

Sep 16, 2021 - 11:07 pm BST

PDB ID	:	70PE
EMDB ID	:	EMD-13017
Title	:	RqcH DR variant bound to 50S-peptidyl-tRNA-RqcP RQC complex (rigid
		body refinement)
Authors	:	Crowe-McAuliffe, C.; Wilson, D.N.
Deposited on	:	2021-05-31
Resolution	:	3.20 Å(reported)

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

 $https://www.wwpdb.org/validation/2017/EMValidationReportHelp \\ \frown$

with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.23.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	А	2926	63% 27%	6% • •
2	В	119	58% 24%	11% • 6%
3	Е	277	82%	15% ••
4	F	209	86%	12% •
5	G	207	90%	9% •
6	Н	179	78%	20% ••
7	Ι	179	83%	15% •

Mol	Chain	Length	Quality of chain	
8	Κ	141	82%	12% 6%
9	L	166	52% 16%	32%
10	Ν	145	81%	17% •
11	0	122	80%	20%
12	Р	146	90%	10%
13	Q	144	81%	12% • 6%
14	R	120	80%	19% •
15	S	120	80%	19% •
16	Т	115	87%	13%
17	U	119	84%	13% ••
18	V	102	88%	10% •
19	W	113	86%	11% •
20	X	95	85%	9% 5%
21	Y	103	89%	9% •
22	2	76	37% 37% 14'	% • 8%
23	a	94	85%	• 14%
24	b	62	94%	6%
25	с	66	98%	
26	d	59	98%	
27	f	59	86%	• 10%
28	g	49	98%	
29	h	44	95%	5%
30	i	66	97%	•
31	i	37	100%	•
32	J1	86	Q0%	7% .

Mol	Chain	Length	Quality of chain			
33	0	599	75%	12%	•	11%

2 Entry composition (i)

There are 33 unique types of molecules in this entry. The entry contains 93862 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 23S rRNA.

Mol	Chain	Residues			AltConf	Trace			
1	А	2814	Total 60436	C 26962	N 11170	O 19491	Р 2813	0	0

• Molecule 2 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
2	В	112	Total 2392	C 1068	N 435	0 778	Р 111	0	0

• Molecule 3 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	Е	272	Total 2083	C 1296	N 408	0 373	S 6	0	0

• Molecule 4 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	F	206	Total 1569	m C 985	N 289	O 290	${ m S}{ m 5}$	0	0

• Molecule 5 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	G	205	Total 1561	C 980	N 289	O 290	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 6 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	Н	176	Total 1387	C 883	N 241	O 256	${ m S} 7$	0	0

• Molecule 7 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	Ι	175	Total 1342	C 835	N 248	O 257	$\frac{S}{2}$	0	0

• Molecule 8 is a protein called 50S ribosomal protein L11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
8	K	132	Total 974	C 612	N 172	0 184	S 6	0	0

• Molecule 9 is a protein called 50S ribosomal protein L10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	L	113	Total 886	C 559	N 152	0 174	${ m S}$ 1	0	0

• Molecule 10 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	Ν	142	Total 1124	C 710	N 206	O 203	${f S}$ 5	0	0

• Molecule 11 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	О	122	Total 921	C 571	N 173	O 173	$\frac{S}{4}$	0	0

• Molecule 12 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	Р	146	Total 1082	$\begin{array}{c} \mathrm{C} \\ 671 \end{array}$	N 207	O 202	$\frac{S}{2}$	0	0

• Molecule 13 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	Q	135	Total 1076	C 690	N 205	0 176	$\frac{S}{5}$	0	0

• Molecule 14 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	R	119	Total 954	C 583	N 186	O 181	$\frac{S}{4}$	0	0

• Molecule 15 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	S	120	Total 913	С 564	N 176	0 172	${ m S}$ 1	0	0

• Molecule 16 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	Т	115	Total 945	C 600	N 185	O 159	S 1	0	0

• Molecule 17 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	U	117	Total 940	C 591	N 189	O 156	$\frac{S}{4}$	0	0

• Molecule 18 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
18	V	100	Total 781	C 498	N 138	0 145	0	0

• Molecule 19 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	W	109	Total 842	C 525	N 164	O 150	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	X	90	Total 725	C 452	N 134	O 136	S 3	0	0

• Molecule 21 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	Y	101	Total 762	C 478	N 142	O 138	$\frac{S}{4}$	0	0

• Molecule 22 is a RNA chain called tRNA-Ala-UGC.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
22	2	70	Total 1496	C 666	N 271	O 489	Р 70	0	0

• Molecule 23 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
23	a	81	Total 624	m C 387	N 122	O 115	0	0

• Molecule 24 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues	Atoms					AltConf	Trace
24	b	58	Total 444	С 275	N 92	O 75	$\frac{S}{2}$	0	0

• Molecule 25 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
25	С	65	Total 530	C 328	N 102	O 98	${ m S} { m 2}$	0	0

• Molecule 26 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
26	d	58	Total 456	C 281	N 89	O 85	S 1	0	0

• Molecule 27 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
27	f	53	Total 418	C 258	N 84	O 69	S 7	0	0

• Molecule 28 is a protein called 50S ribosomal protein L33 1.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
28	a	48	Total	С	Ν	Ο	S	0	0
20	g	40	401	244	80	73	4	0	0

• Molecule 29 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
29	h	44	Total 368	C 222	N 89	O 55	${ m S}$ 2	0	0

• Molecule 30 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Ate	\mathbf{oms}	AltConf	Trace		
30	i	64	Total 512	C 321	N 107	O 82	${S \over 2}$	0	0

• Molecule 31 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
21	;	27	Total	С	Ν	Ο	\mathbf{S}	0	0
101	J	57	297	186	60	46	5	0	0

• Molecule 32 is a protein called Uncharacterized protein YabO.

Mol	Chain	Residues		At	AltConf	Trace			
32	1	83	Total 659	C 410	N 121	O 126	$\frac{S}{2}$	0	0

• Molecule 33 is a protein called Rqc2 homolog RqcH.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
33	0	532	Total 3962	$\begin{array}{c} \mathrm{C} \\ 2504 \end{array}$	N 705	О 743	S 10	0	0

There are 29 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
0	97	ALA	ASP	conflict	UNP A0A6M4JI41
0	98	ALA	ARG	$\operatorname{conflict}$	UNP A0A6M4JI41
0	571	GLY	-	expression tag	UNP A0A6M4JI41
0	572	SER	-	expression tag	UNP A0A6M4JI41
0	573	GLY	-	expression tag	UNP A0A6M4JI41
0	574	GLY	-	expression tag	UNP A0A6M4JI41

Chain	Degidue	Medelled	Actual	Commont	Deference
Chain	Residue	Modellea	Actual	Comment	Reference
0	575	ASP	-	expression tag	UNP A0A6M4JI41
0	576	TYR	-	expression tag	UNP A0A6M4JI41
0	577	LYS	_	expression tag	UNP A0A6M4JI41
0	578	ASP	-	expression tag	UNP A0A6M4JI41
0	579	HIS	_	expression tag	UNP A0A6M4JI41
0	580	ASP	-	expression tag	UNP A0A6M4JI41
0	581	GLY	_	expression tag	UNP A0A6M4JI41
0	582	ASP	_	expression tag	UNP A0A6M4JI41
0	583	TYR	-	expression tag	UNP A0A6M4JI41
0	584	LYS	-	expression tag	UNP A0A6M4JI41
0	585	ASP	-	expression tag	UNP A0A6M4JI41
0	586	HIS	-	expression tag	UNP A0A6M4JI41
0	587	ASP	-	expression tag	UNP A0A6M4JI41
0	588	ILE	-	expression tag	UNP A0A6M4JI41
0	589	ASP	-	expression tag	UNP A0A6M4JI41
0	590	TYR	-	expression tag	UNP A0A6M4JI41
0	591	LYS	-	expression tag	UNP A0A6M4JI41
0	592	ASP	-	expression tag	UNP A0A6M4JI41
0	593	ASP	-	expression tag	UNP A0A6M4JI41
0	594	ASP	-	expression tag	UNP A0A6M4JI41
0	595	ASP	-	expression tag	UNP A0A6M4JI41
0	596	LYS	-	expression tag	UNP A0A6M4JI41
0	597	GLY	-	expression tag	UNP A0A6M4JI41

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Chain A:	63%	27%	6% • •
G 62 A14 615 623	626 627 037 035 035 635 645 645 645 653 653 653 653 653 653 653 653 653 65	6884 6884 6884 6885 6884 688 1887 1888 1888 1888 1888 1888 1888	696 697 098 6101 6116 6116 6116 8117
U119 A125 A126 A133 U141	4150 4166 4166 4164 4166 4166 4166 4175 4175 4177 4177 4177 4177 4177 4177	A200 C201 A216 A216 A216 A220 C221 A228 A225	A226 (227 (228 (229 (229 (228 (233) (233) (233) (235 (235) (235) (235) (235)
U237 U238 A244 G251 G252 G253	A256 A265 A265 U2665 U266 C267 A274 A274 A274 A274 A274 A274 A274 A27	U309 C310 C311 C311 C312 C312 C312 U321 U321 C328 C328 C328	A329 A32 A342 A345 C345 G347 C349 C349
A353 A354 C360 A364 A364	4365 4366 6367 6366 6367 4377 6377 6377 6377	G411 A412 U413 C414 C415 C416 G417 A118 G416 A421 A421 G421 G420 G421 G420 G421	C432 C432 C433 C435 C435 C435 C435 C435 C444 C444
6458 6458 6461 6471	4477 4477 4479 4479 4489 4488 4490 6489 4494 6493 6493 6493 6493 6493 6503 6503 6503 6503 6503 6503 6503 650	C533 (534 (546 (546 (5546 (5550 (5551 (5552 (5552 (5552 (5552) (5552) (5552)	C555 C556 C556 C556 C564 C564 C569 C569 C569
C573 A574 A575 G576 U577 A578 A578 G579	A592 (5994 (5994 (5995 (5995 (5995 (5995 (5995 (5995 (5917 (5975) (5995) (5917 (5917) (5917) (5917) (5917) (5916) (5917)	A647 G649 G649 A658 A659 A659 A657 A673	G674 C675 G676 G676 A677 A676 A683 C684 U685 U685 A689 A689 A690
U691 U700 G701 A702 G716	C713 C713 C713 C714 C715 C715 C717 C717 C717 C717 C717 C717	6804 6811 6811 6812 6812 6822 4820 4820 1831 (8331 6833	U837 U837 (5338 (5338 (5338 (5338 (5338 (5338 (552)
C859 4866 4867 U875 U875	6877 6877 6877 6892 4892 4992 4993 6993 6993 6993 6993 6993 6993 6993	C944 C945 C945 C945 A946 A948 A948 U954 A957 A958 C958 C959	C961 C962 C963 A966 A966 C973 C973 U976 U977 A978
1979 1987 1988 1988 1989 1989 1989	4992 4992 (1994 (1994 41005 41005 41005 (1000 41005 (1000 41005 41019 41028 (1000 (1000 41019 41028 (1000 (1000 (1000 (1000 (1000 (1000) 41028 (1000) (100) (1000)	A1046 A1046 C1051 U1058 A1058 G1063 U1064 A1065 A1065	41067 61068 01069 01069 61071 41072 41073 41074 01079 01079 61080
U1081 A1084 G1085 G1088 U1091	A1092 41092 41093 61103 61103 61109 61110 61115 61115 61115 61115 61115 61115 71126 01128 01128 01128 01128 01129 01129 01129 01129 01129 01129 01129 01128 01	A1134 A1141 A1141 U1143 U1147 C1148 A1149 C1150 U1151 C1151 C1151	G1156 G1157 G1157 G1159 G1159 G1160 A1161 C1162 C1164 C1164
G1171 A1172 A1173 A1174 A1175 U1176 G1177	A1178 A1178 C1181 C1181 G1185 G1185 A1197 A1199 G1199 G1200	G1236 G1251 U1251 G1252 A1253 A1253 A1253 G1259 G1269 G1263 G1264	A1265 A1266 G1278 U1283 A1284 A1291 G1292 A1293

• Molecule 1: 23S rRNA

A1294 U1295	G1296	A1305	G1306 U1307	G1311	A1312	A1313 A1314	G1315	G1319		G1322 A1323	G1324	A1325	C1333	_	A1339 A1340	U1341	G1342	C1343	A1346	114264	U1351 U1352	C1353	G1362	G1363	01365 U1365	C1366	01368	C1369	01370 61371	C1372	A1375	<mark>G1376</mark>	U1379	U1380	A1381 61382	U1383	01204 61385	41388	C1389
C1390 U1391	C1403	A1404	A1405 A1406	A1417	U1418	A1424	C1425	A1426 G1427	<mark>G1</mark> 428	61 <u>43</u> 1		A1434 111 A25	01436 U1436		A1442	01 <mark>44</mark> 8	C1449	01451	<mark>C1452</mark>	A1453	01459	G1460	A1401 G1462	C1463	A1404 A1465	U1466	104-19	G1472	61474 C1474	61475 01476	0/510	A1480	61481	A1485	111 480	A1490	01498	A1499 11500	U1501
G1502	A1506 111507	C1508	C1509	A1516	G1525	G1527 C1527	U1528	G1530	G1531	A1532 A1533		A1536	C1539	A1540	A1541 A1542	01543	C1544	C 10 40	C1550	C1551	C1002 A1553	U	A1555 A1556	G1557	C1559	U1560	TOCTA	U1565	01567 U1567	G1568 A1550	01570	G1571	G1574	A1575	G1576 C1577	5	A	A	Å
U A	1 13 11	Å	G1589	A1592	01595	G1600	A1601		A1608	A1614	A1615	G1616 A1617		C1625	01626 41627		A1631	61633 G1633		C1645	C1652	A1653	A1054 A1655	T C C T T	TOOTH	G1671		A1677	U1681	114.684	01007 A1685		G1690 A1691	U1692	C1693 C1604	A1695	41697	G1698 A1699	A1700
U1704	C1705	01708	A1709 A1710	61711 61712	A1713	61719	1 1 1 1	A1/34	U1738	A1743	G1744	A1745	G1748		61757 11758	01759	A1760	61762 61762		G1765	01/00 A1767	A1768	C1771	C1772	61/13 A1774	G1775	G1777	A1778		G1782	A1784	G1785	A1789	0621n	A1791 61702	G1793	A1802	C1803 111804	
C1811 A1812	A1813 A1814		A1820	61828 01829	G1830	A1831	A1839	61840 61841	C1842	61843 A1844	A1845	G1846	01849		G1853	U1856	G1857	G1864	C1865	C1866	C 180/	C1872	A1876	A1877	A1882	A1883	4 100 4 A 1885	G1886 04007	/001 5	G1891	01092 01893	U1894	A1895	<mark>G 1898</mark>	U1899	G1904	G 1935	1030	U1940
A A	101	Å	U A1947	A1948	61951 11.050	01952 C1953	C1954	01955 A1956	A1957	61958 61959	U1960	ATORE	A1900 A1966	A1967	01968 111969	C1970	C1971	U1973		A1981	A1982 G1983	U1984	CORTO	A1989	C1991	C1992	C1994	A1995	OFFIC	A1999	G2001		62009 A2010	U2011		G2021	77070	C2025 42026	A2027
C2035	12038		02048 A2049	G2050 U2051	A2052	C2054		A2060 G2061	A2062	02063 G2064		c2072	A2078	C2079	A2080	1	C2084	62085	A2089	G2090	G 2098	G2099	HZ 100	U2104	42105 A2106	00100	67T09	U2121	42122 A2123	A2124	G2120 G2126	U2127	02128 62129	G2130	U2131 A	404	A D	0 =	, D
5 D	A C	A A	5 5	A U	¥,	.5 05	D 4	A D	5	4 U	0	ט ב	o o	5	5 a	¥	¥ t	0 0	5	ن م	4 U	0	50	с «	4 U	0	• •	0	5 5	Þ	5 5	Ā	• •	σ	A	00	5 55	טים	, 5
G A	D V	101	U A	00	0:	⊃ ლ	5 0	ם ני	5	U A	<u></u> U2217	U2218 C2210	AT 225	A2227	A2228	G2232	C2233	U2240		G2245 CD246	62240	<mark>G22</mark> 49	A2252	G2253	A2234 C2255	2000	G2268		61220	C2277	G2279	<mark>G</mark> 2280	G2281 G2282	5	C2287	U2294	A2290 A2296	42302	A2303
C2304 G2305	1030R		C2312 C2313	C2314 A2315	A2316	AZ31/	U2320	C2323	C2324	02325 C2326	A2327	G2328	A2329 A2330	U2331	62332 62333	U2334	U2335 00006	62337 62337	A2338	A2339	A2340 U2341	C2342	A2343 U2344	U2345	02347 G2347	C2348	62350	A2351	G2354	U2355	Drezw	C2363	A2364 A2365		U2372 112373	G2374 62374	82313 C2376	03370	2
A2390	62401 42402	C2403	<mark>G2404</mark> A2405	A2406 A2407		62412 62413	C2414	U2415 U2416	A2417	G2420	A2421	COAOE	07779	U2430	U2431	C2435	007 E	02452 U2452	02453	A2454	A2455 C2456	G2457	62459 A2459	U2460	TOTA	A2464	62465 C2466	U2467	A2400 C2469	C2470	G2474	G2475	G2476 A2477		C2481	<mark>G2484</mark>	A2488	42407	A2498
C2503	C2504 42505	C2506	A2507 U2508	C2509 G2510	A2511	G2513 G2513	G2514	CTC259	U2520	62523	G2524	02525	62527 C2527		62531 42532	U2533	G2534	02536 C2536		A2542	A2547	U2548	0.7048	G2564	A2571	000	1 1075	U2583	U2591	U2592	A2093 A2594	A2595	G2596 C2597	<mark>G2598</mark>	A2601	C2602	G2605	A2606 C2607	C2608
G2611	G2612 112613		G2621	G2628 A2629	C2630	A2631 G2632	U2633	G2637	U2638	C2639	U2642	A2643	11070	G2652	CO650		U2665	02660 G2667	A2668	(2669	470/0	<mark>G2</mark> 674	G2677		4700+	G2688	42009 G2690	A2691	62693 62693	A2694	C2696		62703	<mark>62711</mark>	C2712 117713	G2714	G2717	U2718 42719	C2720
62731	G 27 43		U2755	A2762 C2763	G2764	60/7.5	U2772	G2774 C2774		A2779	C2784	U2785	G2788	<mark>C2789</mark>	<u>42794</u>	1	C2798	A2805	G2806	A2807 112606	02809 G2809	A2810	C2817	C2818	N2820		62824 62824	C2825	42020	A2830	TCOZH	A2834	C2841	U2842	G2843	<mark>G2850</mark>	G2855	G2856	G2859

• Molecule 2: 5S rRNA

 \bullet Molecule 3: 50S ribosomal protein L2

• Molecule 4: 50S ribosomal protein L3

 \bullet Molecule 5: 50S ribosomal protein L4

Chain G: 90% 9% •

 \bullet Molecule 6: 50S ribosomal protein L5

 \bullet Molecule 7: 50S ribosomal protein L6

Chain I:	83%		15%	·
MET S2 S2 L8 D21 D21 T24 T24 T24 T25 F38 F38 F38 F38 F35 F35 F35 F35 F35 F35 F35 F35 F35 F35	000 100 100 100 100 100 100 100 100 100	M102 K103 V108 V108 V108 V158 K159 K159 K159 K159 K159 K159	R172 K176 SER ALA LYS	
• Molecule 8: 50S ribose	omal protein L11			
Chain K:	82%		12%	6%
MET ALLA LYS LYS VAL VAL LYS LYS MAB MAB MAB MAB MAB	430 1433 1433 1433 1433 1433 1433 1433 1	M117 A118 R133 S134 E140 ASP		
• Molecule 9: 50S ribos	omal protein L10			
Chain L:	52%	16%	32%	_
MET SER SER ALA ALA 15 16 17 17 17 17 17 11 12 13 14 11 13 17 12 13 17 17 12 13 17 17 17 17 17 17 17 17 17 17 17 17 17	126 127 127 128 128 128 128 128 138 138 138 138 138 138 138 138 138 13	R62 A63 A63 A1A A1A A1A A1A A1A A1A A1A A1A A1A A1	1/ / 180 481 182 883 784 784	T86 GLU ASP VAL VAL ALA ALA P92
166 166 1108 1119 1119 1119 1119 1119 1119 1119	ALLAN LIJEU LIJEU LIJEU LIJEU LIJEU PRO PRO ALLA ALLA ALLA LIJEU LIJEU	ALA ALA ALA ALA ALA ALA GLU GLU GLU GLU GLU	ALA	
• Molecule 10: 50S ribo	somal protein L13			
Chain N:	81%		17%	·
MET ARG 114 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	D53 D53 H77 H78 H78 H78 H78 H98 H98 H98 H98 H98 H98 H98 H98 H98 H9	N96 197 197 112 112 128 128	6137 138 139 145 145	
• Molecule 11: 50S ribo	somal protein L14			
Chain O:	80%		20%	_
M 4 4 122 122 122 122 122 122 122 133 133 133	D37 T42 V43 V43 G49 G50 G50 T62 T62 T62 T87	D90 D90 A103 E105 E105 L117	E120 V121 I122	
• Molecule 12: 50S ribo	somal protein L15			
Chain P:	90%		10	1%
M 1730 1730 1885 1885 1885 1885 1885 1885 1885 188	M14 M14 K115 L116 L117 E118 K119 A125 F128 F128 F128 F128			
• Molecule 13: 50S ribo	somal protein L16			
Chain Q:	81%		12% •	6%
M1 K6 R6 B12 125 H28 H28 729 630 630 630 144 143 144 143	R56 R60 K72 K72 K77 K87 V94	V97 1134 E135 GLU GLV GLY GLY ASN ASN ASN	NER	
	W	ORLDWIDE OTEIN DATA BANK		

• Molecule 14: 50S riboso	mal protein L17	
Chain R:	80%	19% •
MET 82 82 83 83 83 83 84 81 117 117 117 112 112 126 126 126 126 126 149	K62 K67 K67 K67 K62 K62 K62 K62 K62 K62 K62 K62 K62 K62	1110 120
• Molecule 15: 50S riboso	mal protein L18	
Chain S:	80%	19% ·
M1 12 18 14 14 14 14 14 14 14 14 14 14 14 14 14	K61 162 163 163 164 164 164 164 180 188 188 188 188 188 188 188 188 188	K119 F120
• Molecule 16: 50S riboso	mal protein L19	
Chain T:	87%	13%
M1 728 739 735 736 735 736 737 134 11 134 1 138 1 731 731	R02 R03 R03 R04 R04 R05 R05 R05 R05 R01 R115 R15 R15 <th< td=""><td></td></th<>	
• Molecule 17: 50S riboso	mal protein L20	
Chain U:	84%	13% ••
MET 710 710 710 710 710 710 710 710 710 710	N72 174 174 174 188 188 188 188 188 199 197 197 197 197 197 197 197 197 197	
• Molecule 18: 50S riboso	mal protein L21	
Chain V:	88%	10% •
MET 72 72 71 73 73 73 73 73 73 73 73 73 73 73 73 73	ALA ALA	
• Molecule 19: 50S riboso	mal protein L22	
Chain W:	86%	11% •
MET MET 124 124 124 124 124 125 125 125 125 124 137 137 137 137 137 137 137 137 137 137	105 1105 1105 1105 1105 0LU 0LU	
• Molecule 20: 50S riboso	mal protein L23	
Chain X:	85%	9% 5%
MET K2 K2 D19 D31 V30 V30 V30 V30 V38 V38 V38 V38 V38 V38 V38 V38 V38 V38	B91 PIER PIER ALM	
• Molecule 21: 50S riboso	mal protein L24	

Chain Y:		89%			9% •
M1 G14 K15 K42 A50 N67	V85 688 688 689 689 689 790 101 101 1101 1101				
• Molecule 22:	tRNA-Ala-UGC				
Chain 2:	37%		37%	14%	8%
61 63 615 615 615 615	u d G19 G19 G20 G20 G25 G26 G26 G26 G26 G26 G30 G30	C31 U32 G G C36 C36 C38 C38 C38 C38 C38	639 C40 A41 642 642 643 643 A44 C48 A49 A49	G56 G57 G57 G50 C50 C50 C51	C69 U70 C74 C75 A75
• Molecule 23:	50S ribosomal pro	otein L27			
Chain a:		85%		·	14%
MET LEU LEU LEU ASP LEU CLEU PHE PHE ALA SER	K12 R22 Ala Ala Gla				
• Molecule 24:	50S ribosomal pro	otein L28			
Chain b:		94%			6%
MET ALA R3 E60 ARG VAL					
• Molecule 25:	50S ribosomal pro	otein L29			
Chain c:		98%			·
M1 NG5 LYS					
• Molecule 26:	50S ribosomal pro	otein L30			
Chain d:		98%			·
MET A2 Q59					
• Molecule 27:	50S ribosomal pro	otein L32			
Chain f:		86%			10%
MET A2 A2 A2 A2 L54 ASN VAL VAL	ASN				

• Molecule 28: 50S ribosomal protein L33 1

Chain g:	98%	
M1 148 LYS		
• Molecule 29:	50S ribosomal protein L34	
Chain h:	95% 5%	6
M1 R28 R34 A44		
• Molecule 30:	50S ribosomal protein L35	
Chain i:	97% •	
MET P2 165 LVS		
• Molecule 31:	50S ribosomal protein L36	
Chain j:	100%	•
There are no o	outlier residues recorded for this chain.	
• Molecule 32:	Uncharacterized protein YabO	
Chain 1:	90% 7%	-
M1 R15 R50 V58 L63		
• Molecule 33:	Rqc2 homolog RqcH	
Chain 0:	75% 12% • 11%	-
MET HIS MET S S 2 18 18 19 112 112	(21 125 125 126 127 127 127 127 127 127 127 128 163 163 110 110 1110 1128 1110 1128 1128 1128 1	Y162 1171 5172 P173
LEU GLU GLU GLU GLU D179 L192 L192	H199 6LY 6LY 6LY 6LY 6LY ASN ASN 1240 1226 1226 1226 12268 1227 12268 1227 12268 1227 12268 1227 12268 1227 12268 12688 12688 12688 12688 12688 12688	E355 1359 K384
E392 E399 E399 C406 C409 C410	8413 8414 4414 4414 4414 1422 1422 1422 1422 1422 142 1422 1446 1785 1785 1446 1785 1745 1785 1746 1785 1746 1785 1746 1785 1746 1785 1746 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 <td>S524 S525 V526 P527 R534</td>	S524 S525 V526 P527 R534
KB37 KB39 KB39 PB39 ASN ASN ASN ASN ASN ASN F544 F59	LISS LISS LISS LISS LISS LISS LISS SIR ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	16700	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	34.8	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Маі	Chain	B	ond lengths	I	Bond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	1.20	8/67693~(0.0%)	1.15	164/105598~(0.2%)
2	В	1.03	1/2675~(0.0%)	1.31	36/4170~(0.9%)
3	Е	0.70	0/2120	0.68	0/2845
4	F	0.71	0/1591	0.65	0/2132
5	G	0.68	0/1580	0.62	0/2132
6	Н	0.77	0/1406	1.10	2/1888~(0.1%)
7	Ι	0.51	0/1360	0.63	0/1832
8	Κ	0.32	0/988	0.57	0/1336
9	L	0.34	0/892	0.58	0/1196
10	Ν	0.70	0/1147	0.62	0/1542
11	0	0.65	0/928	0.75	0/1245
12	Р	0.64	0/1094	0.66	0/1457
13	Q	0.71	0/1099	0.70	0/1468
14	R	0.65	0/961	0.70	0/1284
15	S	0.56	0/922	0.71	0/1236
16	Т	0.67	0/958	0.77	0/1279
17	U	0.74	0/952	0.70	0/1266
18	V	0.76	0/792	0.68	0/1063
19	W	0.64	0/851	0.72	0/1146
20	Х	0.65	0/731	0.69	0/974
21	Y	0.62	0/772	0.67	1/1032~(0.1%)
22	2	0.97	1/1669~(0.1%)	1.63	37/2596~(1.4%)
23	а	0.76	0/632	0.72	0/839
24	b	0.46	0/448	0.70	0/596
25	с	0.54	0/531	0.71	0/707
26	d	0.63	0/458	0.69	0/613
27	f	0.68	0/425	0.71	1/563~(0.2%)
28	g	0.64	0/406	0.63	0/540
29	h	0.72	0/371	0.78	1/483~(0.2%)
30	i	0.66	0/519	0.68	0/680
31	j	0.75	0/300	0.63	0/393
32	1	0.68	1/662~(0.2%)	1.07	3/882~(0.3%)
33	0	0.39	4/4031~(0.1%)	0.75	18/5456~(0.3%)
All	All	1.05	15/101964~(0.0%)	1.07	$26\overline{3}/152469~(0.2\%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	15
2	В	0	4
3	Е	0	1
6	Н	0	1
8	Κ	0	1
13	Q	0	1
18	V	0	1
22	2	0	7
All	All	0	31

All (15) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(Å)
1	А	1220	G	P-OP2	7.36	1.61	1.49
1	А	1220	G	P-OP1	7.35	1.61	1.49
1	А	1939	G	O3'-P	-7.11	1.52	1.61
1	А	1940	U	C1'-N1	6.92	1.59	1.48
33	0	491	PRO	CG-CD	5.91	1.70	1.50
1	А	1867	С	C4-N4	-5.63	1.28	1.33
1	А	574	А	N9-C4	-5.63	1.34	1.37
32	1	58	VAL	C-N	5.31	1.46	1.34
22	2	25	С	C4-N4	-5.17	1.29	1.33
33	0	527	PRO	CG-CD	5.16	1.67	1.50
33	0	448	PRO	CG-CD	5.08	1.67	1.50
1	А	1467	G	C8-N7	-5.05	1.27	1.30
1	А	2333	G	C2-N2	-5.04	1.29	1.34
33	0	544	PRO	CG-CD	5.04	1.67	1.50
2	В	56	A	C5-C4	-5.04	1.35	1.38

All (263) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
33	0	490	ILE	C-N-CD	-29.05	56.69	120.60
22	2	49	A	O5'-P-OP2	-27.30	77.94	110.70
22	2	49	А	O5'-P-OP1	-24.78	80.96	110.70
22	2	49	A	OP1-P-OP2	18.24	146.97	119.60
1	А	2334	U	O4'-C1'-N1	15.33	120.47	108.20
22	2	48	С	OP1-P-O3'	-12.49	77.72	105.20

$\alpha \cdot \cdot \cdot \cdot$	e	•	
Continued	trom	previous	naae
continuou	JIONO	proctouo	$P^{\alpha g \cdots}$

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	2335	U	O4'-C1'-N1	11.76	117.61	108.20
2	В	43	А	N1-C6-N6	-10.44	112.33	118.60
2	В	55	А	N1-C6-N6	-10.20	112.48	118.60
1	А	1939	G	O3'-P-O5'	-10.14	84.73	104.00
22	2	48	С	OP2-P-O3'	-9.67	83.93	105.20
1	А	1757	G	O4'-C1'-N9	9.09	115.47	108.20
1	А	1956	А	N1-C6-N6	-9.04	113.18	118.60
33	0	526	VAL	C-N-CD	-8.85	101.13	120.60
32	1	16	ARG	NE-CZ-NH1	8.81	124.70	120.30
1	А	1220	G	P-O5'-C5'	-8.77	106.87	120.90
1	А	2338	А	N1-C6-N6	-8.72	113.37	118.60
1	А	2343	А	C5'-C4'-O4'	8.71	119.56	109.10
6	Н	150	ARG	NE-CZ-NH1	8.68	124.64	120.30
1	А	2898	А	N1-C6-N6	-8.66	113.41	118.60
1	А	1957	А	N1-C6-N6	-8.61	113.43	118.60
1	А	2340	А	N1-C6-N6	-8.53	113.48	118.60
1	А	2331	U	O4'-C1'-N1	8.33	114.86	108.20
2	В	27	А	N1-C6-N6	-8.28	113.63	118.60
2	В	56	А	C5-C6-N1	8.16	121.78	117.70
1	А	593	А	N1-C6-N6	-8.07	113.76	118.60
1	А	2503	С	C6-N1-C2	-7.87	117.15	120.30
2	В	42	G	O4'-C1'-N9	7.84	114.47	108.20
22	2	1	G	OP1-P-OP2	-7.84	107.84	119.60
1	А	2340	А	O4'-C1'-N9	7.83	114.47	108.20
1	А	555	С	C6-N1-C2	-7.83	117.17	120.30
22	2	40	С	O4'-C1'-N1	7.76	114.41	108.20
2	В	39	А	C5-C6-N1	7.69	121.55	117.70
1	А	2343	А	N1-C6-N6	-7.69	113.99	118.60
1	А	2338	А	C5-C6-N1	7.68	121.54	117.70
6	Н	150	ARG	NE-CZ-NH2	-7.64	116.48	120.30
1	A	2340	A	C5-C6-N1	7.62	121.51	117.70
2	В	39	A	N1-C6-N6	-7.62	114.03	118.60
1	A	1370	С	C6-N1-C2	-7.62	117.25	120.30
1	A	555	C	N1-C2-O2	7.62	123.47	118.90
2	В	52	G	O4'-C1'-N9	7.61	114.29	108.20
2	В	30	С	N3-C2-O2	-7.60	116.58	121.90
2	В	29	С	N3-C2-O2	-7.52	116.64	121.90
1	A	2341	U	O4'-C1'-N1	7.52	114.22	108.20
22	2	25	C	O4'-C1'-N1	7.51	114.21	108.20
1	A	2695	C	N1-C2-O2	7.36	123.31	118.90
1	А	2342	C	N3-C2-O2	-7.34	116.76	121.90
1	A	2327	А	N1-C6-N6	-7.29	114.22	118.60

Continued	from	previous	page
001111111111111111	<i>J</i> 1 0 110	procio ao	$P \approx g \circ \cdots$

Mol	Chain	\mathbf{Res}	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
2	В	55	А	C5-C6-N1	7.28	121.34	117.70
1	А	2503	С	N3-C2-O2	-7.16	116.89	121.90
1	А	716	G	C4-N9-C1'	7.13	135.77	126.50
1	А	2332	G	C4'-C3'-C2'	-7.12	95.48	102.60
1	А	1956	А	C5-C6-N1	7.12	121.26	117.70
22	2	23	А	N1-C6-N6	-7.12	114.33	118.60
22	2	23	А	C4-C5-C6	-7.09	113.45	117.00
2	В	43	А	C5-C6-N1	7.08	121.24	117.70
1	А	2918	G	C4-N9-C1'	7.07	135.69	126.50
2	В	39	А	O4'-C1'-N9	7.05	113.84	108.20
1	А	1947	А	C2'-C3'-O3'	7.02	124.95	109.50
1	А	1828	G	C8-N9-C4	-7.01	103.60	106.40
32	1	15	ARG	NE-CZ-NH1	6.99	123.80	120.30
2	В	56	А	N1-C6-N6	-6.94	114.44	118.60
22	2	41	А	C4-C5-C6	-6.93	113.53	117.00
1	А	1370	С	C5-C6-N1	6.92	124.46	121.00
1	А	179	А	N1-C6-N6	6.92	122.75	118.60
1	А	2343	А	C5-C6-N1	6.88	121.14	117.70
2	В	56	А	C4-C5-C6	-6.88	113.56	117.00
1	А	1866	С	N3-C2-O2	-6.86	117.10	121.90
1	А	2330	А	C5-C6-N1	6.82	121.11	117.70
1	А	1220	G	OP1-P-OP2	-6.76	109.46	119.60
1	А	1353	С	C6-N1-C2	-6.75	117.60	120.30
2	В	55	А	C4-C5-C6	-6.75	113.63	117.00
1	А	1527	С	C2-N1-C1'	6.73	126.20	118.80
22	2	23	А	C5-C6-N1	6.67	121.04	117.70
1	А	1939	G	OP2-P-O3'	6.67	119.87	105.20
2	В	30	С	N1-C2-O2	6.65	122.89	118.90
1	А	1203	G	C6-C5-N7	-6.65	126.41	130.40
1	А	1804	U	C5-C4-O4	-6.65	121.91	125.90
2	В	27	А	C5-C6-N1	6.62	121.01	117.70
1	А	555	С	N3-C2-O2	-6.56	117.31	121.90
1	А	1352	U	C2-N1-C1'	6.55	125.56	117.70
1	А	1425	С	C6-N1-C2	-6.53	117.69	120.30
1	А	1353	С	C2-N1-C1'	6.52	125.97	118.80
1	А	716	G	C8-N9-C1'	-6.51	118.54	127.00
1	А	2339	А	N1-C6-N6	-6.51	114.70	118.60
1	A	631	G	N3-C4-C5	6.48	131.84	128.60
33	0	491	PRO	N-CA-CB	6.43	111.02	103.30
1	A	2695	С	N3-C2-O2	-6.43	117.40	121.90
1	A	875	U	C2-N1-C1'	6.42	125.41	117.70
1	А	2503	С	N1-C2-O2	6.42	122.75	118.90

$\alpha \cdot \cdot \cdot$	r	•	
Continued	trom	previous	page
		1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	1981	А	N1-C6-N6	6.42	122.45	118.60
1	А	1957	А	C4-C5-C6	-6.41	113.80	117.00
22	2	25	С	C6-N1-C2	-6.41	117.74	120.30
1	А	1370	С	C2-N1-C1'	6.39	125.83	118.80
1	А	2304	С	N1-C2-O2	6.39	122.73	118.90
22	2	14	A	N1-C6-N6	-6.38	114.77	118.60
22	2	25	С	N3-C2-O2	-6.37	117.44	121.90
1	А	2273	U	C5-C4-O4	-6.31	122.12	125.90
1	А	1957	A	C5-C6-N1	6.29	120.84	117.70
2	В	41	С	O4'-C1'-N1	6.28	113.23	108.20
22	2	57	G	N1-C6-O6	-6.28	116.13	119.90
1	А	568	G	C6-C5-N7	-6.22	126.67	130.40
29	h	34	ARG	NE-CZ-NH2	-6.21	117.19	120.30
2	В	28	С	N1-C2-O2	6.16	122.60	118.90
2	В	28	С	N3-C2-O2	-6.15	117.59	121.90
1	А	2273	U	N3-C4-O4	6.13	123.69	119.40
1	А	2343	A	C5'-C4'-C3'	-6.13	106.19	116.00
22	2	24	G	N1-C6-O6	-6.12	116.23	119.90
22	2	48	С	P-O3'-C3'	6.11	127.03	119.70
1	A	2342	С	O4'-C1'-N1	6.11	113.09	108.20
1	А	2339	A	C5-C6-N1	6.10	120.75	117.70
2	В	41	С	N3-C2-O2	-6.09	117.64	121.90
2	В	28	С	N3-C4-N4	-6.08	113.74	118.00
1	А	1952	U	O4'-C1'-N1	6.06	113.05	108.20
33	0	501	GLU	C-N-CD	-6.05	107.30	120.60
33	0	527	PRO	N-CA-CB	6.04	110.54	103.30
1	A	2918	G	C8-N9-C1'	-6.02	119.17	127.00
1	A	2327	A	C5-C6-N1	6.01	120.71	117.70
1	A	1958	G	N1-C6-O6	-6.00	116.30	119.90
1	A	2343	A	C4-C5-C6	-6.00	114.00	117.00
2	В	27	A	C4-C5-C6	-5.99	114.00	117.00
1	A	1990	С	N1-C2-O2	5.98	122.49	118.90
2	В	43	A	C4-C5-C6	-5.98	114.01	117.00
33	0	544	PRO	N-CA-CB	5.97	110.46	103.30
1	A	1804	U	N3-C4-O4	5.95	123.56	119.40
2	В	39	A	C4-C5-C6	-5.94	114.03	117.00
1	A	1370	C	N3-C4-N4	5.93	122.15	118.00
1	A	1370	C	N1-C2-O2	5.90	122.44	118.90
1	A	2330	A	O4'-C1'-N9	5.89	112.91	108.20
1	A	179	A	C5-N7-C8	-5.89	100.95	103.90
1	A	2277	C _	C6-N1-C2	-5.89	117.94	120.30
2	В	28	С	N1-C1'-C2'	-5.87	105.54	112.00

α \cdot \cdot \cdot	C		
Continued	trom	nremous	naae
Contracta	JIONE	preceduo	pago

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
1	А	2330	А	C4-C5-C6	-5.86	114.07	117.00
1	А	2345	U	C4'-C3'-C2'	-5.86	96.74	102.60
1	А	1203	G	C4-C5-N7	5.86	113.14	110.80
1	А	186	С	C6-N1-C2	-5.85	117.96	120.30
1	А	2340	А	C4-C5-C6	-5.85	114.08	117.00
1	А	78	U	O4'-C1'-N1	5.83	112.87	108.20
1	А	1773	G	O4'-C1'-N9	5.83	112.86	108.20
33	0	448	PRO	N-CA-CB	5.83	110.30	103.30
1	А	2342	С	N1-C2-O2	5.82	122.39	118.90
22	2	13	С	N3-C2-O2	-5.81	117.83	121.90
22	2	26	G	C4'-C3'-C2'	-5.81	96.79	102.60
1	А	631	G	N3-C4-N9	-5.80	122.52	126.00
33	0	539	PRO	N-CA-CB	5.80	110.26	103.30
22	2	56	С	N3-C2-O2	-5.78	117.85	121.90
22	2	39	G	C8-N9-C4	-5.76	104.10	106.40
22	2	42	G	OP1-P-O3'	5.75	117.86	105.20
1	А	1866	С	C5'-C4'-C3'	-5.75	106.80	116.00
1	А	2330	А	N1-C6-N6	-5.75	115.15	118.60
1	А	1867	С	N3-C4-C5	5.75	124.20	121.90
1	А	1339	А	P-O3'-C3'	5.75	126.60	119.70
22	2	14	А	C5-C6-N1	5.72	120.56	117.70
1	А	179	А	N7-C8-N9	5.72	116.66	113.80
22	2	39	G	N3-C2-N2	-5.71	115.90	119.90
1	А	1953	С	N3-C2-O2	-5.70	117.91	121.90
33	0	559	PRO	N-CA-CB	5.70	110.14	103.30
1	А	86	С	C6-N1-C2	-5.69	118.02	120.30
1	A	2331	U	C5'-C4'-O4'	5.69	115.93	109.10
1	A	1467	G	C6-C5-N7	-5.68	126.99	130.40
22	2	41	А	N1-C6-N6	-5.67	115.20	118.60
1	A	1981	А	C5-C6-N6	-5.67	119.17	123.70
1	A	1828	G	N7-C8-N9	5.66	115.93	113.10
2	В	42	G	N3-C4-C5	-5.66	125.77	128.60
21	Y	50	ALA	C-N-CA	5.64	135.79	121.70
1	A	1558	G	N3-C4-N9	5.63	129.38	126.00
2	В	30	С	N3-C4-C5	5.63	124.15	121.90
	A	1990	C	N3-C2-O2	-5.62	117.97	121.90
	A	1957	A	O4'-C1'-N9	5.60	112.68	108.20
1	A	1370	C	C5-C4-N4	-5.59	116.28	120.20
1	A	549	A	C8-N9-C4	-5.59	103.56	105.80
1	A	1527	С	N1-C2-O2	5.59	122.26	118.90
	A	1631	A	OP1-P-O3 ⁷	5.59	117.50	105.20
1	A	309	U	C2-N1-C1'	5.59	124.40	117.70

$\alpha \cdot \cdot \cdot \cdot$	r	•	
Continuea	jrom	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	1954	С	N3-C2-O2	-5.58	118.00	121.90
1	А	1956	А	C4-C5-C6	-5.57	114.22	117.00
1	А	179	А	C5-C6-N6	-5.56	119.25	123.70
22	2	15	G	N3-C2-N2	-5.55	116.01	119.90
33	0	502	PRO	N-CA-CB	5.54	109.95	103.30
1	А	2335	U	C5'-C4'-C3'	-5.53	107.14	116.00
2	В	42	G	N1-C6-O6	-5.52	116.59	119.90
1	А	1382	G	C4-N9-C1'	5.50	133.65	126.50
1	А	2336	G	N1-C6-O6	-5.47	116.62	119.90
32	1	50	ARG	NE-CZ-NH1	5.45	123.02	120.30
1	А	979	U	O4'-C1'-N1	5.44	112.55	108.20
1	А	1558	G	N9-C4-C5	-5.43	103.23	105.40
1	А	178	А	N7-C8-N9	5.42	116.51	113.80
1	А	1527	С	C6-N1-C2	-5.42	118.13	120.30
1	А	1203	G	C4-N9-C1'	5.40	133.52	126.50
22	2	40	С	N3-C2-O2	-5.40	118.12	121.90
1	А	2338	А	C4-C5-C6	-5.40	114.30	117.00
1	А	2820	U	C5-C4-O4	-5.39	122.67	125.90
2	В	54	U	C5-C6-N1	-5.38	120.01	122.70
1	А	2695	С	C2-N1-C1'	5.37	124.71	118.80
1	А	2421	А	N1-C6-N6	5.37	121.82	118.60
2	В	43	А	C4'-C3'-C2'	-5.37	97.23	102.60
22	2	24	G	C4'-C3'-C2'	-5.37	97.23	102.60
1	А	1696	G	O4'-C1'-N9	5.35	112.48	108.20
1	А	2345	U	C5-C6-N1	-5.35	120.03	122.70
1	А	2313	С	N1-C2-O2	5.35	122.11	118.90
2	В	40	С	N3-C2-O2	-5.35	118.16	121.90
1	A	1886	G	C4-N9-C1'	5.33	133.42	126.50
1	A	1759	U	O4'-C1'-N1	5.29	112.43	108.20
1	A	1981	A	C5-N7-C8	-5.28	101.26	103.90
1	A	1467	G	N3-C4-N9	5.26	129.16	126.00
1	A	86	C	C5-C6-N1	5.26	123.63	121.00
1	A	283	G	C8-N9-C1'	5.25	133.83	127.00
2	В	42	G	C2-N3-C4	5.25	114.52	111.90
1	A	2314	C	C2-N1-C1'	5.24	124.57	118.80
1	A	2334	U	N1-C1'-C2'	-5.24	106.24	112.00
33	0	539	PRO	CA-N-CD	-5.23	104.18	111.50
1	A	634	A	N7-C8-N9	5.22	116.41	113.80
33	0	491	PRO	CA-N-CD	-5.22	104.19	111.50
33	0	502	PRO	CA-N-CD	-5.22	104.19	111.50
33	0	448	PRO	CA-N-CD	-5.22	104.19	111.50
33	0	527	PRO	CA-N-CD	-5.21	104.20	111.50

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$ $ Ideal $(^{o})$
1	А	1448	U	C5-C4-O4	-5.21	122.77	125.90
33	0	544	PRO	CA-N-CD	-5.21	104.20	111.50
33	0	559	PRO	CA-N-CD	-5.21	104.20	111.50
1	А	1958	G	N9-C4-C5	5.20	107.48	105.40
22	2	41	А	N1-C2-N3	-5.20	126.70	129.30
1	А	2717	G	C2-N3-C4	-5.19	109.31	111.90
22	2	42	G	P-O3'-C3'	5.18	125.91	119.70
22	2	57	G	C6-C5-N7	5.17	133.50	130.40
1	А	1957	А	N9-C1'-C2'	-5.17	106.31	112.00
1	А	2536	С	N1-C2-O2	5.17	122.00	118.90
1	А	2621	G	C6-C5-N7	-5.17	127.30	130.40
1	А	1831	А	N7-C8-N9	5.17	116.38	113.80
1	А	1480	А	O4'-C1'-N9	5.16	112.33	108.20
1	А	1831	А	C5-N7-C8	-5.16	101.32	103.90
1	А	1951	G	N1-C6-O6	-5.15	116.81	119.90
22	2	57	G	C3'-C2'-C1'	-5.15	97.38	101.50
33	0	268	ASP	CB-CG-OD2	5.15	122.93	118.30
1	А	2277	С	N1-C2-O2	5.13	121.98	118.90
2	В	54	U	O4'-C1'-N1	5.13	112.30	108.20
1	А	1954	С	O4'-C1'-N1	5.13	112.30	108.20
27	f	16	ARG	NE-CZ-NH1	5.13	122.86	120.30
1	А	1362	G	C6-C5-N7	-5.13	127.32	130.40
1	А	1425	С	C5-C6-N1	5.12	123.56	121.00
1	А	186	С	C2-N1-C1'	5.12	124.43	118.80
1	А	2342	С	N3-C4-N4	-5.12	114.42	118.00
1	А	1384	С	C6-N1-C2	-5.11	118.26	120.30
1	А	555	С	C5-C6-N1	5.11	123.55	121.00
1	А	1558	G	C6-C5-N7	-5.11	127.34	130.40
1	А	1671	G	P-O3'-C3'	5.10	125.82	119.70
22	2	41	А	C5-C6-N1	5.09	120.24	117.70
1	А	1203	G	C8-N9-C1'	-5.08	120.39	127.00
1	А	2340	А	C4'-C3'-C2'	-5.08	97.52	102.60
2	В	55	А	C5'-C4'-C3'	-5.08	107.88	116.00
1	А	2341	U	N1-C2-N3	5.06	117.94	114.90
1	А	1507	U	P-O3'-C3'	5.05	125.76	119.70
1	А	568	G	C4-C5-N7	5.04	112.82	110.80
1	A	1947	A	C3'-C2'-O2'	-5.04	98.69	113.30
1	A	2330	A	O3'-P-O5'	-5.03	94.45	104.00
22	2	24	G	N3-C4-C5	-5.02	126.09	128.60
1	A	1558	G	<u>C8-N</u> 9-C1'	-5.02	120.47	127.00
1	A	2025	С	N1-C2-O2	5.01	121.91	118.90
1	А	634	A	C5-N7-C8	-5.01	101.39	103.90

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
22	2	39	G	N9-C4-C5	5.01	107.41	105.40
22	2	24	G	C5-C6-N1	5.01	114.00	111.50
1	А	2331	U	N3-C2-O2	-5.00	118.70	122.20
1	А	994	С	C5-C4-N4	-5.00	116.70	120.20
1	А	2481	С	N3-C4-C5	5.00	123.90	121.90

There are no chirality outliers.

All (31) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
22	2	23	A	Sidechain
22	2	24	G	Sidechain
22	2	39	G	Sidechain
22	2	40	С	Sidechain
22	2	41	А	Sidechain
22	2	42	G	Sidechain
22	2	57	G	Sidechain
1	А	1866	С	Sidechain
1	А	1952	U	Sidechain
1	А	1953	С	Sidechain
1	А	1955	U	Sidechain
1	А	1957	А	Sidechain
1	А	1958	G	Sidechain
1	А	2328	G	Sidechain
1	А	2331	U	Sidechain
1	А	2333	G	Sidechain
1	А	2334	U	Sidechain
1	А	2335	U	Sidechain
1	А	2336	G	Sidechain
1	А	2338	A	Sidechain
1	А	2344	U	Sidechain
1	А	2345	U	Sidechain
2	В	28	С	Sidechain
2	В	39	А	Sidechain
2	В	41	С	Sidechain
2	В	52	G	Sidechain
3	Е	154	LEU	Peptide
6	Н	97	TYR	Sidechain
8	K	19	ASN	Peptide
13	Q	60	ARG	Peptide
18	V	50	ASN	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	60436	0	30414	330	0
2	В	2392	0	1213	7	0
3	Е	2083	0	2168	29	0
4	F	1569	0	1637	19	0
5	G	1561	0	1647	13	0
6	Н	1387	0	1448	74	0
7	Ι	1342	0	1388	19	0
8	K	974	0	1011	14	0
9	L	886	0	920	16	0
10	N	1124	0	1162	18	0
11	0	921	0	977	21	0
12	Р	1082	0	1132	10	0
13	Q	1076	0	1145	13	0
14	R	954	0	983	19	0
15	S	913	0	947	26	0
16	Т	945	0	1020	10	0
17	U	940	0	1005	14	0
18	V	781	0	821	9	0
19	W	842	0	899	6	0
20	Х	725	0	770	7	0
21	Y	762	0	821	6	0
22	2	1496	0	759	43	0
23	a	624	0	639	0	0
24	b	444	0	487	0	0
25	с	530	0	568	0	0
26	d	456	0	491	0	0
27	f	418	0	435	0	0
28	g	401	0	413	0	0
29	h	368	0	410	0	0
30	i	512	0	564	0	0
31	j	297	0	342	0	0
32	1	659	0	705	1	0
33	0	3962	0	3687	94	0
All	All	93862	0	63028	641	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

	A 4 0	Interatomic	Clash
Atom-1	Atom-2	${ m distance}~({ m \AA})$	overlap (Å)
1:A:2340:A:C2	6:H:79:LEU:HD11	1.55	1.39
1:A:2334:U:O4	6:H:151:GLY:HA3	1.38	1.22
1:A:2334:U:C4	6:H:151:GLY:HA3	1.76	1.19
33:0:537:LYS:C	33:0:539:PRO:HD2	1.65	1.15
6:H:125:ARG:HG3	15:S:1:MET:HB2	1.27	1.14
1:A:2340:A:N3	6:H:79:LEU:HD11	1.64	1.10
22:2:44:A:OP1	33:0:286:ARG:NH2	1.86	1.08
1:A:2334:U:O4	6:H:151:GLY:CA	1.99	1.08
22:2:31:C:C2	33:0:125:ARG:CZ	2.36	1.08
1:A:2340:A:C2	6:H:79:LEU:CD1	2.38	1.05
33:0:414:ALA:HA	33:0:465:LYS:CB	1.87	1.05
33:0:523:SER:O	33:0:559:PRO:HD2	1.55	1.04
33:0:410:GLN:HB3	33:0:465:LYS:O	1.58	1.03
33:0:501:GLU:N	33:0:502:PRO:HD2	1.75	1.02
1:A:2340:A:N3	6:H:79:LEU:CD1	2.24	1.00
6:H:160:ALA:O	15:S:1:MET:HA	1.62	1.00
22:2:44:A:C5'	33:0:286:ARG:HH21	1.76	0.97
1:A:312:G:N2	1:A:405:U:C5	2.33	0.95
11:O:103:ALA:HA	11:O:122:ILE:OXT	1.66	0.95
6:H:125:ARG:HG3	15:S:1:MET:CB	1.95	0.95
1:A:2337:G:C2	6:H:77:PHE:CE1	2.56	0.94
33:0:501:GLU:H	33:0:502:PRO:HD2	1.31	0.93
33:0:413:SER:HB2	33:0:517:PHE:CB	1.99	0.93
22:2:31:C:O2	33:0:125:ARG:NH1	2.03	0.92
1:A:327:G:H1	1:A:400:U:H3	1.18	0.92
33:0:515:ALA:HB1	33:0:559:PRO:HD3	1.49	0.91
33:0:53:HIS:CD2	33:0:282:ALA:HA	2.04	0.91
6:H:159:THR:HG22	15:S:2:ILE:HG21	1.50	0.91
22:2:44:A:H5"	33:0:286:ARG:HH21	1.34	0.90
1:A:2340:A:H2	6:H:79:LEU:HD11	1.28	0.89
1:A:1152:G:HO2'	9:L:30:TYR:HH	1.16	0.89
22:2:36:C:OP1	22:2:37:A:N6	2.06	0.89
33:0:501:GLU:H	33:0:502:PRO:CD	1.86	0.88
1:A:1159:U:OP1	7:I:2:SER:OG	1.90	0.87
6:H:160:ALA:O	15:S:1:MET:CA	2.23	0.87
33:0:501:GLU:N	33:0:502:PRO:CD	2.36	0.87
1:A:2337:G:C5	6:H:77:PHE:CZ	2.65	0.84
1:A:810:G:O2'	1:A:811:A:O5'	1.95	0.83
1:A:2339:A:H2	6:H:76:GLY:HA3	1.43	0.83
33:0:447:ASN:H	33:0:448:PRO:HD2	1.43	0.82

All (641) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

	bus puge	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:A:1216:C:O2	1:A:1220:G:N2	2.12	0.82
6:H:160:ALA:O	15:S:1:MET:N	2.12	0.82
1:A:2341:U:H5'	6:H:85:ILE:HD11	1.60	0.82
1:A:1790:U:O2'	1:A:1791:A:O4'	1.98	0.80
22:2:31:C:C2	33:0:125:ARG:NH2	2.49	0.80
6:H:73:SER:HB3	22:2:56:C:C1'	2.12	0.80
1:A:2341:U:H5'	6:H:85:ILE:CD1	2.13	0.79
33:0:409:GLN:CD	33:0:492:GLY:HA2	2.02	0.79
33:0:413:SER:CB	33:0:517:PHE:CB	2.61	0.79
6:H:73:SER:HB2	22:2:56:C:O4'	1.81	0.79
1:A:2009:G:O2'	1:A:2011:U:OP2	2.02	0.78
22:2:31:C:C2	33:0:125:ARG:NH1	2.50	0.77
1:A:1263:G:OP2	18:V:89:ARG:NH1	2.17	0.77
33:0:537:LYS:C	33:0:539:PRO:CD	2.50	0.77
6:H:125:ARG:CG	15:S:1:MET:HB2	2.12	0.77
1:A:84:A:N6	1:A:101:G:O2'	2.18	0.77
6:H:73:SER:CB	22:2:56:C:O4'	2.32	0.77
1:A:2337:G:C6	6:H:77:PHE:CZ	2.73	0.77
1:A:2806:G:OP2	1:A:2810:A:O2'	2.02	0.77
22:2:31:C:H1'	33:0:125:ARG:HD2	1.65	0.76
1:A:363:C:OP2	5:G:137:LYS:NZ	2.18	0.76
1:A:917:A:OP1	13:Q:6:ARG:NH2	2.18	0.76
22:2:44:A:P	33:0:286:ARG:NH2	2.59	0.76
6:H:125:ARG:CG	15:S:1:MET:CB	2.63	0.76
22:2:36:C:OP1	22:2:37:A:C6	2.39	0.76
18:V:68:ALA:O	18:V:89:ARG:NE	2.17	0.76
10:N:88:ARG:NH1	10:N:97:TYR:OH	2.19	0.75
14:R:94:ARG:NH1	14:R:120:VAL:O	2.19	0.75
1:A:364:A:N3	5:G:169:ASN:ND2	2.34	0.75
6:H:75:ALA:HB2	22:2:56:C:O2'	1.87	0.75
6:H:159:THR:HG22	15:S:2:ILE:CG2	2.15	0.75
1:A:840:A:OP2	1:A:2100:A:O2'	2.04	0.75
1:A:2339:A:C2	6:H:76:GLY:HA3	2.23	0.74
4:F:26:THR:OG1	4:F:190:GLY:O	2.06	0.74
22:2:44:A:C5'	33:0:286:ARG:NH2	2.50	0.74
33:0:538:LYS:N	33:0:539:PRO:CD	2.49	0.74
33:0:537:LYS:O	33:0:539:PRO:HD2	1.87	0.74
1:A:2127:U:O2'	1:A:2128:U:OP1	2.06	0.74
10:N:15:LYS:N	10:N:53:ASP:OD1	2.21	0.74
14:R:99:THR:C	14:R:120:VAL:OXT	2.26	0.74
1:A:2372:U:HO2'	1:A:2402:A:HO2'	1.33	0.73

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
14:R:46:LYS:O	14:R:49:THR:OG1	2.05	0.73
1:A:1114:G:N2	1:A:1141:A:O2'	2.21	0.73
33:0:523:SER:O	33:0:559:PRO:CD	2.35	0.73
1:A:2532:A:O2'	1:A:2534:G:OP2	2.06	0.73
20:X:19:ASP:O	20:X:22:THR:OG1	2.07	0.73
13:Q:25:THR:OG1	13:Q:26:GLU:OE1	2.05	0.73
33:0:53:HIS:O	33:0:57:SER:N	2.22	0.73
1:A:458:G:OP2	1:A:2435:C:O2'	2.06	0.73
1:A:2498:A:O2'	13:Q:56:ARG:NH1	2.22	0.72
1:A:2025:C:OP1	11:O:31:LYS:NZ	2.22	0.72
1:A:2339:A:H2'	6:H:77:PHE:CE2	2.25	0.72
1:A:1542:A:O2'	1:A:1544:C:N4	2.23	0.72
1:A:1694:G:O2'	14:R:110:ASP:OD1	2.07	0.72
33:0:53:HIS:NE2	33:0:282:ALA:HA	2.03	0.72
1:A:1695:A:HO2'	1:A:1696:G:P	2.12	0.71
1:A:1983:G:O2'	1:A:1985:U:O4	2.08	0.71
1:A:918:U:OP1	13:Q:5:LYS:N	2.22	0.71
1:A:1784:A:O2'	1:A:1785:G:OP1	2.06	0.71
1:A:1876:A:O2'	1:A:1877:A:N7	2.23	0.71
22:2:31:C:H1'	33:0:125:ARG:CD	2.20	0.71
4:F:95:GLN:NE2	4:F:96:GLU:O	2.23	0.71
33:0:538:LYS:N	33:0:539:PRO:HD2	2.06	0.71
1:A:79:C:O2'	1:A:390:A:N3	2.18	0.71
33:0:25:THR:OG1	33:0:38:HIS:O	2.05	0.71
14:R:19:ASP:OD1	14:R:67:ARG:NH1	2.24	0.70
1:A:282:G:O2'	1:A:283:G:O4'	2.09	0.70
1:A:1088:G:H1	1:A:1159:U:H3	1.36	0.70
22:2:31:C:N3	33:0:125:ARG:NH2	2.40	0.70
33:0:27:ILE:O	33:0:80:ARG:NH2	2.25	0.70
1:A:1259:G:OP2	17:U:19:LYS:NZ	2.18	0.70
1:A:1362:G:OP1	19:W:98:LYS:NZ	2.24	0.70
15:S:92:ASP:OD1	15:S:119:LYS:NZ	2.25	0.70
33:0:480:ARG:O	33:0:534:ARG:N	2.25	0.69
1:A:177:G:O2'	1:A:178:A:O5'	2.10	0.69
1:A:2922:U:O2'	10:N:137:LYS:NZ	2.25	0.69
1:A:419:G:N2	1:A:448:A:OP2	2.16	0.69
1:A:2595:A:N1	11:O:28:SER:OG	2.24	0.69
1:A:1036:A:O2'	1:A:1037:C:OP1	2.07	0.69
1:A:1828:G:OP1	3:E:260:ARG:NH1	2.26	0.69
1:A:2772:U:OP2	1:A:2784:C:N4	2.25	0.69
1:A:2339:A:H2'	6:H:77:PHE:HE2	1.55	0.69

		Interatomic	Clash	
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
12:P:85:PHE:O	12:P:119:LYS:NZ	2.17	0.69	
1:A:1265:A:OP1	18:V:70:LYS:NZ	2.25	0.69	
22:2:58:A:O2'	22:2:60:C:OP2	2.07	0.68	
33:0:399:GLU:OE2	33:0:543:LYS:N	2.27	0.68	
20:X:84:THR:OG1	20:X:87:SER:OG	2.05	0.68	
33:0:410:GLN:HE22	33:0:467:ASN:HA	1.59	0.68	
1:A:312:G:N2	1:A:405:U:C4	2.62	0.68	
1:A:790:A:O2'	1:A:1704:U:OP1	2.12	0.68	
1:A:1130:A:N3	1:A:1151:U:O2'	2.21	0.68	
1:A:1365:U:O2'	1:A:1366:C:O4'	2.12	0.68	
1:A:1315:G:OP2	1:A:1690:G:O2'	2.04	0.68	
1:A:160:G:N2	1:A:168:A:OP2	2.27	0.68	
1:A:2287:C:O2'	1:A:2456:C:OP2	2.11	0.67	
1:A:2340:A:H2	6:H:79:LEU:CD1	1.92	0.67	
7:I:57:SER:OG	7:I:59:GLN:OE1	2.04	0.67	
1:A:2294:U:OP2	1:A:2295:A:O2'	2.10	0.67	
14:R:52:LYS:NZ	14:R:94:ARG:O	2.27	0.67	
33:0:410:GLN:CB	33:0:465:LYS:O	2.41	0.67	
1:A:1403:G:N2	1:A:1406:A:OP2	2.25	0.67	
1:A:1094:A:OP2	1:A:1156:G:N2	2.25	0.67	
22:2:3:G:H1	22:2:70:U:H3	1.43	0.67	
1:A:719:C:OP2	12:P:42:SER:OG	2.12	0.66	
3:E:72:ASP:OD2	3:E:189:ARG:NH2	2.28	0.66	
33:0:410:GLN:HE22	33:0:467:ASN:CA	2.08	0.66	
16:T:88:ARG:NH1	16:T:112:GLU:OE1	2.29	0.66	
1:A:52:A:OP2	1:A:118:A:N6	2.28	0.66	
1:A:1886:G:O2'	1:A:1887:G:O4'	2.03	0.66	
1:A:1530:G:O2'	1:A:1531:G:OP1	2.14	0.66	
1:A:2340:A:C6	6:H:41:GLY:HA3	2.30	0.66	
1:A:2513:G:OP1	13:Q:45:ARG:NH1	2.30	0.65	
3:E:13:ARG:NH1	3:E:16:MET:SD	2.69	0.65	
8:K:26:PRO:O	8:K:30:GLN:NE2	2.29	0.65	
1:A:1991:C:O2'	1:A:1993:G:OP2	2.14	0.65	
1:A:2340:A:N3	6:H:79:LEU:HD12	2.11	0.65	
1:A:1216:C:N3	1:A:1220:G:N1	2.44	0.65	
1:A:2121:U:N3	1:A:2255:C:OP2	2.29	0.65	
1:A:161:A:OP2	1:A:166:A:N6	2.30	0.65	
1:A:1364:C:OP1	1:A:1692:U:O2'	2.15	0.65	
15:S:61:LYS:O	15:S:64:ASN:ND2	2.29	0.65	
1:A:353:A:N3	1:A:373:A:O2'	2.31	0.64	
10:N:78:HIS:ND1	10:N:79:THR:O	2.29	0.64	

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:1072:A:OP2	1:A:1180:C:O2'	2.14	0.64
1:A:2341:U:C5'	6:H:85:ILE:HD11	2.26	0.64
33:0:409:GLN:CG	33:0:492:GLY:HA2	2.27	0.64
14:R:99:THR:N	14:R:120:VAL:OXT	2.31	0.64
17:U:90:VAL:O	18:V:11:GLN:NE2	2.30	0.64
1:A:604:C:O2	17:U:48:ARG:NH2	2.31	0.64
1:A:2337:G:C4	6:H:77:PHE:CZ	2.86	0.64
2:B:47:C:OP2	15:S:35:ARG:NH2	2.30	0.64
1:A:312:G:C2	1:A:405:U:C4	2.85	0.64
1:A:186:C:O2'	1:A:479:A:N3	2.25	0.64
1:A:2060:A:N3	1:A:2484:G:O2'	2.28	0.64
3:E:194:GLN:NE2	3:E:198:GLU:OE1	2.31	0.64
1:A:2605:G:O2'	1:A:2608:C:OP2	2.16	0.64
1:A:867:A:N3	1:A:989:U:O2'	2.31	0.64
1:A:77:U:O2'	1:A:78:U:O5'	2.16	0.63
1:A:1291:A:OP1	17:U:10:THR:OG1	2.10	0.63
33:0:121:GLU:OE2	33:0:162:TYR:OH	2.15	0.63
6:H:54:VAL:HG13	6:H:65:PRO:HG2	1.79	0.63
10:N:59:ASN:N	10:N:128:GLY:O	2.32	0.63
1:A:2872:U:OP1	16:T:96:LYS:NZ	2.28	0.63
1:A:633:U:O3'	5:G:95:ARG:NH1	2.31	0.63
1:A:1108:G:N3	8:K:134:SER:OG	2.32	0.63
1:A:2364:A:O2'	1:A:2365:A:O5'	2.14	0.63
33:0:422:ILE:HD11	33:0:466:ASN:HA	1.80	0.63
1:A:1509:C:HO2'	1:A:2731:G:HO2'	1.47	0.62
1:A:1313:A:O2'	1:A:1314:A:OP1	2.17	0.62
1:A:1856:U:OP2	3:E:221:ARG:NH1	2.32	0.62
22:2:44:A:H5'	33:0:286:ARG:HH21	1.61	0.62
1:A:1757:G:O2'	1:A:1758:U:O3'	2.16	0.62
1:A:1843:G:OP2	1:A:1844:A:O2'	2.13	0.62
1:A:2027:A:OP2	4:F:141:ARG:NH1	2.32	0.62
1:A:2337:G:N3	6:H:77:PHE:CE1	2.66	0.62
1:A:2334:U:C6	6:H:133:LYS:HA	2.35	0.62
1:A:2548:U:O4'	1:A:2571:A:N6	2.33	0.62
1:A:2890:U:OP2	1:A:2891:G:O2'	2.13	0.62
1:A:1231:G:OP1	12:P:30:THR:OG1	2.10	0.62
12:P:55:MET:O	12:P:60:ARG:NH2	2.33	0.62
4:F:9:LYS:NZ	4:F:194:GLY:O	2.20	0.62
1:A:372:U:O2'	21:Y:67:ASN:ND2	2.33	0.62
11:O:13:ASN:ND2	11:O:96:THR:OG1	2.32	0.62
1:A:2497:A:O2'	1:A:2498:A:O4'	2.17	0.61

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:A:1171:G:OP2	1:A:1172:A:O2'	2.09	0.61
33:0:409:GLN:CD	33:0:492:GLY:CA	2.68	0.61
1:A:1264:G:OP2	18:V:67:ARG:NH2	2.33	0.61
1:A:1379:U:OP2	20:X:59:TYR:OH	2.17	0.61
1:A:1124:C:OP1	8:K:133:ARG:NH2	2.33	0.61
1:A:2841:C:O2	1:A:2908:A:O2'	2.15	0.61
6:H:80:ARG:CZ	22:2:56:C:C5	2.84	0.61
1:A:1695:A:O2'	1:A:1696:G:O5'	2.13	0.61
1:A:2468:A:O2'	1:A:2629:A:OP1	2.13	0.61
1:A:2080:A:O2'	1:A:2643:A:N6	2.34	0.60
1:A:1065:U:OP1	1:A:1081:U:O2'	2.17	0.60
1:A:2665:U:O2'	4:F:46:TYR:OH	2.19	0.60
1:A:2337:G:C5	6:H:77:PHE:HZ	2.19	0.60
1:A:2856:G:N2	1:A:2909:U:OP2	2.34	0.60
14:R:52:LYS:NZ	14:R:98:TYR:OH	2.25	0.60
6:H:73:SER:HB3	22:2:56:C:H1'	1.83	0.60
1:A:2054:C:OP1	4:F:153:ARG:NH2	2.35	0.60
1:A:1036:A:O2'	1:A:1038:C:OP2	2.20	0.60
1:A:2026:A:O5'	4:F:130:ARG:NH1	2.33	0.60
6:H:80:ARG:CZ	22:2:56:C:C4	2.85	0.60
33:0:410:GLN:HE22	33:0:467:ASN:CB	2.15	0.60
1:A:1199:C:OP1	17:U:92:ARG:NH2	2.35	0.60
2:B:26:C:O2	2:B:57:G:N2	2.33	0.60
17:U:39:VAL:O	17:U:42:SER:OG	2.11	0.60
22:2:31:C:C4	33:0:125:ARG:NH2	2.69	0.60
33:0:60:HIS:NE2	33:0:271:SER:O	2.34	0.59
1:A:2341:U:C5'	6:H:85:ILE:CD1	2.79	0.59
11:O:13:ASN:OD1	11:O:96:THR:N	2.35	0.59
1:A:1811:C:O2	1:A:2637:G:O2'	2.04	0.59
1:A:2130:G:N2	1:A:2218:U:O2	2.30	0.59
1:A:2688:G:N2	1:A:2691:A:OP2	2.35	0.59
5:G:101:LEU:O	5:G:106:ARG:NH2	2.35	0.59
14:R:99:THR:CA	14:R:120:VAL:OXT	2.50	0.59
1:A:347:G:O2'	1:A:348:U:OP1	2.19	0.59
33:0:409:GLN:HG3	33:0:492:GLY:HA2	1.83	0.59
1:A:2333:G:O2'	6:H:129:THR:HG21	2.03	0.59
1:A:2882:G:N2	1:A:2885:A:OP2	2.29	0.59
7:I:8:LEU:HD22	7:I:52:THR:HG22	1.83	0.59
1:A:546:G:N1	1:A:549:A:OP2	2.35	0.59
1:A:2333:G:O2'	6:H:129:THR:CG2	2.51	0.59
1:A:753:A:OP1	3:E:7:LYS:NZ	2.36	0.58

		Interatomic	Clash	
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
1:A:1102:G:O2'	1:A:1149:A:N6	2.36	0.58	
33:0:525:SER:O	33:0:527:PRO:HD2	2.03	0.58	
1:A:1820:A:N6	1:A:1857:G:O2'	2.35	0.58	
33:0:418:ASP:HB3	33:0:466:ASN:CB	2.33	0.58	
1:A:251:G:O2'	1:A:2461:A:OP1	2.11	0.58	
11:O:87:ILE:HD13	11:O:90:ASP:O	2.04	0.58	
1:A:1125:C:O4'	8:K:133:ARG:NH1	2.36	0.58	
10:N:14:ARG:NH2	10:N:50:ASP:O	2.36	0.58	
33:0:392:GLU:OE1	33:0:395:ARG:NH2	2.37	0.58	
1:A:420:U:O2'	1:A:421:A:O5'	2.22	0.57	
1:A:843:C:O3'	5:G:62:ARG:NH2	2.37	0.57	
5:G:109:ALA:O	5:G:112:SER:OG	2.17	0.57	
13:Q:77:LYS:NZ	13:Q:84:GLY:O	2.32	0.57	
1:A:2334:U:C5	6:H:133:LYS:HA	2.39	0.57	
1:A:1501:U:O2'	1:A:1502:G:N7	2.37	0.57	
1:A:2665:U:HO2'	4:F:46:TYR:HH	1.52	0.57	
1:A:448:A:O2'	1:A:449:A:O4'	2.11	0.57	
3:E:77:ARG:NH2	3:E:115:GLU:OE2	2.38	0.57	
1:A:2106:A:OP1	1:A:2267:G:N2	2.33	0.57	
1:A:1830:G:OP2	3:E:150:LYS:NZ	2.38	0.57	
9:L:29:ASP:OD1	9:L:30:TYR:N	2.38	0.57	
1:A:2830:A:O2'	1:A:2831:A:OP2	2.22	0.57	
1:A:1757:G:O2'	1:A:1758:U:O5'	2.23	0.56	
16:T:28:VAL:HG12	16:T:84:ILE:HG22	1.87	0.56	
1:A:2054:C:OP2	4:F:153:ARG:NE	2.38	0.56	
1:A:83:G:N2	1:A:102:A:OP2	2.22	0.56	
1:A:1010:C:O2'	1:A:2302:A:N3	2.37	0.56	
3:E:45:ASN:OD1	3:E:46:GLN:N	2.38	0.56	
1:A:2332:G:H4'	6:H:123:ASP:HA	1.87	0.56	
1:A:1127:U:O2	8:K:117:ASN:ND2	2.37	0.56	
1:A:1782:G:OP1	16:T:93:ARG:NH1	2.38	0.56	
1:A:2324:C:OP2	15:S:14:ARG:NE	2.37	0.55	
14:R:99:THR:O	14:R:120:VAL:OXT	2.23	0.55	
11:O:33:ALA:HB1	11:O:37:ASP:CB	2.36	0.55	
33:0:410:GLN:NE2	33:0:467:ASN:HA	2.20	0.55	
1:A:2038:G:OP1	19:W:41:ARG:NH1	2.40	0.55	
1:A:675:C:O2	1:A:685:U:O2'	2.24	0.55	
1:A:623:A:O2'	1:A:2048:U:OP1	2.24	0.55	
1:A:2712:C:O2	11:O:76:TYR:OH	2.24	0.55	
1:A:1883:A:O2'	1:A:1884:G:OP1	2.23	0.55	
1:A:2684:G:O2'	1:A:2693:G:O6	2.20	0.55	

	lous page	Interatomic	Clash	
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
12:P:83:ASN:O	12:P:119:LYS:NZ	2.24	0.55	
33:0:409:GLN:NE2	33:0:492:GLY:HA2	2.21	0.55	
1:A:777:C:OP1	1:A:1804:U:O2'	2.20	0.55	
1:A:2406:A:O2'	15:S:120:PHE:OXT	2.24	0.55	
12:P:116:LYS:NZ	12:P:118:GLU:OE2	2.41	0.54	
1:A:1972:U:O2'	1:A:1973:U:OP2	2.26	0.54	
7:I:89:GLU:OE1	7:I:89:GLU:N	2.40	0.54	
33:0:410:GLN:OE1	33:0:467:ASN:N	2.40	0.54	
1:A:339:A:O3'	21:Y:90:LYS:NZ	2.41	0.54	
9:L:5:ILE:N	9:L:8:LYS:HZ3	2.05	0.54	
1:A:593:A:O2'	1:A:594:C:O5'	2.26	0.54	
1:A:2859:G:O2'	1:A:2860:A:O5'	2.24	0.54	
1:A:1058:U:O4	10:N:31:SER:OG	2.24	0.54	
3:E:142:HIS:ND1	3:E:193:GLY:O	2.40	0.54	
6:H:158:THR:HG22	6:H:160:ALA:H	1.73	0.54	
33:0:522:ASP:C	33:0:559:PRO:HG2	2.28	0.54	
1:A:116:G:OP2	1:A:118:A:O2'	2.26	0.54	
1:A:1110:C:OP1	8:K:80:LYS:NZ	2.41	0.54	
3:E:154:LEU:O	3:E:156:ARG:N	2.41	0.54	
22:2:44:A:H5'	33:0:286:ARG:NH2	2.20	0.54	
1:A:373:A:N1	21:Y:15:LYS:NZ	2.56	0.53	
1:A:2334:U:O4	6:H:151:GLY:C	2.46	0.53	
33:0:185:LEU:HD11	33:0:192:LEU:HD13	1.91	0.53	
6:H:75:ALA:CB	22:2:56:C:O2'	2.57	0.53	
11:O:22:ILE:HD11	11:O:42:THR:HG23	1.89	0.53	
11:O:120:GLU:OE1	16:T:65:SER:OG	2.25	0.53	
4:F:43:ASN:OD1	4:F:44:ASP:N	2.41	0.53	
1:A:490:A:OP1	5:G:46:GLN:N	2.42	0.53	
7:I:158:TYR:O	7:I:172:ARG:NH1	2.39	0.53	
10:N:30:SER:HA	10:N:33:VAL:HG22	1.91	0.53	
15:S:24:GLY:O	15:S:47:ASP:N	2.42	0.53	
1:A:1498:U:O2'	1:A:1499:A:N7	2.42	0.53	
1:A:1981:A:OP1	11:O:44:LYS:NZ	2.31	0.53	
13:Q:30:GLY:O	13:Q:134:ARG:NH2	2.41	0.53	
10:N:50:ASP:OD1	10:N:122:LYS:NZ	2.42	0.53	
13:Q:42:ILE:HD12	13:Q:97:VAL:HG21	1.92	0.52	
1:A:287:G:N3	1:A:288:C:N4	2.58	0.52	
1:A:488:U:O2	5:G:46:GLN:NE2	2.41	0.52	
1:A:2233:C:OP1	3:E:147:LYS:NZ	2.42	0.52	
1:A:236:A:H61	1:A:476:A:H61	1.57	0.52	
1:A:1033:C:O2	1:A:1046:A:N3	2.35	0.52	

		Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (Å)		
1:A:2364:A:HO2'	1:A:2365:A:P	2.33	0.52	
8:K:117:ASN:OD1	8:K:118:ALA:N	2.42	0.52	
1:A:1113:A:OP1	33:0:384:LYS:NZ	2.43	0.52	
1:A:1462:G:HO2'	1:A:1633:G:HO2'	1.58	0.52	
15:S:30:ARG:NH2	15:S:47:ASP:OD1	2.43	0.52	
22:2:31:C:H1'	33:0:125:ARG:NE	2.25	0.52	
3:E:155:VAL:O	3:E:160:THR:OG1	2.19	0.52	
1:A:2344:U:O2'	6:H:125:ARG:HG2	2.10	0.52	
1:A:792:G:O2'	1:A:795:G:O2'	2.16	0.51	
2:B:21:G:O2'	2:B:22:G:O5'	2.15	0.51	
6:H:159:THR:HA	15:S:2:ILE:HG22	1.91	0.51	
7:I:108:VAL:HG13	7:I:109:GLY:H	1.76	0.51	
33:0:409:GLN:CD	33:0:492:GLY:C	2.69	0.51	
1:A:2104:U:OP2	1:A:2267:G:O2'	2.16	0.51	
1:A:2404:G:N2	1:A:2407:A:OP2	2.31	0.51	
11:O:48:PRO:O	11:O:50:GLY:N	2.43	0.51	
15:S:87:GLU:OE2	15:S:88:LYS:NZ	2.43	0.51	
1:A:1759:U:HO2'	1:A:1760:A:P	2.34	0.51	
14:R:8:ARG:O	14:R:13:ARG:NH2	2.43	0.51	
1:A:274:A:HO2'	1:A:415:C:HO2'	1.41	0.51	
1:A:2334:U:O4	6:H:151:GLY:N	2.44	0.51	
1:A:2850:G:O6	4:F:163:ARG:NH1	2.44	0.51	
33:0:447:ASN:H	33:0:448:PRO:CD	2.19	0.51	
1:A:52:A:OP2	1:A:116:G:N1	2.43	0.51	
1:A:1008:A:HO2'	1:A:2525:C:HO2'	1.59	0.51	
33:0:523:SER:N	33:0:559:PRO:HG2	2.26	0.51	
1:A:1452:C:H2'	1:A:1453:A:C8	2.46	0.51	
1:A:1129:U:N3	1:A:1132:A:OP2	2.41	0.50	
1:A:1993:G:O2'	1:A:1996:C:OP2	2.18	0.50	
1:A:2337:G:C4	6:H:77:PHE:CE1	2.99	0.50	
15:S:19:ARG:NH1	15:S:47:ASP:OD2	2.43	0.50	
1:A:1460:G:O2'	1:A:1631:A:N6	2.44	0.50	
1:A:1970:C:N4	1:A:1994:C:O4'	2.45	0.50	
22:2:31:C:N1	33:0:125:ARG:CZ	2.73	0.50	
7:I:59:GLN:OE1	7:I:62:HIS:ND1	2.44	0.50	
1:A:2278:U:N3	1:A:2282:G:OP2	2.41	0.50	
1:A:2279:G:N2	1:A:2305:G:OP1	2.45	0.50	
33:0:128:ASN:OD1	33:0:129:ILE:N	2.45	0.50	
9:L:7:THR:O	9:L:11:VAL:HG23	2.12	0.50	
9:L:77:THR:O	9:L:80:ASN:ND2	2.44	0.50	
1:A:1956:A:H2'	1:A:1957:A:C8	2.46	0.50	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
7:I:8:LEU:CD2	7:I:52:THR:HG22	2.42	0.50	
9:L:56:LYS:O	9:L:60:THR:OG1	2.18	0.50	
33:0:94:ALA:HB2	33:0:101:ILE:HD11	1.94	0.49	
1:A:274:A:O2'	1:A:415:C:O2'	2.15	0.49	
1:A:420:U:HO2'	1:A:421:A:P	2.34	0.49	
15:S:8:ASN:OD1	15:S:11:ARG:NH2	2.45	0.49	
3:E:53:HIS:CE1	3:E:219:THR:HG23	2.48	0.49	
33:0:409:GLN:NE2	33:0:493:SER:N	2.59	0.49	
33:0:409:GLN:OE1	33:0:492:GLY:C	2.50	0.49	
1:A:347:G:HO2'	1:A:348:U:P	2.35	0.49	
1:A:1831:A:H2	1:A:1844:A:H62	1.61	0.49	
1:A:2420:G:O2'	1:A:2421:A:O5'	2.30	0.49	
3:E:176:LEU:O	3:E:179:GLY:N	2.40	0.49	
17:U:90:VAL:HG12	18:V:39:LEU:HD13	1.94	0.49	
33:0:9:TYR:O	33:0:12:THR:OG1	2.27	0.49	
1:A:528:G:HO2'	1:A:529:C:P	2.36	0.49	
1:A:2922:U:O3'	10:N:137:LYS:NZ	2.46	0.49	
1:A:1189:A:OP1	10:N:28:ARG:NH1	2.43	0.49	
8:K:33:VAL:HG12	8:K:64:ARG:HG2	1.94	0.49	
1:A:13:A:O2'	1:A:15:G:N7	2.45	0.49	
1:A:265:A:N3	1:A:477:A:O2'	2.39	0.49	
1:A:1263:G:N2	1:A:1266:A:OP2	2.38	0.49	
1:A:1462:G:O2'	1:A:1633:G:O2'	2.28	0.49	
33:0:53:HIS:CD2	33:0:282:ALA:CA	2.89	0.49	
1:A:1158:G:O2'	1:A:1159:U:O5'	2.31	0.49	
1:A:630:A:H5'	5:G:89:VAL:HG21	1.93	0.48	
1:A:1734:A:OP2	1:A:1743:A:N6	2.32	0.48	
10:N:63:ILE:O	10:N:94:ARG:NH2	2.46	0.48	
3:E:123:ASP:OD1	3:E:128:ASN:ND2	2.45	0.48	
1:A:45:G:H21	1:A:183:A:H61	1.61	0.48	
1:A:85:G:N1	1:A:98:U:C2	2.82	0.48	
1:A:776:G:OP1	3:E:10:SER:OG	2.32	0.48	
1:A:1339:A:H4'	1:A:1340:A:H5'	1.95	0.48	
33:0:410:GLN:NE2	33:0:467:ASN:CA	2.74	0.48	
1:A:2320:U:O2'	1:A:2403:C:O2	2.30	0.48	
1:A:2333:G:HO2'	6:H:129:THR:CG2	2.27	0.48	
1:A:2340:A:H2	6:H:79:LEU:CG	2.25	0.48	
8:K:10:LYS:C	8:K:11:LEU:HD12	2.34	0.48	
1:A:1759:U:H3	1:A:1774:A:H62	1.61	0.48	
33:0:406:GLN:NE2	33:0:492:GLY:O	2.32	0.48	
33:0:522:ASP:CA	33:0:559:PRO:HG2	2.43	0.48	

		Interatomic	r Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:A:1074:A:N3 1:A:2515:G:O		2.42	0.48	
12:P:125:ALA:HB3	12:P:128:PHE:HE1	1.79	0.48	
1:A:1853:G:OP2	3:E:53:HIS:ND1	2.46	0.48	
3:E:141:VAL:CG1	3:E:190:ALA:HB1	2.44	0.48	
1:A:527:A:O2'	21:Y:42:LYS:O	2.32	0.48	
1:A:2688:G:O2'	1:A:2690:G:N7	2.35	0.48	
5:G:112:SER:O	5:G:115:SER:OG	2.23	0.48	
8:K:18:ALA:HB3	8:K:43:ASN:ND2	2.28	0.48	
1:A:965:A:N3	2:B:78:U:O2'	2.46	0.47	
3:E:15:GLY:O	3:E:204:ASN:ND2	2.46	0.47	
33:0:133:ASP:OD1	33:0:134:ALA:N	2.47	0.47	
1:A:1516:A:N7	1:A:1569:A:N1	2.62	0.47	
1:A:64:A:H61	1:A:90:A:H61	1.62	0.47	
1:A:1475:G:HO2'	1:A:1476:C:H6	1.60	0.47	
1:A:27:G:N2	1:A:558:G:O2'	2.47	0.47	
1:A:2898:A:O2'	1:A:2899:C:OP1	2.28	0.47	
15:S:63:LEU:O	15:S:76:LYS:NZ	2.37	0.47	
17:U:90:VAL:HG23	17:U:91:ASN:H	1.79	0.47	
7:I:64:ALA:O	7:I:68:THR:HG23	2.15	0.47	
1:A:461:C:O2	1:A:1893:U:O2'	2.30	0.47	
1:A:1417:A:O2'	1:A:1418:U:OP2	2.25	0.47	
1:A:1574:G:N1	1:A:1592:A:OP2	2.43	0.47	
1:A:2333:G:HO2'	6:H:129:THR:HG22	1.80	0.47	
1:A:2335:U:H2'	1:A:2336:G:C4	2.49	0.47	
6:H:135:GLN:HG2	6:H:141:ILE:HG21	1.96	0.47	
10:N:108:GLY:O	08:GLY:O 10:N:112:LYS:NZ 2.48		0.47	
16:T:34:GLU:OE2	16:T:39:ARG:NH2	2.48	0.47	
1:A:177:G:HO2'	1:A:178:A:P	2.36	0.47	
1:A:1846:G:OP2	3:E:156:ARG:NH2	2.44	0.47	
1:A:2593:A:OP1	1:A:2677:G:O2'	2.29	0.47	
9:L:14:GLU:O	9:L:17:SER:OG	2.21	0.47	
1:A:1092:A:N3	9:L:62:ARG:NH1	2.63	0.47	
1:A:1252:G:O2'	1:A:1253:A:OP2	2.33	0.47	
14:R:18:ARG:O	14:R:21:THR:OG1	2.30	0.47	
1:A:1645:C:OP1	20:X:77:ARG:NH1	2.48	0.46	
32:1:67:THR:O	32:1:67:THR:HG23	2.16	0.46	
1:A:2340:A:C2	6:H:77:PHE:HB3	2.51	0.46	
1:A:2823:C:O2'	1:A:2824:G:O4'	2.25	0.46	
17:U:97:ASP:OD1	17:U:101:ASN:ND2	2.49	0.46	
1:A:312:G:C2	1:A:405:U:O4	2.68	0.46	
19:W:58:ALA:O	19:W:63:GLU:N	2.48	0.46	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:2063:U:HO2'	1:A:2064:G:P	2.39	0.46	
1:A:2334:U:C4	6:H:151:GLY:CA	2.66	0.46	
11:0:113:LYS:O	11:O:117:LEU:HD23	2.16	0.46	
17:U:102:ASP:OD2	18:V:2:TYR:OH	2.28	0.46	
22:2:44:A:H5"	33:0:286:ARG:NH2	2.17	0.46	
1:A:1698:G:O6	14:R:7:GLY:N	2.44	0.46	
11:O:87:ILE:HD13	11:O:90:ASP:H	1.81	0.46	
21:Y:85:VAL:HG13	21:Y:88:GLY:O	2.15	0.46	
33:0:240:ILE:HG23	33:0:240:ILE:O	2.16	0.46	
1:A:523:G:N1	1:A:526:A:OP2	2.45	0.46	
1:A:2334:U:OP2	6:H:131:GLY:N	2.49	0.46	
4:F:15:VAL:O	4:F:23:ILE:N	2.49	0.46	
14:R:17:LEU:O	14:R:21:THR:HG23	2.15	0.46	
33:0:21:GLY:N	33:0:88:ILE:O	2.44	0.46	
8:K:78:LEU:HD13	8:K:108:ILE:HG23	1.98	0.46	
1:A:1036:A:HO2'	1:A:1037:C:P	2.33	0.46	
17:U:88:ILE:HG22	17:U:88:ILE:O	2.15	0.46	
1:A:273:A:OP2	1:A:297:G:N2	2.42	0.45	
1:A:2080:A:N6	1:A:2643:A:O2'	2.45	0.45	
4:F:111:THR:OG1	4:F:170:THR:HG22	2.16	0.45	
6:H:80:ARG:NE	22:2:56:C:C4	2.84	0.45	
9:L:34:ASN:O	9:L:38:VAL:HG23	2.16	0.45	
33:0:246:VAL:O	33:0:246:VAL:HG13	2.16	0.45	
9:L:82:ILE:HD12	9:L:84:PHE:CE2	2.51	0.45	
12:P:86:ALA:O	36:ALA:O 12:P:89:THR:HG22 2.1		0.45	
22:2:56:C:H2'	2' 22:2:57:G:O4' 2.17		0.45	
1:A:610:U:OP1	18:V:81:ASN:ND2	2.47	0.45	
8:K:73:PRO:CG	8:K:78:LEU:HD21	2.46	0.45	
22:2:7:U:H3'	22:2:8:U:H5'	1.98	0.45	
22:2:42:G:O3'	33:0:32:LYS:NZ	2.50	0.45	
1:A:287:G:H21	1:A:288:C:H42	1.63	0.45	
1:A:1542:A:N3	1:A:1625:C:O2'	2.49	0.45	
4:F:28:ILE:HD12	4:F:188:ILE:HD12	1.99	0.45	
1:A:187:C:HO2'	1:A:188:C:H6	1.64	0.45	
1:A:1485:A:H2	1:A:1600:G:H21	1.65	0.45	
1:A:2703:G:H4'	11:O:30:ARG:HE	1.81	0.45	
4:F:40:THR:OG1	4:F:43:ASN:OD1	2.31	0.45	
6:H:12:ILE:HD11	6:H:173:VAL:HG12	1.98	0.45	
19:W:50:VAL:HG13	19:W:105:ILE:HD12	1.98	0.45	
33:0:348:VAL:O	33:0:359:ILE:N	2.41	0.45	
1:A:747:G:O2'	1:A:1677:A:N3	2.39	0.45	

		Interatomic	Clash	
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
1:A:1895:A:N6	1:A:1904:G:O2'	2.49	0.45	
3:E:162:ALA:HB1	3:E:175:ARG:O	2.17	0.45	
19:W:22:ASP:OD1	19:W:25:ARG:NH1	2.46	0.45	
1:A:64:A:H61	1:A:90:A:N6	2.14	0.45	
1:A:2341:U:H5'	6:H:85:ILE:HD12	1.94	0.45	
6:H:125:ARG:HG3	15:S:1:MET:CG	2.44	0.45	
1:A:2053:C:O2'	1:A:2054:C:O5'	2.34	0.45	
4:F:48:ALA:HB1	4:F:83:LEU:O	2.17	0.45	
8:K:73:PRO:HG2	8:K:78:LEU:HD21	1.99	0.45	
1:A:569:C:O2	1:A:598:U:O2'	2.34	0.44	
4:F:206:VAL:O	4:F:206:VAL:HG13	2.16	0.44	
9:L:28:VAL:HG12	9:L:108:ILE:HA	1.98	0.44	
11:O:24:VAL:HG11	11:O:33:ALA:HB2	1.99	0.44	
33:0:171:ILE:N	33:0:199:HIS:O	2.50	0.44	
1:A:2063:U:O2'	1:A:2064:G:O5'	2.33	0.44	
1:A:2252:A:OP1	3:E:170:LYS:NZ	2.45	0.44	
1:A:2344:U:H4'	1:A:2345:U:OP1	2.17	0.44	
13:Q:44:ASN:OD1	13:Q:45:ARG:N	2.50	0.44	
33:0:525:SER:O	33:0:527:PRO:CD	2.64	0.44	
1:A:1968:U:OP1	1:A:2633:U:O2'	2.33	0.44	
3:E:35:ALA:O	3:E:62:TYR:N	2.51	0.44	
4:F:134:SER:OG	4:F:135:HIS:N	2.50	0.44	
7:I:166:GLU:OE1	7:I:166:GLU:N	2.42	0.44	
22:2:47:U:O2'	22:2:50:G:OP1	2.33	0.44	
1:A:1849:U:OP1	3:E:177:ASN:ND2	2.50	0.44	
1:A:2344:U:H2'	1:A:2345:U:C6	2.52	0.44	
22:2:38:C:H2'	22:2:39:G:C8	2.52	0.44	
1:A:1699:A:N6	1:A:2035:C:O4'	2.48	0.44	
9:L:108:ILE:HG22	9:L:108:ILE:O	2.18	0.44	
33:0:7:PHE:HA	33:0:254:LEU:HD11	1.99	0.44	
7:I:108:VAL:HG13	7:I:109:GLY:N	2.32	0.44	
13:Q:72:LYS:O	13:Q:94:VAL:N	2.48	0.44	
1:A:492:C:H2'	1:A:493:G:O4'	2.18	0.43	
1:A:617:G:N2	1:A:2060:A:OP1	2.48	0.43	
1:A:751:G:H2'	1:A:773:G:H22	1.82	0.43	
1:A:2817:C:O2'	1:A:2834:A:N3	2.45	0.43	
18:V:36:GLU:OE1	18:V:36:GLU:N	2.51	0.43	
19:W:23:LEU:O	19:W:27:LYS:NZ	2.45	0.43	
1:A:1163:U:H2'	1:A:1164:C:C6	2.53	0.43	
1:A:2630:C:H5"	22:2:75:C:OP1	2.17	0.43	
17:U:88:ILE:O	17:U:90:VAL:N	2.51	0.43	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap(Å)	
1:A:894:A:H62	1:A:979:U:H3	1.67	0.43	
1:A:1783:C:OP1	16:T:94:ARG:NE	2 51 0 43		
2:B:107:G·HO2'	2:B:108:C:H6	1 65	0.43	
22:2:31:C:O2	33:0:125:ABG:CZ	2.50	0.43	
1:A:1158:G:HO2'	1:A:1159:U:P	2.40	0.43	
1:A:85:G:C6	1:A:98:U:N3	2.86	0.43	
1:A:2688:G:OP2	7:I:159:LYS:NZ	2.47	0.43	
16:T:71:GLU:OE1	16:T:101:ARG:NH1	2.51	0.43	
14:R:26:ILE:O	14:R:82:LYS:NZ	2.51	0.43	
12:P:125:ALA:HB3	12:P:128:PHE:CE1	2.54	0.43	
14:R:85:SER:OG	14:R:86:ASP:N	2.52	0.43	
22:2:57:G:C2'	22:2:58:A:H5'	2.48	0.43	
3:E:157:SER:OG	3:E:158:ALA:N	2.52	0.43	
10:N:96:ASN:O	10:N:127:ARG:NH2	2.47	0.43	
33:0:242:ASN:HB3	33:0:266:ARG:HG2	2.00	0.43	
1:A:2670:A:OP1	10:N:77:ARG:NH1	2.48	0.43	
7:I:21:ASP:OD1	7:I:24:THR:OG1	2.31	0.43	
22:2:69:C:H2'	22:2:70:U:C6	2.54	0.42	
1:A:273:A:OP2	1:A:297:G:N1	2.49	0.42	
1:A:1464:A:H2	1:A:1627:A:H62	1.67	0.42	
1:A:2316:A:O2'	1:A:2317:A:O5'	2.34	0.42	
3:E:264:ASN:OD1	3:E:265:LYS:N	2.51	0.42	
1:A:354:A:OP1	21:Y:14:GLY:N	2.52	0.42	
1:A:1058:U:O2	10:N:28:ARG:NH1	2.52	0.42	
7:I:55:ARG:NH2	7:I:58:ASP:OD1	2.51	0.42	
1:A:2337:G:C6	1:A:2337:G:C6 6:H:77:PHE:CE2 3.07		0.42	
6:H:125:ARG:O	15:S:1:MET:HB2	2.20	0.42	
33:0:409:GLN:HE22	33:0:493:SER:N	2.18	0.42	
1:A:342:A:N1	1:A:366:A:O2'	2.47	0.42	
1:A:2337:G:N3	6:H:77:PHE:HE1	2.14	0.42	
7:I:38:PHE:CE2	7:I:73:LEU:HD21	2.55	0.42	
10:N:6:MET:SD	10:N:6:MET:N	2.93	0.42	
15:S:82:ALA:HA	15:S:118:LEU:HD11	2.02	0.42	
1:A:1159:U:O2'	1:A:1160:G:OP2	2.30	0.42	
1:A:2089:A:O2'	1:A:2090:G:OP2	2.37	0.42	
11:O:24:VAL:CG1	11:O:33:ALA:HB2	2.49	0.42	
1:A:1283:U:O2'	12:P:6:LEU:O	2.35	0.42	
6:H:73:SER:CB	22:2:56:C:C1'	2.87	0.42	
13:Q:28:HIS:O	13:Q:134:ARG:NH2	2.53	0.42	
20:X:30:VAL:HG12	20:X:31:ASP:N	2.35	0.42	
1:A:1046:A:OP2	1:A:1200:G:N1	2.44	0.41	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:1765:G:N2	1:A:1768:A:OP2	2.52	0.41
9:L:55:TYR:CE2	9:L:82:ILE:HD11	2.55	0.41
11:O:34:ASN:O	11:O:62:ILE:HG21	2.20	0.41
11:O:105:GLU:OE1	11:O:105:GLU:N	2.52	0.41
33:0:335:ASN:ND2	33:0:348:VAL:HG13	2.35	0.41
1:A:2888:C:P	16:T:91:LYS:HZ1	2.43	0.41
6:H:36:ILE:CG2	6:H:57:LEU:HD11	2.50	0.41
1:A:2343:A:H2'	1:A:2344:U:C6	2.55	0.41
5:G:167:ALA:HA	5:G:170:ILE:HD13	2.02	0.41
1:A:376:A:O2'	1:A:378:C:OP2	2.29	0.41
1:A:1452:C:H2'	1:A:1453:A:H8	1.84	0.41
1:A:2577:G:O2'	11:O:4:GLN:NE2	2.50	0.41
2:B:48:G:HO2'	2:B:49:G:P	2.42	0.41
17:U:26:GLY:O	17:U:29:HIS:ND1	2.53	0.41
20:X:84:THR:OG1	20:X:85:ALA:O	2.38	0.41
22:2:37:A:H2'	22:2:38:C:C6	2.56	0.41
1:A:1017:C:O2'	1:A:1029:A:N3	2.49	0.41
1:A:2341:U:H4'	6:H:68:THR:OG1	2.21	0.41
1:A:2466:C:HO2'	1:A:2628:G:HO2'	1.65	0.41
22:2:43:G:P	33:0:32:LYS:HZ2	2.43	0.41
1:A:939:G:O2'	1:A:940:G:O5'	2.38	0.41
1:A:1322:G:N1	1:A:1325:A:OP2	2.54	0.41
6:H:47:ALA:O	6:H:50:ILE:HG22	2.20	0.41
13:Q:12:GLU:O	13:Q:87:LYS:NZ	2.54	0.41
17:U:69:ALA:O	17:U:74:LEU:N	2.48	0.41
33:0:515:ALA:HB1	33:0:559:PRO:CD	2.35	0.41
1:A:221:G:H22	1:A:238:U:H4'	1.86	0.41
1:A:1681:U:O2'	1:A:1789:A:N3	2.48	0.41
1:A:2233:C:OP2	3:E:150:LYS:NZ	2.53	0.41
33:0:350:ASN:OD1	33:0:351:TYR:N	2.54	0.41
1:A:1366:C:O2'	14:R:108:ARG:NH1	2.45	0.41
1:A:1965:A:OP2	1:A:1991:C:N4	2.47	0.41
6:H:12:ILE:HG12	6:H:172:GLN:HB3	2.03	0.41
1:A:551:A:O2'	1:A:552:G:O5'	2.38	0.41
1:A:2875:A:OP2	1:A:2891:G:N1	2.49	0.41
2:B:35:C:O2	15:S:103:HIS:NE2	2.44	0.41
7:I:163:ILE:HD12	7:I:163:ILE:H	1.86	0.41
9:L:12:VAL:HG23	9:L:63:ALA:HB2	2.03	0.41
14:R:86:ASP:O	14:R:89:THR:OG1	2.34	0.41
33:0:46:GLN:N	33:0:46:GLN:OE1	2.53	0.41
33:0:139:ILE:HD13	33:0:156:VAL:O	2.20	0.41

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
33:0:522:ASP:HA	33:0:559:PRO:HG2	2.03	0.41	
1:A:283:G:O6	1:A:287:G:N2	2.53	0.41	
1:A:775:G:H3'	1:A:776:G:H5'	2.03	0.41	
1:A:2774:C:H42	1:A:2788:G:H1	1.69	0.41	
5:G:53:ASN:OD1	5:G:54:ARG:N	2.52	0.41	
1:A:2667:G:HO2'	1:A:2668:A:H8	1.69	0.40	
3:E:139:THR:N	3:E:163:GLN:OE1	2.54	0.40	
7:I:81:SER:OG	7:I:82:LYS:N	2.54	0.40	
1:A:1773:G:HO2'	1:A:1774:A:P	2.44	0.40	
5:G:146:LEU:O	5:G:147:SER:OG	2.33	0.40	
10:N:139:GLU:OE1	10:N:139:GLU:N	2.55	0.40	
33:0:350:ASN:ND2	33:0:355:GLU:OE2	2.54	0.40	
1:A:1164:C:H2'	1:A:1165:U:O4'	2.21	0.40	
1:A:1691:A:O2'	1:A:1692:U:OP2	2.24	0.40	
1:A:2713:U:OP2	16:T:51:ARG:NH1	2.54	0.40	
7:I:51:LEU:HD13	7:I:52:THR:N	2.36	0.40	
7:I:102:ASN:OD1	7:I:103:LYS:N	2.55	0.40	
8:K:33:VAL:HG12	8:K:64:ARG:CG	2.52	0.40	
9:L:26:ILE:HG21	9:L:96:LEU:HD13	2.03	0.40	
11:O:103:ALA:HB1	11:O:105:GLU:OE1	2.20	0.40	
13:Q:26:GLU:OE1	13:Q:26:GLU:N	2.55	0.40	
14:R:85:SER:O	14:R:89:THR:HG23	2.22	0.40	
15:S:80:LEU:HD21	15:S:84:ARG:CZ	2.51	0.40	
9:L:119:THR:HG22	9:L:120:VAL:N	2.36	0.40	
20:X:30:VAL:HG12	20:X:31:ASP:OD1	2.22	0.40	
1:A:2855:G:OP1	4:F:78:ARG:NH2	2.55	0.40	
6:H:8:TYR:HA	6:H:12:ILE:HD12	2.01	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	Е	270/277~(98%)	256~(95%)	12 (4%)	2 (1%)	22	61
4	F	204/209~(98%)	187 (92%)	17 (8%)	0	100	100
5	G	203/207~(98%)	184 (91%)	$19 \ (9\%)$	0	100	100
6	Н	174/179~(97%)	166~(95%)	8 (5%)	0	100	100
7	Ι	173/179~(97%)	153~(88%)	20 (12%)	0	100	100
8	K	130/141~(92%)	115 (88%)	15 (12%)	0	100	100
9	L	107/166~(64%)	106~(99%)	1 (1%)	0	100	100
10	Ν	140/145~(97%)	127 (91%)	13 (9%)	0	100	100
11	Ο	120/122~(98%)	105 (88%)	15 (12%)	0	100	100
12	Р	144/146~(99%)	136 (94%)	8 (6%)	0	100	100
13	Q	133/144 (92%)	117 (88%)	16 (12%)	0	100	100
14	R	117/120~(98%)	106 (91%)	11 (9%)	0	100	100
15	S	118/120 (98%)	105 (89%)	12 (10%)	1 (1%)	19	58
16	Т	113/115~(98%)	105 (93%)	8 (7%)	0	100	100
17	U	115/119~(97%)	106 (92%)	8 (7%)	1 (1%)	17	56
18	V	98/102~(96%)	80 (82%)	18 (18%)	0	100	100
19	W	107/113~(95%)	94 (88%)	13 (12%)	0	100	100
20	X	88/95~(93%)	83 (94%)	5 (6%)	0	100	100
21	Y	99/103~(96%)	84 (85%)	15 (15%)	0	100	100
23	a	79/94~(84%)	71 (90%)	8 (10%)	0	100	100
24	b	56/62~(90%)	50 (89%)	6 (11%)	0	100	100
25	с	63/66~(96%)	61 (97%)	2 (3%)	0	100	100
26	d	56/59~(95%)	54 (96%)	2 (4%)	0	100	100
27	f	51/59~(86%)	47 (92%)	4 (8%)	0	100	100
28	g	46/49~(94%)	41 (89%)	5 (11%)	0	100	100
29	h	42/44~(96%)	41 (98%)	1 (2%)	0	100	100
30	i	62/66~(94%)	59 (95%)	3 (5%)	0	100	100
31	j	35/37~(95%)	34 (97%)	1 (3%)	0	100	100
32	1	81/86 (94%)	79 (98%)	2 (2%)	0	100	100
33	0	518/599~(86%)	476 (92%)	39 (8%)	3 (1%)	25	64
All	All	3742/4023~(93%)	3428 (92%)	307 (8%)	7~(0%)	50	79

All (7) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
3	Е	156	ARG
15	S	2	ILE
33	0	491	PRO
3	Е	155	VAL
33	0	447	ASN
33	0	538	LYS
17	U	90	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
3	Ε	220/225~(98%)	220~(100%)	0	100 100
4	F	167/170~(98%)	167~(100%)	0	100 100
5	G	169/170~(99%)	168~(99%)	1 (1%)	86 94
6	Н	151/154~(98%)	145~(96%)	6 (4%)	31 66
7	Ι	148/151~(98%)	148 (100%)	0	100 100
8	K	102/110~(93%)	102~(100%)	0	100 100
9	L	98/138~(71%)	97~(99%)	1 (1%)	76 90
10	Ν	120/123~(98%)	120 (100%)	0	100 100
11	О	101/101~(100%)	$101 \ (100\%)$	0	100 100
12	Р	110/110~(100%)	109 (99%)	1 (1%)	78 91
13	Q	109/116~(94%)	108~(99%)	1 (1%)	78 91
14	R	99/100~(99%)	98~(99%)	1 (1%)	76 90
15	S	93/93~(100%)	93~(100%)	0	100 100
16	Т	100/100~(100%)	99~(99%)	1 (1%)	76 90
17	U	96/98~(98%)	95~(99%)	1 (1%)	76 90
18	V	83/84~(99%)	83~(100%)	0	100 100
19	W	90/93~(97%)	88 (98%)	2 (2%)	52 79
20	Х	$8\overline{1/85}\;(95\%)$	81 (100%)	0	100 100
21	Y	85/87~(98%)	84 (99%)	1 (1%)	71 88

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
23	a	63/74~(85%)	62~(98%)	1 (2%)	62	84
24	b	47/50~(94%)	47 (100%)	0	100	100
25	с	56/57~(98%)	56~(100%)	0	100	100
26	d	52/53~(98%)	52~(100%)	0	100	100
27	f	47/53~(89%)	46 (98%)	1 (2%)	53	79
28	g	46/47~(98%)	46 (100%)	0	100	100
29	h	39/39~(100%)	38~(97%)	1 (3%)	46	76
30	i	54/56~(96%)	54~(100%)	0	100	100
31	j	35/35~(100%)	35~(100%)	0	100	100
32	1	73/75~(97%)	72~(99%)	1 (1%)	67	86
33	0	374/527~(71%)	372~(100%)	2(0%)	88	95
All	All	3108/3374 (92%)	3086 (99%)	22 (1%)	84	94

All (22) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
5	G	10	ASN
6	Н	11	GLU
6	Н	64	LYS
6	Н	112	ARG
6	Н	120	LYS
6	Н	150	ARG
6	Н	165	GLU
9	L	23	LYS
12	Р	114	ASN
13	Q	60	ARG
14	R	75	ASN
16	Т	1	MET
17	U	72	ASN
19	W	11	ARG
19	W	37	ASN
21	Y	89	LYS
23	a	22	ARG
27	f	7	ARG
29	h	28	ARG
32	1	63	LEU
33	0	116	ARG
33	0	154	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (7) such side chains are listed below:

Mol	Chain	Res	Type
17	U	101	ASN
21	Y	67	ASN
30	i	60	GLN
32	1	61	ASN
33	0	326	GLN
33	0	335	ASN
33	0	385	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	А	2808/2926~(95%)	667~(23%)	61 (2%)
2	В	111/119~(93%)	30~(27%)	3~(2%)
22	2	67/76~(88%)	15~(22%)	3~(4%)
All	All	2986/3121~(95%)	712~(23%)	67~(2%)

All (712) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	А	13	А
1	А	14	А
1	А	15	G
1	А	23	G
1	А	26	G
1	А	34	U
1	А	35	G
1	А	36	G
1	А	46	С
1	А	55	G
1	А	61	А
1	А	62	С
1	А	63	G
1	А	71	А
1	А	74	U
1	А	75	G
1	А	76	С
1	А	77	U
1	А	78	U
1	А	79	С
1	А	80	G

1 A 84 A 1 A 85 G 1 A 86 C 1 A 87 U 1 A 89 U 1 A 90 A 1 A 92 G 1 A 93 C 1 A 96 G 1 A 101 G 1 A 117 A 1 A 119 U 1 A 119 U 1 A 125 A 1 A 126 A 1 A 126 A 1 A 126 A 1 A 164 U 1 A 164 U 1 A 176 A 1 A 178 A 1 A 183 A 1 A 184 G <	Mol	Chain	Res	Type
1 A 85 G 1 A 86 C 1 A 87 U 1 A 89 U 1 A 90 A 1 A 92 G 1 A 93 C 1 A 93 C 1 A 96 G 1 A 101 G 1 A 117 A 1 A 118 A 1 A 119 U 1 A 125 A 1 A 126 A 1 A 126 A 1 A 126 A 1 A 133 A 1 A 164 U 1 A 164 U 1 A 175 G 1 A 178 A 1 A 183 A <	1	А	84	А
1 A 86 C 1 A 87 U 1 A 89 U 1 A 90 A 1 A 92 G 1 A 93 C 1 A 96 G 1 A 101 G 1 A 117 A 1 A 117 A 1 A 119 U 1 A 1125 A 1 A 126 A 1 A 126 A 1 A 126 A 1 A 126 A 1 A 164 U 1 A 164 U 1 A 175 G 1 A 176 A 1 A 183 A 1 A 184 G 1 A 184 G	1	А	85	G
1 A 87 U 1 A 90 A 1 A 90 A 1 A 92 G 1 A 93 C 1 A 96 G 1 A 101 G 1 A 101 G 1 A 117 A 1 A 119 U 1 A 125 A 1 A 126 A 1 A 164 U 1 A 164 U 1 A 175 G 1 A 178 A 1 A 183 A 1 A 185 A 1 A 188 C	1	А	86	С
1 A 89 U 1 A 90 A 1 A 92 G 1 A 93 C 1 A 96 G 1 A 101 G 1 A 117 A 1 A 117 A 1 A 117 A 1 A 119 U 1 A 125 A 1 A 126 A 1 A 126 A 1 A 126 A 1 A 126 A 1 A 133 A 1 A 164 U 1 A 164 U 1 A 175 G 1 A 178 A 1 A 183 A 1 A 185 A 1 A 188 C	1	А	87	U
1 A 90 A 1 A 92 G 1 A 93 C 1 A 96 G 1 A 101 G 1 A 117 A 1 A 117 A 1 A 118 A 1 A 1125 A 1 A 125 A 1 A 126 A 1 A 126 A 1 A 126 A 1 A 164 U 1 A 164 U 1 A 164 U 1 A 176 A 1 A 178 A 1 A 179 A 1 A 183 A 1 A 184 G 1 A 189 G 1 A 199 A	1	А	89	U
1 A 92 G 1 A 93 C 1 A 96 G 1 A 101 G 1 A 117 A 1 A 117 A 1 A 119 U 1 A 125 A 1 A 126 A 1 A 164 U 1 A 164 U 1 A 175 G 1 A 178 A 1 A 178 A 1 A 183 A 1 A 184 G 1 A 185 A 1 A 199 A 1 A 200 A	1	А	90	А
1 A 93 C 1 A 101 G 1 A 101 G 1 A 117 A 1 A 118 A 1 A 119 U 1 A 125 A 1 A 126 A 1 A 164 U 1 A 164 U 1 A 176 A 1 A 178 A 1 A 183 A 1 A 183 A 1 A 184 G 1 A 185 A 1 A 199 A 1 A 200 A <td>1</td> <td>А</td> <td>92</td> <td>G</td>	1	А	92	G
1 A 96 G 1 A 101 G 1 A 117 A 1 A 118 A 1 A 119 U 1 A 125 A 1 A 126 A 1 A 133 A 1 A 141 U 1 A 164 U 1 A 175 G 1 A 178 A 1 A 179 A 1 A 183 A 1 A 184 G 1 A 189 G 1 A 200 A <td>1</td> <td>А</td> <td>93</td> <td>С</td>	1	А	93	С
1A101G1A117A1A118A1A119U1A125A1A126A1A133A1A133A1A141U1A150A1A164U1A175G1A176A1A178A1A183A1A183A1A184G1A185A1A191G1A200A1A200A1A216A1A219A1A225A1A226A1A229A	1	А	96	G
1A117A1A118A1A119U1A125A1A126A1A133A1A141U1A150A1A164U1A175G1A176A1A178A1A183A1A183A1A184G1A185A1A189G1A191G1A200A1A202A1A219A1A225A1A226A1A229A	1	А	101	G
1A118A1A119U1A125A1A126A1A133A1A134U1A141U1A150A1A164U1A175G1A176A1A178A1A178A1A183A1A184G1A185A1A189G1A191G1A200A1A202A1A219A1A225A1A226A1A227G1A229A	1	А	117	А
1A119U1A125A1A126A1A133A1A133A1A141U1A150A1A164U1A175G1A176A1A178A1A178A1A183A1A184G1A185A1A185A1A191G1A199A1A200A1A216A1A219A1A225A1A226A1A229A	1	А	118	А
1A125A1A126A1A133A1A133A1A141U1A150A1A164U1A175G1A176A1A178A1A178A1A183A1A183A1A184G1A185A1A189G1A191G1A200A1A202A1A216A1A224A1A225A1A226A1A227G1A229A	1	A	119	U
1 A 126 A 1 A 133 A 1 A 141 U 1 A 150 A 1 A 164 U 1 A 164 U 1 A 175 G 1 A 176 A 1 A 176 A 1 A 178 A 1 A 178 A 1 A 183 A 1 A 183 A 1 A 184 G 1 A 185 A 1 A 189 G 1 A 199 A 1 A 200 A 1 A 202 A 1 A 202 A 1 A 204 A 1 A 216 A 1 A 224 A </td <td>1</td> <td>A</td> <td>125</td> <td>A</td>	1	A	125	A
1A133A1A141U1A150A1A164U1A175G1A176A1A178A1A178A1A183A1A183A1A184G1A185A1A188C1A199G1A199A1A200A1A216A1A219A1A225A1A226A1A229A	1	A	126	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	A	133	A
1 A 150 A 1 A 164 U 1 A 175 G 1 A 176 A 1 A 176 A 1 A 177 A 1 A 178 A 1 A 178 A 1 A 179 A 1 A 183 A 1 A 183 A 1 A 184 G 1 A 185 A 1 A 189 G 1 A 199 A 1 A 200 A 1 A 202 A 1 A 200 A 1 A 202 A 1 A 216 A 1 A 224 A 1 A 225 A 1 A 226 A </td <td>1</td> <td>A</td> <td>141</td> <td>U</td>	1	A	141	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	150	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	164	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	175	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	176	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	178	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	179	А
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	А	183	А
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	А	184	G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	А	185	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	188	С
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	А	189	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	191	G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	A	199	A
1 A 202 A 1 A 216 A 1 A 219 A 1 A 224 A 1 A 225 A 1 A 226 A 1 A 227 G 1 A 229 A	1	A	200	A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	A	202	A
1 A 219 A 1 A 224 A 1 A 225 A 1 A 226 A 1 A 227 G 1 A 229 A	1	A	216	A
1 A 224 A 1 A 225 A 1 A 226 A 1 A 227 G 1 A 229 A	1	A	219	A
1 A 225 A 1 A 226 A 1 A 227 G 1 A 229 A	1	A	224	A
1 A 226 A 1 A 227 G 1 A 229 A	1	A	225	A
1 A 227 G 1 A 229 A	1	A	226	A
1 A 229 A	1	A	227	G
	1	A	229	A
1 A 231 A	1	A	231	A
1 A 232 U	1	A	232	U
1 A 233 G	1	A	233	G

Mol	Chain	Res	Type
1	А	234	С
1	А	235	G
1	А	236	A
1	А	244	A
1	А	251	G
1	А	252	С
1	А	253	G
1	А	258	А
1	А	266	U
1	А	267	С
1	А	270	С
1	А	275	A
1	А	283	G
1	А	284	С
1	А	286	U
1	А	287	G
1	А	288	С
1	А	290	U
1	А	291	С
1	А	298	U
1	А	301	U
1	А	302	A
1	А	309	U
1	А	310	С
1	А	314	A
1	А	321	U
1	А	329	A
1	А	345	A
1	А	346	G
1	A	348	U
1	A	349	C
1	A	360	C
1	A	367	G
1	A	368	G
1	A	373	A
1	A	374	A
1	A	375	С
1	A	379	C
1	А	387	С
1	A	394	U
1	А	402	U
1	А	405	U

\mathbf{Mol}	Chain	\mathbf{Res}	Type
1	А	407	А
1	А	410	G
1	А	411	G
1	А	412	А
1	А	413	U
1	А	418	A
1	А	419	G
1	А	420	U
1	А	421	А
1	А	427	G
1	А	432	С
1	А	433	G
1	A	434	U
1	A	435	G
1	A	444	U
1	A	458	G
1	А	471	G
1	А	483	С
1	А	491	С
1	А	495	U
1	А	498	U
1	А	502	С
1	А	504	А
1	А	505	G
1	А	528	G
1	А	529	С
1	А	533	С
1	А	542	G
1	А	550	G
1	A	551	А
1	A	554	U
1	A	555	C
1	A	556	C
1	A	559	A
1	A	564	G
1	A	573	C
1	A	576	G
1	A	577	U
1	A	578	A
1	A	579	G
1	A	592	A
1	A	593	A

Mol	Chain	Res	Type
1	А	594	С
1	А	595	G
1	А	599	G
1	А	607	G
1	А	615	U
1	А	617	G
1	А	618	А
1	А	619	А
1	А	631	G
1	А	646	А
1	А	647	А
1	А	648	G
1	A	649	G
1	A	658	A
1	A	659	A
1	A	662	U
1	A	667	A
1	А	673	А
1	А	677	A
1	А	683	А
1	А	690	А
1	A	691	U
1	A	700	U
1	А	701	G
1	A	702	A
1	A	733	U
1	A	752	A
1	A	764	С
1	A	765	A
1	A	777	C
1	A	787	C
1	A	788	G
1	A	792	G
1	A	794	U
1	A	795	G
1	A	804	G
1	A	810	G
1	A	811	A
1	A	812	G
1	A	822	G
1	A	829	A
1	A	830	A

Mol	Chain	Res	Type
1	А	831	U
1	А	832	G
1	А	837	U
1	А	838	С
1	А	839	G
1	А	847	А
1	А	852	G
1	А	859	С
1	А	866	А
1	А	874	U
1	А	875	U
1	А	877	G
1	A	892	U
1	A	908	A
1	A	913	A
1	A	916	G
1	А	918	U
1	А	929	G
1	А	939	G
1	А	940	G
1	А	942	U
1	А	943	А
1	A	944	С
1	А	946	G
1	A	948	A
1	A	954	U
1	A	957	А
1	A	959	С
1	A	961	С
1	A	962	С
1	A	964	A
1	A	973	G
1	A	977	U
1	A	978	A
1	A	979	U
1	A	980	C
1	A	987	A
1	A	991	A
1	A	992	G
1	A	999	A
1	A	1003	A
1	A	1005	A

Mol	Chain	Res	Type
1	А	1007	G
1	А	1019	А
1	А	1020	А
1	А	1029	A
1	А	1036	А
1	А	1037	С
1	А	1042	А
1	А	1051	С
1	А	1058	U
1	А	1059	А
1	А	1063	G
1	А	1067	А
1	А	1068	G
1	А	1069	U
1	А	1071	G
1	А	1073	A
1	А	1079	U
1	А	1081	U
1	А	1084	А
1	А	1085	G
1	А	1091	U
1	А	1092	А
1	А	1093	G
1	А	1102	G
1	А	1103	А
1	А	1108	G
1	А	1115	А
1	А	1116	А
1	А	1118	С
1	А	1119	A
1	А	1129	U
1	А	1130	A
1	А	1133	G
1	А	1134	A
1	А	1143	U
1	А	1147	U
1	А	1156	G
1	А	1157	A
1	А	1158	G
1	А	1159	U
1	А	1160	G
1	А	1161	A

Mol	Chain	Res	Type
1	А	1162	С
1	А	1163	U
1	А	1173	А
1	А	1174	А
1	А	1175	A
1	А	1176	U
1	А	1177	G
1	А	1179	A
1	А	1181	С
1	А	1182	G
1	А	1185	G
1	А	1188	A
1	А	1189	A
1	А	1197	A
1	А	1201	A
1	А	1203	G
1	А	1209	G
1	А	1236	G
1	А	1251	U
1	А	1252	G
1	А	1259	G
1	А	1260	А
1	А	1278	G
1	А	1284	А
1	А	1293	A
1	А	1295	U
1	А	1296	G
1	А	1305	A
1	А	1306	G
1	A	1307	U
1	А	1311	G
1	А	1312	A
1	А	1313	A
1	А	1314	A
1	А	1315	G
1	А	1319	G
1	А	1323	A
1	А	1333	С
1	А	1339	A
1	А	1340	A
1	А	1341	U
1	A	1343	С

\mathbf{Mol}	Chain	Res	Type
1	А	1346	А
1	А	1351	U
1	А	1352	U
1	А	1363	G
1	А	1364	С
1	А	1365	U
1	А	1366	С
1	А	1368	U
1	А	1370	С
1	А	1371	G
1	А	1372	С
1	А	1375	А
1	A	1376	G
1	A	1380	U
1	A	1384	C
1	A	1385	G
1	A	1388	A
1	А	1389	С
1	А	1391	U
1	А	1404	А
1	А	1417	А
1	А	1418	U
1	А	1424	А
1	А	1425	С
1	А	1426	А
1	А	1427	G
1	А	1428	G
1	А	1431	G
1	А	1434	А
1	А	1435	U
1	A	1436	U
1	A	1442	A
1	A	1448	U
1	A	1449	C
1	A	1451	U
1	А	1459	U
1	A	1460	G
1	A	1465	A
1	A	1466	U
1	A	1472	G
1	A	1473	A
1	A	1474	С

Mol	Chain	Res	Type
1	А	1476	С
1	А	1481	G
1	А	1489	U
1	А	1490	А
1	А	1499	А
1	А	1500	U
1	А	1501	U
1	А	1502	G
1	А	1506	А
1	А	1507	U
1	А	1508	С
1	А	1516	A
1	A	1525	G
1	A	1526	G
1	А	1527	С
1	A	1528	U
1	А	1529	G
1	А	1530	G
1	А	1531	G
1	А	1532	А
1	А	1533	А
1	А	1536	А
1	А	1539	С
1	А	1540	A
1	А	1542	А
1	А	1543	U
1	А	1545	С
1	А	1550	С
1	А	1551	С
1	A	1553	А
1	A	1556	A
1	А	1558	G
1	A	1559	C
1	А	1560	U
1	A	1561	G
1	А	1566	G
1	A	1568	G
1	A	$15\overline{69}$	A
1	A	1570	U
1	A	1571	G
1	A	1576	G
1	A	1577	C

Mol	Chain	\mathbf{Res}	Type
1	А	1595	U
1	А	1602	U
1	А	1608	А
1	А	1614	А
1	А	1615	А
1	А	1617	А
1	А	1626	U
1	А	1632	G
1	А	1652	С
1	А	1653	А
1	А	1655	А
1	А	1661	A
1	А	1672	А
1	А	1684	U
1	А	1685	А
1	А	1692	U
1	А	1693	С
1	А	1696	G
1	А	1697	А
1	А	1699	А
1	А	1700	А
1	А	1705	С
1	А	1708	U
1	А	1710	А
1	А	1712	G
1	А	1713	А
1	А	1719	G
1	А	1738	U
1	А	1743	А
1	А	1745	А
1	A	1748	G
1	А	1757	G
1	A	1758	U
1	А	1759	U
1	A	1760	A
1	A	1761	G
1	А	1762	G
1	A	1766	C
1	А	1767	А
1	A	1768	A
1	А	1771	С
1	A	1776	A

Mol	Chain	Res	Type
1	А	1778	А
1	А	1779	G
1	А	1782	G
1	А	1785	G
1	А	1793	G
1	А	1802	А
1	А	1811	С
1	А	1812	А
1	А	1814	А
1	А	1820	А
1	А	1829	С
1	А	1830	G
1	A	1839	A
1	A	1841	G
1	A	1845	A
1	A	1846	G
1	А	1864	G
1	А	1865	С
1	А	1867	С
1	А	1872	С
1	А	1877	А
1	А	1882	А
1	А	1883	А
1	А	1884	G
1	А	1885	А
1	А	1887	G
1	А	1891	G
1	А	1898	G
1	А	1899	U
1	А	1904	G
1	A	1935	G
1	A	1948	A
1	A	1958	G
1	A	1959	G
1	A	1960	U
1	A	1967	A
1	A	1968	U
1	A	1969	U
1	A	1972	U
1	A	1973	U
1	A	1984	U
1	A	1989	А

\mathbf{Mol}	Chain	Res	Type
1	А	1993	G
1	А	1996	С
1	А	1999	A
1	А	2000	A
1	А	2001	G
1	А	2020	U
1	А	2022	U
1	А	2025	С
1	А	2026	A
1	А	2049	A
1	А	2051	U
1	А	2052	A
1	А	2054	С
1	А	2060	A
1	А	2061	G
1	А	2062	A
1	А	2064	G
1	А	2072	С
1	А	2078	A
1	А	2081	G
1	А	2084	С
1	А	2085	G
1	А	2089	A
1	А	2090	G
1	А	2098	G
1	А	2109	G
1	А	2121	U
1	А	2123	A
1	А	2125	U
1	А	2128	U
1	А	2129	G
1	А	2219	G
1	А	2227	A
1	А	2228	A
1	А	2232	G
1	А	2233	С
1	А	2240	U
1	А	2245	G
1	А	2246	G
1	А	2249	G
1	А	2252	A
1	А	2254	A
		-	

Mol	Chain	Res	Type
1	А	2255	С
1	А	2267	G
1	А	2268	G
1	А	2280	G
1	А	2296	А
1	А	2308	G
1	А	2312	С
1	А	2315	А
1	А	2316	А
1	А	2317	А
1	А	2323	С
1	А	2325	U
1	А	2331	U
1	А	2333	G
1	А	2334	U
1	А	2335	U
1	А	2336	G
1	А	2338	А
1	А	2339	А
1	А	2340	А
1	А	2341	U
1	А	2343	А
1	А	2345	U
1	А	2347	G
1	А	2348	С
1	А	2349	А
1	А	2350	G
1	А	2351	А
1	А	2354	G
1	А	2356	A
1	А	2363	С
1	А	2364	A
1	А	2374	G
1	А	2376	С
1	А	2379	С
1	А	2390	A
1	А	2401	G
1	А	2412	G
1	А	2414	С
1	А	2415	U
1	А	2417	A
1	A	2420	G

\mathbf{Mol}	Chain	Res	Type
1	А	2421	А
1	А	2425	G
1	А	2430	U
1	А	2431	U
1	А	2435	С
1	А	2451	С
1	А	2452	U
1	А	2453	С
1	А	2454	А
1	А	2455	А
1	А	2458	G
1	А	2459	А
1	А	2460	U
1	A	2464	A
1	А	2468	А
1	А	2469	С
1	А	2470	С
1	А	2474	G
1	А	2476	G
1	А	2477	А
1	А	2488	А
1	А	2505	А
1	А	2507	А
1	А	2509	С
1	А	2511	А
1	А	2520	U
1	А	2523	G
1	А	2527	С
1	А	2531	G
1	А	$2\overline{532}$	A
1	A	2533	U
1	A	2534	G
1	A	$2\overline{542}$	A
1	A	2547	A
1	A	2548	U
1	A	$2\overline{549}$	C
1	A	2564	G
1	A	2583	U
1	A	$2\overline{591}$	U
1	A	2595	A
1	A	2596	G
1	А	2598	G

1A2601A1A2602C1A2607G1A2611G1A2613U1A2631A1A2632G1A2638U1A2639C1A2642U1A2659G1A2652G1A2659G1A2665U1A2665U1A2690G1A2690G1A2690G1A2711G1A2714G1A2755U1A2762A1A2764G1A2765G1A2765G				
1 A 2602 C 1 A 2607 G 1 A 2611 G 1 A 2613 U 1 A 2631 A 1 A 2631 A 1 A 2632 G 1 A 2632 G 1 A 2632 G 1 A 2632 G 1 A 2639 C 1 A 2639 G 1 A 2642 U 1 A 2642 U 1 A 2652 G 1 A 2659 G 1 A 2665 U 1 A 2665 U 1 A 26665 U 1 A 2690 G 1 A 2714 G 1 A 2714 G		2601	А	1
1 A 2607 G 1 A 2611 G 1 A 2613 U 1 A 2631 A 1 A 2631 A 1 A 2632 G 1 A 2632 G 1 A 2638 U 1 A 2639 C 1 A 2639 C 1 A 2642 U 1 A 2652 G 1 A 2659 G 1 A 2659 G 1 A 2665 U 1 A 2665 U 1 A 2690 G 1 A 2690 G 1 A 2696 C 1 A 2714 G 1 A 2718 U 1 A 2755 U 1 A		2602	А	1
1 A 2611 G 1 A 2613 U 1 A 2631 A 1 A 2632 G 1 A 2632 G 1 A 2632 G 1 A 2632 G 1 A 2639 C 1 A 2639 C 1 A 2642 U 1 A 2652 G 1 A 2659 G 1 A 2665 U 1 A 2665 U 1 A 2665 U 1 A 2665 U 1 A 2690 G 1 A 2690 G 1 A 2714 G 1 A 2714 G 1 A 2743 G 1 A 2755 U 1 A		2607	А	1
1 A 2613 U 1 A 2631 A 1 A 2631 A 1 A 2632 G 1 A 2638 U 1 A 2639 C 1 A 2639 C 1 A 2642 U 1 A 2642 U 1 A 2642 G 1 A 2652 G 1 A 2659 G 1 A 2665 U 1 A 2665 U 1 A 2665 U 1 A 2690 G 1 A 2690 G 1 A 2711 G 1 A 2714 G 1 A 2718 U 1 A 2755 U 1 A 2762 A 1 A		2611	А	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2613	А	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2631	А	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2632	А	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2638	А	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2639	А	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2642	А	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2644	А	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2652	А	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2659	А	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2665	А	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	2674	А	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2689	А	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2690	А	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2696	А	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2711	А	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2714	А	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2718	А	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2720	А	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2743	А	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2755	А	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2762	А	1
1 A 2765 G 1 A 2773 G		2764	А	1
1 A 2773 G		2765	А	1
		2773	А	1
1 A 2779 A		2779	А	1
1 A 2785 U		2785	А	1
1 A 2789 C		2789	A	1
1 A 2794 A		2794	A	1
1 A 2798 C		2798	A	1
1 A 2806 G		2806	A	1
1 A 2807 A		2807	A	1
1 A 2808 U		2808	A	1
1 A 2818 C		2818	A	1
1 A 2820 U		2820	A	1
1 A 2823 C		2823	A	1
1 A 2824 G		2824	A	1
1 A 2826 A		2826	А	1
1 A 2831 A		2831	A	1

Mol	Chain	Res	Type
1	А	2843	G
1	А	2859	G
1	А	2860	A
1	А	2868	G
1	А	2886	С
1	А	2892	G
1	А	2897	G
1	А	2899	С
1	А	2900	А
1	А	2901	G
1	А	2905	С
1	А	2911	G
1	А	2916	A
1	А	2917	G
1	А	2918	G
1	А	2925	С
2	В	10	G
2	В	13	А
2	В	15	С
2	В	19	G
2	В	22	G
2	В	23	U
2	В	24	С
2	В	32	U
2	В	33	U
2	В	35	С
2	В	38	U
2	В	39	А
2	В	40	С
2	В	48	G
2	В	49	G
2	В	50	A
2	В	53	U
2	В	54	U
2	В	55	A
2	В	56	A
2	В	62	U
2	В	85	U
2	В	86	U
2	В	87	U
2	В	88	C
2	В	97	A

Mol	Chain	Res	Type
2	В	101	U
2	В	107	G
2	В	108	С
2	В	110	G
22	2	8	U
22	2	20	G
22	2	21	А
22	2	22	G
22	2	29	U
22	2	30	G
22	2	32	U
22	2	37	А
22	2	48	С
22	2	49	A
22	2	58	A
22	2	59	U
22	2	61	C
22	2	75	С
22	2	76	A

All (67) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	А	88	G
1	А	92	G
1	А	175	G
1	А	224	А
1	А	252	С
1	А	347	G
1	А	411	G
1	А	443	G
1	А	528	G
1	А	549	А
1	А	554	U
1	А	558	G
1	А	631	G
1	А	689	А
1	А	751	G
1	А	831	U
1	А	976	U
1	А	1036	A
1	А	1066	А

\mathbf{Mol}	Chain	Res	Type
1	А	1172	А
1	А	1250	G
1	А	1294	A
1	А	1305	A
1	А	1313	А
1	А	1339	A
1	А	1351	U
1	А	1435	U
1	А	1448	U
1	А	1507	U
1	А	1525	G
1	А	1530	G
1	А	1565	U
1	А	1567	U
1	А	1570	U
1	А	1631	A
1	А	1671	G
1	А	1691	А
1	А	1758	U
1	А	1784	A
1	А	1813	A
1	А	1828	G
1	А	1882	А
1	А	1883	A
1	А	1886	G
1	А	1947	А
1	А	2127	U
1	А	2254	A
1	А	2295	A
1	А	2316	A
1	А	2335	U
1	А	2336	G
1	А	2338	A
1	А	2344	U
1	А	2420	G
1	А	2452	U
1	А	2454	A
1	А	2468	A
1	А	2510	G
1	А	2631	A
1	А	2805	A
1	А	2904	A

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type
2	В	48	G
2	В	49	G
2	В	55	А
22	2	48	С
22	2	58	А
22	2	74	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

