wwPDB EM Validation Summary Report (i)

Sep 18, 2021 - 08:04 am BST

PDB ID : 7OQC
EMDB ID : EMD-13029
Title : The U1 part of Saccharomyces cerevisiae spliceosomal pre-A complex (delta BS-A ACT1)
Authors : Zhang, Z.; Rigo, N.; Dybkov, O.; Fourmann, J.; Will, C.L.; Kumar, V.; Urlaub, H.; Stark, H.; Luehrmann, R.

Deposited on : 2021-06-03
Resolution : $4.10 \AA$ (reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.
We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

```
        EMDB validation analysis : FAILED
            MolProbity : 4.02b-467
            Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)
        Ideal geometry (proteins) : Engh & Huber (2001)
    Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) : 2.23.1
```


1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:

ELECTRON MICROSCOPY

The reported resolution of this entry is $4.10 \AA$.
Percentile scores (ranging between $0-100$) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (\#Entries)	EM structures (\#Entries)
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $>=3,2,1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $<=5 \%$

Mol	Chain	Length	Quality of chain			
1	F	523	47\%		49\%	
2	I	371	16\% .		83\%	
3	E	544		87\%		12\%
4	J	620	16\%		83\%	
5	1	568	56\%		37\%	5\%.
6	G	492	41\%	7\%	51\%	
7	A	298	38\%	6\%	56\%	

Continued on next page..

Continued from previous page...

Mol	Chain	Length	Quality of chain	
8	C	231	77\%	8\% 16\%
9	b	196	62\%	38\%
10	d	101	90\%	. 8%
11	e	94	80\%	18\%
12	f	86	85\%	15\%
13	g	77	91\%	. 6%
14	h	146	73\%	27\%
15	1	110	89\%	- 10\%
16	H	261	71\%	26\%
17	D	629	88\%	. 8\%
18	B	300	59\%	38\%

2 Entry composition (i)

There are 18 unique types of molecules in this entry. The entry contains 35050 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Protein NAM8.

| Mol | Chain | Residues | Atoms | | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace.

- Molecule 2 is a RNA chain called ACT1 pre-mRNA (delta BS-A),ACT1 pre-mRNA (delta BSA),ACT1 pre-mRNA (delta BS-A),ACT1 pre-mRNA (delta BS-A).

| Mol | Chain | Residues | Atoms | | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace $~\left(\right.$| 2 | I | 63 | | Total | C | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 359 | 33 | 392 | 63 | 0 | 0 |

- Molecule 3 is a protein called U1 small nuclear ribonucleoprotein component PRP42.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	E	544	Total 4561	$\begin{gathered} \mathrm{C} \\ 2990 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 723 \end{gathered}$	O 828		0	0

- Molecule 4 is a protein called U1 small nuclear ribonucleoprotein component SNU71.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	J	105	Total 687	C	N 127	O 132	S	0	0

- Molecule 5 is a RNA chain called U1 snRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	1	558	$\begin{gathered} \text { Total } \\ 11822 \end{gathered}$	$\begin{gathered} \mathrm{C} \\ 5287 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 2003 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 3974 \end{gathered}$	$\begin{gathered} \mathrm{P} \\ 558 \end{gathered}$	0	0

- Molecule 6 is a protein called 56 kDa U1 small nuclear ribonucleoprotein component.

Mol	Chain	Residues	Atoms					AltConf
Trace								
6	G	239	Total 1954	C	N	O	S	0
			321	354	12		0	

- Molecule 7 is a protein called U1 small nuclear ribonucleoprotein A.

Mol	Chain	Residues	Atoms					AltConf	Trace
7	A	132	Total 1058	$\begin{gathered} \hline \mathrm{C} \\ 674 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 193 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 187 \end{gathered}$	$\begin{aligned} & \hline \mathrm{S} \\ & 4 \end{aligned}$	0	0

- Molecule 8 is a protein called U1 small nuclear ribonucleoprotein C.

Mol	Chain	Residues	Atoms				AltConf	Trace
8	C	195	Total 1570	C	N	O	S	0
0	301		5	0	0			

- Molecule 9 is a protein called Small nuclear ribonucleoprotein-associated protein B.

Mol	Chain	Residues	Atoms					AltConf
9	b	121	Total 972	C 613	N	183	O	S

- Molecule 10 is a protein called Small nuclear ribonucleoprotein Sm D3.

Mol	Chain	Residues	Atoms				AltConf	Trace
10	d	93	$\begin{array}{c}\text { Total } \\ 714\end{array}$	$\begin{array}{c}\text { C } \\ 453\end{array}$	$\begin{array}{c}\text { N } \\ 125\end{array}$	$\begin{array}{c}\text { O } \\ 133\end{array}$	$\begin{array}{l}\text { S } \\ 3\end{array}$	0

- Molecule 11 is a protein called Small nuclear ribonucleoprotein E.

Mol	Chain	Residues	Atoms					AltConf
Trace								
11	e	77		Total	C	N	O	S
	395	96	106	3	0	0		
					0			

- Molecule 12 is a protein called Small nuclear ribonucleoprotein F.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	f	73	$*$ Total C N O 585 376 102 106 1	0	0				

- Molecule 13 is a protein called Small nuclear ribonucleoprotein G.

Mol	Chain	Residues	Atoms					AltConf
Trace								
13	g	72	$\begin{array}{c}\text { Total } \\ 556\end{array}$	$\begin{array}{c}\mathrm{C} \\ 552\end{array}$	N	O	S	105

- Molecule 14 is a protein called Small nuclear ribonucleoprotein Sm D1.

Mol	Chain	Residues	Atoms					AltConf	Trace		
14	h	107	$\begin{array}{c}\text { Total } \\ 771\end{array}$	$\begin{array}{c}\mathrm{C} \\ 487\end{array}$	$\begin{array}{c}\mathrm{N} \\ 138\end{array}$	O	S	3	3	$) 0$	0
:---:											

- Molecule 15 is a protein called Small nuclear ribonucleoprotein Sm D2.

| Mol | Chain | Residues | Atoms | | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace.

- Molecule 16 is a protein called Protein LUC7.

Mol	Chain	Residues	Atoms					AltConf
16	H	192	Total 1201	C 740	N	O	S	S
		228	7	0	0			

- Molecule 17 is a protein called Pre-mRNA-processing factor 39 .

Mol	Chain	Residues	Atoms					AltConf	Trace
17	D	576	Total 3530	C 2204	N 642	O 680	S	0	0

- Molecule 18 is a protein called U1 small nuclear ribonucleoprotein 70 kDa homolog.

Mol	Chain	Residues	Atoms				AltConf
Trace							
18	B	186	Total 1059 C N O 0	206	206	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green $=0$, yellow $=1$, orange $=2$ and red $=3$ or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Protein NAM8

- Molecule 2: ACT1 pre-mRNA (delta BS-A),ACT1 pre-mRNA (delta BS-A)

- Molecule 3: U1 small nuclear ribonucleoprotein component PRP42

- Molecule 4: U1 small nuclear ribonucleoprotein component SNU71

- Molecule 5: U1 snRNA

Chain 1: $56 \% \quad 37 \% \quad 5 \%$
二-9 ¢

- Molecule 6: 56 kDa U1 small nuclear ribonucleoprotein component

荡

- Molecule 7: U1 small nuclear ribonucleoprotein A

- Molecule 8: U1 small nuclear ribonucleoprotein C

- Molecule 9: Small nuclear ribonucleoprotein-associated protein B

Chain b:

- Molecule 10: Small nuclear ribonucleoprotein Sm D3

Chain d: 90% • 8\%

- Molecule 11: Small nuclear ribonucleoprotein E

- Molecule 12: Small nuclear ribonucleoprotein F

Chain f:

- Molecule 13: Small nuclear ribonucleoprotein G

- Molecule 14: Small nuclear ribonucleoprotein Sm D1

Chain h:

- Molecule 15: Small nuclear ribonucleoprotein Sm D2

- Molecule 16: Protein LUC7

- Molecule 17: Pre-mRNA-processing factor 39

Chain D:

- Molecule 18: U1 small nuclear ribonucleoprotein 70 kDa homolog

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	217460	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE CORRECTION	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $\left(e^{-} / \AA^{2}\right)$	44	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	Depositor
Image detector	FEI FALCON III (4k x 4k)	

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z|>5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles	
		RMSZ	$\#\|Z\|>5$	RMSZ	$\#\|Z\|>5$
1	F	0.27	$0 / 1784$	0.52	$0 / 2436$
2	I	0.23	$0 / 234$	0.96	$1 / 362(0.3 \%)$
3	E	0.27	$0 / 4676$	0.51	$1 / 6320(0.0 \%)$
4	J	0.26	$0 / 695$	0.48	$1 / 948(0.1 \%)$
5	1	0.42	$1 / 13201(0.0 \%)$	1.01	$30 / 20553(0.1 \%)$
6	G	0.27	$0 / 1996$	0.51	$0 / 2682$
7	A	0.26	$0 / 1072$	0.57	$0 / 1437$
8	C	0.25	$0 / 1601$	0.51	$0 / 2154$
9	b	0.26	$0 / 978$	0.61	$0 / 1306$
10	d	0.28	$0 / 726$	0.60	$1 / 984(0.1 \%)$
11	e	0.28	$0 / 610$	0.58	$0 / 826$
12	f	0.28	$0 / 597$	0.56	$0 / 807$
13	g	0.26	$0 / 559$	0.57	$0 / 751$
14	h	0.25	$0 / 776$	0.52	$0 / 1053$
15	i	0.25	$0 / 818$	0.51	$0 / 1099$
16	H	0.24	$0 / 1212$	0.40	$0 / 1652$
17	D	0.25	$0 / 3570$	0.42	$0 / 4924$
18	B	0.25	$0 / 1071$	0.45	$0 / 1482$
All	All	0.33	$1 / 36176(0.0 \%)$	0.75	$34 / 51776(0.1 \%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand.A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	\#Chirality outliers	\#Planarity outliers
7	A	0	1
13	g	0	1
18	B	0	1
All	All	0	3

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed (\AA)	Ideal (\AA)
5	1	325	A	O3'-P	-33.85	1.20	1.61

The worst 5 of 34 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed $\left({ }^{\circ}\right)$	Ideal $\left({ }^{\circ}\right)$
5	1	442	U	OP2-P-O3'	-10.46	82.18	105.20
5	1	442	U	OP1-P-O3'	-10.44	82.24	105.20
3	E	310	ASP	CB-CG-OD1	9.75	127.08	118.30
4	J	274	PRO	CA-N-CD	-8.53	99.56	111.50
5	1	289	U	N3-C2-O2	-7.13	117.21	122.20

There are no chirality outliers.
All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
7	A	12	ARG	Peptide
18	B	176	ILE	Peptide
13	g	20	ASN	Peptide

5.2 Too-close contacts (i)

In the following table, the Non- H and H (model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H (added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	F	1758	0	1443	14	0
2	I	847	0	532	11	0
3	E	4561	0	4549	43	0
4	J	687	0	534	12	0
5	1	11822	0	5940	91	0
6	G	1954	0	1961	23	0
7	A	1058	0	1118	10	0
8	C	1570	0	1555	10	0
9	b	972	0	1048	0	0
10	d	714	0	738	0	0
11	e	600	0	634	0	0
12	f	585	0	587	0	0
13	g	556	0	583	0	0
14	h	771	0	751	0	0
15	i	805	0	834	0	0

Continued on next page...

Continued from previous page...

Mol	Chain	Non-H	$\mathbf{H}($ model $)$	H(added)	Clashes	Symm-Clashes
16	H	1201	0	902	4	0
17	D	3530	0	2469	24	0
18	B	1059	0	651	5	0
All	All	35050	0	26829	206	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4 .

The worst 5 of 206 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (\AA)	Clash overlap (\AA)
$5: 1: 384: \mathrm{U}: \mathrm{H} 3$	$5: 1: 434: \mathrm{G}: \mathrm{H} 1$	1.01	0.97
5:1:380:G:H1	$5: 1: 438: \mathrm{U}: H 3$	1.07	0.96
$4: \mathrm{J}: 273: \mathrm{LEU}: \mathrm{N}$	$4: \mathrm{J}: 274: \mathrm{PRO}: \mathrm{HD} 3$	1.89	0.87
$5: 1: 389: \mathrm{G}: \mathrm{H} 1$	$5: 1: 430: \mathrm{U}: \mathrm{H} 3$	0.86	0.85
$4: \mathrm{J}: 272: \mathrm{ASP}: \mathrm{C}$	$4: \mathrm{J}: 274: \mathrm{PRO}: \mathrm{HD} 3$	1.97	0.84

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	F	$259 / 523(50 \%)$	$251(97 \%)$	$8(3 \%)$	0	100	100
3	E	$542 / 544(100 \%)$	$521(96 \%)$	$21(4 \%)$	0	100	100
4	J	$101 / 620(16 \%)$	$92(91 \%)$	$8(8 \%)$	$1(1 \%)$	15	52
6	G	$235 / 492(48 \%)$	$222(94 \%)$	$13(6 \%)$	0	100	100
7	A	$126 / 298(42 \%)$	$116(92 \%)$	$10(8 \%)$	0	100	100
8	C	$193 / 231(84 \%)$	$183(95 \%)$	$10(5 \%)$	0	100	100
9	b	$117 / 196(60 \%)$	$110(94 \%)$	$7(6 \%)$	0	100	100

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers		Percentiles	
10	d	$91 / 101(90 \%)$	$87(96 \%)$	$4(4 \%)$	0	100	100	
11	e	$73 / 94(78 \%)$	$67(92 \%)$	$5(7 \%)$	$1(1 \%)$	11	45	
12	f	$71 / 86(83 \%)$	$69(97 \%)$	$2(3 \%)$	0	100	100	
13	g	$68 / 77(88 \%)$	$62(91 \%)$	$5(7 \%)$	$1(2 \%)$	10	44	
14	h	$101 / 146(69 \%)$	$98(97 \%)$	$3(3 \%)$	0	100	100	
15	i	$95 / 110(86 \%)$	$91(96 \%)$	$4(4 \%)$	0	100	100	
16	H	$186 / 261(71 \%)$	$180(97 \%)$	$6(3 \%)$	0	100	100	
17	D	$570 / 629(91 \%)$	$554(97 \%)$	$16(3 \%)$	0	100	100	
18	B	$182 / 300(61 \%)$	$169(93 \%)$	$13(7 \%)$	0	100	100	
All	All	$3010 / 4708(64 \%)$	$2872(95 \%)$	$135(4 \%)$	$3(0 \%)$	54	84	

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
4	J	274	PRO
11	e	34	GLN
13	g	21	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	F	$138 / 451(31 \%)$	$137(99 \%)$	$1(1 \%)$	84	90
3	E	$508 / 519(98 \%)$	$504(99 \%)$	$4(1 \%)$	81	88
4	J	$49 / 568(9 \%)$	$47(96 \%)$	$2(4 \%)$	30	57
6	G	$218 / 448(49 \%)$	$218(100 \%)$	0	100	100
7	A	$117 / 273(43 \%)$	$114(97 \%)$	$3(3 \%)$	46	67
8	C	$171 / 214(80 \%)$	$166(97 \%)$	$5(3 \%)$	42	64
9	b	$108 / 176(61 \%)$	$108(100 \%)$	0	100	100
10	d	$81 / 89(91 \%)$	$80(99 \%)$	$1(1 \%)$	71	83

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
11	e	$68 / 83(82 \%)$	$67(98 \%)$	$1(2 \%)$	65	79
12	f	$65 / 77(84 \%)$	$65(100 \%)$	0	100	100
13	g	$62 / 66(94 \%)$	$62(100 \%)$	0	100	100
14	h	$75 / 129(58 \%)$	$74(99 \%)$	$1(1 \%)$	69	81
15	i	$90 / 103(87 \%)$	$89(99 \%)$	$1(1 \%)$	73	84
16	H	$72 / 234(31 \%)$	$72(100 \%)$	0	100	100
17	D	$193 / 603(32 \%)$	$189(98 \%)$	$4(2 \%)$	53	72
18	B	$40 / 265(15 \%)$	$39(98 \%)$	$1(2 \%)$	47	68
All	All	$2055 / 4298(48 \%)$	$2031(99 \%)$	$24(1 \%)$	72	83

5 of 24 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
8	C	172	LYS
14	h	12	ASN
11	e	10	MET
15	i	103	VAL
4	J	51	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 32 such sidechains are listed below:

Mol	Chain	Res	Type
17	D	488	ASN
17	D	573	HIS
3	E	474	GLN
3	E	459	ASN
17	D	582	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
2	I	$9 / 371(2 \%)$	0	0
5	1	$556 / 568(97 \%)$	$117(21 \%)$	$9(1 \%)$
All	All	$565 / 939(60 \%)$	$117(20 \%)$	$9(1 \%)$

5 of 117 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
5	1	11	U
5	1	12	A
5	1	40	A
5	1	41	C
5	1	55	G

5 of 9 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
5	1	399	A
5	1	505	U
5	1	151	C
5	1	152	G
5	1	258	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
2	I	2
5	1	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (\AA)
1	I	$8: \mathrm{C}$	O3'	$103: \mathrm{N}^{\prime}$	P	54.06
1	I	$128: \mathrm{N}^{\prime}$	O3' $^{\prime}$	$130: \mathrm{N}$	P	17.87
1	1	$325: \mathrm{A}$	O3'	$326: \mathrm{G}$	P	1.20

