May 21, 2020 – 06:52 am BST

PDB ID : 1P58
Title : Complex Organization of Dengue Virus Membrane Proteins as Revealed by 9.5 Angstrom Cryo-EM reconstruction
Authors : Zhang, W.; Chipman, P.R.; Corver, J.; Johnson, P.R.; Zhang, Y.; Mukhopadhyay, S.; Baker, T.S.; Strauss, J.H.; Rossmann, M.G.; Kuhn, R.J.
Deposited on : 2003-04-25
Resolution : 9.50 Å (reported)
Based on initial models : 1JCH, 1SVB

This is a Full wwPDB EM Model Validation Report for a publicly released PDB/EMDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

- MolProbity : 4.02b-467
- Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : 2.11
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

ELECTRON MICROSCOPY

The reported resolution of this entry is 9.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>EM structures (#Entries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clashscore</td>
<td>158937</td>
<td>4297</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments on the bar indicate the fraction of residues that contain outliers for ≥ 3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $< 5\%$.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>495</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>495</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>495</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>
2 Entry composition

There are 2 unique types of molecules in this entry. The entry contains 1635 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Major envelope protein E.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>490</td>
<td>Total C</td>
<td>490</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>490</td>
<td>Total C</td>
<td>490</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>490</td>
<td>Total C</td>
<td>490</td>
<td>0</td>
</tr>
</tbody>
</table>

There are 6 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modeled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>335</td>
<td>ILE</td>
<td>THR</td>
<td>SEE REMARK 999</td>
<td>UNP P12823</td>
</tr>
<tr>
<td>A</td>
<td>352</td>
<td>ILE</td>
<td>THR</td>
<td>SEE REMARK 999</td>
<td>UNP P12823</td>
</tr>
<tr>
<td>B</td>
<td>335</td>
<td>ILE</td>
<td>THR</td>
<td>SEE REMARK 999</td>
<td>UNP P12823</td>
</tr>
<tr>
<td>B</td>
<td>352</td>
<td>ILE</td>
<td>THR</td>
<td>SEE REMARK 999</td>
<td>UNP P12823</td>
</tr>
<tr>
<td>C</td>
<td>335</td>
<td>ILE</td>
<td>THR</td>
<td>SEE REMARK 999</td>
<td>UNP P12823</td>
</tr>
<tr>
<td>C</td>
<td>352</td>
<td>ILE</td>
<td>THR</td>
<td>SEE REMARK 999</td>
<td>UNP P12823</td>
</tr>
</tbody>
</table>

- Molecule 2 is a protein called Envelope protein M.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>D</td>
<td>55</td>
<td>Total C</td>
<td>55</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>55</td>
<td>Total C</td>
<td>55</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>55</td>
<td>Total C</td>
<td>55</td>
<td>0</td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Major envelope protein E

Chain A:

- Molecule 1: Major envelope protein E

Chain B:

- Molecule 1: Major envelope protein E

Chain C:

- Molecule 2: Envelope protein M

Chain D:

- Molecule 2: Envelope protein M

Chain E:

- Molecule 2: Envelope protein M

Chain F:
4 Experimental information

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM reconstruction method</td>
<td>SINGLE PARTICLE</td>
<td>Depositor</td>
</tr>
<tr>
<td>Imposed symmetry</td>
<td>POINT, I</td>
<td>Depositor</td>
</tr>
<tr>
<td>Number of particles used</td>
<td>1691</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution determination method</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
</tbody>
</table>
| CTF correction method | each viral image was CTF corrected before reconstruction, based on the following equation:
 \[F(\text{corr}) = \frac{F(\text{obs})}{|\text{CTF}| + \text{wiener} \times (1 - |\text{CTF}|)} \] | Depositor |
| Microscope | FEI/PHILIPS CM200T | Depositor |
| Voltage (kV) | 200 | Depositor |
| Electron dose (e⁻/Å²) | 27 | Depositor |
| Minimum defocus (nm) | 800.0 | Depositor |
| Maximum defocus (nm) | 4800.0 | Depositor |
| Magnification | 50000 | Depositor |
| Image detector | KODAK SO-163 FILM | Depositor |
5 Model quality

5.1 Standard geometry

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

There are no protein, RNA or DNA chains available to summarize Z scores of covalent bonds and angles.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>490</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>490</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>490</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1635</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (10) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:86:GLN:CA</td>
<td>1:C:87:ASP:CA</td>
<td>2.62</td>
<td>0.77</td>
</tr>
<tr>
<td>1:B:381:GLY:CA</td>
<td>1:B:386:GLN:CA</td>
<td>2.69</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:381:GLY:CA</td>
<td>1:A:386:GLN:CA</td>
<td>2.69</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:381:GLY:CA</td>
<td>1:C:386:GLN:CA</td>
<td>2.69</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:349:GLY:CA</td>
<td>1:A:350:ARG:CA</td>
<td>2.86</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:349:GLY:CA</td>
<td>1:C:350:ARG:CA</td>
<td>2.86</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:349:GLY:CA</td>
<td>1:B:350:ARG:CA</td>
<td>2.86</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:86:GLN:CA</td>
<td>1:C:88:LYS:CA</td>
<td>2.88</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:88:LYS:CA</td>
<td>1:C:86:GLN:CA</td>
<td>2.90</td>
<td>0.50</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.

5.3 Torsion angles

5.3.1 Protein backbone

There are no protein backbone outliers to report in this entry.

5.3.2 Protein sidechains

There are no protein residues with a non-rotameric sidechain to report in this entry.

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

There are no ligands in this entry.
5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.