

Sep 18, 2021 - 08:04 am BST

PDB ID	:	70QE
EMDB ID	:	EMD-13033
Title	:	Saccharomyces cerevisiae spliceosomal pre-A complex (delta BS-A ACT1)
Authors	:	Zhang, Z.; Rigo, N.; Dybkov, O.; Fourmann, J.; Will, C.L.; Kumar, V.; Urlaub,
		H.; Stark, H.; Luehrmann, R.
Deposited on	:	2021-06-03
Resolution	:	5.90 Å(reported)
This is	a I	Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
$\operatorname{MolProbity}$:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.23.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 5.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{llllllllllllllllllllllllllllllllllll$	${f EM} {f structures} \ (\#{f Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Qu	ality of chain
1	F	523	51%	49%
2	Ι	373	19% · ·	77%
3	Е	544		100%
4	J	620	17%	83%
5	1	568	75%	23% ••
6	G	492	49%	51%
7	А	298	44%	56%
8	С	231	84	4% 16%
9	b	196	62%	38%

Mol | Chain | Length Quality of chain 9 196 \mathbf{S} 33% 67% 10101d 92% 8% 10 101v 81% 19% 11 е 9481% 18% . 1194w 82% 18% 12f 86 85% 15% 1286 Х 85% 15% 77• 6% 1391% g 1377у 94% . . 14 h 14673% 27% 14t 14649% 51% i 1101590% 10% 15110 \mathbf{u} 84% 16% Η 2611674% 26% D 629 1792% 8% 18 В 30062% 38% Κ 1958369% 30% • Ο 2097180% 16% • U 2822166% 33% V 2228036% 63% Т 2353087% 13% \mathbf{S} 2410786% 14% 25Q 43650% 50% Р 26 136186% 13% 27R 21381% 19%

Continue	Continued from previous page										
Mol	Chain	Length	Quality of chain								
28	Z	85	96%								
29	W	238	66%	5% 29%							
30	Y	111	75%	• 24%							
31	р	849	52%	48%							
32	2	1175	• 6% •	88%							

2 Entry composition (i)

There are 32 unique types of molecules in this entry. The entry contains 56606 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Protein NAM8.

Mol	Chain	Residues	Atoms				AltConf	Trace
1	F	267	Total 1335	C 801	N 267	O 267	0	0

• Molecule 2 is a RNA chain called ACT1 pre-mRNA (delta BS-A).

Mol	Chain	Residues	Atoms					AltConf	Trace
2	Ι	86	Total 1327	${ m C} 575$	N 111	O 555	Р 86	0	0

• Molecule 3 is a protein called U1 small nuclear ribonucleoprotein component PRP42.

Mol	Chain	Residues		Aton	AltConf	Trace		
3	Ε	544	Total 2732	C 1644	N 544	О 544	0	0

• Molecule 4 is a protein called U1 small nuclear ribonucleoprotein component SNU71.

Mol	Chain	Residues	Atoms				AltConf	Trace
4	J	105	Total 529	C 319	N 105	O 105	0	0

• Molecule 5 is a RNA chain called U1 snRNA.

Mol	Chain	Residues		A	AltConf	Trace			
5	1	558	Total 11822	C 5287	N 2003	O 3974	Р 558	0	0

• Molecule 6 is a protein called 56 kDa U1 small nuclear ribonucleoprotein component.

Mol	Chain	Residues	Atoms				AltConf	Trace
6	G	239	Total 1202	С 724	N 239	O 239	0	0

• Molecule 7 is a protein called U1 small nuclear ribonucleoprotein A.

Mol	Chain	Residues	Atoms				AltConf	Trace
7	А	132	Total 668	C 404	N 132	О 132	0	0

• Molecule 8 is a protein called U1 small nuclear ribonucleoprotein C.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
8	С	195	Total 985	C 595	N 195	O 195	0	0

• Molecule 9 is a protein called Small nuclear ribonucleoprotein-associated protein B.

Mol	Chain	Residues	Atoms	AltConf Tr	ace
9	h	191	Total C N O	0	0
5	U	121	607 365 121 121	0	0
0	5	65	Total C N O	0	0
9	6	00	323 193 65 65	0	0

• Molecule 10 is a protein called Small nuclear ribonucleoprotein Sm D3.

Mol	Chain	Residues	Atoms				AltConf	Trace
10	d	03	Total	С	Ν	0	0	0
10	u	90	473	287	93	93	0	0
10	17	0.0	Total	С	Ν	0	0	0
10	v	02	412	248	82	82	0	0

• Molecule 11 is a protein called Small nuclear ribonucleoprotein E.

Mol	Chain	Residues	Atoms				AltConf	Trace
11	0	77	Total	С	Ν	Ο	0	0
	е	11	389	235	77	77	0	0
11		77	Total	С	Ν	Ο	0	0
	W		389	235	77	77	0	U

• Molecule 12 is a protein called Small nuclear ribonucleoprotein F.

Mol	Chain	Residues	Atoms				AltConf	Trace
19	f	73	Total	С	Ν	Ο	0	Ο
12	I	10	365	219	73	73	0	0
19	v	73	Total	С	Ν	Ο	0	0
	A	10	365	219	73	73		U

• Molecule 13 is a protein called Small nuclear ribonucleoprotein G.

Mol	Chain	Residues		Aton	ıs		AltConf	Trace
13	ď	79	Total	С	Ν	Ο	0	0
15	8	12	356	212	72	72	0	0
12	T.	75	Total	С	Ν	Ο	0	0
10	У	10	373	223	75	75	0	0

• Molecule 14 is a protein called Small nuclear ribonucleoprotein Sm D1.

Mol	Chain	Residues	Atoms	AltConf	Trace
14	h	107	Total C N O	0	0
11	11	101	535 321 107 $10'$	0	0
14	+	72	Total C N O	0	0
14	U	12	363 219 72 72	0	0

• Molecule 15 is a protein called Small nuclear ribonucleoprotein Sm D2.

Mol	Chain	Residues		Aton	ns		AltConf	Trace
15	i	99	Total 501	C 303	N 99	O 99	0	0
15	u	92	Total 463	C 279	N 92	O 92	0	0

• Molecule 16 is a protein called Protein LUC7.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace
16	н	192	Total	С	Ν	Ο	0	0
	11	192	960	576	192	192	0	0

• Molecule 17 is a protein called Pre-mRNA-processing factor 39.

Mol	Chain	Residues	Atoms				AltConf	Trace
17	D	576	Total 2892	C 1740	N 576	O 576	0	0

• Molecule 18 is a protein called U1 small nuclear ribonucleoprotein 70 kDa homolog.

Mol	Chain	Residues	Atoms				AltConf	Trace
18	В	186	Total 940	C 568	N 186	O 186	0	0

• Molecule 19 is a protein called Pre-mRNA-processing protein PRP40.

Mol	Chain	Residues		Ator	\mathbf{ns}		AltConf	Trace
19	K	406	Total 2042	C 1230	N 406	O 406	0	0

• Molecule 20 is a protein called U2 snRNP component HSH155.

Mol	Chain	Residues		Ator	AltConf	Trace		
20	О	812	Total 4108	C 2484	N 812	O 812	0	0

• Molecule 21 is a protein called Pre-mRNA-splicing factor PRP11.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
21	U	188	Total 943	$ m C \ 567$	N 188	O 188	0	0

There are 16 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
U	121	UNK	-	$\operatorname{insertion}$	UNP Q07350
U	122	UNK	-	insertion	UNP Q07350
U	123	UNK	-	insertion	UNP Q07350
U	124	UNK	-	insertion	UNP Q07350
U	125	UNK	-	insertion	UNP Q07350
U	126	UNK	-	insertion	UNP Q07350
U	127	UNK	-	insertion	UNP Q07350
U	128	UNK	-	insertion	UNP Q07350
U	129	UNK	-	insertion	UNP Q07350
U	130	UNK	-	insertion	UNP Q07350
U	131	UNK	-	insertion	UNP Q07350
U	132	UNK	-	insertion	UNP Q07350
U	133	UNK	-	insertion	UNP Q07350
U	134	UNK	-	insertion	UNP Q07350
U	135	UNK	-	insertion	UNP Q07350
U	136	UNK	-	insertion	UNP Q07350

• Molecule 22 is a protein called Pre-mRNA-splicing factor PRP21.

Mol	Chain	Residues		Atoms Total C N O				Trace
22	V	103	Total 515	C 309	N 103	O 103	0	0

• Molecule 23 is a protein called Pre-mRNA-splicing factor PRP9.

Mol	Chain	Residues		Ator	ns		AltConf	Trace
23	т	462	Total	С	Ν	Ο	0	0
	T	402	2318	1394	462	462	0	

• Molecule 24 is a protein called Pre-mRNA-splicing factor RDS3.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
24	S	92	Total 460	C 276	N 92	O 92	0	0

• Molecule 25 is a protein called Cold sensitive U2 snRNA suppressor 1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
25	Q	220	Total 1122	C 682	N 220	O 220	0	0

• Molecule 26 is a protein called Pre-mRNA-splicing factor RSE1.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
26	Р	1186	Total 5972	C 3600	N 1186	O 1186	0	0

• Molecule 27 is a protein called Protein HSH49.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
27	R	173	Total 868	C 522	N 173	O 173	0	0

• Molecule 28 is a protein called RDS3 complex subunit 10.

Mol	Chain	Residues		Aton	ıs		AltConf	Trace
28	Z	83	Total 412	C 246	N 83	O 83	0	0

• Molecule 29 is a protein called U2 small nuclear ribonucleoprotein A'.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
29	W	170	Total 862	C 522	N 170	O 170	0	0

• Molecule 30 is a protein called U2 small nuclear ribonucleoprotein B".

Mol	Chain	Residues		Aton	ıs		AltConf	Trace
30	Y	84	Total 418	$\begin{array}{c} \mathrm{C} \\ 250 \end{array}$	N 84	O 84	0	0

• Molecule 31 is a protein called Pre-mRNA-processing ATP-dependent RNA helicase PRP5.

Mol	Chain	Residues		Ator	\mathbf{ns}		AltConf	Trace
31	р	444	Total 2239	m C 1351	N 444	O 444	5	0

• Molecule 32 is a RNA chain called U2 snRNA.

Mol	Chain	Residues		Α	toms			AltConf	Trace
32	2	143	Total 3021	C 1351	N 511	O 1017	Р 142	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Protein NAM8

 \bullet Molecule 3: U1 small nuclear ribonucleoprotein component PRP42

Chain E: 100% There are no outlier residues recorded for this chain. • Molecule 4: U1 small nuclear ribonucleoprotein component SNU71 Chain J: 17% 83% HIS GLN GGLN GGLN CGLN CGLN VAL CVS GGLN ASP CGLN CGLN GGLN GGLU GGLU GGLU ALLA TYPR ALLA ASIN COLUCION C SERVICE SERVIC

• Molecule 5: U1 snRNA

 \bullet Molecule 6: 56 kDa U1 small nuclear ribonucleoprotein component

49%

51%

MET ARG ARG ARG ARG ARG ARG ALA ALA ALA HIS HIS	LYS LYS PRO LYS CLY GLY GLY GLY HIS FYR FYR FYR	THR SER ASP ASP ASP GLV GLV CVL CVL CVL CVL CVL CVL CVL CVL CVL C	PHE 043 0170 0170 0170 017 11.E 11.E 11.E 11.E 11.E 11.E 11.E 11
S295 GLY GLY GLY GLY GLN PHE PHO GLN GLN GLN	ARG ARG LEU ASN ASN SER SER SER SER SER SER SER SER SER	SER SER THR THR THR CLU CLU CLU CLU THR SER THR THR THR THR	PRO GLM ARG ARG ARA ARA ASM ASM ASM ASM ASM ASM ASM ASM ASM AS
SER PRO GLY THR THR PRO CLY GLV CLY SER CLY SLV CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	G CLY ASN LYS ASN PRO GLY MET ASP GLU GLU TTR CLYS	GLM GLM CYS CYS CYS CYS GLY CYS ALA ASP ALA ASP VAL	LYS LYS SFR SFR SFR SFR TYR SFR TYR THE TYR VAL CYS CYS CARC CYS SFR ARC CYS SFR ARC CYS SFR ARC CYS SFR ARC CYS SFR SFR SFR SFR SFR SFR SFR SFR SFR SF
ILE ASP ASP ILE VAL TYR GLN GLN ASN ASP LEU LEU SER	LYS THR ASN CYS CYS ASN VAL VAL LEU ASN ASN ASN	LEU HIS GLU SER GLN GLU GLU CLU CLU CLU SER LEU CLU CLU SER ASN ASN	TTR THR THR THE PHE ALA ALA ALA ALA ALA PHC ALA ALA ALA ALA ALA ALA THR THR THR THR THR THR THR THR THR THR
GLY VAL CLY GLU GLU TYR TLE VAL LZS GLU GLU LEU TLEU	LEU ASN LLEU GLU HIS		
• Molecule 7: U1	small nuclear ribe	onucleoprotein A	
Chain A:	44%		56%
MET 82 82 614 611 811 811 811 811 811 811 811 811 811	MET LB5 LB5 L15 L73 L73 L73 G17 A5P G12 T13 T133	R148 LYS LYS SER ARC ASP ASP ASP ASP CYS LYS LYS LYS LYS LYS LYS LAG	LYS ANG GILN GILN LTE ANG LYS LYS LYS ANG LYS SRR SRR ANG CLU GLU ALA
GLU ILE ASP ARG ILE VAL LYS GLU GLU GLU ARG ARG	LEU LEU ASN MET ASN MET LYS SER GLU GLU LEU LLEU CLN GLN GLN	SER GLIN LYS PRO LYS LYS ARG LYS VAL SER THR MET MET	ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN
LEU LEU SER GLN ILE CLN GLV GLV ALA CLU CLU GLV	TLE TLEU ARG VAL VAL VAL ARG ASN ASN ASN ALA ALA PHE VAL VAL	TYR GLU VIB VIB VIA VIA ALA ASP ASP CIS CIS CIS CIS	SER THR THR THR LLN LLN ASN ASN ASN ASN ASN ASN ASN ASL ALA ALA LVS
• Molecule 8: U1	small nuclear ribe	onucleoprotein C	
Chain C:		84%	16%
Chain C:	SER SER LYS LYS ARG ARG SER ARG ALT LYS PRO PRO	84% States State	16%
Chain C: 토토교 홈리트를트트리움를 • Molecule 9: Sm	iᅊᅊᅊᅊᄫᄫᄫൔൔൔൔൔൔൔൔൔൔൔൔ all nuclear ribonu	84% ቘቘቜቘዸዸቘ cleoprotein-associate	16% d protein B
Chain C: 탈특교 환원팀링턴트원임링 • Molecule 9: Sm Chain b:	i ቘ SS 알 볼 빌 ቘ & 5 김 볼 S 로 uall nuclear ribonu 62%	84% ቘቘቜቜቜዸ፟ቘዸ፝ቑቔቔቔቘዸቔ cleoprotein-associate	16% ed protein B 38%
Chain C: 탄탄교 함립팀클트트립일클 • Molecule 9: Sm Chain b: 탄정 활용일상 등 일상 등 일	all nuclear ribonu 62%		16% ed protein B 38%
Chain C: HER AND YEAR AND HER STATE	all nuclear ribonu 62% 10 11 12 12 12 12 12 12 12 12 12 12 12 12	84% ESE TELESERERE	16% ed protein B 38% 38%
Chain C: E E 2		84% 띖법회학급트끔확확확보급혁 cleoprotein-associate 직장직끔끔트등등장등왕등	16% ed protein B 38% 요즘 또 또 또 또 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한
Chain C: EEE R BEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	all nuclear ribonu 62% Source States State	84%	16% ed protein B 38% 요즘 또 또 또 또 한 한 한 할 할 할 위 한 극 할 확 또 확 ed protein B

 \bullet Molecule 10: Small nuclear ribonucleoprotein Sm D3

Chain d:	92%	8%
MET THR M3 ARG CLY PRO ARG ARG ARG		
• Molecule 10: Sma	ll nuclear ribonucleoprotein Sm D3	
Chain v:	81%	19%
MET THR THR VAE VAE ASN SER ASN SER ASN MET PRO MET	TFMU ARG PRD LIYS ARG ARG	
• Molecule 11: Sma	ll nuclear ribonucleoprotein E	
Chain e:	81%	• 18%
MET SER ASN VAL LYS LYS THR KB K R R R R R R S SER SER SER SER	Aby GIJU ASP ASP ASP ASP ASP	
• Molecule 11: Sma	ll nuclear ribonucleoprotein E	
Chain w:	82%	18%
NET SER ASIN LYS LYS LYS LYS ALA MIO NO SER SER	ASP CITS CITS ASD ASP ASP ASP	
• Molecule 12: Sma	ll nuclear ribonucleoprotein F	
Chain f:	85%	15%
MET SER GLU SER SER SER ALA ALA ALA CLL CLL CLL CLL CLL CLL CLL	NSA UNA	
• Molecule 12: Sma	ll nuclear ribonucleoprotein F	
Chain x:	85%	15%
MET NER GLU SER SER SER ASP ASP ASP ASP ALA P12 P12 P12	NSA	
• Molecule 13: Sma	ll nuclear ribonucleoprotein G	
Chain g:	91%	• 6%
	PROTEIN DATA BANK	

• Molecule 13: Small nuclear ribonucleoprotein G

Chain y: 94% · ·

• Molecule 14: Small nuclear ribonucleoprotein Sm D1

Chain h:	73%	2	27%
M1 Q 49 PRO PRO PRO PRO ASN ASN ASN PRO PRO PRO FT FTHR	ALA SER ASP ASP ASP CLV SI19 GLN ASP ASP ASP ASP ASP ASP ASP ASP ARG ARG	AND AND PHE OLY ALA ALA ALA ARG ARG ARG ARG CLY LEU LEU	
• Molecule 14: Small	l nuclear ribonucleoprotei	n Sm D1	
Chain t:	49%	51%	
M1 P48 P10 P10 P10 P10 P10 P10 P10 P10 P10 P10	ALA ALA ALA ALA SER ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	L101 ASN ASN ASP ASP ASP ASP ASP ASP CLN CLN CLN CLN ASN ASN	SER LEU ARG ARG SER GLV GLV TLE ASN ASP PRO
SER LYS LYS LYS ARG ARG ARG ARG ALA ALA ASP ALA ASN ASP ASV	PHO ARG GLY LLEU LLEU		
• Molecule 15: Small	l nuclear ribonucleoprotei	n Sm D2	
Chain i:	90%		10%
MET SER SER SER SER GLN GLN GLN GLN GLY GLY GLY GLY CLOB	ALL		
• Molecule 15: Small	l nuclear ribonucleoprotei	n Sm D2	
Chain u:	84%		16%
MET NET SER SER CILL ANG ANG ANG ANG ANG CILU CILU SER SER SER SER	E17 P108 GLU GLU		
• Molecule 16: Prote	in LUC7		
Chain H:	74%		26%
MET SER THR M4 M4 M19 GL19 GL19 GL19 A11 SER A115 SER A15 SE	ARG SER SER SER SER SER GIN CIN CIN CIN CIN CIN CIN CIN CIN CIN C	GLN GLN GLN GLN ILE ALE ALE ALE ALA ALA ALA ALA ALA ALA SER MET	GLY MET MET LEN GLN GLN GLN GLN
P.2.44 THR TTR TTR TTR AIN AIA AIA AIA TTR TTR TTR TTR TTR TTR TTR TTR TTR TT	ANG PHE VAL		

• Molecule 17:	Pre-mRNA-processing factor 39		
Chain D:	92%		8%
MET PRO ASP ASP GIU GIU PHE THR TTR GIU ASP	LILE PRO PRO PRO ASP ASP ASP ASP ASP CT285 ASP CT285 ASP CT285 ASP CT285	MET VAL VAL ASP ASP ASC CYS CYS CYS CYS CYS CYS CYS CYS CYS C	V553 LEU ASN THR THR THR ASN VAL D561 D561
ST1 ST1			
• Molecule 18:	U1 small nuclear ribonucleoprote	ein 70 kDa homolo	og
Chain B:	62%	38%	
M1 N91 TRP ASN P94 176 176 6188 ARG	THR THR VAL TYR TYR TYR PHE PHE PRO PRO PRO CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	ARG LEEU PRO GLY ARG ALA ALA SER THR SER SER ASN ASN	ALA ALA GLU ARG ASN ALA ALA ALA ALA PRO PRO
ARG GLU GLU SER SER ALA ALA ASP ASP	ARG TYR SER SER SER SER SER SER ASP ASP ASP ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ALA ALA VAL THR SER VAL TYR LYS SER ARG ARG ARG	ALA GLU GLU GLU FRO GLU GLU GLU
ASP TYR			
• Molecule 19:	Pre-mRNA-processing protein P	RP40	
Chain K:	69%	• 309	16
MET TRP TRP CLYS CLYS ALA ALA ALA SEBA	CLA ANG TAR TAR TAR TAR ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	GLU GLU CEU LEU LEU CLEU CLEU CLEU CLEU CLEU	THR THR ASP GLY CLY CLY CLY CLY CLY CLY CLY CLY CLY C
THR THR ARG GLU GLU SER THR THR THR THR TLE PRO	PHE CLU CLV CLVS CLV CLVS CLV CLV CLV CLV CLV CLV CLV CLV CLV CLV	ANG THE ALA ALA ALA ALA GLY GLV GLV GLV GLY	THR THR ASN GLU GLU GLU GLU TYR ALA ASN
ASN SER LYS LEU LEU ASN VAL ARG ARG	LINE LINE LINE LINE LINE LINE LINE LINE	P310 D442 SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	THER ALM ALM ASN ASN THE LEU ALM ALA ALA ALA
ARG HIS LEU PRO ALA GLU CLU ASP			
• Molecule 20:	U2 snRNP component HSH155		
Chain O:	80%		16%
MET SER HIS PRO ILE GLN PHE VAL ASN ASN	ASP SER SER SER SER SER SER GLY GLY ASP CLU ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	GLU ALA ALA ALA ARG GLY GLY GLU GLU CLY VAL VAL	CLU LYS MET ARG CLU GLU ARG ASN ASN
GLU ASP SER TYR HIS HIS ARG ARG ARD ART MET	LYS PHE CLU PHE CLU PRO FRO SER SER SER SER SER CLU ASP CLU ASP ALA ALA ALA ALA ALA ALA	LYS ARG LYS SER IYS SER ARG ARG ASP ASP CLY CTYR GLY TYR CLU	ASP ASP GLU SER SER THR ALA ALA LYS GLU GLU SSN
ASP SER ALA LLEU VAL ASN VAL GLU GLU CLU TLE HTS	ASP ASP PHE PHE PHE PHE PHE PHE PHE ASP PHO ASP PHO ASP PPO ASP CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS	LEU ASP ASP ASP ASP P197 P197 P298 P298	P256 P284 P315 P315 P369 P387
P424 P428 P449 P472 P472	P4497 P525 P532 P532 P596 P696 P6614 P661 P661 P661	17 17 17 20 17721 1721 1971	

• Molecule 21: Pre-mRNA-splicing factor PRP11 Chain U: 66% 33% SER GGLY GGLY GGLY GGLN GGLN GGLN CGLN CGCLN CGCLN PHE PHE LYS GLN GLU GLU GLU ALA ALA ASP VAL VAL • Molecule 22: Pre-mRNA-splicing factor PRP21 Chain V: 36% 63% MENTAL STATEMENT AND ADDRESS A SER 3LV 3LV 3LV ASP ASP 3LU ASS SER ARG 3LU 2LL VS 3LU ASP ARG PRO PRO PRO PRO PRO ALA LYS • Molecule 23: Pre-mRNA-splicing factor PRP9 Chain T: 87% 13% PRO 3LU 3LU 3LU 3LU 4LVS ASP ASP PRO PRO ILE ALA ALA ALA ALA ALA PRO PRO PRO PRO PRO PRO CLN SER LEU VAL LEV VAL LEV VAL • Molecule 24: Pre-mRNA-splicing factor RDS3 Chain S: 86% 14% • Molecule 25: Cold sensitive U2 snRNA suppressor 1 Chain Q: 50% 50%

MET VAL GLU GLU FRO FRO FRO FRO FRO ARG GLU FRR HIS HIS HIS HIS HIS HIS ARG GLU GLU GLU GLU ALA ALA ALA ALA ALA

• Molecule 31: Pre-mRNA-processing ATP-dependent RNA helicase PRP5

C	hai	n p	:							52	2%														Z	8%	,									
MET	THE	ASP SER	ULI D	ASN	ASM	GLU	LEU	0311 CELII	GLU	ARG	LYS	LYS	ALA	LYS	TXS	G L.N	TYS	GLN	DHE	ASP ALA	GLN	GLU	SIH	THR	SER	ASN	ILE	VAL THR	ASN	LEU	GLU	GLY GLY	GLN	THE	GLU GLU	BH 태
THR	GLU GLN	GLU ARG	VAL LYS	GLU GLU	ARG	LYS	TYS	ASN GLII	PHE	ARG	SER	ASP GLII	PRO	VAL SFR	VAL	LYS	SER	LYS	TYS	SER LYS	ARG	LYS	VAL	TYS	LYS	SER	ASP	PHE SER	ASP	ASP	ASP	SER GLU	ILE	GLY VAL	SER	ARG
SER	GLU HIS	ILE GLN	ALA	PRO GLU	ASP	ASN CT II	STR	ASP PRO	TEU	ASP	DHE	MET THR	SER	LEU	GLU	0TU	NET I	ASN	SER	CLY GLY	MET	ASP	ARG CI V	ASP	TEU	ASP	GLU	ASP GLN	LEU	CLU GLU	TEU	GLY GLY	THR	ASP	0TD	VAL
GLU	ASP ASN THR	ASP	SER ASN	ILE ALA	LIS	ALA T VC	LEU	LYS AT.A	SKT	LYS	VAL	C1.N	ILE	TYR TVB	SER	PRO GTU	E210	T271	GLU	K273	F507	GLU	VAL	S EB S	GLU	ASP	0 TTN	S 四 S 四 S	ASP	GLU	GLU	VAL D525		M671 LYS		SAT
PHE	AKG LEU SER	GLY SYJ	PHE	GLY GLY	GL Y LEU	GLU	ILE	SER	TYS	ARG	GLU	AL.A GT.N	ASN	LYS	LEU	GLU	TXS	ASN	ASP	LYS ARG	SER	ASP	LEU	TYS	LYS	SER	PRO	ARG GLU	ALD TTC	ASP	SER	VAL SER	GLU	SER SER	ALA	ILE
PRO	AKG LEU ASN	TYR GLU	LEU	CLU GLU	THR	ASP CT V	SER	1LE TLE	PHE	TYR	LYS	VAL TYR	ILE	ASN	LEU	PRO GI N	ILE	ARG	TRP	GLU ALA	THR	ASN	THR	LEU	DHE	ILE	SIH	GLU THR	GLY	SER	ILE	ASN	LYS	GLY	PHE	PRO
GLU	CTU CTU CTU	PRO LYS	ASN GLU	ASN ASP	PRO DAG	I EII SXI	TYR	LEU	ILE	GLU	GLN	ASP GLII	TXS	ASP	GLN	LEU	ILE	G L U	LEU	GLU	LYS	LYS	GLU	VAL	VAL	ALA	SER	LEU SER	LEU	SER	THR	LYS TYR				
•	Mo	lec	ule	32	: T	J2	sr	ιR	N	А																										
C	hai	n 2	: -	6	%	•													ε	8%				-	-											
C. ₹ ₹	hai	n 2 ∢⊳		0 6' 0 P :	% - D	•	טט	0 11	ň	D	5 5	C	ñ	4 5	A	рu	Å.	A G32		(334 135 135	52	041 U42	G43 1144	U45	C46 U47	U48 1140	050 U50	A66	AG7	000	C7 4	A A	U	G78 A79		C84
AS5 AS5 AS5 AS5 AS5 AS5 AS5 AS5 AS5 AS5	hai 2 • • 8 • •	n 2 ∢⊳	n cc	· 6	% n	•	00	G U	n n	A U	e ve	A C II II	<mark>Å108</mark> U	C109 A		A112 U 1113 C	• • • •	U11/ A U118 G32	8 133	C121 C34 C32 C121 C34 C35	2		A G43	A U45	A C46 U U47	A U48		A A A66	A AG7	U U	G139 C74	G140 A A141 A	C142 U	G143 G78 G78 G79	G145 A146 1102	
G148 A85 A A A85 A A85 A A A85 A A85 A A A85 A		n 2 ∢⊳	n n	• 6' • • • •	% n v v	• •		e و 1 ت 11		U v	ک در ۲		ŭ <mark>A108</mark> Ŭ	C C C 109 A	G C111 A	с <u>A112</u> U II I113 С	A A A A A A A A A A A A A A A A A A A	A UILY A U U118 G32	8 133 6	u <u>C121</u> 634 C A122 U35 % 88	A C		U А <mark>G43</mark> С А 1144	U A U45	C A C46 A U U47	C A U48		U A A A A A A A A A A A A A A A A A A A	U A AG7		ŭ <u>G139</u> C74	G G140 A C A141 A	U C142 U	G G143 G78 C G144 A79	U G145	\mathbf{U} $\mathbf{A147}$ $\mathbf{C84}$
U <u>G148</u> A85 A 		n 2 ♥₽ ♡₽		. 6 		• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				n n n n n n			A U A108 U	U C C109 A	A G C111 A	G C A112 U		G A UII/ A U U U118 G32	R C C C C C C C C C C C C C C C C C C C	U U C121 634 038 U C A122 U35 %	A C	\mathbf{U} \mathbf{G} \mathbf{C} \mathbf{C} \mathbf{U}	G U A G43 А C A II44		G C A C 46 G A U U47	U C A U48		U C A A A A A A A A A A A A A A A A A A	C U A AG7		A U G139 C74	A G G140 A U C A141 A	U U C142 U	G G G G143 G78 G C G144 A79	U U G145 1	
U U G148 A85 A G176 A G		n 2 ∢⊳ ℃℃		• 6 • • • • • • • • • • • • • • • • • •		• • • •							ŭ a ŭ <u>atos</u> ŭ	A U C C109 A II A C A110 G	U A G C111 A			U G A UIIY A U U U U118 G32	n n	6 U U C <mark>121 634</mark> 88 U U C A122 U35 %			C G U A G43		U G C A U C46						ŭ A ŭ <mark>Ĝ139 C74</mark>	C A G G140 A U U C A141 A	A U U C142 U	U G G G143 G78 U G C G144 A79		c \overline{u} u $\overline{a147}$ $c84$
U U U U U U U U U U U U U U U U U U U		n 2 ∢ ⊳ ℃ ♡ ∽		• 6 • • • • • • • • • • • • • • • • • •									Č V A V A108 V	T T T C C109 A		A G G C A112 U G II G II 113 C		U U G A UIIY A U U U U U118 G32	G U U G	6 6 U U C C121 634 83 C U U C A122 U35 %			U C G U A G43	G U U A A	C C G G C A C46 U U G A U U47			u u c A A A A A A A A A A A A A A A A A			ŭ ŭ <u>č139</u> <mark>C74</mark>	U C A G G140 A C U U C A141 A	C A U U C142 U	с U G G G143 G78 U U G C G144 A79	G U Ŭ Ŭ G145 11 11 A A146 1100	C C U U $A147$ $C84$
U U C		n 2 ≪ ▷ ♡ ▷ ♡ ▷ ○ ≪ ▷ ▷		 6 0 D : 1 D D - 2 D 0 : 4 D 0 : 4 D 0 : 4 D 0 : 4 D 0 : 									G C U A U A108 U	C C A U C C C109 A	G U U A G CIII A	G A G G C A112 U A C II C II M13		U U U G A UII/ A U U U U U U U118 G32	C C C C C C C C C C C C C C C C C C C	6 6 6 7 U U C <mark>121 634</mark> 83 U C U U C A122 U35 %			U U C G U A G43		U C C G C A C46 U U U G A U U47			G U U C A A A A A A A A A A A A A A A A A			G U U A U G139 C74	A U C A G G140 A A C U U C A141 A	G C A U U C C142 U	A C U G G G143 G78 A U U G C G144 A79	A G U U U G145 100	
G U U U U U U U U U U U U U U U U U U U		n 2											A G C U A U A108 U	A C C A U C C109 A A C II II A C A110 G		U G A G G C A112 U TT A C TT 7112 U		G U U U G A UII/ A G U U U U U U UII8 G32		A U C U U C 121 034 88 A U C U U C A122 U35 %8			G U U C G U A G43		d u c c c c c z a c46 c u u u c c c a U 7	U A U G U C A U48		U G A A A A A A A A A A A A A A A A A A			A G U U A U G139 C74	U A U C A G G140 A G A C U U C A141 A	G G C A U U C C142 U	G A C U G G G G143 G78 G A U U G C G144 A79	C A G U U U G145	C C C U U A147 C84

<mark>С1169</mark> С С С С С С С

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	217460	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	44	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON III (4k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	E	Sond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	F	0.26	0/1342	0.50	0/1868
2	Ι	0.60	6/768~(0.8%)	0.89	1/1189~(0.1%)
3	Ε	0.24	0/2743	0.45	0/3841
4	J	0.26	0/530	0.50	1/740~(0.1%)
5	1	0.30	0/13201	1.01	30/20553~(0.1%)
6	G	0.25	0/1208	0.49	0/1689
7	А	0.24	0/671	0.51	0/937
8	С	0.25	0/992	0.48	0/1390
9	b	0.25	0/608	0.51	0/848
9	\mathbf{S}	0.30	0/322	0.57	0/446
10	d	0.27	0/479	0.52	0/671
10	V	0.29	0/415	0.54	0/579
11	е	0.24	0/392	0.57	0/546
11	W	0.29	0/392	0.54	0/546
12	f	0.26	0/367	0.54	0/510
12	Х	0.31	0/367	0.58	0/510
13	g	0.25	0/355	0.56	0/491
13	У	0.26	0/374	0.50	0/520
14	h	0.24	0/535	0.48	0/743
14	t	0.33	0/364	0.55	0/507
15	i	0.24	0/503	0.52	0/703
15	u	0.32	0/465	0.53	0/650
16	Η	0.23	0/962	0.37	0/1340
17	D	0.24	0/2901	0.41	0/4059
18	В	0.24	0/947	0.43	0/1325
19	Κ	0.52	0/2050	0.94	0/2870
20	0	0.42	0/4149	0.77	30/5819~(0.5%)
21	U	0.22	0/867	0.43	0/1208
22	V	0.38	0/515	0.43	0/719
23	Т	0.27	$0/2\overline{324}$	0.44	0/3248
24	S	0.27	0/463	0.49	0/645
25	Q	0.27	0/1137	0.47	0/1593
26	Р	0.29	1/6009~(0.0%)	0.54	0/8407
27	R	0.28	0/869	0.46	0/1209

Mal	Chain	Bo	ond lengths	Bond angles			
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5		
28	Z	0.26	0/412	0.41	0/573		
29	W	0.31	0/869	0.60	0/1219		
30	Y	0.27	0/418	0.49	0/582		
31	р	0.55	1/2269~(0.0%)	0.66	3/3172~(0.1%)		
32	2	4.64	44/3363~(1.3%)	2.45	107/5218~(2.1%)		
All	All	1.16	52/57917~(0.1%)	0.92	172/83683~(0.2%)		

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
7	А	0	1
13	g	0	1
18	В	0	1
23	Т	0	1
26	Р	0	2
29	W	0	1
32	2	0	2
All	All	0	9

All (52) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(\text{\AA})$	Ideal(Å)
32	2	35	U	C1'-N1	151.33	3.75	1.48
32	2	42	U	C1'-N1	150.94	3.75	1.48
32	2	44	U	C1'-N1	149.92	3.73	1.48
31	р	271	THR	C-N	20.19	1.80	1.34
32	2	1161	U	O3'-P	-15.61	1.42	1.61
32	2	1092	А	O3'-P	-14.75	1.43	1.61
32	2	1116	А	O3'-P	-11.56	1.47	1.61
32	2	1166	G	O3'-P	10.01	1.73	1.61
32	2	1163	С	O5'-C5'	9.13	1.59	1.44
32	2	1116	А	C3'-O3'	-8.90	1.29	1.42
32	2	1127	А	O3'-P	-8.73	1.50	1.61
32	2	1167	U	O3'-P	8.62	1.71	1.61
32	2	1164	С	O3'-P	-8.20	1.51	1.61
32	2	1162	U	P-O5'	7.59	1.67	1.59
32	2	1163	С	P-O5'	7.44	1.67	1.59
32	2	1117	G	P-O5'	7.25	1.67	1.59
32	2	1096	С	O3'-P	6.97	1.69	1.61

001000	nucu jion	Procee	a page.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
32	2	1154	U	C1'-N1	6.97	1.59	1.48
32	2	1128	С	C5'-C4'	-6.94	1.43	1.51
32	2	1140	U	C1'-N1	6.92	1.59	1.48
32	2	1095	U	O3'-P	6.57	1.69	1.61
32	2	1165	С	O3'-P	6.53	1.69	1.61
2	Ι	260	G	C1'-N9	-6.51	1.37	1.46
32	2	1169	С	C1'-N1	6.43	1.58	1.48
32	2	145	G	P-O5'	-6.37	1.53	1.59
32	2	1168	U	C5'-C4'	-6.25	1.43	1.51
32	2	1117	G	C5'-C4'	6.19	1.58	1.51
32	2	1162	U	O3'-P	6.18	1.68	1.61
32	2	1162	U	C2-N3	6.09	1.42	1.37
32	2	1165	С	O5'-C5'	6.03	1.54	1.44
32	2	1162	U	O5'-C5'	6.01	1.54	1.44
26	Р	188	SER	C-N	-5.99	1.22	1.34
2	Ι	250	U	C1'-N1	5.98	1.57	1.48
32	2	1151	U	O5'-C5'	-5.95	1.33	1.42
32	2	1163	С	O3'-P	5.88	1.68	1.61
32	2	68	U	C1'-N1	5.72	1.57	1.48
32	2	1161	U	C3'-O3'	-5.71	1.34	1.42
2	Ι	249	С	C1'-N1	5.70	1.57	1.48
32	2	1162	U	C3'-C2'	-5.64	1.46	1.52
32	2	1097	G	O3'-P	5.63	1.68	1.61
32	2	118	U	C1'-N1	5.62	1.57	1.48
32	2	121	С	C1'-N1	5.50	1.57	1.48
32	2	44	U	C5-C6	5.39	1.39	1.34
32	2	111	С	C1'-N1	5.34	1.56	1.48
32	2	109	С	C1'-N1	5.31	1.56	1.48
32	2	147	А	O3'-P	-5.28	1.54	1.61
2	Ι	268	U	C1'-N1	5.25	1.56	1.48
32	2	1166	G	C5'-C4'	5.23	1.57	1.51
2	Ι	246	U	C1'-N1	5.14	1.56	1.48
2	Ι	247	U	C1'-N1	5.13	1.56	1.48
32	2	85	A	C1'-N9	-5.08	1.39	1.46
32	2	1162	U	C4'-O4'	5.01	1.52	1.45

All (172) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	2	44	U	C6-N1-C1'	-74.43	17.00	121.20
32	2	42	U	C6-N1-C1'	-73.72	17.99	121.20
32	2	35	U	C6-N1-C1'	-73.60	18.16	121.20

$\alpha \cdot \cdot \cdot \cdot$	e		
Continued	trom	previous	page
	9	1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	2	44	U	O4'-C1'-N1	-27.50	86.20	108.20
32	2	42	U	O4'-C1'-N1	-21.03	91.37	108.20
32	2	35	U	O4'-C1'-N1	-20.67	91.67	108.20
31	р	271	THR	O-C-N	-18.58	92.98	122.70
32	2	1162	U	C5'-C4'-O4'	14.83	126.89	109.10
32	2	1093	С	P-O5'-C5'	14.82	144.62	120.90
32	2	1147	А	C5'-C4'-C3'	-14.18	93.31	116.00
32	2	1092	А	C2'-C3'-O3'	14.11	140.54	109.50
32	2	1098	С	N1-C1'-C2'	-13.38	96.61	114.00
32	2	1151	U	C4'-C3'-O3'	-12.56	83.03	109.40
32	2	44	U	C2-N1-C1'	-12.33	102.90	117.70
32	2	1151	U	P-O5'-C5'	11.71	139.64	120.90
32	2	1117	G	C5'-C4'-O4'	11.47	122.86	109.10
32	2	35	U	C2-N1-C1'	-11.45	103.96	117.70
32	2	42	U	C2-N1-C1'	-11.33	104.10	117.70
32	2	145	G	C5'-C4'-C3'	-11.20	98.08	116.00
32	2	1117	G	C5'-C4'-C3'	-10.88	98.59	116.00
32	2	44	U	C2-N3-C4	-10.88	120.47	127.00
32	2	1163	С	C5'-C4'-O4'	10.58	121.79	109.10
5	1	442	U	OP2-P-O3'	-10.46	82.18	105.20
32	2	141	А	N9-C1'-C2'	-10.45	100.41	114.00
5	1	442	U	OP1-P-O3'	-10.44	82.24	105.20
32	2	1126	G	N9-C1'-C2'	-10.07	100.91	114.00
32	2	1163	С	C5'-C4'-C3'	-9.73	100.43	116.00
32	2	1139	G	N9-C1'-C2'	-9.71	101.31	112.00
32	2	1147	А	P-O5'-C5'	9.61	136.27	120.90
20	0	238	PRO	CA-N-CD	-9.29	98.50	111.50
20	Ο	206	PRO	CA-N-CD	-9.28	98.51	111.50
20	Ο	424	PRO	CA-N-CD	-9.28	98.50	111.50
20	0	284	PRO	CA-N-CD	-9.28	98.51	111.50
20	Ο	315	PRO	CA-N-CD	-9.23	98.58	111.50
20	Ο	249	PRO	CA-N-CD	-9.22	98.59	111.50
20	Ο	399	PRO	CA-N-CD	-9.20	98.61	111.50
20	0	691	PRO	CA-N-CD	-9.20	98.62	111.50
20	0	596	PRO	CA-N-CD	-9.19	98.63	111.50
32	2	1162	U	C5'-C4'-C3'	-9.17	101.32	116.00
20	0	687	PRO	CA-N-CD	-9.17	98.67	111.50
20	O	449	PRO	CA-N-CD	-9.15	98.69	111.50
20	0	481	PRO	CA-N-CD	-9.14	98.71	111.50
20	0	656	PRO	CA-N-CD	-9.14	98.71	111.50
20	0	759	PRO	CA-N-CD	-9.11	98.75	111.50
32	2	1168	U	C4'-C3'-O3'	-8.99	90.51	109.40

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
20	0	387	PRO	CA-N-CD	-8.98	98.92	111.50
32	2	142	С	N1-C1'-C2'	-8.83	102.29	112.00
20	0	681	PRO	CA-N-CD	-8.80	99.17	111.50
20	0	428	PRO	CA-N-CD	-8.78	99.22	111.50
20	0	197	PRO	CA-N-CD	-8.69	99.33	111.50
32	2	1152	U	P-O5'-C5'	8.68	134.79	120.90
20	0	525	PRO	CA-N-CD	-8.68	99.35	111.50
32	2	1151	U	O4'-C1'-N1	8.67	115.14	108.20
20	0	629	PRO	CA-N-CD	-8.65	99.39	111.50
20	0	472	PRO	CA-N-CD	-8.64	99.40	111.50
20	0	721	PRO	CA-N-CD	-8.64	99.40	111.50
20	0	680	PRO	CA-N-CD	-8.63	99.42	111.50
20	0	614	PRO	CA-N-CD	-8.63	99.42	111.50
20	0	600	PRO	CA-N-CD	-8.60	99.46	111.50
20	0	369	PRO	CA-N-CD	-8.59	99.47	111.50
20	0	256	PRO	CA-N-CD	-8.59	99.47	111.50
20	0	532	PRO	CA-N-CD	-8.57	99.51	111.50
32	2	1148	U	C4'-C3'-O3'	-8.54	91.46	109.40
32	2	1092	A	P-O5'-C5'	8.53	134.55	120.90
4	J	274	PRO	CA-N-CD	-8.53	99.56	111.50
20	0	497	PRO	CA-N-CD	-8.52	99.58	111.50
32	2	44	U	N1-C2-N3	8.46	119.98	114.90
32	2	145	G	P-O5'-C5'	8.32	134.22	120.90
32	2	148	G	C5'-C4'-C3'	-8.30	102.72	116.00
32	2	1165	С	C5'-C4'-C3'	-8.26	102.79	116.00
20	0	720	PRO	CA-N-CD	-8.18	100.05	111.50
32	2	1151	U	C5'-C4'-O4'	8.14	118.86	109.10
32	2	44	U	N3-C4-C5	7.98	119.39	114.60
32	2	1168	U	P-O5'-C5'	-7.91	108.25	120.90
32	2	1167	U	C2'-C3'-O3'	7.88	126.83	109.50
32	2	1092	A	C4'-C3'-O3'	-7.82	92.97	109.40
32	2	1165	С	C5'-C4'-O4'	7.77	118.42	109.10
32	2	1107	С	N1-C1'-C2'	-7.74	103.48	112.00
32	2	1147	A	C4'-C3'-O3'	7.74	128.48	113.00
32	2	1161	U	C5'-C4'-C3'	-7.73	103.62	116.00
32	2	1093	С	C5'-C4'-C3'	-7.71	103.67	116.00
32	2	1169	С	P-O5'-C5'	-7.62	108.70	120.90
32	2	1097	G	C3'-C2'-O2'	$7.6\overline{1}$	135.38	113.30
32	2	1165	C	C4'-C3'-O3'	$7.5\overline{5}$	128.11	113.00
32	2	1128	C	C5'-C4'-O4'	$7.3\overline{0}$	117.86	109.10
32	2	1168	U	$C2'-\overline{C3'}-O3'$	7.29	125.55	109.50
32	2	1089	G	C4'-C3'-O3'	7.24	127.47	113.00

$\alpha \cdot \cdot \cdot \cdot$	C		
1 Continued	trom	nromanie	naao
	11011	$p_{1}c_{0}c_{0}a_{0}$	$puy \dots$
		1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	2	1115	G	O5'-P-OP1	-7.23	99.19	105.70
32	2	1159	U	O5'-P-OP1	-7.22	99.20	105.70
32	2	139	G	O5'-P-OP2	-7.21	99.22	105.70
32	2	1089	G	O5'-P-OP2	-7.14	99.28	105.70
5	1	289	U	N3-C2-O2	-7.13	117.21	122.20
32	2	139	G	O5'-P-OP1	-7.12	99.29	105.70
5	1	443	U	OP1-P-OP2	7.11	130.27	119.60
32	2	1089	G	O5'-P-OP1	-7.09	99.32	105.70
32	2	1159	U	O5'-P-OP2	-7.07	99.33	105.70
32	2	1115	G	O5'-P-OP2	-7.04	99.37	105.70
32	2	1115	G	C4'-C3'-O3'	7.03	127.07	113.00
32	2	1096	С	C1'-C2'-O2'	-6.68	90.55	110.60
32	2	148	G	C5'-C4'-O4'	6.61	117.03	109.10
5	1	498	U	N3-C2-O2	-6.61	117.58	122.20
32	2	1129	U	C5'-C4'-O4'	6.60	117.02	109.10
32	2	140	G	N9-C1'-C2'	-6.53	104.82	112.00
32	2	78	G	C2'-C3'-O3'	6.39	123.92	113.70
32	2	1166	G	O5'-C5'-C4'	6.36	123.77	111.70
31	р	271	THR	CA-C-N	6.34	131.14	117.20
32	2	1166	G	C5'-C4'-C3'	6.30	126.09	116.00
32	2	145	G	O4'-C1'-N9	6.29	113.24	108.20
5	1	500	С	C6-N1-C2	-6.29	117.79	120.30
32	2	145	G	O5'-C5'-C4'	-6.23	99.87	111.70
32	2	1092	A	N9-C1'-C2'	6.21	122.08	114.00
32	2	44	U	N1-C1'-C2'	6.17	122.03	114.00
32	2	1152	U	C5'-C4'-C3'	-6.15	106.17	116.00
5	1	289	U	N1-C2-O2	6.13	127.09	122.80
32	2	1096	С	C4'-C3'-O3'	6.12	125.25	113.00
32	2	44	U	C5-C4-O4	-6.08	122.25	125.90
32	2	1151	U	O3'-P-O5'	-6.02	92.57	104.00
32	2	1167	U	P-O3'-C3'	-6.02	112.48	119.70
5	1	148	С	N1-C2-O2	6.00	122.50	118.90
5	1	148	С	C2-N1-C1'	5.98	125.38	118.80
5	1	54	С	C2-N1-C1'	5.96	125.36	118.80
5	1	144	С	C2-N1-C1'	5.96	125.36	118.80
5	1	268	С	P-O3'-C3'	5.90	126.78	119.70
32	2	1162	U	C4'-C3'-O3'	5.87	124.75	113.00
32	2	1167	U	C5'-C4'-O4'	-5.87	102.06	109.10
5	1	144	C	N1-C2-O2	$5.8\overline{4}$	122.40	118.90
32	2	1108	A	C3'-C2'-C1'	5.81	106.15	101.50
32	2	1115	G	P-O3'-C3	5.76	126.62	119.70
32	2	1148	U	C5'-C4'-O4'	5.75	116.00	109.10

$\alpha \cdot \cdot \cdot$	C		
Continued	trom	nremane	ทลลค
Continucu	110110	$p_{1}c_{0}u_{0}u_{0}$	payc
		1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	1	151	С	P-O3'-C3'	5.74	126.59	119.70
32	2	1162	U	C2'-C3'-O3'	-5.74	96.88	109.50
5	1	342	С	C6-N1-C2	-5.68	118.03	120.30
32	2	141	А	C4'-C3'-O3'	5.68	124.36	113.00
5	1	258	U	P-O3'-C3'	5.66	126.50	119.70
5	1	399	А	P-O3'-C3'	5.66	126.49	119.70
32	2	1167	U	C5'-C4'-C3'	5.58	124.92	116.00
32	2	1097	G	C2'-C3'-O3'	-5.57	97.25	109.50
32	2	1162	U	P-O3'-C3'	5.51	126.31	119.70
32	2	1151	U	N1-C1'-C2'	5.50	121.15	114.00
32	2	145	G	C3'-C2'-O2'	-5.49	97.38	113.30
32	2	145	G	C5'-C4'-O4'	5.48	115.67	109.10
32	2	1105	С	C4'-C3'-O3'	-5.46	97.94	109.40
31	р	273	LYS	N-CA-C	5.45	125.72	111.00
32	2	1168	U	C4'-C3'-C2'	-5.42	97.18	102.60
32	2	1162	U	C4'-C3'-C2'	5.42	108.02	102.60
5	1	144	С	N3-C2-O2	-5.40	118.12	121.90
5	1	342	С	C5-C6-N1	5.37	123.69	121.00
32	2	1168	U	O3'-P-O5'	-5.32	93.89	104.00
2	Ι	6	U	N1-C2-O2	5.27	126.49	122.80
5	1	480	С	C6-N1-C2	-5.25	118.20	120.30
5	1	496	С	C6-N1-C2	-5.23	118.21	120.30
32	2	1152	U	O4'-C4'-C3'	5.21	110.27	106.10
5	1	151	С	N1-C2-O2	5.20	122.02	118.90
5	1	182	С	C2-N1-C1'	5.19	124.51	118.80
5	1	347	U	N3-C2-O2	-5.19	118.57	122.20
32	2	46	С	C2'-C3'-O3'	5.16	121.95	113.70
32	2	66	А	C4'-C3'-O3'	5.16	123.31	113.00
32	2	1148	U	P-O5'-C5'	5.14	129.13	120.90
32	2	1163	С	C4'-C3'-O3'	5.13	123.27	113.00
5	1	130	С	N1-C2-O2	5.12	121.97	118.90
5	1	342	С	C2-N1-C1'	5.12	124.43	118.80
5	1	130	С	N3-C2-O2	-5.10	118.33	121.90
32	2	145	G	C4'-C3'-O3'	5.10	123.20	113.00
5	1	144	С	C6-N1-C2	-5.06	118.28	120.30
32	2	1169	С	O5'-C5'-C4'	-5.05	102.10	111.70
32	2	1147	A	O5'-C5'-C4'	5.05	121.29	111.70
5	1	501	C	C5-C6-N1	5.04	123.52	121.00
5	1	391	C	C6-N1-C2	-5.03	118.29	120.30
32	2	66	A	P-O3'-C3'	5.02	125.72	119.70
32	2	146	A	$C5'-C\overline{4'-C3'}$	-5.02	107.97	116.00
32	2	145	G	P-O3'-C3'	$5.0\overline{1}$	$125.7\overline{2}$	119.70

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	2	1161	U	C5'-C4'-O4'	5.01	115.11	109.10

There are no chirality outliers.

All (9) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
32	2	141	A	Sidechain
32	2	143	G	Sidechain
7	А	12	ARG	Peptide
18	В	176	ILE	Peptide
26	Р	1013	ASP	Peptide
26	Р	1014	LYS	Peptide
23	Т	458	SER	Peptide
29	W	16	VAL	Peptide
13	g	20	ASN	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	F	259/523~(50%)	251~(97%)	8 (3%)	0	100 100
3	Ε	542/544~(100%)	521~(96%)	21 (4%)	0	100 100
4	J	101/620~(16%)	92~(91%)	8 (8%)	1 (1%)	15 54
6	G	235/492~(48%)	222~(94%)	13~(6%)	0	100 100
7	А	126/298~(42%)	116~(92%)	10 (8%)	0	100 100
8	С	193/231~(84%)	183~(95%)	10~(5%)	0	100 100

a 1	e		
Continued	trom	previous	<i>paae</i>
001111111111111111111111111111111111111	1.0110	Procto ao	P ~ 9 0

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
9	b	117/196~(60%)	110~(94%)	7~(6%)	0	100	100
9	\mathbf{s}	61/196~(31%)	58~(95%)	3~(5%)	0	100	100
10	d	91/101~(90%)	87~(96%)	4 (4%)	0	100	100
10	v	80/101~(79%)	77~(96%)	3 (4%)	0	100	100
11	е	73/94 (78%)	67~(92%)	5 (7%)	1 (1%)	11	46
11	W	73/94~(78%)	72~(99%)	1 (1%)	0	100	100
12	f	71/86~(83%)	69 (97%)	2(3%)	0	100	100
12	x	71/86~(83%)	69~(97%)	2(3%)	0	100	100
13	g	68/77~(88%)	62 (91%)	5 (7%)	1 (2%)	10	45
13	у	73/77~(95%)	64 (88%)	6 (8%)	3 (4%)	3	22
14	h	101/146~(69%)	98~(97%)	3 (3%)	0	100	100
14	t	68/146~(47%)	67~(98%)	1 (2%)	0	100	100
15	i	95/110~(86%)	91~(96%)	4 (4%)	0	100	100
15	u	90/110~(82%)	89~(99%)	1 (1%)	0	100	100
16	Н	186/261~(71%)	$180 \ (97\%)$	6 (3%)	0	100	100
17	D	570/629~(91%)	554 (97%)	16 (3%)	0	100	100
18	В	182/300~(61%)	169~(93%)	13 (7%)	0	100	100
19	К	402/583~(69%)	379~(94%)	19 (5%)	4 (1%)	15	54
20	Ο	810/971~(83%)	772 (95%)	35 (4%)	3 (0%)	34	72
21	U	166/282~(59%)	141 (85%)	24 (14%)	1 (1%)	25	65
22	V	101/280~(36%)	90~(89%)	10 (10%)	1 (1%)	15	54
23	Т	454/530~(86%)	414 (91%)	40 (9%)	0	100	100
24	S	90/107~(84%)	79~(88%)	11 (12%)	0	100	100
25	Q	214/436~(49%)	202 (94%)	11 (5%)	1 (0%)	29	69
26	Р	1170/1361~(86%)	1055~(90%)	105 (9%)	10 (1%)	17	56
27	R	165/213~(78%)	161 (98%)	3 (2%)	1 (1%)	25	65
28	Z	81/85~(95%)	76 (94%)	4 (5%)	1 (1%)	13	50
29	W	168/238~(71%)	129 (77%)	28 (17%)	11 (6%)	1	16
30	Y	82/111 (74%)	76~(93%)	5 (6%)	1 (1%)	13	50
31	р	445/849~(52%)	431 (97%)	13 (3%)	1 (0%)	47	81
All	All	7874/11564~(68%)	7373 (94%)	460 (6%)	41 (0%)	32	69

All (41) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
25	Q	368	ILE
26	Р	1299	ILE
29	W	34	LEU
29	W	52	LYS
13	у	50	ASP
4	J	274	PRO
19	K	356	ARG
19	K	370	PRO
26	Р	363	VAL
26	Р	413	ILE
26	Р	626	PRO
26	Р	629	GLY
29	W	17	ASP
29	W	18	HIS
29	W	51	THR
29	W	68	PRO
29	W	121	PRO
29	W	124	LEU
30	Y	71	GLN
11	е	34	GLN
27	R	48	ALA
29	W	29	VAL
31	р	273	LYS
13	g	21	GLY
19	K	353	THR
19	K	442	ASP
20	0	713	LYS
20	0	717	THR
26	Р	107	ALA
26	Р	628	ALA
28	Ζ	19	ILE
29	W	12	PRO
21	U	232	GLY
22	V	181	HIS
13	у	30	ARG
13	У	60	GLN
26	Р	364	THR
26	Р	486	PRO
29	W	159	VAL
20	0	614	PRO
26	Р	1031	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{n} tiles
1	F	11/451~(2%)	$11 \ (100\%)$	0	100	100
3	Е	12/519~(2%)	12 (100%)	0	100	100
4	J	3/568~(0%)	3 (100%)	0	100	100
6	G	8/448~(2%)	8 (100%)	0	100	100
7	А	6/273~(2%)	6 (100%)	0	100	100
8	С	8/214 (4%)	8 (100%)	0	100	100
9	b	3/176~(2%)	3 (100%)	0	100	100
9	s	1/176~(1%)	1 (100%)	0	100	100
10	d	7/89~(8%)	7 (100%)	0	100	100
10	v	4/89~(4%)	4 (100%)	0	100	100
11	е	5/83~(6%)	5 (100%)	0	100	100
11	W	5/83~(6%)	5 (100%)	0	100	100
12	f	3/77~(4%)	3 (100%)	0	100	100
12	х	3/77~(4%)	3 (100%)	0	100	100
13	g	1/66~(2%)	1 (100%)	0	100	100
13	у	2/66~(3%)	2 (100%)	0	100	100
14	h	3/129~(2%)	3 (100%)	0	100	100
14	t	3/129~(2%)	3 (100%)	0	100	100
15	i	4/103~(4%)	4 (100%)	0	100	100
15	u	3/103~(3%)	3 (100%)	0	100	100
16	Н	5/234~(2%)	5 (100%)	0	100	100
17	D	12/603~(2%)	12 (100%)	0	100	100
18	В	9/265~(3%)	9 (100%)	0	100	100
19	K	10/538~(2%)	10 (100%)	0	100	100
20	О	42/867~(5%)	42 (100%)	0	100	100
21	U	7/236~(3%)	7 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
22	V	1/259~(0%)	1~(100%)	0	100	100
23	Т	10/492~(2%)	10~(100%)	0	100	100
24	S	4/97~(4%)	4 (100%)	0	100	100
25	\mathbf{Q}	18/392~(5%)	18~(100%)	0	100	100
26	Р	45/1244~(4%)	45~(100%)	0	100	100
27	R	5/189~(3%)	5~(100%)	0	100	100
28	Ζ	1/77~(1%)	1~(100%)	0	100	100
29	W	8/219~(4%)	8~(100%)	0	100	100
30	Υ	1/100~(1%)	1~(100%)	0	100	100
31	р	17/768~(2%)	17~(100%)	0	100	100
All	All	290/10499~(3%)	290~(100%)	0	100	100

There are no protein residues with a non-rotameric sidechain to report.

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
2	Ι	31/373~(8%)	$11 \ (35\%)$	0
32	2	138/1175~(11%)	53~(38%)	27 (19%)
5	1	556/568~(97%)	118 (21%)	9 (1%)
All	All	725/2116~(34%)	182 (25%)	36 (4%)

All (182) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
2	Ι	247	U
2	Ι	248	А
2	Ι	249	С
2	Ι	250	U
2	Ι	251	А
2	Ι	252	А
2	Ι	253	G
2	Ι	254	U
2	Ι	258	А
2	Ι	265	А

Mol	Chain	\mathbf{Res}	Type
2	Ι	267	А
5	1	11	U
5	1	12	A
5	1	40	A
5	1	41	С
5	1	55	G
5	1	56	С
5	1	62	А
5	1	63	U
5	1	64	A
5	1	65	G
5	1	66	U
5	1	67	A
5	1	74	С
5	1	75	G
5	1	79	A
5	1	80	G
5	1	87	U
5	1	97	A
5	1	98	U
5	1	100	A
5	1	101	U
5	1	103	G
5	1	107	А
5	1	113	G
5	1	114	U
5	1	117	U
5	1	133	G
5	1	134	G
5	1	141	А
5	1	142	С
5	1	147	А
5	1	149	G
5	1	150	G
5	1	151	С
5	1	152	G
5	1	153	С
5	1	154	G
5	1	167	G
5	1	171	А
5	1	176	U
5	1	180	U

Mol	Chain	Res	Type
5	1	181	U
5	1	182	С
5	1	186	U
5	1	187	G
5	1	205	U
5	1	206	С
5	1	218	U
5	1	219	U
5	1	220	G
5	1	227	U
5	1	228	U
5	1	230	G
5	1	254	U
5	1	255	U
5	1	257	G
5	1	258	U
5	1	259	U
5	1	260	U
5	1	269	U
5	1	270	G
5	1	271	G
5	1	272	A
5	1	278	U
5	1	279	U
5	1	280	G
5	1	287	A
5	1	290	U
5	1	326	G
5	1	327	А
5	1	328	G
5	1	343	А
5	1	352	G
5	1	365	U
5	1	369	G
5	1	377	U
5	1	378	U
5	1	385	U
5	1	386	G
5	1	389	G
5	1	393	G
5	1	$39\overline{4}$	A
5	1	395	U

Mol	Chain	Res	Type
5	1	399	А
5	1	400	A
5	1	407	U
5	1	409	A
5	1	416	G
5	1	418	U
5	1	422	G
5	1	424	U
5	1	426	U
5	1	427	G
5	1	443	U
5	1	460	U
5	1	466	U
5	1	468	U
5	1	477	G
5	1	482	G
5	1	493	G
5	1	504	U
5	1	505	U
5	1	506	A
5	1	508	G
5	1	513	A
5	1	515	A
5	1	540	G
5	1	542	U
5	1	551	U
5	1	553	A
5	1	554	U
5	1	555	U
5	1	559	G
5	1	560	A
5	1	562	U
5	1	563	U
5	1	564	A
5	1	565	U
32	2	33	U
32	2	41	С
32	2	46	С
32	2	47	U
32	2	48	U
32	2	49	U
32	2	50	U

Mol	Chain	Res	Type
32	2	66	А
32	2	67	А
32	2	68	U
32	2	79	А
32	2	83	U
32	2	111	С
32	2	112	А
32	2	113	U
32	2	117	U
32	2	140	G
32	2	141	А
32	2	142	С
32	2	143	G
32	2	144	G
32	2	1094	G
32	2	1095	U
32	2	1096	С
32	2	1097	G
32	2	1098	С
32	2	1100	А
32	2	1101	С
32	2	1102	С
32	2	1103	С
32	2	1104	U
32	2	1105	С
32	2	1106	G
32	2	1107	С
32	2	1108	А
32	2	1119	С
32	2	1120	G
32	2	1121	U
32	2	1122	U
32	2	1123	С
32	2	1124	U
32	2	1125	U
32	2	1126	G
32	2	1130	U
32	2	1139	G
32	2	1141	С
32	2	1142	G
32	2	1143	С
32	2	1144	U

 $Continued \ from \ previous \ page...$

Mol	Chain	Res	Type
32	2	1145	U
32	2	1146	G
32	2	1150	U
32	2	1151	U

All (36) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
5	1	86	А
5	1	100	А
5	1	113	G
5	1	151	С
5	1	152	G
5	1	258	U
5	1	268	С
5	1	399	А
5	1	505	U
32	2	32	G
32	2	46	С
32	2	66	А
32	2	67	А
32	2	78	G
32	2	110	А
32	2	1095	U
32	2	1096	С
32	2	1097	G
32	2	1100	А
32	2	1101	С
32	2	1102	С
32	2	1105	С
32	2	1107	С
32	2	1119	С
32	2	1120	G
32	2	1121	U
32	2	1122	U
32	2	1123	С
32	2	1124	U
32	2	1125	U
32	2	1138	G
32	2	1141	С
32	2	1142	G
32	2	1144	U

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type
32	2	1145	U
32	2	1150	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

