34

64

119

15

131

132

3

94

96

97

99

43

10

32

33

50

34

 \mathbf{a}

 \mathbf{a}

 \mathbf{a}

 \mathbf{a}

с

 \mathbf{c}

 \mathbf{c}

 \mathbf{c}

 \mathbf{c}

 \mathbf{c}

 \mathbf{c}

 \mathbf{c}

е

е

е

k

k

k

k

i

i

i

 \mathbf{m}

q

q

q

q

u

у

у

у

у 2

are listed below:

Mol	Chain	Res	Type
14	2	36	GLN
15	1	4	LYS
15	1	42	ARG
15	1	44	GLN
15	1	46	THR
16	0	80	GLN
16	0	86	ILE
16	0	87	SER
16	0	88	ILE
18	V	45	THR
18	V	46	THR
18	V	47	ARG
18	V	48	ILE
18	V	49	LEU
21	d	88	LYS
21	d	94	GLU
21	d	96	MET
21	d	99	PHE
22	b	117	ARG
22	b	124	LYS
22	b	176	VAL
22	b	177	GLN
23	1	16	SER
24	р	50	ARG
24	р	84	LYS
24	р	86	ASN
24	р	93	VAL
25	j	22	ILE
25	j	24	VAL
25	j	25	LEU
25	j	113	LYS
25	j	115	LEU
27	t	45	HIS
28	r	6	LYS
28	r	8	PHE
28	r	9	ARG
28	r	12	ILE
28	r	18	ARG
28	r	137	MET
28	r	139	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (8) such side chains are listed below:

Mol	Chain	Res	Type
4	а	91	ASN
5	с	68	GLN
5	с	76	GLN
6	е	21	GLN
6	е	24	HIS
7	k	134	GLN
15	1	28	HIS
26	n	38	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	3	2876/2907~(98%)	667~(23%)	58~(2%)
2	4	103/108~(95%)	32 (31%)	6(5%)
All	All	2979/3015~(98%)	699~(23%)	64~(2%)

All (699) RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	3	12	А
1	3	14	U
1	3	28	G
1	3	37	G
1	3	47	G
1	3	48	G
1	3	51	А
1	3	63	U
1	3	64	U
1	3	65	А
1	3	73	А
1	3	76	А
1	3	77	G
1	3	87	G
1	3	101	С
1	3	102	А
1	3	103	G
1	3	106	C
1	3	111	G
1	3	119	А
1	3	120	A
1	3	121	U
1	3	124	A

Mol	Chain	Res	Type
1	3	126	С
1	3	132	G
1	3	149	А
1	3	152	А
1	3	163	А
1	3	164	А
1	3	165	U
1	3	169	U
1	3	180	А
1	3	184	А
1	3	186	А
1	3	187	С
1	3	188	G
1	3	200	A
1	3	203	A
1	3	208	A
1	3	210	U
1	3	219	G
1	3	220	А
1	3	226	А
1	3	229	С
1	3	231	А
1	3	232	А
1	3	234	G
1	3	237	А
1	3	244	G
1	3	245	U
1	3	246	G
1	3	252	G
1	3	256	G
1	3	265	G
1	3	270	G
1	3	276	A
1	3	277	С
1	3	283	A
1	3	284	U
1	3	286	A
1	3	287	G
1	3	295	U
1	3	296	U
1	3	297	G
1	3	298	U

Mol	Chain	Res	Type
1	3	299	А
1	3	309	А
1	3	310	U
1	3	311	G
1	3	312	U
1	3	314	G
1	3	315	А
1	3	316	С
1	3	319	G
1	3	336	С
1	3	342	G
1	3	343	А
1	3	345	A
1	3	347	С
1	3	351	G
1	3	355	A
1	3	356	А
1	3	357	А
1	3	363	G
1	3	364	А
1	3	369	С
1	3	380	А
1	3	397	G
1	3	402	А
1	3	403	U
1	3	404	С
1	3	408	G
1	3	409	А
1	3	410	G
1	3	411	U
1	3	418	G
1	3	419	A
1	3	422	A
1	3	424	G
1	3	425	U
1	3	426	U
1	3	432	G
1	3	437	A
1	3	440	С
1	3	447	G
1	3	448	A
1	3	460	G

Mol	Chain	Res	Type
1	3	484	U
1	3	487	С
1	3	492	С
1	3	493	А
1	3	500	U
1	3	501	G
1	3	509	G
1	3	514	А
1	3	515	А
1	3	516	А
1	3	517	G
1	3	519	А
1	3	539	U
1	3	540	A
1	3	543	U
1	3	554	U
1	3	562	С
1	3	566	G
1	3	567	U
1	3	568	G
1	3	573	А
1	3	581	А
1	3	583	U
1	3	589	А
1	3	596	G
1	3	604	А
1	3	605	А
1	3	606	G
1	3	608	А
1	3	609	U
1	3	610	G
1	3	620	G
1	3	636	U
1	3	637	U
1	3	638	A
1	3	647	G
1	3	648	G
1	3	649	A
1	3	650	G
1	3	652	U
1	3	657	A
1	3	663	А

Mol	Chain	Res	Type
1	3	670	G
1	3	673	А
1	3	681	А
1	3	682	А
1	3	689	U
1	3	691	G
1	3	705	А
1	3	706	С
1	3	721	G
1	3	722	С
1	3	752	С
1	3	765	А
1	3	771	С
1	3	781	U
1	3	782	U
1	3	786	A
1	3	800	С
1	3	810	G
1	3	811	G
1	3	812	G
1	3	817	А
1	3	818	А
1	3	819	U
1	3	820	U
1	3	824	А
1	3	825	U
1	3	827	G
1	3	828	А
1	3	829	А
1	3	835	U
1	3	837	A
1	3	840	G
1	3	841	С
1	3	847	С
1	3	854	A
1	3	862	U
1	3	880	С
1	3	881	A
1	3	882	С
1	3	883	A
1	3	895	G
1	3	902	U

Mol	Chain	Res	Type
1	3	904	С
1	3	906	G
1	3	914	G
1	3	917	G
1	3	920	G
1	3	923	А
1	3	924	С
1	3	925	С
1	3	927	А
1	3	928	G
1	3	930	С
1	3	932	U
1	3	935	U
1	3	936	G
1	3	944	U
1	3	947	А
1	3	949	С
1	3	951	С
1	3	952	U
1	3	953	G
1	3	970	U
1	3	981	А
1	3	982	G
1	3	994	U
1	3	995	А
1	3	997	G
1	3	1005	G
1	3	1008	А
1	3	1009	А
1	3	1010	G
1	3	1016	A
1	3	1026	А
1	3	1027	U
1	3	1032	A
1	3	1041	С
1	3	1049	U
1	3	1052	A
1	3	1057	G
1	3	1061	A
1	3	1068	U
1	3	1075	G
1	3	1078	С

Mol	Chain	Res	Type
1	3	1080	А
1	3	1081	А
1	3	1082	А
1	3	1095	U
1	3	1102	А
1	3	1103	G
1	3	1104	А
1	3	1105	А
1	3	1107	С
1	3	1112	А
1	3	1118	U
1	3	1121	А
1	3	1123	А
1	3	1124	G
1	3	1125	U
1	3	1126	G
1	3	1132	С
1	3	1137	С
1	3	1146	А
1	3	1147	G
1	3	1151	U
1	3	1154	U
1	3	1160	G
1	3	1164	А
1	3	1165	U
1	3	1167	U
1	3	1168	А
1	3	1169	А
1	3	1170	С
1	3	1171	G
1	3	1176	U
1	3	1177	А
1	3	1178	А
1	3	1186	А
1	3	1190	A
1	3	1204	A
1	3	1207	U
1	3	1208	A
1	3	1209	U
1	3	1210	А
1	3	1212	С
1	3	1215	G

Mol	Chain	Res	Type
1	3	1217	G
1	3	1219	U
1	3	1234	U
1	3	1235	U
1	3	1250	А
1	3	1251	G
1	3	1253	G
1	3	1256	А
1	3	1268	U
1	3	1278	G
1	3	1279	U
1	3	1281	А
1	3	1283	А
1	3	1285	U
1	3	1286	G
1	3	1292	А
1	3	1295	А
1	3	1298	А
1	3	1301	G
1	3	1302	С
1	3	1303	U
1	3	1304	U
1	3	1316	U
1	3	1328	A
1	3	1329	U
1	3	1330	U
1	3	1337	G
1	3	1338	G
1	3	1349	С
1	3	1360	U
1	3	1366	G
1	3	1369	U
1	3	1370	A
1	3	1380	U
1	3	1393	A
1	3	1402	G
1	3	1406	A
1	3	1407	U
1	3	1412	A
1	3	1423	A
1	3	1424	U
1	3	1431	A

Mol	Chain	Res	Type
1	3	1434	U
1	3	1437	А
1	3	1444	С
1	3	1445	U
1	3	1448	U
1	3	1455	А
1	3	1456	С
1	3	1457	А
1	3	1463	G
1	3	1467	U
1	3	1480	А
1	3	1481	U
1	3	1482	U
1	3	1483	G
1	3	1486	U
1	3	1487	U
1	3	1494	U
1	3	1502	А
1	3	1504	G
1	3	1507	G
1	3	1508	G
1	3	1510	А
1	3	1513	А
1	3	1514	U
1	3	1515	А
1	3	1518	С
1	3	1519	А
1	3	1520	А
1	3	1522	U
1	3	1532	А
1	3	1533	U
1	3	1534	A
1	3	1541	А
1	3	1548	А
1	3	1557	G
1	3	1559	А
1	3	1571	G
1	3	1580	G
1	3	1582	G
1	3	1584	U
1	3	1585	А
1	3	1586	U

Mol	Chain	Res	Type
1	3	1587	U
1	3	1588	А
1	3	1589	А
1	3	1592	А
1	3	1601	А
1	3	1603	А
1	3	1612	U
1	3	1615	G
1	3	1617	U
1	3	1618	U
1	3	1619	А
1	3	1641	А
1	3	1643	А
1	3	1644	А
1	3	1650	А
1	3	1651	С
1	3	1652	А
1	3	1653	С
1	3	1655	U
1	3	1656	А
1	3	1668	G
1	3	1679	U
1	3	1680	А
1	3	1681	G
1	3	1682	С
1	3	1688	А
1	3	1694	А
1	3	1699	А
1	3	1706	С
1	3	1707	U
1	3	1708	G
1	3	1727	U
1	3	1732	A
1	3	1733	G
1	3	1735	A
1	3	1737	G
1	3	1748	U
1	3	1751	A
1	3	1761	С
1	3	1762	А
1	3	1763	G
1	3	1764	U

Mol	Chain	Res	Type
1	3	1765	G
1	3	1769	А
1	3	1770	А
1	3	1771	С
1	3	1780	А
1	3	1788	А
1	3	1789	С
1	3	1790	U
1	3	1791	А
1	3	1807	С
1	3	1809	А
1	3	1815	U
1	3	1816	А
1	3	1821	G
1	3	1822	А
1	3	1823	U
1	3	1834	U
1	3	1837	С
1	3	1841	U
1	3	1842	G
1	3	1854	А
1	3	1865	А
1	3	1866	G
1	3	1867	G
1	3	1869	G
1	3	1870	G
1	3	1876	G
1	3	1880	G
1	3	1891	А
1	3	1898	G
1	3	1903	А
1	3	1906	G
1	3	1907	А
1	3	1908	А
1	3	1910	G
1	3	1913	G
1	3	1920	A
1	3	1921	С
1	3	1926	А
1	3	1934	A
1	3	1936	G
1	3	1937	G

Mol	Chain	Res	Type
1	3	1938	U
1	3	1945	А
1	3	1952	G
1	3	1962	U
1	3	1972	С
1	3	1977	А
1	3	1978	U
1	3	1979	G
1	3	1998	U
1	3	2000	U
1	3	2009	U
1	3	2011	G
1	3	2025	С
1	3	2027	G
1	3	2028	G
1	3	2038	А
1	3	2040	А
1	3	2041	С
1	3	2043	С
1	3	2050	G
1	3	2056	А
1	3	2062	С
1	3	2063	G
1	3	2067	А
1	3	2068	G
1	3	2069	А
1	3	2076	G
1	3	2084	А
1	3	2099	U
1	3	2100	G
1	3	2106	G
1	3	2107	A
1	3	2110	U
1	3	2111	U
1	3	2112	А
1	3	2114	С
1	3	2115	А
1	3	2117	G
1	3	2123	А
1	3	2124	А
1	3	2125	U
1	3	2128	G

Mol	Chain	Res	Type
1	3	2130	А
1	3	2131	G
1	3	2132	G
1	3	2133	A
1	3	2139	С
1	3	2140	G
1	3	2153	U
1	3	2166	U
1	3	2171	А
1	3	2180	U
1	3	2181	А
1	3	2182	С
1	3	2193	U
1	3	2195	U
1	3	2196	G
1	3	2198	G
1	3	2199	С
1	3	2200	U
1	3	2201	G
1	3	2202	U
1	3	2203	U
1	3	2207	A
1	3	2211	G
1	3	2212	U
1	3	2219	U
1	3	2220	A
1	3	2221	U
1	3	2222	С
1	3	2223	С
1	3	2231	A
1	3	2233	A
1	3	2246	G
1	3	2247	G
1	3	2259	G
1	3	2274	A
1	3	2275	A
1	3	2276	A
1	3	2286	A
1	3	2291	U
1	3	2292	A
1	3	2294	A
1	3	2295	A

Mol	Chain	Res	Type
1	3	2296	А
1	3	2298	G
1	3	2305	С
1	3	2312	G
1	3	2313	U
1	3	2316	G
1	3	2317	А
1	3	2324	А
1	3	2327	U
1	3	2329	G
1	3	2330	А
1	3	2333	G
1	3	2335	А
1	3	2341	G
1	3	2342	U
1	3	2343	А
1	3	2344	А
1	3	2346	G
1	3	2353	G
1	3	2355	С
1	3	2358	U
1	3	2366	А
1	3	2380	U
1	3	2391	G
1	3	2393	С
1	3	2410	С
1	3	2411	С
1	3	2414	U
1	3	2415	А
1	3	2418	G
1	3	2422	G
1	3	2431	U
1	3	2433	A
1	3	2435	С
1	3	2436	G
1	3	2438	A
1	3	$2\overline{449}$	U
1	3	$2\overline{453}$	G
1	3	2456	А
1	3	2457	U
1	3	2477	А
1	3	2484	A

Mol	Chain	Res	Type
1	3	2486	А
1	3	2488	С
1	3	2492	G
1	3	2499	U
1	3	2505	А
1	3	2506	С
1	3	2507	С
1	3	2509	С
1	3	2510	G
1	3	2512	U
1	3	2513	G
1	3	2521	А
1	3	2526	A
1	3	2527	U
1	3	2528	С
1	3	2543	G
1	3	2555	U
1	3	2557	G
1	3	2562	U
1	3	2570	U
1	3	2574	А
1	3	2575	G
1	3	2580	А
1	3	2581	С
1	3	2584	G
1	3	2590	G
1	3	2594	С
1	3	2605	G
1	3	2610	А
1	3	2617	U
1	3	2618	С
1	3	2621	U
1	3	2622	А
1	3	2623	U
1	3	2631	G
1	3	2637	А
1	3	2638	G
1	3	2639	G
1	3	2642	G
1	3	2646	G
1	3	2654	U
1	3	2656	G

Mol	Chain	Res	Type
1	3	2664	U
1	3	2668	А
1	3	2669	G
1	3	2672	G
1	3	2687	А
1	3	2697	С
1	3	2698	U
1	3	2722	G
1	3	2734	С
1	3	2737	G
1	3	2740	U
1	3	2741	А
1	3	2747	U
1	3	2752	G
1	3	2753	С
1	3	2756	А
1	3	2760	С
1	3	2765	А
1	3	2772	А
1	3	2784	А
1	3	2786	А
1	3	2788	U
1	3	2797	С
1	3	2798	А
1	3	2799	U
1	3	2800	U
1	3	2801	U
1	3	2808	А
1	3	2809	А
1	3	2811	G
1	3	2812	U
1	3	2813	А
1	3	2814	А
1	3	2815	G
1	3	2822	С
1	3	2824	А
1	3	2825	A
1	3	2826	G
1	3	2829	G
1	3	2835	G
1	3	2839	A
1	3	2853	U

Mol	Chain	Res	Type
1	3	2863	G
1	3	2870	U
1	3	2871	G
1	3	2876	G
1	3	2884	С
1	3	2888	U
1	3	2889	U
1	3	2890	G
1	3	2894	G
1	3	2895	A
1	3	2896	G
1	3	2897	G
1	3	2898	A
1	3	2899	С
2	4	10	С
2	4	11	A
2	4	12	U
2	4	13	G
2	4	16	G
2	4	23	A
2	4	31	G
2	4	33	U
2	4	35	С
2	4	40	U
2	4	41	С
2	4	42	G
2	4	43	А
2	4	49	G
2	4	50	С
2	4	51	A
2	4	54	U
2	4	55	А
2	4	60	С
2	4	63	U
2	4	64	G
2	4	65	G
2	4	71	A
2	4	78	С
2	4	80	G
2	4	85	A
2	4	86	G
2	4	88	G

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type
2	4	89	А
2	4	96	G
2	4	99	А
2	4	108	С

All (64) RNA pucker outliers are listed be
--

Mol	Chain	Res	Type
1	3	296	U
1	3	311	G
1	3	315	А
1	3	357	А
1	3	368	С
1	3	410	G
1	3	425	U
1	3	447	G
1	3	500	U
1	3	508	А
1	3	513	А
1	3	514	А
1	3	604	А
1	3	647	G
1	3	648	G
1	3	688	U
1	3	781	U
1	3	811	G
1	3	881	А
1	3	901	С
1	3	903	А
1	3	952	U
1	3	980	С
1	3	1048	А
1	3	1209	U
1	3	1211	U
1	3	1297	U
1	3	1302	С
1	3	1328	А
1	3	1329	U
1	3	1462	А
1	3	1507	G
1	3	1519	А
1	3	1583	G

Mol	Chain	Res	Type
1	3	1585	А
1	3	1587	U
1	3	1588	А
1	3	1618	U
1	3	1644	А
1	3	1680	А
1	3	1820	U
1	3	2029	U
1	3	2180	U
1	3	2290	G
1	3	2304	U
1	3	2332	U
1	3	2342	U
1	3	2504	С
1	3	2506	С
1	3	2604	U
1	3	2621	U
1	3	2622	А
1	3	2668	А
1	3	2787	U
1	3	2823	А
1	3	2862	U
1	3	2889	U
1	3	2897	G
2	4	10	С
2	4	34	U
2	4	38	U
2	4	54	U
2	4	59	А
2	4	70	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 30 ligands modelled in this entry, 29 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Tuno Chain		Dog	Tiple	Bond lengths			Bond angles			
Moi Type Chain	Ullalli	nes	LIUK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
34	CLM	3	3026	-	19,20,20	2.42	7 (36%)	23,27,27	1.34	2 (8%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
34	CLM	3	3026	-	-	3/20/22/22	0/1/1/1

All (7) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
34	3	3026	CLM	O9B-N9	-5.97	1.12	1.22
34	3	3026	CLM	C2-N2	4.12	1.43	1.34
34	3	3026	CLM	C1-C2	3.80	1.58	1.53
34	3	3026	CLM	O2-C2	-3.42	1.16	1.23
34	3	3026	CLM	O5-C5	-3.12	1.36	1.42
34	3	3026	CLM	C3-N2	-3.00	1.41	1.46
34	3	3026	CLM	C11-C6	-2.46	1.35	1.39

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
34	3	3026	CLM	C4-C3-N2	-3.06	104.40	109.27
34	3	3026	CLM	C3-N2-C2	-2.79	118.14	123.07

There are no chirality outliers.

All (3) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
34	3	3026	CLM	C3-C5-C6-C7
34	3	3026	CLM	C3-C5-C6-C11
34	3	3026	CLM	N2-C3-C4-O4

There are no ring outliers.

1 monomer is involved in 4 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
34	3	3026	CLM	4	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-11999. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

This section was not generated.

6.2 Central slices (i)

This section was not generated.

6.3 Largest variance slices (i)

This section was not generated.

6.4 Orthogonal standard-deviation projections (False-color) (i)

This section was not generated.

6.5 Orthogonal surface views (i)

This section was not generated.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

This section was not generated.

7.2 Volume estimate versus contour level (i)

This section was not generated.

7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum had issues being displayed.

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section was not generated.

