
 Full wwPDB EM Validation Report (i)

Sep 18, 2021 - 08:04 am BST

PDB ID : 7OQE
EMDB ID : EMD-13033
Title : Saccharomyces cerevisiae spliceosomal pre-A complex (delta BS-A ACT1)
Authors : Zhang, Z.; Rigo, N.; Dybkov, O.; Fourmann, J.; Will, C.L.; Kumar, V.; Urlaub, H.; Stark, H.; Luehrmann, R.
Deposited on : 2021-06-03
Resolution : $5.90 \AA$ (reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.
We welcome your comments at validation@mail.wwpdb.org
A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (i)) were used in the production of this report:

```
        EMDB validation analysis : FAILED
                            MolProbity : 4.02b-467
            Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)
        Ideal geometry (proteins) : Engh & Huber (2001)
    Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) : 2.23.1
```


1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:

ELECTRON MICROSCOPY

The reported resolution of this entry is $5.90 \AA$.
Percentile scores (ranging between $0-100$) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (\#Entries)	EM structures (\#Entries)
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $>=3,2,1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $<=5 \%$

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality of chain	
9	s	196	33\%	67\%
10	d	101	92\%	8\%
10	v	101	81\%	19\%
11	e	94	81\%	18\%
11	w	94	82\%	18\%
12	f	86	85\%	15\%
12	x	86	85\%	15\%
13	g	77	91\%	. 6\%
13	y	77	94\%	. \quad.
14	h	146	73\%	27\%
14	t	146	49\%	51\%
15	i	110	90\%	10\%
15	u	110	84\%	16\%
16	H	261	74\%	26\%
17	D	629	92\%	8\%
18	B	300	62\%	38\%
19	K	583	69\%	30\%
20	O	971	80\%	- 16%
21	U	282	66\%	33\%
22	V	280	36\%	63\%
23	T	530	87\%	13\%
24	S	107	86\%	14\%
25	Q	436	50\%	50\%
26	P	1361	86\%	- 13\%
27	R	213	81\%	19\%

Continued on next page...

Continued from previous page...

2 Entry composition (i)

There are 32 unique types of molecules in this entry. The entry contains 56606 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Protein NAM8.

Mol	Chain	Residues	Atoms				AltConf
Trace							
1	F	267	Total 1335	C	N	O	0
		267	267	0	0		

- Molecule 2 is a RNA chain called ACT1 pre-mRNA (delta BS-A).

Mol	Chain	Residues	Atoms					AltConf	Trace
2	I	86	Total 1327	C	N	O	P	111	555

- Molecule 3 is a protein called U1 small nuclear ribonucleoprotein component PRP42.

| Mol | Chain | Residues | Atoms | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace.

- Molecule 4 is a protein called U1 small nuclear ribonucleoprotein component SNU71.

Mol	Chain	Residues	Atoms				AltConf	Trace
4	J	105	$\begin{gathered} \hline \text { Total } \\ 529 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 319 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 105 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 105 \end{gathered}$	0	0

- Molecule 5 is a RNA chain called U1 snRNA.

Mol	Chain	Residues	Atoms					AltConf
Trace								
5	1	558	Total 11822	C 5287	N	2003	3974	P
			558	0	0			

- Molecule 6 is a protein called 56 kDa U1 small nuclear ribonucleoprotein component.

Mol	Chain	Residues	Atoms				AltConf
Trace							
6	G	239	Total 1202 C N O 239	239	0	0	

- Molecule 7 is a protein called U1 small nuclear ribonucleoprotein A.

Mol	Chain	Residues	Atoms				AltConf
Trace							
7	A	132	Total 668 404 N O 132	0	0		

- Molecule 8 is a protein called U1 small nuclear ribonucleoprotein C.

Mol	Chain	Residues	Atoms				AltConf	Trace
8	C	195	$\begin{gathered} \hline \text { Total } \\ 985 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 595 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 195 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 195 \end{gathered}$	0	0

- Molecule 9 is a protein called Small nuclear ribonucleoprotein-associated protein B.

Mol	Chain	Residues	Atoms				AltConf	Trace
9	b	121	Total 607	$\begin{gathered} \hline \mathrm{C} \\ 365 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 121 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 121 \end{gathered}$	0	0
9	S	65	$\begin{gathered} \text { Total } \\ 323 \end{gathered}$	C 193	$\begin{gathered} \mathrm{N} \\ 65 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 65 \end{gathered}$	0	0

- Molecule 10 is a protein called Small nuclear ribonucleoprotein Sm D3.

Mol	Chain	Residues	Atoms				AltConf	Trace
10	d	93	$\begin{gathered} \hline \text { Total } \\ 473 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 287 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 93 \end{gathered}$	O 93	0	0
10	v	82	Total 412	C	N	O 82	0	0

- Molecule 11 is a protein called Small nuclear ribonucleoprotein E.

Mol	Chain	Residues	Atoms				AltConf	Trace
11	e	77	Total 389	C 235	N	O	77	0

- Molecule 12 is a protein called Small nuclear ribonucleoprotein F.

Mol	Chain	Residues	Atoms	AltConf	Trace
12	f	73	Total C N O 365 219 73 73	0	0
12	x	73	Total C N O 365 219 73 73	0	0

- Molecule 13 is a protein called Small nuclear ribonucleoprotein G.

Mol	Chain	Residues	Atoms				AltConf	Trace
13	g	72	$\begin{array}{c}\text { Total } \\ 356\end{array}$	$\begin{array}{c}\mathrm{C} \\ 212\end{array}$	N	O	72	72

- Molecule 14 is a protein called Small nuclear ribonucleoprotein Sm D1.

Mol	Chain	Residues	Atoms				AltConf	Trace
14	h	107	Total 535	$\begin{gathered} \hline \mathrm{C} \\ 321 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 107 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 107 \end{gathered}$	0	0
14	t	72	Total 363	C 219	N 72	O 72	0	0

- Molecule 15 is a protein called Small nuclear ribonucleoprotein Sm D2.

Mol	Chain	Residues	Atoms				AltConf	Trace
15	i	99	Total 501	C	N 99	O 99	0	0
15	u	92	Total 463	C 279	N		0	0

- Molecule 16 is a protein called Protein LUC7.

Mol	Chain	Residues	Atoms				AltConf		
Trace									
16	H	192	$\begin{array}{c}\text { Total } \\ 960\end{array}$	$\begin{array}{c}\mathrm{C} \\ 576\end{array}$	$\begin{array}{c}\mathrm{N} \\ 192\end{array}$	O			
192								$] .0$	0
:---:									

- Molecule 17 is a protein called Pre-mRNA-processing factor 39.

Mol	Chain	Residues	Atoms				AltConf
17	D	576	Total 2892	C 1740	576	N	O
					0	0	

- Molecule 18 is a protein called U1 small nuclear ribonucleoprotein 70 kDa homolog.

Mol	Chain	Residues	Atoms				AltConf
Trace							
18	B	186	Total 940	C 568	N 186	O 186	0

- Molecule 19 is a protein called Pre-mRNA-processing protein PRP40.

| Mol | Chain | Residues | Atoms | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace.

- Molecule 20 is a protein called U2 snRNP component HSH155.

| Mol | Chain | Residues | Atoms | | | | AltConf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Trace.

- Molecule 21 is a protein called Pre-mRNA-splicing factor PRP11.

Mol	Chain	Residues	Atoms			AltConf	Trace
21	U	188	$\begin{array}{c}\text { Total } \\ 943\end{array}$	$\begin{array}{c}\text { C }\end{array}$	N	O	188
567	188						

There are 16 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
U	121	UNK	-	insertion	UNP Q07350
U	122	UNK	-	insertion	UNP Q07350
U	123	UNK	-	insertion	UNP Q07350
U	124	UNK	-	insertion	UNP Q07350
U	125	UNK	-	insertion	UNP Q07350
U	126	UNK	-	insertion	UNP Q07350
U	127	UNK	-	insertion	UNP Q07350
U	128	UNK	-	insertion	UNP Q07350
U	129	UNK	-	insertion	UNP Q07350
U	130	UNK	-	insertion	UNP Q07350
U	131	UNK	-	insertion	UNP Q07350
U	132	UNK	-	insertion	UNP Q07350
U	133	UNK	-	insertion	UNP Q07350
U	134	UNK	-	insertion	UNP Q07350
U	135	UNK	-	insertion	UNP Q07350
U	136	UNK	-	insertion	UNP Q07350

- Molecule 22 is a protein called Pre-mRNA-splicing factor PRP21.

Mol	Chain	Residues	Atoms			AltConf	Trace		
22	V	103	$\begin{array}{c}\text { Total } \\ 515\end{array}$	$\begin{array}{c}\mathrm{C} \\ 309\end{array}$	$\begin{array}{c}\text { N } \\ \end{array}$	$\begin{array}{c}\text { O } \\ \hline\end{array}$	103	$) 0$	0
:---:									

- Molecule 23 is a protein called Pre-mRNA-splicing factor PRP9.

Mol	Chain	Residues	Atoms				AltConf
Trace							
23	T	462	Total 2318	C 1394	N	O	O
		462	0	0			

- Molecule 24 is a protein called Pre-mRNA-splicing factor RDS3.

Mol	Chain	Residues	Atoms			AltConf	Trace		
24	S	92	$\begin{array}{c}\text { Total } \\ 460\end{array}$	$\begin{array}{c}\text { C } \\ 276\end{array}$	N	O	92	$) 0$	0
:---:									

- Molecule 25 is a protein called Cold sensitive U2 snRNA suppressor 1.

Mol	Chain	Residues	Atoms			AltConf	Trace
25	Q	220	$\begin{array}{c}\text { Total } \\ 1122\end{array}$	$\begin{array}{c}\text { C }\end{array}$	N	O	0
682	220	220					

- Molecule 26 is a protein called Pre-mRNA-splicing factor RSE1.

Mol	Chain	Residues	Atoms				AltConf
26	P	1186	Total 5972	C 3600	N	O	
5			0	0			

- Molecule 27 is a protein called Protein HSH49.

Mol	Chain	Residues	Atoms				AltConf		
Trace									
27	R	173	$\begin{array}{c}\text { Total } \\ 868\end{array}$	$\begin{array}{c}\mathrm{C} \\ 522\end{array}$	$\begin{array}{c}\mathrm{N}\end{array}$	$\begin{array}{c}\text { O } \\ 8\end{array}$	173	$) 0$	0
:---:									

- Molecule 28 is a protein called RDS3 complex subunit 10.

Mol	Chain	Residues	Atoms				AltConf		
Trace									
28	Z	83	$\begin{array}{c}\text { Total } \\ 412\end{array}$	$\begin{array}{c}\text { C } \\ 246\end{array}$	N	83	83	$) 0$	0
:---:									

- Molecule 29 is a protein called U2 small nuclear ribonucleoprotein A'.

Mol	Chain	Residues	Atoms				AltConf	Trace
29	W	170	Total 862	$\begin{gathered} \hline \mathrm{C} \\ 522 \end{gathered}$	$\begin{gathered} \hline \mathrm{N} \\ 170 \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ 170 \end{gathered}$	0	0

- Molecule 30 is a protein called U2 small nuclear ribonucleoprotein B".

Mol	Chain	Residues	Atoms				AltConf	Trace
30	Y	84	Total 418 C N O 84 84	0	0			

- Molecule 31 is a protein called Pre-mRNA-processing ATP-dependent RNA helicase PRP5.

Mol	Chain	Residues	Atoms				AltConf
31	p	444	Total 2239	C 1351	444	444	5

- Molecule 32 is a RNA chain called U2 snRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
32	2	143	$\begin{aligned} & \text { Total } \\ & 3021 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 1351 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 511 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ 1017 \end{gathered}$	$\begin{gathered} \hline \mathrm{P} \\ 142 \end{gathered}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green $=0$, yellow $=1$, orange $=2$ and red $=3$ or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Protein NAM8

- Molecule 2: ACT1 pre-mRNA (delta BS-A)

DबD

- Molecule 3: U1 small nuclear ribonucleoprotein component PRP42

Chain E: 100\%

There are no outlier residues recorded for this chain.

- Molecule 4: U1 small nuclear ribonucleoprotein component SNU71

Chain J:
17% 83\%

- Molecule 5: U1 snRNA

- Molecule 6: 56 kDa U1 small nuclear ribonucleoprotein component

Chain G:

- Molecule 7: U1 small nuclear ribonucleoprotein A

Chain A:

44\%

56\%

- Molecule 8: U1 small nuclear ribonucleoprotein C

- Molecule 9: Small nuclear ribonucleoprotein-associated protein B

- Molecule 9: Small nuclear ribonucleoprotein-associated protein B

- Molecule 10: Small nuclear ribonucleoprotein Sm D3

Chain d: 92\% 8\%

- Molecule 10: Small nuclear ribonucleoprotein Sm D3

- Molecule 11: Small nuclear ribonucleoprotein E

- Molecule 11: Small nuclear ribonucleoprotein E

- Molecule 12: Small nuclear ribonucleoprotein F

- Molecule 12: Small nuclear ribonucleoprotein F

- Molecule 13: Small nuclear ribonucleoprotein G

- Molecule 13: Small nuclear ribonucleoprotein G

```
Chain y: 94% • • 
```


- Molecule 14: Small nuclear ribonucleoprotein Sm D1

Chain h:
73\% 27\%

- Molecule 14: Small nuclear ribonucleoprotein Sm D1

- Molecule 15: Small nuclear ribonucleoprotein Sm D2

- Molecule 15: Small nuclear ribonucleoprotein Sm D2

- Molecule 16: Protein LUC7

- Molecule 17: Pre-mRNA-processing factor 39

- Molecule 18: U1 small nuclear ribonucleoprotein 70 kDa homolog

Chain B:
62\%
38\%

曼

- Molecule 19: Pre-mRNA-processing protein PRP40

- Molecule 20: U2 snRNP component HSH155

Chain O:

- Molecule 21: Pre-mRNA-splicing factor PRP11

- Molecule 22: Pre-mRNA-splicing factor PRP21

- Molecule 23: Pre-mRNA-splicing factor PRP9

- Molecule 24: Pre-mRNA-splicing factor RDS3

Chain S:
86\% 14\%

- Molecule 25: Cold sensitive U2 snRNA suppressor 1

Chain Q:
50\%
50\%

- Molecule 26: Pre-mRNA-splicing factor RSE1

- Molecule 27: Protein HSH49

Chain R: 81\% 19\%

- Molecule 28: RDS3 complex subunit 10

- Molecule 29: U2 small nuclear ribonucleoprotein A'

- Molecule 30: U2 small nuclear ribonucleoprotein B"

－Molecule 31：Pre－mRNA－processing ATP－dependent RNA helicase PRP5

```
Chain p: 52% 48%
```


－Molecule 32：U2 snRNA

Chain 2：• 6\％• 88\％

枵这落

DDDDDD000
DDD000400000DDDADOD0044
$0000040400840000000404 D 44 D 40 D D 4000040000000004000000400000000$

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	217460	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE CORRECTION	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $\left(e^{-} / \AA^{2}\right)$	44	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON III (4k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z|>5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles	
		RMSZ	$\#\|Z\|>5$	RMSZ	$\#\|Z\|>5$
1	F	0.26	$0 / 1342$	0.50	$0 / 1868$
2	I	0.60	$6 / 768(0.8 \%)$	0.89	$1 / 1189(0.1 \%)$
3	E	0.24	$0 / 2743$	0.45	$0 / 3841$
4	J	0.26	$0 / 530$	0.50	$1 / 740(0.1 \%)$
5	1	0.30	$0 / 13201$	1.01	$30 / 20553(0.1 \%)$
6	G	0.25	$0 / 1208$	0.49	$0 / 1689$
7	A	0.24	$0 / 671$	0.51	$0 / 937$
8	C	0.25	$0 / 992$	0.48	$0 / 1390$
9	b	0.25	$0 / 608$	0.51	$0 / 848$
9	s	0.30	$0 / 322$	0.57	$0 / 446$
10	d	0.27	$0 / 479$	0.52	$0 / 671$
10	v	0.29	$0 / 415$	0.54	$0 / 579$
11	e	0.24	$0 / 392$	0.57	$0 / 546$
11	w	0.29	$0 / 392$	0.54	$0 / 546$
12	f	0.26	$0 / 367$	0.54	$0 / 510$
12	x	0.31	$0 / 367$	0.58	$0 / 510$
13	g	0.25	$0 / 355$	0.56	$0 / 491$
13	y	0.26	$0 / 374$	0.50	$0 / 520$
14	h	0.24	$0 / 535$	0.48	$0 / 743$
14	t	0.33	$0 / 364$	0.55	$0 / 507$
15	i	0.24	$0 / 503$	0.52	$0 / 703$
15	u	0.32	$0 / 465$	0.53	$0 / 650$
16	H	0.23	$0 / 962$	0.37	$0 / 1340$
17	D	0.24	$0 / 2901$	0.41	$0 / 4059$
18	B	0.24	$0 / 947$	0.43	$0 / 1325$
19	K	0.52	$0 / 2050$	0.94	$0 / 2870$
20	O	0.42	$0 / 4149$	0.77	$30 / 5819(0.5 \%)$
21	U	0.22	$0 / 867$	0.43	$0 / 1208$
22	V	0.38	$0 / 515$	0.43	$0 / 719$
23	T	0.27	$0 / 2324$	0.44	$0 / 3248$
24	S	0.27	$0 / 463$	0.49	$0 / 645$
25	Q	0.27	$0 / 1137$	0.47	$0 / 1593$
26	P	0.29	$1 / 6009(0.0 \%)$	0.54	$0 / 8407$
27	R	0.28	$0 / 869$	0.46	$0 / 1209$
			0	0	

Mol	Chain	Bond lengths		Bond angles	
		RMSZ	$\#\|Z\|>5$	RMSZ	$\#\|Z\|>5$
28	Z	0.26	$0 / 412$	0.41	$0 / 573$
29	W	0.31	$0 / 869$	0.60	$0 / 1219$
30	Y	0.27	$0 / 418$	0.49	$0 / 582$
31	p	0.55	$1 / 2269(0.0 \%)$	0.66	$3 / 3172(0.1 \%)$
32	2	4.64	$44 / 3363(1.3 \%)$	2.45	$107 / 5218(2.1 \%)$
All	All	1.16	$52 / 57917(0.1 \%)$	0.92	$172 / 83683(0.2 \%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand.A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	\#Chirality outliers	\#Planarity outliers
7	A	0	1
13	g	0	1
18	B	0	1
23	T	0	1
26	P	0	2
29	W	0	1
32	2	0	2
All	All	0	9

All (52) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed (\AA)	Ideal (\AA)
32	2	35	U	C1'-N1	151.33	3.75	1.48
32	2	42	U	C1'-N1	150.94	3.75	1.48
32	2	44	U	C1'-N1	149.92	3.73	1.48
31	p	271	THR	C-N	20.19	1.80	1.34
32	2	1161	U	O3'-P	-15.61	1.42	1.61
32	2	1092	A	O3'-P	-14.75	1.43	1.61
32	2	1116	A	O3'-P	-11.56	1.47	1.61
32	2	1166	G	O3'-P	10.01	1.73	1.61
32	2	1163	C	O5'-C5'	9.13	1.59	1.44
32	2	1116	A	C3'-O3'	-8.90	1.29	1.42
32	2	1127	A	O3'-P	-8.73	1.50	1.61
32	2	1167	U	O3'-P	8.62	1.71	1.61
32	2	1164	C	O3'-P	-8.20	1.51	1.61
32	2	1162	U	P-O5'	7.59	1.67	1.59
32	2	1163	C	P-O5'	7.44	1.67	1.59
32	2	1117	G	P-O5'	7.25	1.67	1.59
32	2	1096	C	O3'-P	6.97	1.69	1.61

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(\AA)	Ideal (\AA)
32	2	1154	U	C1'-N1	6.97	1.59	1.48
32	2	1128	C	C5'-C4'	-6.94	1.43	1.51
32	2	1140	U	C1'-N1	6.92	1.59	1.48
32	2	1095	U	O3'-P	6.57	1.69	1.61
32	2	1165	C	O3'-P	6.53	1.69	1.61
2	I	260	G	C1'-N9	-6.51	1.37	1.46
32	2	1169	C	C1'-N1	6.43	1.58	1.48
32	2	145	G	P-O5'	-6.37	1.53	1.59
32	2	1168	U	C5'-C4'	-6.25	1.43	1.51
32	2	1117	G	C5'-C4'	6.19	1.58	1.51
32	2	1162	U	O3'-P	6.18	1.68	1.61
32	2	1162	U	C2-N3	6.09	1.42	1.37
32	2	1165	C	O5'-C5'	6.03	1.54	1.44
32	2	1162	U	O5'-C5'	6.01	1.54	1.44
26	P	188	SER	C-N	-5.99	1.22	1.34
2	I	250	U	C1'-N1	5.98	1.57	1.48
32	2	1151	U	O5'-C5'	-5.95	1.33	1.42
32	2	1163	C	O3'-P	5.88	1.68	1.61
32	2	68	U	C1'-N1	5.72	1.57	1.48
32	2	1161	U	C3'-O3'	-5.71	1.34	1.42
2	I	249	C	C1'-N1	5.70	1.57	1.48
32	2	1162	U	C3'-C2'	-5.64	1.46	1.52
32	2	1097	G	O3'-P	5.63	1.68	1.61
32	2	118	U	C1'-N1	5.62	1.57	1.48
32	2	121	C	C1'-N1	5.50	1.57	1.48
32	2	44	U	C5-C6	5.39	1.39	1.34
32	2	111	C	C1'-N1	5.34	1.56	1.48
32	2	109	C	C1'-N1	5.31	1.56	1.48
32	2	147	A	O3'-P	-5.28	1.54	1.61
2	I	268	U	C1'-N1	5.25	1.56	1.48
32	2	1166	G	C5'-C4'	5.23	1.57	1.51
2	I	246	U	C1'-N1	5.14	1.56	1.48
2	I	247	U	C1'-N1	5.13	1.56	1.48
32	2	85	A	C1'-N9	-5.08	1.39	1.46
32	2	1162	U	C4'-O4'	5.01	1.52	1.45

All (172) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed $\left({ }^{o}\right)$	Ideal $\left({ }^{o}\right)$
32	2	44	U	C6-N1-C1'	-74.43	17.00	121.20
32	2	42	U	C6-N1-C1'	-73.72	17.99	121.20
32	2	35	U	C6-N1-C1'	-73.60	18.16	121.20

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed (${ }^{\circ}$)	Ideal $\left({ }^{\circ}\right.$)
32	2	44	U	O4'-C1'-N1	-27.50	86.20	108.20
32	2	42	U	O4'-C1'-N1	-21.03	91.37	108.20
32	2	35	U	O4'-C1'-N1	-20.67	91.67	108.20
31	p	271	THR	O-C-N	-18.58	92.98	122.70
32	2	1162	U	C5'-C4'-04'	14.83	126.89	109.10
32	2	1093	C	P-O5'-C5'	14.82	144.62	120.90
32	2	1147	A	C5'-C4'-C3'	-14.18	93.31	116.00
32	2	1092	A	C2'-C3'-O3'	14.11	140.54	109.50
32	2	1098	C	N1-C1'-C2'	-13.38	96.61	114.00
32	2	1151	U	C4'-C3'-O3'	-12.56	83.03	109.40
32	2	44	U	C2-N1-C1'	-12.33	102.90	117.70
32	2	1151	U	P-O5'-C5'	11.71	139.64	120.90
32	2	1117	G	C5'-C4'-O4'	11.47	122.86	109.10
32	2	35	U	C2-N1-C1'	-11.45	103.96	117.70
32	2	42	U	C2-N1-C1'	-11.33	104.10	117.70
32	2	145	G	C5'-C4'-C3'	-11.20	98.08	116.00
32	2	1117	G	C5'-C4'-C3'	-10.88	98.59	116.00
32	2	44	U	C2-N3-C4	-10.88	120.47	127.00
32	2	1163	C	C5'-C4'-O4'	10.58	121.79	109.10
5	1	442	U	OP2-P-O3'	-10.46	82.18	105.20
32	2	141	A	N9-C1'-C2'	-10.45	100.41	114.00
5	1	442	U	OP1-P-O3'	-10.44	82.24	105.20
32	2	1126	G	N9-C1'-C2'	-10.07	100.91	114.00
32	2	1163	C	C5'-C4'-C3'	-9.73	100.43	116.00
32	2	1139	G	N9-C1'-C2'	-9.71	101.31	112.00
32	2	1147	A	P-O5'-C5'	9.61	136.27	120.90
20	O	238	PRO	CA-N-CD	-9.29	98.50	111.50
20	O	206	PRO	CA-N-CD	-9.28	98.51	111.50
20	O	424	PRO	CA-N-CD	-9.28	98.50	111.50
20	O	284	PRO	CA-N-CD	-9.28	98.51	111.50
20	O	315	PRO	CA-N-CD	-9.23	98.58	111.50
20	O	249	PRO	CA-N-CD	-9.22	98.59	111.50
20	O	399	PRO	CA-N-CD	-9.20	98.61	111.50
20	O	691	PRO	CA-N-CD	-9.20	98.62	111.50
20	O	596	PRO	CA-N-CD	-9.19	98.63	111.50
32	2	1162	U	C5'-C4'-C3'	-9.17	101.32	116.00
20	O	687	PRO	CA-N-CD	-9.17	98.67	111.50
20	O	449	PRO	CA-N-CD	-9.15	98.69	111.50
20	O	481	PRO	CA-N-CD	-9.14	98.71	111.50
20	O	656	PRO	CA-N-CD	-9.14	98.71	111.50
20	O	759	PRO	CA-N-CD	-9.11	98.75	111.50
32	2	1168	U	C4'-C3'-O3'	-8.99	90.51	109.40

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed (${ }^{\circ}$)	Ideal (${ }^{\circ}$)
20	O	387	PRO	CA-N-CD	-8.98	98.92	111.50
32	2	142	C	N1-C1'-C2'	-8.83	102.29	112.00
20	O	681	PRO	CA-N-CD	-8.80	99.17	111.50
20	O	428	PRO	CA-N-CD	-8.78	99.22	111.50
20	O	197	PRO	CA-N-CD	-8.69	99.33	111.50
32	2	1152	U	P-O5'-C5'	8.68	134.79	120.90
20	O	525	PRO	CA-N-CD	-8.68	99.35	111.50
32	2	1151	U	O4'-C1'-N1	8.67	115.14	108.20
20	O	629	PRO	CA-N-CD	-8.65	99.39	111.50
20	O	472	PRO	CA-N-CD	-8.64	99.40	111.50
20	O	721	PRO	CA-N-CD	-8.64	99.40	111.50
20	O	680	PRO	CA-N-CD	-8.63	99.42	111.50
20	O	614	PRO	CA-N-CD	-8.63	99.42	111.50
20	O	600	PRO	CA-N-CD	-8.60	99.46	111.50
20	O	369	PRO	CA-N-CD	-8.59	99.47	111.50
20	O	256	PRO	CA-N-CD	-8.59	99.47	111.50
20	O	532	PRO	CA-N-CD	-8.57	99.51	111.50
32	2	1148	U	C4'-C3'-O3'	-8.54	91.46	109.40
32	2	1092	A	P-O5'-C5'	8.53	134.55	120.90
4	J	274	PRO	CA-N-CD	-8.53	99.56	111.50
20	O	497	PRO	CA-N-CD	-8.52	99.58	111.50
32	2	44	U	N1-C2-N3	8.46	119.98	114.90
32	2	145	G	P-O5'-C5'	8.32	134.22	120.90
32	2	148	G	C5'-C4'-C3'	-8.30	102.72	116.00
32	2	1165	C	C5'-C4'-C3'	-8.26	102.79	116.00
20	O	720	PRO	CA-N-CD	-8.18	100.05	111.50
32	2	1151	U	C5'-C4'-O4'	8.14	118.86	109.10
32	2	44	U	N3-C4-C5	7.98	119.39	114.60
32	2	1168	U	P-O5'-C5'	-7.91	108.25	120.90
32	2	1167	U	C2'-C3'-O3'	7.88	126.83	109.50
32	2	1092	A	C4'-C3'-O3'	-7.82	92.97	109.40
32	2	1165	C	C5'-C4'-O4'	7.77	118.42	109.10
32	2	1107	C	N1-C1'-C2'	-7.74	103.48	112.00
32	2	1147	A	C4'-C3'-O3'	7.74	128.48	113.00
32	2	1161	U	C5'-C4'-C3'	-7.73	103.62	116.00
32	2	1093	C	C5'-C4'-C3'	-7.71	103.67	116.00
32	2	1169	C	P-O5'-C5'	-7.62	108.70	120.90
32	2	1097	G	C3'-C2'-O2'	7.61	135.38	113.30
32	2	1165	C	C4'-C3'-O3'	7.55	128.11	113.00
32	2	1128	C	C5'-C4'-O4'	7.30	117.86	109.10
32	2	1168	U	C2'-C3'-O3'	7.29	125.55	109.50
32	2	1089	G	C4'-C3'-O3'	7.24	127.47	113.00

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed (${ }^{\circ}$)	Ideal (${ }^{\circ}$)
32	2	1115	G	O5'-P-OP1	-7.23	99.19	105.70
32	2	1159	U	O5'-P-OP1	-7.22	99.20	105.70
32	2	139	G	O5'-P-OP2	-7.21	99.22	105.70
32	2	1089	G	O5'-P-OP2	-7.14	99.28	105.70
5	1	289	U	N3-C2-O2	-7.13	117.21	122.20
32	2	139	G	O5'-P-OP1	-7.12	99.29	105.70
5	1	443	U	OP1-P-OP2	7.11	130.27	119.60
32	2	1089	G	O5'-P-OP1	-7.09	99.32	105.70
32	2	1159	U	O5'-P-OP2	-7.07	99.33	105.70
32	2	1115	G	O5'-P-OP2	-7.04	99.37	105.70
32	2	1115	G	C4'-C3'-O3'	7.03	127.07	113.00
32	2	1096	C	C1'-C2'-O2'	-6.68	90.55	110.60
32	2	148	G	C5'-C4'-O4'	6.61	117.03	109.10
5	1	498	U	N3-C2-O2	-6.61	117.58	122.20
32	2	1129	U	C5'-C4'-O4'	6.60	117.02	109.10
32	2	140	G	N9-C1'-C2'	-6.53	104.82	112.00
32	2	78	G	C2'-C3'-O3'	6.39	123.92	113.70
32	2	1166	G	O5'-C5'-C4'	6.36	123.77	111.70
31	p	271	THR	CA-C-N	6.34	131.14	117.20
32	2	1166	G	C5'-C4'-C3'	6.30	126.09	116.00
32	2	145	G	O4'-C1'-N9	6.29	113.24	108.20
5	1	500	C	C6-N1-C2	-6.29	117.79	120.30
32	2	145	G	O5'-C5'-C4'	-6.23	99.87	111.70
32	2	1092	A	N9-C1'-C2'	6.21	122.08	114.00
32	2	44	U	N1-C1'-C2'	6.17	122.03	114.00
32	2	1152	U	C5'-C4'-C3'	-6.15	106.17	116.00
5	1	289	U	N1-C2-O2	6.13	127.09	122.80
32	2	1096	C	C4'-C3'-O3'	6.12	125.25	113.00
32	2	44	U	C5-C4-O4	-6.08	122.25	125.90
32	2	1151	U	O3'-P-O5'	-6.02	92.57	104.00
32	2	1167	U	P-O3'-C3'	-6.02	112.48	119.70
5	1	148	C	N1-C2-O2	6.00	122.50	118.90
5	1	148	C	C2-N1-C1'	5.98	125.38	118.80
5	1	54	C	C2-N1-C1'	5.96	125.36	118.80
5	1	144	C	C2-N1-C1'	5.96	125.36	118.80
5	1	268	C	P-O3'-C3'	5.90	126.78	119.70
32	2	1162	U	C4'-C3'-O3'	5.87	124.75	113.00
32	2	1167	U	C5'-C4'-O4'	-5.87	102.06	109.10
5	1	144	C	N1-C2-O2	5.84	122.40	118.90
32	2	1108	A	C3'-C2'-C1'	5.81	106.15	101.50
32	2	1115	G	P-O3'-C3'	5.76	126.62	119.70
32	2	1148	U	C5'-C4'-O4'	5.75	116.00	109.10

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed (${ }^{\circ}$)	Ideal (${ }^{\circ}$)
5	1	151	C	P-O3'-C3'	5.74	126.59	119.70
32	2	1162	U	C2'-C3'-O3'	-5.74	96.88	109.50
5	1	342	C	C6-N1-C2	-5.68	118.03	120.30
32	2	141	A	C4'-C3'-O3'	5.68	124.36	113.00
5	1	258	U	P-O3'-C3'	5.66	126.50	119.70
5	1	399	A	P-O3'-C3'	5.66	126.49	119.70
32	2	1167	U	C5'-C4'-C3'	5.58	124.92	116.00
32	2	1097	G	C2'-C3'-O3'	-5.57	97.25	109.50
32	2	1162	U	P-O3'-C3'	5.51	126.31	119.70
32	2	1151	U	N1-C1'-C2'	5.50	121.15	114.00
32	2	145	G	C3'-C2'-O2'	-5.49	97.38	113.30
32	2	145	G	C5'-C4'-O4'	5.48	115.67	109.10
32	2	1105	C	C4'-C3'-O3'	-5.46	97.94	109.40
31	p	273	LYS	N-CA-C	5.45	125.72	111.00
32	2	1168	U	C4'-C3'-C2'	-5.42	97.18	102.60
32	2	1162	U	C4'-C3'-C2'	5.42	108.02	102.60
5	1	144	C	N3-C2-O2	-5.40	118.12	121.90
5	1	342	C	C5-C6-N1	5.37	123.69	121.00
32	2	1168	U	O3'-P-O5'	-5.32	93.89	104.00
2	1	6	U	N1-C2-O2	5.27	126.49	122.80
5	1	480	C	C6-N1-C2	-5.25	118.20	120.30
5	1	496	C	C6-N1-C2	-5.23	118.21	120.30
32	2	1152	U	O4'-C4'-C3'	5.21	110.27	106.10
5	1	151	C	N1-C2-O2	5.20	122.02	118.90
5	1	182	C	C2-N1-C1'	5.19	124.51	118.80
5	1	347	U	N3-C2-O2	-5.19	118.57	122.20
32	2	46	C	C2'-C3'-O3'	5.16	121.95	113.70
32	2	66	A	C4'-C3'-O3'	5.16	123.31	113.00
32	2	1148	U	P-O5'-C5'	5.14	129.13	120.90
32	2	1163	C	C4'-C3'-O3'	5.13	123.27	113.00
5	1	130	C	N1-C2-O2	5.12	121.97	118.90
5	1	342	C	C2-N1-C1'	5.12	124.43	118.80
5	1	130	C	N3-C2-O2	-5.10	118.33	121.90
32	2	145	G	C4'-C3'-O3'	5.10	123.20	113.00
5	1	144	C	C6-N1-C2	-5.06	118.28	120.30
32	2	1169	C	O5'-C5'-C4'	-5.05	102.10	111.70
32	2	1147	A	O5'-C5'-C4'	5.05	121.29	111.70
5	1	501	C	C5-C6-N1	5.04	123.52	121.00
5	1	391	C	C6-N1-C2	-5.03	118.29	120.30
32	2	66	A	P-O3'-C3'	5.02	125.72	119.70
32	2	146	A	C5'-C4'-C3'	-5.02	107.97	116.00
32	2	145	G	P-O3'-C3'	5.01	125.72	119.70

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed $\left({ }^{\circ}\right)$	Ideal $\left({ }^{\circ}\right)$
32	2	1161	U	C5 $^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{O} 4$	5.01	115.11	109.10

There are no chirality outliers.
All (9) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
32	2	141	A	Sidechain
32	2	143	G	Sidechain
7	A	12	ARG	Peptide
18	B	176	ILE	Peptide
26	P	1013	ASP	Peptide
26	P	1014	LYS	Peptide
23	T	458	SER	Peptide
29	W	16	VAL	Peptide
13	g	20	ASN	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	F	$259 / 523(50 \%)$	$251(97 \%)$	$8(3 \%)$	0	100	100
3	E	$542 / 544(100 \%)$	$521(96 \%)$	$21(4 \%)$	0	100	100
4	J	$101 / 620(16 \%)$	$92(91 \%)$	$8(8 \%)$	$1(1 \%)$	15	54
6	G	$235 / 492(48 \%)$	$222(94 \%)$	$13(6 \%)$	0	100	100
7	A	$126 / 298(42 \%)$	$116(92 \%)$	$10(8 \%)$	0	100	100
8	C	$193 / 231(84 \%)$	$183(95 \%)$	$10(5 \%)$	0	100	100

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
9	b	$117 / 196(60 \%)$	$110(94 \%)$	$7(6 \%)$	0	100	100
9	s	$61 / 196(31 \%)$	$58(95 \%)$	$3(5 \%)$	0	100	100
10	d	$91 / 101(90 \%)$	$87(96 \%)$	$4(4 \%)$	0	100	100
10	v	$80 / 101(79 \%)$	$77(96 \%)$	$3(4 \%)$	0	100	100
11	e	$73 / 94(78 \%)$	$67(92 \%)$	$5(7 \%)$	$1(1 \%)$	11	46
11	w	$73 / 94(78 \%)$	$72(99 \%)$	$1(1 \%)$	0	100	100
12	f	$71 / 86(83 \%)$	$69(97 \%)$	$2(3 \%)$	0	100	100
12	x	$71 / 86(83 \%)$	$69(97 \%)$	$2(3 \%)$	0	100	100
13	g	$68 / 77(88 \%)$	$62(91 \%)$	$5(7 \%)$	$1(2 \%)$	10	45
13	y	$73 / 77(95 \%)$	$64(88 \%)$	$6(8 \%)$	$3(4 \%)$	3	22
14	h	$101 / 146(69 \%)$	$98(97 \%)$	$3(3 \%)$	0	100	100
14	t	$68 / 146(47 \%)$	$67(98 \%)$	$1(2 \%)$	0	100	100
15	i	$95 / 110(86 \%)$	$91(96 \%)$	$4(4 \%)$	0	100	100
15	u	$90 / 110(82 \%)$	$89(99 \%)$	$1(1 \%)$	0	100	100
16	H	$186 / 261(71 \%)$	$180(97 \%)$	$6(3 \%)$	0	100	100
17	D	$570 / 629(91 \%)$	$554(97 \%)$	$16(3 \%)$	0	100	100
18	B	$182 / 300(61 \%)$	$169(93 \%)$	$13(7 \%)$	0	100	100
19	K	$402 / 583(69 \%)$	$379(94 \%)$	$19(5 \%)$	$4(1 \%)$	15	54
20	O	$810 / 971(83 \%)$	$772(95 \%)$	$35(4 \%)$	$3(0 \%)$	34	72
21	U	$166 / 282(59 \%)$	$141(85 \%)$	$24(14 \%)$	$1(1 \%)$	25	65
22	V	$101 / 280(36 \%)$	$90(89 \%)$	$10(10 \%)$	$1(1 \%)$	15	54
23	T	$454 / 530(86 \%)$	$414(91 \%)$	$40(9 \%)$	0	100	100
24	S	$90 / 107(84 \%)$	$79(88 \%)$	$11(12 \%)$	0	100	100
25	Q	$214 / 436(49 \%)$	$202(94 \%)$	$11(5 \%)$	$1(0 \%)$	29	69
26	P	$1170 / 1361(86 \%)$	$1055(90 \%)$	$105(9 \%)$	$10(1 \%)$	17	56
27	R	$165 / 213(78 \%)$	$161(98 \%)$	$3(2 \%)$	$1(1 \%)$	25	65
28	Z	$81 / 85(95 \%)$	$76(94 \%)$	$4(5 \%)$	$1(1 \%)$	13	50
29	W	$168 / 238(71 \%)$	$129(77 \%)$	$28(17 \%)$	$11(6 \%)$	1	16
30	Y	$82 / 111(74 \%)$	$76(93 \%)$	$5(6 \%)$	$1(1 \%)$	13	50
31	p	$445 / 849(52 \%)$	$431(97 \%)$	$13(3 \%)$	$1(0 \%)$	47	81
All	All	$7874 / 11564(68 \%)$	$7373(94 \%)$	$460(6 \%)$	$41(0 \%)$	32	69

All (41) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
25	Q	368	ILE
26	P	1299	ILE
29	W	34	LEU
29	W	52	LYS
13	y	50	ASP
4	J	274	PRO
19	K	356	ARG
19	K	370	PRO
26	P	363	VAL
26	P	413	ILE
26	P	626	PRO
26	P	629	GLY
29	W	17	ASP
29	W	18	HIS
29	W	51	THR
29	W	68	PRO
29	W	121	PRO
29	W	124	LEU
30	Y	71	GLN
11	e	34	GLN
27	R	48	ALA
29	W	29	VAL
31	p	273	LYS
13	g	21	GLY
19	K	353	THR
19	K	442	ASP
20	O	713	LYS
20	O	717	THR
26	P	107	ALA
26	P	628	ALA
28	Z	19	ILE
29	W	12	PRO
21	U	232	GLY
22	V	181	HIS
13	y	30	ARG
13	y	60	GLN
26	P	364	THR
26	P	486	PRO
29	W	159	VAL
20	O	614	PRO
26	P	1031	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	F	$11 / 451(2 \%)$	$11(100 \%)$	0	100	100
3	E	$12 / 519(2 \%)$	$12(100 \%)$	0	100	100
4	J	$3 / 568(0 \%)$	$3(100 \%)$	0	100	100
6	G	$8 / 448(2 \%)$	$8(100 \%)$	0	100	100
7	A	$6 / 273(2 \%)$	$6(100 \%)$	0	100	100
8	C	$8 / 214(4 \%)$	$8(100 \%)$	0	100	100
9	b	$3 / 176(2 \%)$	$3(100 \%)$	0	100	100
9	s	$1 / 176(1 \%)$	$1(100 \%)$	0	100	100
10	d	$7 / 89(8 \%)$	$7(100 \%)$	0	100	100
10	v	$4 / 89(4 \%)$	$4(100 \%)$	0	100	100
11	e	$5 / 83(6 \%)$	$5(100 \%)$	0	100	100
11	w	$5 / 83(6 \%)$	$5(100 \%)$	0	100	100
12	f	$3 / 77(4 \%)$	$3(100 \%)$	0	100	100
12	x	$3 / 77(4 \%)$	$3(100 \%)$	0	100	100
13	g	$1 / 66(2 \%)$	$1(100 \%)$	0	100	100
13	y	$2 / 66(3 \%)$	$2(100 \%)$	0	100	100
14	h	$3 / 129(2 \%)$	$3(100 \%)$	0	100	100
14	t	$3 / 129(2 \%)$	$3(100 \%)$	0	100	100
15	i	$4 / 103(4 \%)$	$4(100 \%)$	0	100	100
15	u	$3 / 103(3 \%)$	$3(100 \%)$	0	100	100
16	H	$5 / 234(2 \%)$	$5(100 \%)$	0	100	100
17	D	$12 / 603(2 \%)$	$12(100 \%)$	0	100	100
18	B	$9 / 265(3 \%)$	$9(100 \%)$	0	100	100
19	K	$10 / 538(2 \%)$	$10(100 \%)$	0	100	100
20	O	$42 / 867(5 \%)$	$42(100 \%)$	0	100	100
21	U	$7 / 236(3 \%)$	$7(100 \%)$	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
22	V	$1 / 259(0 \%)$	$1(100 \%)$	0	100	100
23	T	$10 / 492(2 \%)$	$10(100 \%)$	0	100	100
24	S	$4 / 97(4 \%)$	$4(100 \%)$	0	100	100
25	Q	$18 / 392(5 \%)$	$18(100 \%)$	0	100	100
26	P	$45 / 1244(4 \%)$	$45(100 \%)$	0	100	100
27	R	$5 / 189(3 \%)$	$5(100 \%)$	0	100	100
28	Z	$1 / 77(1 \%)$	$1(100 \%)$	0	100	100
29	W	$8 / 219(4 \%)$	$8(100 \%)$	0	100	100
30	Y	$1 / 100(1 \%)$	$1(100 \%)$	0	100	100
31	p	$17 / 768(2 \%)$	$17(100 \%)$	0	100	100
All	All	$290 / 10499(3 \%)$	$290(100 \%)$	0	100	100

There are no protein residues with a non-rotameric sidechain to report.
Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
2	I	$31 / 373(8 \%)$	$11(35 \%)$	0
32	2	$138 / 1175(11 \%)$	$53(38 \%)$	$27(19 \%)$
5	1	$556 / 568(97 \%)$	$118(21 \%)$	$9(1 \%)$
All	All	$725 / 2116(34 \%)$	$182(25 \%)$	$36(4 \%)$

All (182) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
2	I	247	U
2	I	248	A
2	I	249	C
2	I	250	U
2	I	251	A
2	I	252	A
2	I	253	G
2	I	254	U
2	I	258	A
2	I	265	A

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type
2	I	267	A
5	1	11	U
5	1	12	A
5	1	40	A
5	1	41	C
5	1	55	G
5	1	56	C
5	1	62	A
5	1	63	U
5	1	64	A
5	1	65	G
5	1	66	U
5	1	67	A
5	1	74	C
5	1	75	G
5	1	79	A
5	1	80	G
5	1	87	U
5	1	97	A
5	1	98	U
5	1	100	A
5	1	101	U
5	1	103	G
5	1	107	A
5	1	113	G
5	1	114	U
5	1	117	U
5	1	133	G
5	1	134	G
5	1	141	A
5	1	142	C
5	1	147	A
5	1	149	G
5	1	150	G
5	1	151	C
5	1	152	G
5	1	153	C
5	1	154	G
5	1	167	G
5	1	171	A
5	1	176	U
5	1	180	U

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type
5	1	181	U
5	1	182	C
5	1	186	U
5	1	187	G
5	1	205	U
5	1	206	C
5	1	218	U
5	1	219	U
5	1	220	G
5	1	227	U
5	1	228	U
5	1	230	G
5	1	254	U
5	1	255	U
5	1	257	G
5	1	258	U
5	1	259	U
5	1	260	U
5	1	269	U
5	1	270	G
5	1	271	G
5	1	272	A
5	1	278	U
5	1	279	U
5	1	280	G
5	1	287	A
5	1	290	U
5	1	326	G
5	1	327	A
5	1	328	G
5	1	343	A
5	1	352	G
5	1	365	U
5	1	369	G
5	1	377	U
5	1	378	U
5	1	385	U
5	1	386	G
5	1	389	G
5	1	393	G
5	1	394	A
5	1	395	U

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type
5	1	399	A
5	1	400	A
5	1	407	U
5	1	409	A
5	1	416	G
5	1	418	U
5	1	422	G
5	1	424	U
5	1	426	U
5	1	427	G
5	1	443	U
5	1	460	U
5	1	466	U
5	1	468	U
5	1	477	G
5	1	482	G
5	1	493	G
5	1	504	U
5	1	505	U
5	1	506	A
5	1	508	G
5	1	513	A
5	1	515	A
5	1	540	G
5	1	542	U
5	1	551	U
5	1	553	A
5	1	554	U
5	1	555	U
5	1	559	G
5	1	560	A
5	1	562	U
5	1	563	U
5	1	564	A
5	1	565	U
32	2	33	U
32	2	41	C
32	2	46	C
32	2	47	U
32	2	48	U
32	2	49	U
32	2	50	U

Continued from previous page...

Mol	Chain	Res	Type
32	2	66	A
32	2	67	A
32	2	68	U
32	2	79	A
32	2	83	U
32	2	111	C
32	2	112	A
32	2	113	U
32	2	117	U
32	2	140	G
32	2	141	A
32	2	142	C
32	2	143	G
32	2	144	G
32	2	1094	G
32	2	1095	U
32	2	1096	C
32	2	1097	G
32	2	1098	C
32	2	1100	A
32	2	1101	C
32	2	1102	C
32	2	1103	C
32	2	1104	U
32	2	1105	C
32	2	1106	G
32	2	1107	C
32	2	1108	A
32	2	1119	C
32	2	1120	G
32	2	1121	U
32	2	1122	U
32	2	1123	C
32	2	1124	U
32	2	1125	U
32	2	1126	G
32	2	1130	U
32	2	1139	G
32	2	1141	C
32	2	1142	G
32	2	1143	C
32	2	1144	U

Continued from previous page...

Mol	Chain	Res	Type
32	2	1145	U
32	2	1146	G
32	2	1150	U
32	2	1151	U

All (36) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
5	1	86	A
5	1	100	A
5	1	113	G
5	1	151	C
5	1	152	G
5	1	258	U
5	1	268	C
5	1	399	A
5	1	505	U
32	2	32	G
32	2	46	C
32	2	66	A
32	2	67	A
32	2	78	G
32	2	110	A
32	2	1095	U
32	2	1096	C
32	2	1097	G
32	2	1100	A
32	2	1101	C
32	2	1102	C
32	2	1105	C
32	2	1107	C
32	2	1119	C
32	2	1120	G
32	2	1121	U
32	2	1122	U
32	2	1123	C
32	2	1124	U
32	2	1125	U
32	2	1138	G
32	2	1141	C
32	2	1142	G
32	2	1144	U

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type
32	2	1145	U
32	2	1150	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

