wwPDB EM Validation Summary Report (i)

Sep 16, 2021 - 11:02 pm BST

PDB ID : 7OQB
EMDB ID : EMD-13028
Title : The U2 part of Saccharomyces cerevisiae spliceosomal pre-A complex (delta BS-A ACT1)
Authors : Zhang, Z.; Rigo, N.; Dybkov, O.; Fourmann, J.; Will, C.L.; Kumar, V.; Urlaub, H.; Stark, H.; Luehrmann, R.

Deposited on : 2021-06-03
Resolution : $9.00 \AA$ (reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.
We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

```
        EMDB validation analysis : FAILED
            MolProbity : 4.02b-467
            Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)
        Ideal geometry (proteins) : Engh & Huber (2001)
    Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) : 2.23.1
```


1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:

ELECTRON MICROSCOPY

The reported resolution of this entry is $9.00 \AA$.
Percentile scores (ranging between $0-100$) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (\#Entries)	EM structures (\#Entries)
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $>=3,2,1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $<=5 \%$

Continued on next page...

Continued from previous page...

2 Entry composition (i)

There are 21 unique types of molecules in this entry. The entry contains 26426 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called U2 snRNP component HSH155.

| Mol | Chain | Residues | Atoms | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace.

- Molecule 2 is a RNA chain called ACT1 pre-mRNA (delta-BS-A).

Mol	Chain	Residues	Atoms					AltConf	Trace		
2	I	23	$\begin{array}{c}\text { Total } \\ 480\end{array}$	$\begin{array}{c}\mathrm{C} \\ 216\end{array}$	N	O	P	163	23	$) 0$	0
:---:											

- Molecule 3 is a protein called Pre-mRNA-splicing factor PRP11.

Mol	Chain	Residues	Atoms				AltConf
Trace							
3	U	188	Total 943 567 N O 188	0	0	0	

There are 16 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
U	121	UNK	-	insertion	UNP Q07350
U	122	UNK	-	insertion	UNP Q07350
U	123	UNK	-	insertion	UNP Q07350
U	124	UNK	-	insertion	UNP Q07350
U	125	UNK	-	insertion	UNP Q07350
U	126	UNK	-	insertion	UNP Q07350
U	127	UNK	-	insertion	UNP Q07350
U	128	UNK	-	insertion	UNP Q07350
U	129	UNK	-	insertion	UNP Q07350
U	130	UNK	-	insertion	UNP Q07350
U	131	UNK	-	insertion	UNP Q07350
U	132	UNK	-	insertion	UNP Q07350
U	133	UNK	-	insertion	UNP Q07350
U	134	UNK	-	insertion	UNP Q07350
U	135	UNK	-	insertion	UNP Q07350

Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
U	136	UNK	-	insertion	UNP Q07350

- Molecule 4 is a protein called Pre-mRNA-splicing factor PRP21.

Mol	Chain	Residues	Atoms				AltConf		
Trace									
4	V	103	$\begin{array}{c}\text { Total } \\ 515\end{array}$	$\begin{array}{c}\text { C } \\ 309\end{array}$	$\begin{array}{c}\text { N }\end{array}$	$\begin{array}{c}\text { O } \\ 5\end{array}$	103	$) 0$	0
:---:									

- Molecule 5 is a protein called Pre-mRNA-splicing factor PRP9.

Mol	Chain	Residues	Atoms				AltConf	Trace
5	T	462	Total 2318	$\begin{gathered} \mathrm{C} \\ 1394 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 462 \end{gathered}$		0	0

- Molecule 6 is a protein called Pre-mRNA-splicing factor RDS3.

Mol	Chain	Residues	Atoms				AltConf	Trace		
6	S	92	$\begin{array}{c}\text { Total } \\ 460\end{array}$	$\begin{array}{c}\text { C } \\ 276\end{array}$	N	O	92		$) 0$	0
:---:										

- Molecule 7 is a protein called Cold sensitive U2 snRNA suppressor 1.

Mol	Chain	Residues	Atoms				AltConf
7	Q	220	$\begin{array}{c}\text { Total } \\ 1122\end{array}$	$\begin{array}{c}\mathrm{C} \\ 682\end{array}$	N	220	O
220							

- Molecule 8 is a protein called Pre-mRNA-splicing factor RSE1.

| Mol | Chain | Residues | Atoms | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace.

- Molecule 9 is a protein called Protein HSH49.

Mol	Chain	Residues	Atoms				AltConf
Trace							
9	R	173	$\begin{array}{c}\text { Total } \\ 868\end{array}$	$\begin{array}{c}\mathrm{C} \\ 522\end{array}$	N	173	O
173							

- Molecule 10 is a protein called RDS3 complex subunit 10.

Mol	Chain	Residues	Atoms				AltConf	Trace
10	Z	83	Total 412	C 246	N	O	83	0
0								

- Molecule 11 is a protein called U2 small nuclear ribonucleoprotein A'.

Mol	Chain	Residues	Atoms				AltConf	Trace
11	W	170	$\begin{gathered} \hline \text { Total } \\ 862 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 522 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 170 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 170 \end{gathered}$	0	0

- Molecule 12 is a protein called U2 small nuclear ribonucleoprotein B".

Mol	Chain	Residues	Atoms			AltConf	Trace			
12	Y	84	$\begin{array}{c}\text { Total } \\ 418\end{array}$	$\begin{array}{c}\mathrm{C} \\ 250\end{array}$	N	84	O	84	$) 0$	0
:---:										

- Molecule 13 is a protein called Small nuclear ribonucleoprotein-associated protein B.

Mol	Chain	Residues	Atoms			AltConf	Trace	
13	s	65	Total 323	C 193	N	O	05	0
0								

- Molecule 14 is a protein called Small nuclear ribonucleoprotein Sm D1.

Mol	Chain	Residues	Atoms				AltConf	Trace
14	t	72	Total 363 C N O 0	0				

- Molecule 15 is a protein called Small nuclear ribonucleoprotein Sm D2.

Mol	Chain	Residues	Atoms				AltConf
Trace							
15	u	92	Total 463 279 92 92	0	0		
					0	O	

- Molecule 16 is a protein called Small nuclear ribonucleoprotein Sm D3.

Mol	Chain	Residues	Atoms				AltConf	Trace
16	v	82	Total 412 248 82 82	0	0			

- Molecule 17 is a protein called Small nuclear ribonucleoprotein E.

Mol	Chain	Residues	Atoms				AltConf	Trace
17	w	77	Total 389 C N O 0	0				

- Molecule 18 is a protein called Small nuclear ribonucleoprotein F.

Mol	Chain	Residues	Atoms				AltConf	Trace
18	x	73	$\begin{array}{c}\text { Total } \\ 365\end{array}$	$\begin{array}{c}\mathrm{C} \\ 219\end{array}$	N	73	O	0

- Molecule 19 is a protein called Small nuclear ribonucleoprotein G.

Mol	Chain	Residues	Atoms				AltConf	Trace
19	y	75	Total 373	C 223	N	O	75	0

- Molecule 20 is a protein called Pre-mRNA-processing ATP-dependent RNA helicase PRP5.

Mol	Chain	Residues	Atoms				AltConf	Trace
20	p	444	Total 2239	$\begin{gathered} \mathrm{C} \\ 1251 \end{gathered}$	N		5	0

- Molecule 21 is a RNA chain called U2 snRNA.

| Mol | Chain | Residues | Atoms | | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace.

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green $=0$, yellow $=1$, orange $=2$ and red $=3$ or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: U2 snRNP component HSH155

- Molecule 2: ACT1 pre-mRNA (delta-BS-A)

- Molecule 3: Pre-mRNA-splicing factor PRP11

- Molecule 4: Pre-mRNA-splicing factor PRP21

8

- Molecule 5: Pre-mRNA-splicing factor PRP9

- Molecule 6: Pre-mRNA-splicing factor RDS3

Chain S:

- Molecule 7: Cold sensitive U2 snRNA suppressor 1

Chain Q:
50\% 50\%

- Molecule 8: Pre-mRNA-splicing factor RSE1

- Molecule 9: Protein HSH49

- Molecule 10: RDS3 complex subunit 10

Chain Z: 98\% ..

- Molecule 11: U2 small nuclear ribonucleoprotein A'

- Molecule 12: U2 small nuclear ribonucleoprotein B"

- Molecule 13: Small nuclear ribonucleoprotein-associated protein B

Chain s:

- Molecule 14: Small nuclear ribonucleoprotein Sm D1

Chain t:

- Molecule 15: Small nuclear ribonucleoprotein Sm D2

- Molecule 16: Small nuclear ribonucleoprotein Sm D3

- Molecule 17: Small nuclear ribonucleoprotein E

- Molecule 18: Small nuclear ribonucleoprotein F

- Molecule 19: Small nuclear ribonucleoprotein G
\square
Chain y:

－Molecule 20：Pre－mRNA－processing ATP－dependent RNA helicase PRP5

```
Chain p: 52% 48%
```


－Molecule 21：U2 snRNA

等踪吕
PDDDODDOUODU4DOUDDDODDOUQ

DDDDDDDDDQ
PDD000400000DDADODOU


```
D ロ&&U U
```


4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	160894	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE CORRECTION	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $\left(e^{-} / \AA^{2}\right)$	44	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON III (4k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z|>5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles	
		RMSZ	$\#\|Z\|>5$	RMSZ	$\#\|Z\|>5$
1	O	0.42	$0 / 4149$	0.77	$30 / 5819(0.5 \%)$
2	I	0.69	$6 / 534(1.1 \%)$	0.86	$0 / 827$
3	U	0.22	$0 / 867$	0.43	$0 / 1208$
4	V	0.38	$0 / 515$	0.43	$0 / 719$
5	T	0.27	$0 / 2324$	0.44	$0 / 3248$
6	S	0.27	$0 / 463$	0.49	$0 / 645$
7	Q	0.27	$0 / 1137$	0.47	$0 / 1593$
8	P	0.28	$1 / 6009(0.0 \%)$	0.54	$0 / 8407$
9	R	0.28	$0 / 869$	0.46	$0 / 1209$
10	Z	0.26	$0 / 412$	0.41	$0 / 573$
11	W	0.32	$0 / 869$	0.60	$0 / 1219$
12	Y	0.27	$0 / 418$	0.49	$0 / 582$
13	s	0.30	$0 / 322$	0.57	$0 / 446$
14	t	0.33	$0 / 364$	0.56	$0 / 507$
15	u	0.32	$0 / 465$	0.53	$0 / 650$
16	v	0.29	$0 / 415$	0.54	$0 / 579$
17	w	0.29	$0 / 392$	0.54	$0 / 546$
18	x	0.31	$0 / 367$	0.58	$0 / 510$
19	y	0.26	$0 / 374$	0.50	$0 / 520$
20	p	0.55	$1 / 2269(0.0 \%)$	0.66	$3 / 3172(0.1 \%)$
21	2	4.64	$44 / 3363(1.3 \%)$	2.45	$107 / 5218(2.1 \%)$
All	All	1.68	$52 / 26897(0.2 \%)$	1.06	$140 / 38197(0.4 \%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand.A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	\#Chirality outliers	\#Planarity outliers
5	T	0	1
8	P	0	2
11	W	0	1
21	2	0	2

Continued on next page...

Continued from previous page...

Mol	Chain	\#Chirality outliers	\#Planarity outliers
All	All	0	6

The worst 5 of 52 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed (\AA)	Ideal (\AA)
21	2	35	U	C1'-N1	151.34	3.75	1.48
21	2	42	U	C1'-N1	150.88	3.75	1.48
21	2	44	U	C1'-N1	149.94	3.73	1.48
20	p	271	THR	C-N	20.19	1.80	1.34
21	2	1161	U	O3'-P	-15.60	1.42	1.61

The worst 5 of 140 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed $\left({ }^{\circ}\right)$	Ideal $\left({ }^{\circ}\right)$
21	2	44	U	C6-N1-C1'	-74.41	17.03	121.20
21	2	42	U	C6-N1-C1' $^{\prime}$	-73.72	17.98	121.20
21	2	35	U	C6-N1-C1 $^{\prime}$	-73.61	18.15	121.20
21	2	44	U	O4''-C1''N1 $^{\prime}$	-27.52	86.18	108.20
21	2	42	U	O4'-C1'-N1 $^{\prime}$	-21.00	91.40	108.20

There are no chirality outliers.
5 of 6 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
21	2	141	A	Sidechain
8	P	1013	ASP	Peptide
8	P	1014	LYS	Peptide
5	T	458	SER	Peptide
11	W	16	VAL	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM
entries.
The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	O	$810 / 971(83 \%)$	$770(95 \%)$	$37(5 \%)$	$3(0 \%)$	34	72
3	U	$166 / 282(59 \%)$	$141(85 \%)$	$24(14 \%)$	$1(1 \%)$	25	66
4	V	$101 / 280(36 \%)$	$90(89 \%)$	$10(10 \%)$	$1(1 \%)$	15	55
5	T	$454 / 530(86 \%)$	$414(91 \%)$	$40(9 \%)$	0	100	100
6	S	$90 / 107(84 \%)$	$79(88 \%)$	$11(12 \%)$	0	100	100
7	Q	$214 / 436(49 \%)$	$202(94 \%)$	$11(5 \%)$	$1(0 \%)$	29	69
8	P	$1170 / 1361(86 \%)$	$1059(90 \%)$	$104(9 \%)$	$7(1 \%)$	25	66
9	R	$165 / 213(78 \%)$	$161(98 \%)$	$3(2 \%)$	$1(1 \%)$	25	66
10	Z	$81 / 84(96 \%)$	$76(94 \%)$	$4(5 \%)$	$1(1 \%)$	13	50
11	W	$168 / 238(71 \%)$	$129(77 \%)$	$28(17 \%)$	$11(6 \%)$	1	16
12	Y	$82 / 111(74 \%)$	$76(93 \%)$	$5(6 \%)$	$1(1 \%)$	13	50
13	s	$61 / 196(31 \%)$	$58(95 \%)$	$3(5 \%)$	0	100	100
14	t	$68 / 146(47 \%)$	$67(98 \%)$	$1(2 \%)$	0	100	100
15	u	$90 / 110(82 \%)$	$89(99 \%)$	$1(1 \%)$	0	100	100
16	v	$80 / 101(79 \%)$	$77(96 \%)$	$3(4 \%)$	0	100	100
17	w	$73 / 93(78 \%)$	$72(99 \%)$	$1(1 \%)$	0	100	100
18	x	$71 / 86(83 \%)$	$69(97 \%)$	$2(3 \%)$	0	100	100
19	y	$73 / 77(95 \%)$	$64(88 \%)$	$6(8 \%)$	$3(4 \%)$	3	23
20	p	$445 / 849(52 \%)$	$431(97 \%)$	$13(3 \%)$	$1(0 \%)$	47	81
All	All	$4462 / 6271(71 \%)$	$4124(92 \%)$	$307(7 \%)$	$31(1 \%)$	26	63

5 of 31 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
7	Q	368	ILE
8	P	1299	ILE
11	W	34	LEU
11	W	52	LYS
19	y	50	ASP

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	O	$42 / 867(5 \%)$	$42(100 \%)$	0	100	100
3	U	$7 / 236(3 \%)$	$7(100 \%)$	0	100	100
4	V	$1 / 259(0 \%)$	$1(100 \%)$	0	100	100
5	T	$10 / 492(2 \%)$	$10(100 \%)$	0	100	100
6	S	$4 / 97(4 \%)$	$4(100 \%)$	0	100	100
7	Q	$18 / 392(5 \%)$	$18(100 \%)$	0	100	100
8	P	$45 / 1244(4 \%)$	$45(100 \%)$	0	100	100
9	R	$5 / 189(3 \%)$	$5(100 \%)$	0	100	100
10	Z	$1 / 76(1 \%)$	$1(100 \%)$	0	100	100
11	W	$8 / 219(4 \%)$	$8(100 \%)$	0	100	100
12	Y	$1 / 100(1 \%)$	$1(100 \%)$	0	100	100
13	s	$1 / 176(1 \%)$	$1(100 \%)$	0	100	100
14	t	$3 / 129(2 \%)$	$3(100 \%)$	0	100	100
15	u	$3 / 103(3 \%)$	$3(100 \%)$	0	100	100
16	v	$4 / 89(4 \%)$	$4(100 \%)$	0	100	100
17	w	$5 / 82(6 \%)$	$5(100 \%)$	0	100	100
18	x	$3 / 77(4 \%)$	$3(100 \%)$	0	100	100
19	y	$2 / 66(3 \%)$	$2(100 \%)$	0	100	100
20	p	$17 / 768(2 \%)$	$17(100 \%)$	0	100	100
All	All	$180 / 5661(3 \%)$	$180(100 \%)$	0	100	100

There are no protein residues with a non-rotameric sidechain to report.
Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
2	I	$22 / 318(6 \%)$	$11(50 \%)$	0
21	2	$138 / 1175(11 \%)$	$53(38 \%)$	$27(19 \%)$
All	All	$160 / 1493(10 \%)$	$64(40 \%)$	$27(16 \%)$

5 of 64 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
2	I	247	U
2	I	248	A
2	I	249	C
2	I	250	U
2	I	251	A

5 of 27 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
21	2	1119	C
21	2	1122	U
21	2	1144	U
21	2	1121	U
21	2	1123	C

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

PROTEIN DATA BANK

