

Full wwPDB X-ray Structure Validation Report (i)

Aug 10, 2023 – 08:17 am BST

PDB ID	:	8P5R
Title	:	Crystal structure of full-length, homohexameric 2-oxoglutarate dehydrogenase
		KGD from Mycobacterium smegmatis in complex with GarA
Authors	:	Wagner, T.; Mechaly, A.M.; Alzari, P.M.; Bellinzoni, M.
Deposited on	:	2023-05-24
Resolution	:	4.56 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 4.56 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} {\rm Whole \ archive} \\ {\rm (\#Entries)} \end{array}$	${f Similar resolution}\ (\# Entries, resolution range(Å))$	
R_{free}	130704	1060 (5.30-3.80)	
Clashscore	141614	1128 (5.30-3.80)	
Ramachandran outliers	138981	1072 (5.30-3.80)	
Sidechain outliers	138945	1053 (5.30-3.80)	
RSRZ outliers	127900	1101 (5.30-3.70)	

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	1250	73%	15%	12%
		1200	3%	1570	• 1270
1	В	1250	72%	16%	• 11%
1	\mathbf{C}	1250	73%	15%	11%
1	D	1250	73%	15%	. 11%
		1200	3%	1370	- 11/0
1	Ε	1250	73%	15%	• 11%

Mol	Chain	Length	(Quality of chain		
1	F	1250	4%	6	14% •	12%
1	Ν	1250	••	98%		
1	0	1250	••	98%		
1	Р	1250	% ••	98%		
1	Q	1250	% ••	98%		
2	G	158	49%	13%	38%	
2	Н	158	2% 47%	11% •	39%	
2	Ι	158	49%	13%	39%	
2	J	158	49%	11% •	39%	
2	K	158	3% 53%	8% •	39%	
2	L	158	9%	10%	39%	

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
4	CA	А	1302	-	-	-	Х

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 57005 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace					
1	1 A	1106	Total C N O S	0	0	0					
		1100	8579 5394 1535 1619 31		0	0					
1	В	1108	Total C N O S	0	0	Ο					
1	D	1100	8591 5404 1534 1622 31	0	0	0					
1	С	1100	Total C N O S	0	0	0					
1	U	1109	8593 5407 1531 1624 31	0	0	U					
1	л	1107	Total C N O S	0	0	0					
1	D	1107	8544 5379 1519 1615 31	0	0	0					
1	1 E	1109	Total C N O S	0	0	0					
1			8537 5373 1516 1617 31								
1	F	F 1105	Total C N O S	0	0	0					
1	Г		8513 5357 1517 1608 31								
1	N	20	Total C N O S	0	0	0					
1	IN	1N	TN	1N	IN	IN	00	266 172 41 52 1	0	0	U
1	0	20	Total C N O S	0	0	0					
1	0	50	266 172 41 52 1	0	0						
1	1 P	20	Total C N O S	0	0	0					
		, 30	266 172 41 52 1		U	U					
1	0	20	Total C N O S	0	0	0					
	I Q	30	266 172 41 52 1		U	0					

• Molecule 1 is a protein called Multifunctional 2-oxoglutarate metabolism enzyme.

There are 240 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	-22	MET	-	initiating methionine	UNP A0R2B1
А	-21	GLY	-	expression tag	UNP A0R2B1
А	-20	SER	-	expression tag	UNP A0R2B1
А	-19	SER	-	expression tag	UNP A0R2B1
А	-18	HIS	-	expression tag	UNP A0R2B1
А	-17	HIS	-	expression tag	UNP A0R2B1
А	-16	HIS	-	expression tag	UNP A0R2B1
A	-15	HIS	-	expression tag	UNP A0R2B1
А	-14	HIS	-	expression tag	UNP A0R2B1

Continued from previous page...ChainResidueModelledActual

Chain	Residue	Modelled	Actual	Comment	Reference
А	-13	HIS	-	expression tag	UNP A0R2B1
А	-12	SER	-	expression tag	UNP A0R2B1
А	-11	SER	-	expression tag	UNP A0R2B1
А	-10	GLY	-	expression tag	UNP A0R2B1
А	-9	LEU	-	expression tag	UNP A0R2B1
А	-8	VAL	-	expression tag	UNP A0R2B1
А	-7	PRO	-	expression tag	UNP A0R2B1
А	-6	ARG	-	expression tag	UNP A0R2B1
А	-5	GLY	-	expression tag	UNP A0R2B1
А	-4	SER	-	expression tag	UNP A0R2B1
А	-3	HIS	-	expression tag	UNP A0R2B1
А	-2	MET	-	expression tag	UNP A0R2B1
А	-1	ALA	-	expression tag	UNP A0R2B1
А	0	SER	-	expression tag	UNP A0R2B1
А	1	VAL	-	expression tag	UNP A0R2B1
В	-22	MET	-	initiating methionine	UNP A0R2B1
В	-21	GLY	-	expression tag	UNP A0R2B1
В	-20	SER	-	expression tag	UNP A0R2B1
В	-19	SER	-	expression tag	UNP A0R2B1
В	-18	HIS	-	expression tag	UNP A0R2B1
В	-17	HIS	-	expression tag	UNP A0R2B1
В	-16	HIS	-	expression tag	UNP A0R2B1
В	-15	HIS	-	expression tag	UNP A0R2B1
B	-14	HIS	-	expression tag	UNP A0R2B1
В	-13	HIS	-	expression tag	UNP A0R2B1
В	-12	SER	-	expression tag	UNP A0R2B1
B	-11	SER	-	expression tag	UNP A0R2B1
B	-10	GLY	-	expression tag	UNP A0R2B1
B	-9	LEU	-	expression tag	UNP A0R2B1
B	-8	VAL	-	expression tag	UNP A0R2B1
B	-7	PRO	-	expression tag	UNP A0R2B1
B	-6	ARG	-	expression tag	UNP A0R2B1
B	-5	GLY	-	expression tag	UNP A0R2B1
B	-4	SER	-	expression tag	UNP A0R2B1
B	-3	HIS	-	expression tag	UNP A0R2B1
B	-2	MET	-	expression tag	UNP A0R2B1
B	-1	ALA	-	expression tag	UNP A0R2B1
B	0	SER	-	expression tag	UNP A0R2B1
B	1	VAL	-	expression tag	UNP A0R2B1
C	-22	MET	-	initiating methionine	UNP A0R2B1
C	-21	GLY	-	expression tag	UNP A0R2B1
C	-20	SER	-	expression tag	UNP A0R2B1

Comment	Reference
xpression tag	UNP A0R2B
vorcesion tog	UNP AOR2R

Continued from previous page... Chain Residue Modelled Actual

С	-19	SER	-	expression tag	UNP A0R2B1
С	-18	HIS	-	expression tag	UNP A0R2B1
С	-17	HIS	-	expression tag	UNP A0R2B1
С	-16	HIS	-	expression tag	UNP A0R2B1
С	-15	HIS	-	expression tag	UNP A0R2B1
С	-14	HIS	-	expression tag	UNP A0R2B1
С	-13	HIS	-	expression tag	UNP A0R2B1
С	-12	SER	-	expression tag	UNP A0R2B1
С	-11	SER	-	expression tag	UNP A0R2B1
С	-10	GLY	-	expression tag	UNP A0R2B1
С	-9	LEU	-	expression tag	UNP A0R2B1
С	-8	VAL	-	expression tag	UNP A0R2B1
С	-7	PRO	-	expression tag	UNP A0R2B1
С	-6	ARG	-	expression tag	UNP A0R2B1
С	-5	GLY	-	expression tag	UNP A0R2B1
С	-4	SER	-	expression tag	UNP A0R2B1
С	-3	HIS	-	expression tag	UNP A0R2B1
С	-2	MET	-	expression tag	UNP A0R2B1
С	-1	ALA	-	expression tag	UNP A0R2B1
С	0	SER	-	expression tag	UNP A0R2B1
С	1	VAL	-	expression tag	UNP A0R2B1
D	-22	MET	-	initiating methionine	UNP A0R2B1
D	-21	GLY	-	expression tag	UNP A0R2B1
D	-20	SER	-	expression tag	UNP A0R2B1
D	-19	SER	-	expression tag	UNP A0R2B1
D	-18	HIS	-	expression tag	UNP A0R2B1
D	-17	HIS	-	expression tag	UNP A0R2B1
D	-16	HIS	-	expression tag	UNP A0R2B1
D	-15	HIS	-	expression tag	UNP A0R2B1
D	-14	HIS	-	expression tag	UNP A0R2B1
D	-13	HIS	-	expression tag	UNP A0R2B1
D	-12	SER	-	expression tag	UNP A0R2B1
D	-11	SER	-	expression tag	UNP A0R2B1
D	-10	GLY	-	expression tag	UNP A0R2B1
D	-9	LEU	-	expression tag	UNP A0R2B1
D	-8	VAL	-	expression tag	UNP A0R2B1
D	-7	PRO	-	expression tag	UNP A0R2B1
D	-6	ARG	-	expression tag	UNP A0R2B1
D	-5	GLY	_	expression tag	UNP A0R2B1
D	-4	SER	_	expression tag	UNP A0R2B1
D	-3	HIS	-	expression tag	UNP A0R2B1
D	-2	MET	-	expression tag	UNP A0R2B1

5	Reference
ag	UNP A0R2B
ag	UNP A0R2B
ag	UNP A0R2B

Chain	Residue	Modelled	Actual	Comment	Reference
D	-1	ALA	-	expression tag	UNP A0R2B1
D	0	SER	-	expression tag	UNP A0R2B1
D	1	VAL	-	expression tag	UNP A0R2B1
Е	-22	MET	-	initiating methionine	UNP A0R2B1
E	-21	GLY	-	expression tag	UNP A0R2B1
Е	-20	SER	-	expression tag	UNP A0R2B1
Е	-19	SER	-	expression tag	UNP A0R2B1
Е	-18	HIS	-	expression tag	UNP A0R2B1
Е	-17	HIS	-	expression tag	UNP A0R2B1
E	-16	HIS	-	expression tag	UNP A0R2B1
Е	-15	HIS	-	expression tag	UNP A0R2B1
Е	-14	HIS	-	expression tag	UNP A0R2B1
Е	-13	HIS	-	expression tag	UNP A0R2B1
Е	-12	SER	-	expression tag	UNP A0R2B1
Е	-11	SER	-	expression tag	UNP A0R2B1
Е	-10	GLY	-	expression tag	UNP A0R2B1
Е	-9	LEU	-	expression tag	UNP A0R2B1
Е	-8	VAL	-	expression tag	UNP A0R2B1
Е	-7	PRO	-	expression tag	UNP A0R2B1
Е	-6	ARG	-	expression tag	UNP A0R2B1
Е	-5	GLY	-	expression tag	UNP A0R2B1
Е	-4	SER	-	expression tag	UNP A0R2B1
Е	-3	HIS	-	expression tag	UNP A0R2B1
Е	-2	MET	-	expression tag	UNP A0R2B1
Е	-1	ALA	-	expression tag	UNP A0R2B1
Е	0	SER	-	expression tag	UNP A0R2B1
Е	1	VAL	-	expression tag	UNP A0R2B1
F	-22	MET	-	initiating methionine	UNP A0R2B1
F	-21	GLY	-	expression tag	UNP A0R2B1
F	-20	SER	-	expression tag	UNP A0R2B1
F	-19	SER	-	expression tag	UNP A0R2B1
F	-18	HIS	-	expression tag	UNP A0R2B1
F	-17	HIS	-	expression tag	UNP A0R2B1
F	-16	HIS	-	expression tag	UNP A0R2B1
F	-15	HIS	-	expression tag	UNP A0R2B1
F	-14	HIS	-	expression tag	UNP A0R2B1
F	-13	HIS	-	expression tag	UNP A0R2B1
F	-12	SER	-	expression tag	UNP A0R2B1
F	-11	SER	-	expression tag	UNP A0R2B1
F	-10	GLY	-	expression tag	UNP A0R2B1
F	-9	LEU	-	expression tag	UNP A0R2B1
F	-8	VAL	-	expression tag	UNP A0R2B1

Chain	Residue	Modelled	Actual	Comment	Reference
F	-7	PRO	-	expression tag	UNP A0R2B1
F	-6	ARG	-	expression tag	UNP A0R2B1
F	-5	GLY	-	expression tag	UNP A0R2B1
F	-4	SER	-	expression tag	UNP A0R2B1
F	-3	HIS	-	expression tag	UNP A0R2B1
F	-2	MET	-	expression tag	UNP A0R2B1
F	-1	ALA	-	expression tag	UNP A0R2B1
F	0	SER	-	expression tag	UNP A0R2B1
F	1	VAL	-	expression tag	UNP A0R2B1
N	-22	MET	-	initiating methionine	UNP A0R2B1
N	-21	GLY	-	expression tag	UNP A0R2B1
N	-20	SER	-	expression tag	UNP A0R2B1
N	-19	SER	-	expression tag	UNP A0R2B1
N	-18	HIS	-	expression tag	UNP A0R2B1
N	-17	HIS	-	expression tag	UNP A0R2B1
N	-16	HIS	-	expression tag	UNP A0R2B1
N	-15	HIS	-	expression tag	UNP A0R2B1
N	-14	HIS	-	expression tag	UNP A0R2B1
N	-13	HIS	-	expression tag	UNP A0R2B1
N	-12	SER	-	expression tag	UNP A0R2B1
N	-11	SER	-	expression tag	UNP A0R2B1
N	-10	GLY	-	expression tag	UNP A0R2B1
N	-9	LEU	-	expression tag	UNP A0R2B1
N	-8	VAL	-	expression tag	UNP A0R2B1
N	-7	PRO	-	expression tag	UNP A0R2B1
N	-6	ARG	-	expression tag	UNP A0R2B1
N	-5	GLY	-	expression tag	UNP A0R2B1
N	-4	SER	-	expression tag	UNP A0R2B1
N	-3	HIS	-	expression tag	UNP A0R2B1
N	-2	MET	-	expression tag	UNP A0R2B1
N	-1	ALA	-	expression tag	UNP A0R2B1
N	0	SER	-	expression tag	UNP A0R2B1
N	1	VAL	-	expression tag	UNP A0R2B1
0	-22	MET	-	initiating methionine	UNP A0R2B1
0	-21	GLY	-	expression tag	UNP A0R2B1
0	-20	SER	-	expression tag	UNP A0R2B1
0	-19	SER	-	expression tag	UNP A0R2B1
0	-18	HIS	-	expression tag	UNP A0R2B1
0	-17	HIS	-	expression tag	UNP A0R2B1
0	-16	HIS	-	expression tag	UNP A0R2B1
0	-15	HIS	-	expression tag	UNP A0R2B1
0	-14	HIS	-	expression tag	UNP A0R2B1

 Continued from previous page...

 Chain
 Residue
 Modelled
 Actual

Chain	Residue	Modelled	Actual	Comment	Reference
0	-13	HIS	-	expression tag	UNP A0R2B1
0	-12	SER	-	expression tag	UNP A0R2B1
0	-11	SER	-	expression tag	UNP A0R2B1
0	-10	GLY	-	expression tag	UNP A0R2B1
0	-9	LEU	-	expression tag	UNP A0R2B1
0	-8	VAL	-	expression tag	UNP A0R2B1
0	-7	PRO	-	expression tag	UNP A0R2B1
0	-6	ARG	-	expression tag	UNP A0R2B1
0	-5	GLY	-	expression tag	UNP A0R2B1
0	-4	SER	-	expression tag	UNP A0R2B1
0	-3	HIS	-	expression tag	UNP A0R2B1
0	-2	MET	-	expression tag	UNP A0R2B1
0	-1	ALA	-	expression tag	UNP A0R2B1
0	0	SER	-	expression tag	UNP A0R2B1
0	1	VAL	-	expression tag	UNP A0R2B1
Р	-22	MET	-	initiating methionine	UNP A0R2B1
Р	-21	GLY	-	expression tag	UNP A0R2B1
Р	-20	SER	-	expression tag	UNP A0R2B1
Р	-19	SER	-	expression tag	UNP A0R2B1
Р	-18	HIS	-	expression tag	UNP A0R2B1
Р	-17	HIS	-	expression tag	UNP A0R2B1
Р	-16	HIS	-	expression tag	UNP A0R2B1
Р	-15	HIS	-	expression tag	UNP A0R2B1
Р	-14	HIS	-	expression tag	UNP A0R2B1
Р	-13	HIS	-	expression tag	UNP A0R2B1
Р	-12	SER	-	expression tag	UNP A0R2B1
Р	-11	SER	-	expression tag	UNP A0R2B1
Р	-10	GLY	-	expression tag	UNP A0R2B1
Р	-9	LEU	-	expression tag	UNP A0R2B1
Р	-8	VAL	-	expression tag	UNP A0R2B1
Р	-7	PRO	-	expression tag	UNP A0R2B1
Р	-6	ARG	-	expression tag	UNP A0R2B1
Р	-5	GLY	-	expression tag	UNP A0R2B1
Р	-4	SER	-	expression tag	UNP A0R2B1
Р	-3	HIS	-	expression tag	UNP A0R2B1
Р	-2	MET	-	expression tag	UNP A0R2B1
Р	-1	ALA	-	expression tag	UNP A0R2B1
P	0	SER	-	expression tag	UNP A0R2B1
P	1	VAL	-	expression tag	UNP A0R2B1
Q	-22	MET	-	initiating methionine	UNP A0R2B1
Q	-21	GLY	_	expression tag	UNP A0R2B1
Q	-20	SER	_	expression tag	UNP A0R2B1

Chain	Residue	Modelled	Actual	Comment	Reference
Q	-19	SER	-	expression tag	UNP A0R2B1
Q	-18	HIS	-	expression tag	UNP A0R2B1
Q	-17	HIS	-	expression tag	UNP A0R2B1
Q	-16	HIS	-	expression tag	UNP A0R2B1
Q	-15	HIS	-	expression tag	UNP A0R2B1
Q	-14	HIS	-	expression tag	UNP A0R2B1
Q	-13	HIS	-	expression tag	UNP A0R2B1
Q	-12	SER	-	expression tag	UNP A0R2B1
Q	-11	SER	-	expression tag	UNP A0R2B1
Q	-10	GLY	-	expression tag	UNP A0R2B1
Q	-9	LEU	-	expression tag	UNP A0R2B1
Q	-8	VAL	-	expression tag	UNP A0R2B1
Q	-7	PRO	-	expression tag	UNP A0R2B1
Q	-6	ARG	-	expression tag	UNP A0R2B1
Q	-5	GLY	-	expression tag	UNP A0R2B1
Q	-4	SER	-	expression tag	UNP A0R2B1
Q	-3	HIS	-	expression tag	UNP A0R2B1
Q	-2	MET	-	expression tag	UNP A0R2B1
Q	-1	ALA	-	expression tag	UNP A0R2B1
Q	0	SER	-	expression tag	UNP A0R2B1
Q	1	VAL	_	expression tag	UNP A0R2B1

• Molecule 2 is a protein called Glycogen accumulation regulator GarA.

Mol	Chain	Residues		Ato	\mathbf{ms}		ZeroOcc	AltConf	Trace
2	С	08	Total	С	Ν	Ο	0	0	0
	G	90	744	464	135	145	0	0	0
2	Ц	06	Total	С	Ν	Ο	0	0	0
2	11	90	710	438	131	141	0	0	0
2	T	07	Total	С	Ν	Ο	0	0	0
	1	91	740	462	134	144	0	0	0
2	Т	07	Total	С	Ν	Ο	0	0	0
	J	91	740	462	134	144	0	0	0
2	K	07	Total	С	Ν	Ο	0	0	0
	Т	91	740	462	134	144	0	0	0
2	T	07	Total	С	Ν	0	0	0	0
	2 L	51	740	462	134	144	0	0	0

• Molecule 3 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total Mg 1 1	0	0
3	В	1	Total Mg 1 1	0	0
3	С	1	Total Mg 1 1	0	0
3	D	1	Total Mg 1 1	0	0
3	Ε	1	Total Mg 1 1	0	0
3	F	1	Total Mg 1 1	0	0

• Molecule 4 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	2	Total Ca 2 2	0	0
4	В	2	Total Ca 2 2	0	0
4	С	1	Total Ca 1 1	0	0
4	D	1	Total Ca 1 1	0	0
4	Ε	1	Total Ca 1 1	0	0
4	F	1	Total Ca 1 1	0	0

• Molecule 5 is THIAMINE DIPHOSPHATE (three-letter code: TPP) (formula: $C_{12}H_{19}N_4O_7P_2S$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Α	ton	ıs			ZeroOcc	AltConf
5	Δ	1	Total	С	Ν	Ο	Р	S	0	0
5	A	L	26	12	4	7	2	1	0	0
5	В	1	Total	С	Ν	0	Р	S	0	0
5	D	T	26	12	4	7	2	1	0	0
5	C	1	Total	С	Ν	Ο	Р	\mathbf{S}	0	0
5		T	26	12	4	7	2	1	0	0
5	П	1	Total	С	Ν	Ο	Р	\mathbf{S}	0	0
5	D	T	26	12	4	7	2	1	0	0
5	F	1	Total	С	Ν	Ο	Р	S	0	0
5	Ľ	T	26	12	4	7	2	1	0	0
5	F	1	Total	С	N	0	Р	S	0	0
	I.	L	26	12	4	7	2	1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Multifunctional 2-oxoglutarate metabolism enzyme

• Molecule 1: Multifunctional 2-oxoglutarate metabolism enzyme

 INS
 N677
 CU
 CU

 11021

 11025

 11025

 11025

 11025

 11025

 11025

 11025

 11025

 11025

 11025

 11025

 11051

 11051

 11052

 11053

 11054

 11055

 11056

 11056

 11057

 11106

 11120

 11130

 11140

 11157

 11140

 11157

 11140

 11157

 11140

 11157

 11140

 11157

 11142

 11157

 11157

 11157

 11157

 11157

 11157

 11157

 11157

 11157

 11157

 11157

 11157

 11157

 11157</

• Molecule 1: Multifunctional 2-oxoglutarate metabolism enzyme

Cł	nai	n]	F:	4%	6												74	4%)															14	%		•		1	2%				
MET GLY	SER	HIS	SIH	HIS	SIH	SER	GLY	LEU	VAL	ADC	GLY	SER	HIS	MET	ALA	SER	SER	SER	SER	PRO	SER	PRO	AHE GLV	GLN	ASN	GLU	T.FU	VAL	GLU	GLU MFT	TYR	ARG	L YS PHE	ARG	ASP	ASP	SER	SER	VAL	ASP PRO	SER	TRP HTS	GLU	PHE
VAL	TYR	PRO	GLU PRO	THR	ASP	SER AT A	ALA SER	ASN	GLY	AKG	THR	THR	ALA	ALA	PRO	VAL	PRO	PRO	THR	PRO	ALA	PRO AT A	ALA PRO	ALA	PRO	GLU	UXS LYS	ALA	ALA	PRO I VS	PRO	ALA	ALA LYS	THR	GLU	ALA	PRO	ALA	LYS	PRO AL.A	LYS	SER AI A	THR	PRO ALA
LYS LYS	D100	S102	q 103	A125	V128	1 1 1 1 1 1	P132		L135	U1 / C	0710	H159	L160	L161		K170	H178		D183	G184	K185		118 9	H193	T194	N195	L196 G197	L198		L211 V919	V213	A214	A215		E220	V031	1021	F248		V251	L261	O yca		Q272 G273
Q274	1278	A280	E288		T C C C	E294	000	D299		1302	L305	I306	T307	L308	T309	1011	R315	1316	1317		F325		U 331	L334	D335	D336	D337	D340		W355	D358		K306	R369		Y377	G381		1387	D402	L403	H408		W413 D414
L415	L432	R440	D441 A442	Y443	C444 R445	H446	V467		H471	A 7 7	A411	K480	Y481		K485	L486 M487	N40 /	0503	K504	R505		L508	FE07	1401	L530		A536	R540	G541	R542	Y554		GLY	ASN	LEU	ASN	SER	GLN	ALA	H571	K577			D592
T299	P603	L606	L613	TG16	V617	R618	ALOA	L624	D625	1020	602/ E628	E629		R634	F635	S636	VER	P639		D645		0651	U652 V653		L663		TODO	T671		N677 N678	0679 0679	1680	G681 F682	T683		5689 R690		C695		1706 F707	H7 08	V7 09 N7 10		P714
D734	L740	Y742	R743 R744	R745	H747	L L L		R768	1 224 U	K//1		G780		1784		E788	4792	L793		<mark>ղ797</mark>	<mark>G798</mark>	101	E814 TLF	GLU	PRO	SER	GLU	VAL	GLU	ALA	GLN	GLN	PRO	SER	LYS	L831	H847		V 856	1.864		R868	E882	L883
L886	R897		0904 R905	G906 T007	F908	T909	R911	H912	A913	VI01 C	OTEA	L927		V945	Y946			V956		Y962		M970	1/6/	U973	E974	A975	1976 1	1987		F991 Taao	5002 S993	S994	8998		L1002	S1003	L1007	L1008		H1011 G1012	H1013	T1001	S1022	I 1025
1.1029		A1040	M1041	Y1048	L1051	L1052	01061	R1062	P1063	L1064	V1066	-	K1070	S1071	M1072	N4 076	C / OT N	D1084		S1088		E1096	V1099	1 1000	V1109	4	L1112 L1113	L1114	T1115	V1100	~~~~	L1123	V1135	A1136	I1137	V1138 R1139		L1143	A1144	R1148		R1157	V1161	K1162 E1163
K1164 • F1165 •	W1166		L1182	L1188	H1191		007TN	P1206	S1207	11001	L1222	-	G1227																															

• Molecule 1: Multifunctional 2-oxoglutarate metabolism enzyme

Chain N: ... 98% After the second se

8P5R

ARG	GLY ALA	ALA	ALA	ALA	VAL	LYS	ASN MET	ASN	ALA	SER	GLII	VAL	PRO	THR	THR	SER	VAL	ALA	ILE	PRO ALA	LYS	LEU	ILE	ASP	ASN ARG	VAL	ILE	ASN	SIH	LEU LYS	ARG	ARG	GLY	LYS	ILE	SER PHE	THR HTS	LEU	GLY	TYR AI A	ILE
VAL	AL.A	VAL	LYS	LYS	PRO	ASN	ASN	ARG	SIH	PHE	ALA VAL	VAL	ASP	1 VS	PRO	THR	ALA	THR	PRO	ALA HTS	THR	ASN	GLY	LEU	ALA ILE	ASP	GLN	1 VS	ASP	GLY ASN	ARG	LEU	VAL. VAL.	ALA	ALA	TLE	ARG	GLU	THK	ARG	GLY
GLN	TLE TLE	ALA	ALA	TYR	ASP	ILE	VAL ARG	ARG	ALA	ARG	YCR V.ID	TAS	LEU	THR AT A	GLU	ASP	PHE	GLY	VAL	THR TLE	SER	LEU	ASN	PRO	GLY THR	LEU	THR	VAL	SER	VAL PRO	ARG	MET	GLN	GLN	GLY	ALA ILE	TLE	ALA	GLY ALA	MET	TYR
PRO	GLIT	PHE	GLN	GLY AT A	SER	GLU	GLU ARG	ILE	ALA	ASP	נויא נויא	ILE	GLY	LYS	ILE	THR	LEU	SER	THR	TYR ASP	HIS	ARG	ILE	GLN	GLY ALA	GLU	GLY	ASP	TEU	ARG THR	ILE	GIN	LEU	LEU	ASP	ASP ASP	PHE	ASP	GLU ILE	PHE	GLU
LEU	GLY	PRO	TYR	GLU	VAL	ARG	TRP ARG	THR	ASP	ASN	ASP	SER	ILE	GLU	LYS	ASN	ALA	VAL	ILE	GLU LEII	ILE	ALA	TYR	ARG	ASN ARG	GLY	LEU	MET	ASP	ILE ASP	PRO 1 ETI	ARG	LEU	ASN	THR	ARG PHE	ARG	HIS	ASP	LEU	VAL
ASN	NIS	GLY	LEU	THR	TRP	ASP	LEU ASP	ARG	GLU	PHE	UAL.	ASP	GLY	PHE	GLY	VAL	GLN	LYS	LYS	LEU ARG	ASP	ILE	SER	VAL	LEU ARG	ASP	TYR	CYS	SIH	VAL GLY	VAL	TYR	THR	ILE	LEU	GLU PRO	GLU	GLN	ARG TRP	GIN	GLU
ARG	CLIT	THR	LYS	SIH	LYS	PRO	THR VAL	ALA	GLU	GLN	TYR	ILE	LEU	SER 1 VS	TEU	ASN	ALA AT A	GLU	ALA	PHE GLU	THR	PHE	GLN	THR	LYS TYR	VAL	GLN	LYS	THE	SER LEU	CL V	ALA	GLU THR	VAL	ILE	PRO MET	MET	ALA	VAL ILE	ASP	CYS
ALA	GLU HTS	GLY	LEU	ASP CI II	VAL	VAL	ILE ALA	MET	PRO	SIH	ARG GL.Y	ARG	TEU	ASN	LEU	ALA	ASN	VAL	GLY	LYS	TYR	SER	ILE	PHE	SER GLU	PHE	GLY	ASN I FII	ASN	PRO SER	GLN GLN	HIS	GLY SFR	GLY	ASP	VAL LYS	TYR HTS	LEU	GLY ALA	THR	THR
TYR	TTE	MET	PHE	GLY	ASN	ASP	GLU	VAL	SER	LEU	AT.A	ASN	PRO	SER	TEU	GLU	ALA	ASP	PRO	VAL LEII	GLU	GLY	VAL	ARG	ALA LYS	GLN	LEU	LEU	THR	GLU GLU	GLU	SER	ASP	ARG	PHE	VAL	VAL	LEU	LEU	HIS	ASP
ALA	PHE	ALA	GLY	GLN GLN	VAL	VAL	GLU	THR	LEU	ASN	AL-A	LEU	LEU	ARG CI V	TYR	ARG	THR	GLY	THR	ILE	ILE	VAL	ASN	ASN	GLN	GLY	THR	THR	PRO	ASP	SER	SER	SER	TYR	CYS	ASP	VAL AT.A	LYS	TLE	GLY	PRO
ILE	PHE	VAL	ASN	GLY	ASP	PR0	GLU ALA	CYS	ALA	TRP	AT.A	ARG	TEU	ALA	ASP	PHE	ARG	ALA	PHE	LYS	ASP	VAL	VAL ILE	ASP	MET LEU	CYS	ARG	ARG	GLY	ASN	GLU	ASP	ASP PRO	SER	MET	GLN	PR0 TYR	MET	ASP	VAL	ASP
THR	LYS ARG	GLY	SER	ARG	ALA	TYR	GLU	ALA	LEU	ILE	ARG	CLY	ASP	ILE	MET	LYS	GLU AT A	GLU	ASP	ALA	ARG	ASP	GLN	GLY	GLN	GLU	VAL	PHE	GLU	VAL ARG	GLU	GLU	LYS HTS	GLU	ILE	GLU	SER	SER	GLU	ALA	GLN
GLN	TLE	SER	LYS	LEU	THR	ALA	VAL ASP	LYS	ALA	MET	GLN	ARG	ILE	4SD	ALA	HIS	LEU	LEU	PRO	GLU GLV	PHE	THR	HIS	PRO	ARG VAL	ARG	VAL	LEU	LYS	ARG ARG	GLU	ALA	TYR GLII	GLY	ARG	ASP	TRP ALA	PHE	GLU	LEU	ALA
LEU	GLY SFR	LEU	ILE	ALA	GLY	LYS	LEU VAL	ARG	LEU	SER	UTD OT	ASP	THR	GLN	GLY	THR	PHE	GLN	ARG	AI.A	VAL	TLE	ASP	ARG	LYS THR	GLY	GLU	PHE	PRO	GLN	LEU	ALA	ASN	PRO	ASP	GLY THR	PRO THR	GLY	CTX CTX	PHE	VAL
TYR	SER	ALA	LEU	SER	PHE	ALA	ALA VAL	GLY	PHE	GLU	UTR CL.Y	TYR	SER	VAL CI V	ASN	PRO	ASP ALA	MET	VAL	TRP	GLU	ALA	PHE	GLY	ASP PHE	VAL	GLY	ALA	SER	ILE ILE	ASP	PHE	ILE SER	SER	GLY	GLU	LYS TRP	GLY	GLN	SER	VAL
VAL	LEU	TEU	PRO	SIH CI V	SIH	CLU	GLN	GLY	PRO	ASP	THR	SER	GLY	ARG	GLU	ARG	PHE	GLN	LEU	TRP AI.A	GLU	GLY	MET	THR	ILE ALA	MET	SER	THR	ALA	ASN TYR	PHE	TEU	LEU ARG	ARG	HIS	GLY LYS	ASP GLY	ILE	GLN ARG	PRO LEU	ILE
VAL	THR	PRO	LYS	SER	LEU	ARG	ASN LYS	ALA	ALA	VAL	ASP	ILE	ARG	ASP DHF	THR	GLU	SER 1 VC	PHE	ARG	SER VAL	LEU	GLU	PRO	MET	TYR THR	ASP	GLU	GLY	ARG	ASN LYS	VAL	ARG	LEU	LEU	THR	GLY	LYS TLE	TYR	GLU GLU	LEU	ALA
ARG	LYS ALA	LYS	GLU	ASN	GLU	ASP	VAL ALA	ILE	VAL	ARG	GLII	GLN	LEU	ALA	LEU	PRO	ARG	ARG	LEU	ALA	THR	LEU	ABF	TYR	PRO ASN	VAL	GLU	LYS	TRP	VAL GLN	GLU	PRO	ALA	GLN	GLY	ALA TRP	PRO SFR	PHE	GLY LEU	THR	PRO
GLU	TEU	PRO	ASP	HIS	THR	GLY	LEU	ARG	ILE	SER	ARG	ALA	MET	SER AT A	PRO	SER	SER CT V	SER	SER	LYS VAL	SIH	ALA	GLU	GLN	GLU	ILE	ASP	THR AI A	PHE	GLY											

• Molecule 1: Multifunctional 2-oxoglutarate metabolism enzyme

																													•															•	•	
MET	SER	SER	SIH	HIS	SIH	SIH	SER	GLY	LEU	VAL	ARG	GLY	SER	HIS	ALA	SER	VAL	SER	SER	DBU	SER	PRO	PHE	GLY	GLN	ASN E10	W13	L14	V15	E16	E1/ M18		K21	F 22	D25	-	D30	P31	N33	H34	E35	F36	D39	Y40	S41 PBU	GLU
PRO TUD	THR	ASP	ALA	SER	GLY	ARG	THR	THR	ALA	ALA	VAL	THR	PRO	PRO THP	PRO	ALA	PRO	ALA	PRO	ALA PRO	GLU	PRO	LYS	ALA	ALA	PRU I VC	PRO	ALA	ALA	LYS	GLU	ALA	LYS	AT A	TAS	PRO	ALA	LYS	ALA	THR	PRO	ALA	GLY	ASP	GLU SFR	CLN
ILE	ARG	GLY AT A	ALA	ALA	ALA VAL	VAL	LYS	MET	ASN	ALA	1 FII	GLU	VAL	PRO THP	ALA	THR	SER	VAL	ARG	ALA TIF	PRO	ALA	LYS	LEU	MET	ILE	ASN	ARG	VAL	VAL	ASN	ASN	SIH	1 AS	ARG	THR	ARG	GL Y	TYS	ILE	SER	PHE THR	HIS	LEU	CI V	TYR
ALA	VAL	GLN	VAL	LYS	PHE	PRO	ASN	ASN	ARG	HIS	AT.A	VAL	VAL	ASP	TAS	PRO	THR	ALA	TLE	DRO DRO	AT.A	HIS	THR	ASN	LEU	1 ETT	ALA	ILE	ASP	LEU	GL.Y	LYS	ASP	A SN	ARG	SER	LEU	VAL	ALA	ALA	ILE	LYS ARG	CYS	GLU	THR MFT	ARG
PHE	GLN	PHE	ALA	ALA	GLU	ASP	ILE VAT	ARG	ARG	ALA	ARU	GLY	LYS	LEU	ALA	GLU	ASP	PHE	SER	UAT VAT	THR	ILE	SER	LEU	THR	ASN	GLY	THR	LEU	GLY	VAL.	SIH	SER	PRO	ARG	LEU	MET	CT N	GLN	GLY	ALA	TLE	GLY	ALA	GLY	MET
GLU	PRO	ALA	PHE	CLN CLN	GLY ALA	SER	CL U	ARG	ILE	ALA	ASP LETI	GLY	ILE	GLY GLY	TEU	ILE	THR	LEU	THR	THR	TYR	ASP	HIS	ARG	ILE	TLE	GLY	ALA	GLU	SER	ASP	PHE	LEU	THR	ILE	HIS	CLN	LEU	LEU	ASP	ASP	ASP PHF	PHE	ASP	GLU TI F	PHE
ARG	TEU	GLY	PRO	TYR	PRO	VAL	ARG	ARG	THR	ASP	PRO	ASP	SER	ILE	ASP	LYS	ASN	ALA	ARG	VAL TI F	01.10	LEU	ILE	ALA	ALA	TYR	ASN	ARG	GLY	HIS	MET	ALA	ASP	ASP	PRO	LEU	ARG	LEU ASD	ASN	THR	ARG	PHE	SER	HIS	PRO ASP	LEU
ASP	ASN	SER	GLY	LEU	TEU	TRP	ASP	ASP	ARG	GLU	PHE TVS	VAL	ASP	GLY	ALA	GLY	VAL	GLN	ARG	LYS	LEU	ARG	ASP	ILE	LEU	VAT	LEU	ARG	ASP	ALA	CYS	ARG	HIS	CI V	VAL	GLU	TYR	THR	ILE	TEU	GLU	PRO CLII	GLN	GLN	ARG TRP	ILE
GLN	ARG	VAL	THR	LYS	ASP	LYS	PRO THR	VAL	ALA	GLU	SA-1	TYR	ILE	LEU	TYS	LEU	ASN	ALA	ALA	GLU AT A	PHE	GLU	THR	PHE	LEU	CLUN GLIN	TYS	TYR	VAL	GLY	U.YS	ARG	PHE	NEK 1 FII	GLU	GLY	ALA	GLU TUD	VAL	ILE	PRO	MET MET	ASP	ALA	VAL TIF	ASP
GLN	ALA	GLU	GLY	LEU	GLU	VAL	VAL	ALA	MET	PRO	ARG	GLY	ARG	LEU	VAL	LEU	ALA	ASN	TLE	CI V	I.YS	PRO	TYR	SER	GLN	DUE	SER	GLU	PHE	GLU	ASN	LEU	ASN	SER SER	GLN	ALA	HIS	GLY	GLY	ASP	VAL	LYS TVR	HIS	LEU	GLY AT A	THR
GLY	TYR	ILE	MET	PHE	GLY	ASN	ASP TIF	GLU	VAL	SER	THR	ALA	ASN	PRO SED	HIS	LEU	GLU	ALA	VAL	ASP PRO	VAL.	LEU	GLU	GLY	LEU	VAL	ALA	LYS	GLN	ASP	LEU	ASP	THR	CI II CI II	GLU	GLY	SER	ASP	ARG	PHE	SER	VAL	PRO	LEU	MET r fri	HIS
3LY Mer	ALA	ALA	ALA	3LY	JLY SLY	VAL	VAL VI A	3TO	THR	LEU	ASN FII	ALA	LEU	LEU	ATE	LYR	ARG	THR	JLY YLE	JLY THR	TLE	HIS	ILE	VAL	VAL	ASN	NUS	ILE	3LY	PHE	THR	ALA	PRO	NSP ASP	SER	ARG	SER	SER 71 II	JLU LYR	CYS	THR	ASP IAT	ALA	YS	ИЕТ П. Б.	ULE SLY
LA C	EE	HE HE	AL	NSN NS1	SP	SP	PRO	TA	. SX:	LA AL	AL .	TA	RG	EU	AL AL	SP	HE	RG		HF .	XS	XS	SP	'AL	AL	E E	ET .	EU	SYS	YR	. BG	RG	ITY	SI I	ITO	ILY .	SP	SP Du	ER.	ET	HH	NT	YR	ET	YR sp	AL
EE P		YS F	C A	ER	AC C	LA A	H G		LA C	EU A	12	RG P	LY A	SP I		ET I	YS F		EA .				RG A	SP	YR			EU	CU CU	RG T	AL HE	SN A		AL RG		EU G		YS A		E	E I	20 2 4		ER	AL 1	
H A	T I	ы щ	4 19	S H	A L	IR A	L L	1 6	S A	A T		N N	5	.E Υ		.A M	L S	. G	A A				E A	IR A	-	9 C		L L	5	10 A		U A	S I	5 0	0	E	A G		- D	H D	E I	с, с. 2, с.	A D	E	A A	N N
U AS		LI C		E LY	AL LE	THE A	S AI	L AS	G LY	U AI			P AF	H D	G AS	Y AI	R HI	н н н	R AI		19	A GI	L PE	E	L VA	H LH L	S AF	R VA	Y AF	U PH	LE VH	B B		U AH	CI 0	U ME	A AI	T I		P AF	Y II	R AS	R	Y PE	r AL	, Ш о Ш
TE		GL.			GL]	CT.	. LY:	VAI	AR	LEI	3 5	E E	. ASI	E E	AR	CT .	IHI	IHd	EL	GL.	TH I	AL.	T VA		VA	ASI	TX:	IHT	GL.	13	IHd	H	PRI	35		LE	AL.	HI.	PRI	ASI	CL	IHI		GL	75 	IHd
LEU	TYR	ASN	ALA	LEU	0TD CTU	PHE	ALA	VAL	GLY	PHE	TVR	GLY GLY	TYR	SER	CLY GLY	ASN	PRO	ASP	ALA	TAM	LEU	TRP	GLU	ALA	GLN	A 10	ASP	PHE	VAL	ASN	ALA	GLN	SER		ASP	GLU	PHE	1LE GED	SER	GLY	GLU	ALA	TRP	GLY	UTD CTN	SER
ASP	VAL	LEU	LEU	PRO	ATD STH	HIS	dLU GLU	GLN	GLY	PRO	HTS	THR	SER	GLY	ILE	GLU	ARG	PHE	LEU	1 FII	TRP	ALA	GLU	GLY	SER	MET	ILE	ALA	MET	PRO	THR	PRO	ALA	ASN	PHE	HIS	LEU	DEL VBC	ARG	HIS	GLY	LYS	GLY	ILE	GLN	PRO
LEU	VAL	PHE	PRO	LYS	MET	LEU	ARG	TYS	ALA	ALA	VAL	ASP	ILE	ARG	PHE	THR	GLU	SER	LYS	ARC	SER	VAL	TEU	GLU	GLU	PRO	TYR	THR	ASP	GLY	GL.Y	ASP	ARG	ASN T VS	VAL	THR	ARG	LEU LEU	LEU	THR	SER	GLY GLY	ILE	TYR	TYR	TEU
ALA	ALG	LYS	LYS	GLU	ASN	GLU	ASP	ALA	ILE	VAL	ARG	GLU	GLN	LEU	PRO	LEU	PRO	ARG	ARG	ARG I FII	AL.A	GLU	THR	LEU	ASP	ARG	PRO	ASN	VAL	LYS	U.YS	PHE	TRP	CIN	CLU	GLU	PRO	ALA	CLN	GLΥ	ALA	TRP PRO	SER	PHE	GLY	THR

LEU TILE GUU PRO GUU PRO GUU PRO AASP PRO GUU MET AARG AARG AARG AARG AARG AARG CUU VAL LEV SER AARG CUU VAL LEV VAL CUU VAL CUU VAL CUU VAL AARD PRO GUU VAL CUU VAL AARD PRO GUU VAL AARD PRO CUU VAL AARD PRO CUU VAL AARD PRO CUU VAL AARD CUU VAL AAARD CUU VAL AARD CUU VA AARD CUU VAL AARD CUU VA AARD CUU VAL AARD CUU VAL AARD CUU VA AARD CUU VA AARD CUU VA AARO

• Molecule 1: Multifunctional 2-oxoglutarate metabolism enzyme

• Molecule 2: Glycogen accumulation regulator GarA

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 65	Depositor
Cell constants	325.75Å 325.75Å 396.94Å	Deperitor
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	45.99 - 4.56	Depositor
Resolution (A)	45.99 - 4.56	EDS
% Data completeness	89.6 (45.99-4.56)	Depositor
(in resolution range)	$89.6 \ (45.99-4.56)$	EDS
R _{merge}	0.24	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.92 (at 4.64 \text{\AA})$	Xtriage
Refinement program	BUSTER 2.10.4 (8-JUN-2022)	Depositor
P. P.	0.198 , 0.229	Depositor
n, n_{free}	0.193 , 0.217	DCC
R_{free} test set	6055 reflections $(5.00%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	197.4	Xtriage
Anisotropy	0.084	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.32, 338.8	EDS
L-test for twinning ²	$< L > = 0.42, < L^2 > = 0.25$	Xtriage
Estimated twinning fraction	0.390 for h,-h-k,-l	Xtriage
F_o, F_c correlation	0.90	EDS
Total number of atoms	57005	wwPDB-VP
Average B, all atoms $(Å^2)$	236.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.83% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CA, TPP, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond	angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.28	0/8751	0.45	0/11855
1	В	0.29	0/8764	0.45	0/11874
1	С	0.28	0/8767	0.45	0/11877
1	D	0.28	0/8717	0.45	0/11816
1	Ε	0.29	0/8710	0.45	0/11812
1	F	0.28	0/8685	0.45	0/11776
1	Ν	0.37	0/276	0.49	0/375
1	0	0.37	0/276	0.49	0/375
1	Р	0.38	0/276	0.49	0/375
1	Q	0.40	0/276	0.49	0/375
2	G	0.25	0/757	0.43	0/1025
2	Н	0.31	0/722	0.52	0/980
2	Ι	0.23	0/753	0.42	0/1020
2	J	0.23	0/753	0.42	0/1020
2	Κ	0.28	0/753	0.44	0/1020
2	L	0.26	0/753	0.43	0/1020
All	All	0.29	0/57989	0.45	0/78595

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

8P5R

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	8579	0	8402	136	0
1	В	8591	0	8414	135	0
1	С	8593	0	8408	129	0
1	D	8544	0	8341	128	0
1	Ε	8537	0	8299	130	0
1	F	8513	0	8287	126	0
1	Ν	266	0	233	13	0
1	0	266	0	233	15	0
1	Р	266	0	233	11	0
1	Q	266	0	233	15	0
2	G	744	0	730	13	0
2	Н	710	0	656	12	0
2	Ι	740	0	727	14	0
2	J	740	0	727	17	0
2	Κ	740	0	727	9	0
2	L	740	0	727	13	0
3	А	1	0	0	0	0
3	В	1	0	0	0	0
3	\mathbf{C}	1	0	0	0	0
3	D	1	0	0	0	0
3	Ε	1	0	0	0	0
3	F	1	0	0	0	0
4	А	2	0	0	0	0
4	В	2	0	0	0	0
4	\mathbf{C}	1	0	0	0	0
4	D	1	0	0	0	0
4	Ε	1	0	0	0	0
4	F	1	0	0	0	0
5	А	26	0	16	2	0
5	В	26	0	16	1	0
5	\mathbf{C}	26	0	16	1	0
5	D	26	0	16	1	0
5	Ε	26	0	16	0	0
5	F	26	0	16	2	0
All	All	57005	0	55473	857	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (857) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom-2	Interatomic	Clash
Atom-1		distance (Å)	overlap (Å)
1:B:634:ARG:HE	1:B:636:SER:HB3	1.05	1.08
1:E:542:ARG:HE	1:E:599:LEU:HD21	1.15	1.05
1:E:634:ARG:HE	1:E:636:SER:HB3	1.16	1.05
1:F:645:ASP:HB3	1:F:677:ASN:HA	1.41	1.01
1:F:634:ARG:HE	1:F:636:SER:HB3	1.26	1.01
1:D:542:ARG:HE	1:D:599:LEU:HD21	1.25	1.00
1:C:542:ARG:HE	1:C:599:LEU:HD21	1.27	0.99
1:A:645:ASP:HB3	1:A:677:ASN:HA	1.44	0.98
1:F:780:GLY:HA2	1:Q:12:GLU:HB2	1.42	0.98
2:K:97:HIS:CD2	2:K:138:ILE:HG23	2.00	0.96
2:L:97:HIS:CD2	2:L:138:ILE:HG23	2.01	0.96
1:C:240:ASP:HB2	1:C:242:LYS:NZ	1.81	0.96
1:B:240:ASP:HB2	1:B:242:LYS:NZ	1.81	0.95
1:A:240:ASP:HB2	1:A:242:LYS:NZ	1.82	0.95
2:H:97:HIS:CD2	2:H:138:ILE:HG23	2.02	0.94
1:D:240:ASP:HB2	1:D:242:LYS:NZ	1.82	0.94
2:G:97:HIS:CD2	2:G:138:ILE:HG23	2.01	0.94
2:J:97:HIS:CD2	2:J:138:ILE:HG23	2.02	0.94
1:C:645:ASP:HB3	1:C:677:ASN:HA	1.50	0.94
1:A:377:TYR:HE2	1:A:444:CYS:HG	1.07	0.92
2:I:97:HIS:CD2	2:I:138:ILE:HG23	2.06	0.91
1:C:131:ILE:HG23	1:C:330:HIS:CD2	2.06	0.91
1:B:542:ARG:HE	1:B:599:LEU:HD21	1.35	0.91
1:A:504:LYS:CB	1:A:749:GLU:HA	2.01	0.90
1:N:14:LEU:HG	1:N:18:MET:HB3	1.52	0.90
2:J:60:LYS:NZ	2:J:135:GLU:HG3	1.86	0.90
1:P:14:LEU:HG	1:P:18:MET:HB3	1.52	0.89
1:O:14:LEU:HG	1:O:18:MET:HB3	1.52	0.89
2:J:60:LYS:HZ1	2:J:135:GLU:HG3	1.36	0.88
1:Q:14:LEU:HG	1:Q:18:MET:HB3	1.52	0.88
1:D:780:GLY:HA2	1:N:12:GLU:HB2	1.56	0.87
1:F:366:LYS:HA	1:F:369:ARG:HD2	1.58	0.86
1:B:634:ARG:NE	1:B:636:SER:HB3	1.91	0.86
2:J:60:LYS:HD2	2:J:144:VAL:HB	1.56	0.85
1:A:441:ASP:HA	1:A:445:ARG:HG3	1.57	0.85
1:E:441:ASP:HA	1:E:445:ARG:HG2	1.60	0.84
1:C:442:ALA:HB1	1:C:467:VAL:HG12	1.59	0.83
1:A:634:ARG:HE	1:A:636:SER:HB3	1.42	0.83
1:B:366:LYS:HA	1:B:369:ARG:HD2	1.58	0.83
1:A:366:LYS:HA	1:A:369:ARG:HD2	1.58	0.83
1:D:366:LYS:HA	1:D:369:ARG:HD2	1.58	0.83
1:E:366:LYS:HA	1:E:369:ARG:HD2	1.57	0.83

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:366:LYS:HA	1:C:369:ARG:HD2	1.58	0.82
1:C:240:ASP:HB2	1:C:242:LYS:HZ3	1.47	0.81
1:C:131:ILE:HG23	1:C:330:HIS:HD2	1.42	0.80
1:B:240:ASP:HB2	1:B:242:LYS:HZ2	1.42	0.80
1:E:645:ASP:HB2	1:E:677:ASN:HA	1.63	0.80
1:A:240:ASP:HB2	1:A:242:LYS:HZ2	1.44	0.79
1:A:748:ASN:HB2	1:A:751:ASP:HB2	1.63	0.79
2:G:97:HIS:CG	2:G:138:ILE:HG23	2.17	0.79
2:L:97:HIS:CG	2:L:138:ILE:HG23	2.18	0.79
1:C:634:ARG:HE	1:C:636:SER:HB3	1.47	0.79
1:D:240:ASP:HB2	1:D:242:LYS:HZ3	1.46	0.78
1:E:441:ASP:HA	1:E:445:ARG:CG	2.14	0.77
1:A:540:ARG:NH2	1:A:747:HIS:NE2	2.33	0.77
2:K:56:LEU:HD11	2:K:68:ARG:HB3	1.65	0.76
1:B:187:THR:HB	1:F:103:GLN:HB3	1.68	0.76
1:F:542:ARG:HE	1:F:599:LEU:HD21	1.50	0.76
1:F:768:ARG:HG3	1:F:772:LYS:HZ2	1.53	0.74
1:D:1011:HIS:CE1	1:D:1025:ILE:HD11	2.23	0.73
1:E:1011:HIS:CE1	1:E:1025:ILE:HD11	2.23	0.73
1:E:496:LEU:HD21	1:E:543:LEU:HD12	1.70	0.73
2:J:97:HIS:HA	2:J:114:SER:HB3	1.69	0.73
1:C:1011:HIS:CE1	1:C:1025:ILE:HD11	2.24	0.73
1:D:634:ARG:HE	1:D:636:SER:HB3	1.53	0.73
2:J:97:HIS:CG	2:J:138:ILE:HG23	2.23	0.73
1:B:1011:HIS:CE1	1:B:1025:ILE:HD11	2.23	0.72
1:C:780:GLY:HA2	1:O:12:GLU:HB2	1.71	0.72
1:D:645:ASP:HB3	1:D:677:ASN:HA	1.70	0.72
1:F:1011:HIS:CE1	1:F:1025:ILE:HD11	2.24	0.72
1:B:1021:THR:HA	1:B:1070:LYS:NZ	2.05	0.72
1:E:1021:THR:HA	1:E:1070:LYS:NZ	2.05	0.72
1:C:240:ASP:HB2	1:C:242:LYS:HZ2	1.53	0.72
1:E:129:ARG:NH1	1:E:330:HIS:ND1	2.38	0.72
1:E:542:ARG:NE	1:E:599:LEU:HD21	1.98	0.72
1:A:1011:HIS:CE1	1:A:1025:ILE:HD11	2.24	0.72
1:D:240:ASP:HB2	1:D:242:LYS:HZ2	1.55	0.71
1:D:808:ARG:HG2	1:D:812:LYS:NZ	2.05	0.71
1:D:131:ILE:HD12	1:D:308:LEU:HD12	1.72	0.71
1:A:103:GLN:HB3	1:E:187:THR:HB	1.72	0.71
1:D:1021:THR:HA	1:D:1070:LYS:NZ	2.06	0.71
1:C:441:ASP:HA	1:C:445:ARG:CG	2.21	0.71
1:C:1021:THR:HA	1:C:1070:LYS:NZ	2.06	0.71

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:1021:THR:HA	1:A:1070:LYS:NZ	2.05	0.70
1:C:542:ARG:NE	1:C:599:LEU:HD21	2.04	0.70
1:F:1021:THR:HA	1:F:1070:LYS:NZ	2.05	0.70
1:B:441:ASP:HA	1:B:445:ARG:CG	2.23	0.69
1:F:131:ILE:HD12	1:F:308:LEU:HD12	1.74	0.69
1:C:441:ASP:HA	1:C:445:ARG:HG2	1.75	0.69
1:E:493:GLU:O	1:E:497:GLN:HG2	1.92	0.69
1:E:442:ALA:HB1	1:E:467:VAL:HG12	1.73	0.69
1:D:441:ASP:HA	1:D:445:ARG:CG	2.23	0.69
1:C:131:ILE:HD12	1:C:308:LEU:HD12	1.75	0.69
1:A:634:ARG:NE	1:A:636:SER:HB3	2.07	0.68
1:B:240:ASP:HB2	1:B:242:LYS:HZ3	1.56	0.68
1:C:170:LYS:HE2	1:C:220:GLU:HA	1.75	0.68
1:D:442:ALA:HB1	1:D:467:VAL:HG12	1.74	0.68
1:A:240:ASP:HB2	1:A:242:LYS:HZ3	1.56	0.68
1:Q:14:LEU:HG	1:Q:18:MET:CB	2.24	0.68
1:D:170:LYS:HE2	1:D:220:GLU:HA	1.75	0.68
2:K:97:HIS:CG	2:K:138:ILE:HG23	2.29	0.68
1:B:131:ILE:HD12	1:B:308:LEU:HD12	1.76	0.68
1:P:14:LEU:HG	1:P:18:MET:CB	2.24	0.67
1:B:170:LYS:HE2	1:B:220:GLU:HA	1.77	0.67
1:B:178:HIS:CD2	1:B:189:ILE:HD12	2.29	0.67
1:C:302:ILE:HG23	1:E:288:GLU:HB2	1.76	0.67
1:D:178:HIS:CD2	1:D:189:ILE:HD12	2.30	0.67
1:F:415:LEU:HA	1:F:432:LEU:HB3	1.77	0.67
1:F:441:ASP:HA	1:F:445:ARG:CG	2.25	0.67
1:A:131:ILE:HD12	1:A:308:LEU:HD12	1.76	0.67
1:E:683:THR:HG21	1:F:905:ARG:HD3	1.77	0.67
1:A:191:PRO:HA	1:C:101:GLU:HG2	1.76	0.67
1:C:415:LEU:HA	1:C:432:LEU:HB3	1.77	0.67
1:A:170:LYS:HE2	1:A:220:GLU:HA	1.77	0.67
1:D:415:LEU:HA	1:D:432:LEU:HB3	1.77	0.67
1:F:542:ARG:NE	1:F:599:LEU:HD21	2.10	0.67
1:A:302:ILE:HG23	1:C:288:GLU:HB2	1.75	0.66
1:A:415:LEU:HA	1:A:432:LEU:HB3	1.77	0.66
1:B:496:LEU:HD21	1:B:543:LEU:HD12	1.77	0.66
1:C:178:HIS:CD2	1:C:189:ILE:HD12	2.30	0.66
2:L:120:VAL:HG22	2:L:136:VAL:HG22	1.77	0.66
1:E:178:HIS:CD2	1:E:189:ILE:HD12	2.30	0.66
1:N:14:LEU:HG	1:N:18:MET:CB	2.24	0.66
1:D:542:ARG:NE	1:D:599:LEU:HD21	2.05	0.66

	the page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:743:ARG:NH1	1:E:747:HIS:ND1	2.43	0.66
1:E:170:LYS:HE2	1:E:220:GLU:HA	1.77	0.66
1:B:508:LEU:HD13	1:B:541:GLY:HA3	1.78	0.66
1:E:131:ILE:HD12	1:E:308:LEU:HD12	1.77	0.66
1:E:540:ARG:HH21	1:E:747:HIS:CE1	2.13	0.66
1:E:415:LEU:HA	1:E:432:LEU:HB3	1.77	0.66
1:A:119:SER:HB3	1:A:271:MET:HA	1.78	0.65
1:A:178:HIS:CD2	1:A:189:ILE:HD12	2.31	0.65
1:F:634:ARG:NE	1:F:636:SER:HB3	2.06	0.65
1:O:14:LEU:HG	1:0:18:MET:CB	2.24	0.65
1:A:856:VAL:HG11	1:A:864:LEU:HD11	1.79	0.65
1:B:415:LEU:HA	1:B:432:LEU:HB3	1.77	0.65
1:B:503:GLN:NE2	1:B:578:TYR:OH	2.29	0.65
2:L:58:VAL:HG22	2:L:68:ARG:HG2	1.79	0.65
1:F:178:HIS:CD2	1:F:189:ILE:HD12	2.31	0.65
2:J:81:HIS:HD2	2:J:95:ARG:HD2	1.61	0.65
1:A:1021:THR:HA	1:A:1070:LYS:HZ3	1.61	0.64
1:E:508:LEU:HD13	1:E:541:GLY:HA3	1.78	0.64
1:F:663:LEU:HB2	1:F:666:TYR:HB2	1.79	0.64
1:B:288:GLU:HB2	1:D:302:ILE:HG23	1.80	0.64
1:B:1051:LEU:HD11	1:B:1064:LEU:HD11	1.78	0.64
1:E:1051:LEU:HD11	1:E:1064:LEU:HD11	1.78	0.64
1:Q:18:MET:HA	1:Q:21:LYS:HD2	1.79	0.64
1:D:441:ASP:HA	1:D:445:ARG:HG2	1.80	0.64
1:P:18:MET:HA	1:P:21:LYS:HD2	1.80	0.64
1:F:768:ARG:HG2	1:F:772:LYS:HG3	1.80	0.64
1:F:1051:LEU:HD11	1:F:1064:LEU:HD11	1.79	0.64
2:H:56:LEU:HD11	2:H:68:ARG:HB3	1.78	0.64
1:D:1051:LEU:HD11	1:D:1064:LEU:HD11	1.79	0.64
1:F:170:LYS:HE2	1:F:220:GLU:HA	1.80	0.63
1:E:1187:ILE:HG22	1:E:1188:LEU:HG	1.80	0.63
1:B:441:ASP:HA	1:B:445:ARG:HG2	1.78	0.63
1:C:1051:LEU:HD11	1:C:1064:LEU:HD11	1.79	0.63
1:E:178:HIS:NE2	1:E:189:ILE:HD12	2.14	0.63
1:B:178:HIS:NE2	1:B:189:ILE:HD12	2.13	0.63
1:D:288:GLU:HB2	1:F:302:ILE:HG23	1.79	0.63
1:F:178:HIS:NE2	1:F:189:ILE:HD12	2.14	0.63
1:F:442:ALA:HB1	1:F:467:VAL:HG12	1.81	0.63
1:F:772:LYS:HE3	1:Q:39:ASP:HB2	1.80	0.63
1:A:288:GLU:HB2	1:E:302:ILE:HG23	1.81	0.62
1:B:1013:HIS:HA	1:B:1021:THR:HG23	1.81	0.62

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:178:HIS:NE2	1:D:189:ILE:HD12	2.14	0.62
1:F:1013:HIS:HA	1:F:1021:THR:HG23	1.81	0.62
1:A:663:LEU:HB2	1:A:666:TYR:HB2	1.81	0.62
1:A:1013:HIS:HA	1:A:1021:THR:HG23	1.81	0.62
1:A:1051:LEU:HD11	1:A:1064:LEU:HD11	1.80	0.62
1:C:1021:THR:HA	1:C:1070:LYS:HZ3	1.64	0.62
1:N:18:MET:HA	1:N:21:LYS:HD2	1.81	0.62
1:O:18:MET:HA	1:O:21:LYS:HD2	1.80	0.62
1:C:178:HIS:NE2	1:C:189:ILE:HD12	2.14	0.62
1:E:1013:HIS:HA	1:E:1021:THR:HG23	1.82	0.62
1:A:178:HIS:NE2	1:A:189:ILE:HD12	2.15	0.62
1:C:1013:HIS:HA	1:C:1021:THR:HG23	1.82	0.62
1:N:14:LEU:CG	1:N:18:MET:HB3	2.28	0.62
1:A:377:TYR:HE2	1:A:444:CYS:SG	2.19	0.62
1:F:441:ASP:HA	1:F:445:ARG:HG2	1.80	0.62
1:D:1013:HIS:HA	1:D:1021:THR:HG23	1.82	0.61
1:F:505:ARG:HB3	1:F:747:HIS:HA	1.82	0.61
1:B:1003:SER:HB3	1:B:1063:PRO:HG3	1.82	0.61
2:I:58:VAL:HG22	2:I:68:ARG:HG2	1.82	0.61
1:B:1021:THR:HA	1:B:1070:LYS:HZ3	1.64	0.61
1:D:1003:SER:HB3	1:D:1063:PRO:HG3	1.83	0.61
1:E:1021:THR:HA	1:E:1070:LYS:HZ3	1.64	0.61
1:F:1003:SER:HB3	1:F:1063:PRO:HG3	1.82	0.61
1:A:1003:SER:HB3	1:A:1063:PRO:HG3	1.82	0.61
1:C:536:ALA:HB2	1:C:613:LEU:HD13	1.83	0.61
1:C:542:ARG:HE	1:C:599:LEU:CD2	2.08	0.61
1:C:1003:SER:HB3	1:C:1063:PRO:HG3	1.82	0.61
2:I:120:VAL:HG22	2:I:136:VAL:HG22	1.81	0.61
1:D:808:ARG:HG2	1:D:812:LYS:HZ1	1.65	0.61
1:B:277:ILE:HG23	1:B:311:THR:HG23	1.83	0.61
1:C:442:ALA:HB1	1:C:467:VAL:CG1	2.30	0.61
1:E:1003:SER:HB3	1:E:1063:PRO:HG3	1.82	0.61
2:H:97:HIS:CG	2:H:138:ILE:HG23	2.35	0.61
2:I:73:GLN:HG3	2:I:74:PRO:HD2	1.82	0.61
1:A:540:ARG:HH21	1:A:747:HIS:CE1	2.19	0.61
1:A:508:LEU:HD13	1:A:541:GLY:HA3	1.83	0.60
1:B:801:GLU:OE1	2:H:81:HIS:NE2	2.35	0.60
1:D:536:ALA:HB2	1:D:613:LEU:HD13	1.84	0.60
1:B:442:ALA:HB1	1:B:467:VAL:HG12	1.83	0.60
1:B:129:ARG:NH1	1:B:330:HIS:ND1	2.50	0.60
1:F:536:ALA:HB2	1:F:613:LEU:HD13	1.83	0.60

	h h o	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:0:14:LEU:CG	1:O:18:MET:HB3	2.29	0.60
2:L:61:ARG:HB2	2:L:142:ARG:HB2	1.84	0.60
1:B:291:GLY:HA3	1:D:413:TRP:CZ2	2.36	0.60
1:B:645:ASP:CB	1:B:677:ASN:HA	2.32	0.60
2:G:120:VAL:HG22	2:G:136:VAL:HG22	1.83	0.60
1:A:125:ALA:CB	1:A:314:HIS:HD2	2.15	0.59
1:B:198:LEU:HD11	1:B:216:ILE:HD11	1.83	0.59
1:B:536:ALA:HB2	1:B:613:LEU:HD13	1.83	0.59
2:G:97:HIS:HA	2:G:114:SER:HB3	1.84	0.59
1:A:536:ALA:HB2	1:A:613:LEU:HD13	1.83	0.59
1:F:540:ARG:NH2	1:F:747:HIS:NE2	2.51	0.59
1:A:509:GLU:HB3	1:A:744:ARG:HB3	1.84	0.59
1:B:904:GLN:HG2	1:B:945:VAL:HG22	1.85	0.59
1:C:191:PRO:HA	1:E:101:GLU:HG3	1.85	0.59
1:F:508:LEU:HD13	1:F:541:GLY:HA3	1.85	0.59
2:I:97:HIS:CG	2:I:138:ILE:HG23	2.37	0.59
1:D:1021:THR:HA	1:D:1070:LYS:HZ3	1.67	0.59
1:B:302:ILE:HG23	1:F:288:GLU:HB2	1.84	0.59
1:E:277:ILE:HG23	1:E:311:THR:HG23	1.85	0.59
1:E:536:ALA:HB2	1:E:613:LEU:HD13	1.83	0.59
1:C:651:GLN:HE21	1:C:653:VAL:HG12	1.68	0.58
1:E:634:ARG:NE	1:E:636:SER:HB3	2.01	0.58
1:A:291:GLY:HA3	1:E:413:TRP:CZ2	2.39	0.58
1:F:904:GLN:HG2	1:F:945:VAL:HG22	1.85	0.58
1:A:198:LEU:HD11	1:A:216:ILE:HD11	1.85	0.58
1:C:413:TRP:CZ2	1:E:291:GLY:HA3	2.38	0.58
2:G:92:THR:HG21	2:G:140:LYS:HG3	1.84	0.58
1:Q:14:LEU:CG	1:Q:18:MET:HB3	2.29	0.58
1:C:904:GLN:HG2	1:C:945:VAL:HG22	1.86	0.58
2:J:55:ALA:HB3	2:J:71:LEU:HB2	1.86	0.58
1:F:1120:TYR:CE1	1:F:1139:ARG:NH1	2.72	0.58
2:I:55:ALA:HB3	2:I:71:LEU:HB2	1.85	0.58
2:I:97:HIS:HA	2:I:114:SER:HB3	1.84	0.58
1:B:413:TRP:CZ2	1:F:291:GLY:HA3	2.38	0.57
1:E:904:GLN:HG2	1:E:945:VAL:HG22	1.85	0.57
1:A:904:GLN:HG2	1:A:945:VAL:HG22	1.85	0.57
1:C:382:HIS:CE1	1:C:383:LEU:HG	2.39	0.57
1:D:645:ASP:CB	1:D:677:ASN:HA	2.34	0.57
1:A:441:ASP:HA	1:A:445:ARG:CG	2.31	0.57
1:A:768:ARG:CD	1:A:772:LYS:HZ2	2.17	0.57
1:B:645:ASP:HB3	1:B:677:ASN:HA	1.86	0.57

A t a sup 1	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:100:ASP:HB2	1:E:192:ALA:HB2	1.86	0.57
1:B:105:LEU:HD21	1:D:185:LYS:HD3	1.87	0.57
1:B:1013:HIS:ND1	1:B:1021:THR:HG21	2.20	0.57
1:C:798:GLY:HA2	2:I:95:ARG:HD3	1.87	0.57
1:D:193:HIS:ND1	1:D:220:GLU:OE2	2.28	0.57
1:D:380:ARG:HB2	1:D:383:LEU:HD12	1.87	0.57
1:D:1120:TYR:CE1	1:D:1139:ARG:NH1	2.72	0.57
1:E:768:ARG:CD	1:E:772:LYS:HZ2	2.18	0.57
1:F:1013:HIS:ND1	1:F:1021:THR:HG21	2.20	0.57
1:A:1013:HIS:ND1	1:A:1021:THR:HG21	2.20	0.57
1:A:1120:TYR:CE1	1:A:1139:ARG:NH1	2.73	0.57
1:D:904:GLN:HG2	1:D:945:VAL:HG22	1.86	0.57
1:E:1120:TYR:CE1	1:E:1139:ARG:NH1	2.73	0.57
1:B:1198:ILE:HG22	1:B:1221:ILE:HG23	1.85	0.57
1:A:413:TRP:CZ2	1:C:291:GLY:HA3	2.39	0.57
1:A:542:ARG:HE	1:A:599:LEU:HD21	1.68	0.57
1:B:607:GLU:OE1	1:B:643:HIS:ND1	2.36	0.57
1:C:768:ARG:CD	1:C:772:LYS:HZ2	2.18	0.57
1:D:377:TYR:HB3	1:D:439:LEU:HD22	1.86	0.57
1:B:1120:TYR:CE1	1:B:1139:ARG:NH1	2.73	0.57
1:A:193:HIS:ND1	1:A:220:GLU:OE2	2.29	0.56
1:E:1013:HIS:ND1	1:E:1021:THR:HG21	2.20	0.56
1:B:146:HIS:ND1	1:B:445:ARG:NH1	2.53	0.56
1:B:193:HIS:ND1	1:B:220:GLU:OE2	2.29	0.56
1:C:1120:TYR:CE1	1:C:1139:ARG:NH1	2.73	0.56
1:D:291:GLY:HA3	1:F:413:TRP:CZ2	2.40	0.56
1:D:542:ARG:HE	1:D:599:LEU:CD2	2.09	0.56
1:B:135:LEU:HD22	1:B:355:TRP:HB2	1.87	0.56
1:D:768:ARG:CD	1:D:772:LYS:HZ2	2.18	0.56
1:E:135:LEU:HD22	1:E:355:TRP:HB2	1.87	0.56
1:E:202:LEU:HD21	1:E:238:ALA:HB1	1.87	0.56
2:G:58:VAL:HG22	2:G:68:ARG:HG2	1.88	0.56
1:B:743:ARG:NH1	1:B:747:HIS:ND1	2.53	0.56
1:F:135:LEU:HD22	1:F:355:TRP:HB2	1.87	0.56
1:A:606:LEU:HG	5:A:1303:TPP:N3'	2.20	0.56
1:C:146:HIS:ND1	1:C:445:ARG:NH1	2.51	0.56
1:N:18:MET:HE3	1:N:33:TRP:CD1	2.40	0.56
1:A:571:HIS:NE2	5:A:1303:TPP:H2	2.20	0.56
1:C:135:LEU:HD22	1:C:355:TRP:HB2	1.87	0.56
1:C:1013:HIS:ND1	1:C:1021:THR:HG21	2.20	0.56
1:B:441:ASP:HA	1:B:445:ARG:HG3	1.88	0.56

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:F:1021:THR:HA	1:F:1070:LYS:HZ3	1.71	0.55
1:B:1013:HIS:CE1	1:B:1021:THR:HG21	2.42	0.55
1:D:198:LEU:HD11	1:D:216:ILE:HD11	1.88	0.55
1:D:1013:HIS:ND1	1:D:1021:THR:HG21	2.20	0.55
1:C:1013:HIS:CE1	1:C:1021:THR:HG21	2.42	0.55
1:E:1013:HIS:CE1	1:E:1021:THR:HG21	2.41	0.55
1:B:768:ARG:CD	1:B:772:LYS:HZ2	2.20	0.55
1:P:14:LEU:CG	1:P:18:MET:HB3	2.29	0.55
1:D:441:ASP:HA	1:D:445:ARG:HG3	1.87	0.55
1:A:135:LEU:HD22	1:A:355:TRP:HB2	1.88	0.55
1:E:663:LEU:HB2	1:E:666:TYR:HB2	1.87	0.55
1:F:768:ARG:CG	1:F:772:LYS:HZ2	2.18	0.55
2:J:57:LEU:HD13	2:J:143:LEU:HD13	1.87	0.55
2:K:61:ARG:HB2	2:K:142:ARG:HB2	1.89	0.55
1:D:135:LEU:HD22	1:D:355:TRP:HB2	1.88	0.55
1:F:1013:HIS:CE1	1:F:1021:THR:HG21	2.41	0.55
1:D:1013:HIS:CE1	1:D:1021:THR:HG21	2.42	0.55
1:A:1013:HIS:CE1	1:A:1021:THR:HG21	2.41	0.54
1:E:607:GLU:OE1	1:E:643:HIS:ND1	2.38	0.54
1:E:577:LYS:HD3	1:E:580:LEU:HD12	1.89	0.54
1:C:441:ASP:HA	1:C:445:ARG:HG3	1.88	0.54
1:C:383:LEU:HD21	1:D:455:LEU:HD21	1.88	0.54
1:P:14:LEU:HD12	1:P:17:GLU:HB3	1.89	0.54
1:E:193:HIS:ND1	1:E:220:GLU:OE2	2.29	0.54
1:E:624:LEU:HB2	1:E:626:THR:HG22	1.89	0.54
1:E:768:ARG:CG	1:E:772:LYS:HZ2	2.20	0.54
1:N:14:LEU:HD12	1:N:17:GLU:HB3	1.89	0.54
1:A:1022:SER:HB3	1:A:1206:PRO:HB3	1.90	0.54
1:B:1198:ILE:HD12	1:B:1224:THR:HG22	1.90	0.54
1:F:377:TYR:O	1:F:381:GLY:HA3	2.06	0.54
1:F:1022:SER:HB3	1:F:1206:PRO:HB3	1.90	0.54
1:A:384:MET:HG2	1:A:397:PHE:HA	1.90	0.54
1:D:124:THR:HG21	1:D:270:LEU:HB3	1.89	0.54
1:F:798:GLY:HA2	2:L:95:ARG:HD3	1.90	0.54
2:I:61:ARG:HB2	2:I:142:ARG:HB2	1.88	0.54
1:A:645:ASP:OD1	1:A:678:ASN:OD1	2.26	0.54
1:B:577:LYS:HD3	1:B:580:LEU:HD12	1.90	0.54
1:D:466:ARG:HD3	1:D:723:LEU:HD11	1.90	0.54
1:B:768:ARG:HG3	1:B:772:LYS:HZ1	1.73	0.54
1:F:195:ASN:HB3	1:F:215:ALA:HB1	1.89	0.54
1:D:146:HIS:ND1	1:D:445:ARG:NH1	2.54	0.53

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:382:HIS:CE1	1:D:383:LEU:HG	2.43	0.53
1:F:387:ILE:HB	1:F:740:LEU:HD13	1.90	0.53
1:C:198:LEU:HD11	1:C:216:ILE:HD11	1.90	0.53
1:C:571:HIS:NE2	5:C:1303:TPP:H2	2.24	0.53
1:E:183:ASP:HB2	1:E:185:LYS:HE2	1.90	0.53
1:O:14:LEU:HD12	1:O:17:GLU:HB3	1.89	0.53
1:B:183:ASP:HB2	1:B:185:LYS:HE2	1.90	0.53
1:C:462:TRP:CZ2	1:C:466:ARG:NH1	2.76	0.53
1:F:183:ASP:HB2	1:F:185:LYS:HE2	1.90	0.53
1:F:441:ASP:HA	1:F:445:ARG:HG3	1.89	0.53
1:A:798:GLY:HA2	2:G:95:ARG:HD3	1.90	0.53
1:C:748:ASN:HB2	1:C:751:ASP:HB2	1.91	0.53
1:E:140:ARG:HH21	1:E:156:SER:HA	1.74	0.53
1:E:441:ASP:HA	1:E:445:ARG:HG3	1.90	0.53
1:B:898:LEU:HD21	1:B:911:ARG:HD3	1.91	0.53
1:A:683:THR:HG21	1:B:905:ARG:HD3	1.90	0.53
2:J:57:LEU:HB3	2:J:143:LEU:HD22	1.90	0.53
1:A:183:ASP:HB2	1:A:185:LYS:HE2	1.90	0.53
1:D:183:ASP:HB2	1:D:185:LYS:HE2	1.90	0.53
1:D:748:ASN:HB2	1:D:751:ASP:HB2	1.91	0.53
1:E:1182:LEU:HB2	1:F:1182:LEU:HD22	1.90	0.53
1:F:146:HIS:ND1	1:F:445:ARG:NH1	2.54	0.53
1:F:193:HIS:ND1	1:F:220:GLU:OE2	2.32	0.53
1:A:768:ARG:CG	1:A:772:LYS:HZ2	2.21	0.53
1:B:706:ILE:HG21	1:B:708:HIS:CE1	2.44	0.53
2:G:55:ALA:HB3	2:G:71:LEU:HB2	1.90	0.53
1:B:748:ASN:HB2	1:B:751:ASP:HB2	1.91	0.52
1:D:442:ALA:HB1	1:D:467:VAL:CG1	2.40	0.52
1:A:131:ILE:HG12	1:A:330:HIS:ND1	2.25	0.52
1:D:1022:SER:HB3	1:D:1206:PRO:HB3	1.90	0.52
1:E:898:LEU:HD21	1:E:911:ARG:HD3	1.91	0.52
1:Q:14:LEU:HD12	1:Q:17:GLU:HB3	1.90	0.52
1:A:1182:LEU:HB2	1:B:1182:LEU:HD22	1.92	0.52
1:E:1022:SER:HB3	1:E:1206:PRO:HB3	1.90	0.52
1:A:1182:LEU:HD22	1:B:1182:LEU:HB2	1.91	0.52
1:C:183:ASP:HB2	1:C:185:LYS:HE2	1.90	0.52
1:D:377:TYR:HE2	1:D:444:CYS:SG	2.32	0.52
1:A:128:VAL:HG13	1:A:309:THR:HG22	1.91	0.52
1:D:768:ARG:HG3	1:D:772:LYS:HZ1	1.75	0.52
1:E:132:PRO:HG2	1:E:334:LEU:HD11	1.92	0.52
1:C:1022:SER:HB3	1:C:1206:PRO:HB3	1.91	0.52

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:381:GLY:HA3	1:A:443:TYR:HB3	1.91	0.52
1:F:680:ILE:O	5:F:1303:TPP:O2B	2.27	0.52
1:A:125:ALA:HB3	1:A:314:HIS:HD2	1.73	0.52
1:D:132:PRO:HG2	1:D:334:LEU:HD11	1.91	0.52
1:D:496:LEU:HD21	1:D:543:LEU:HD12	1.91	0.52
1:D:577:LYS:HD3	1:D:580:LEU:HD12	1.90	0.52
1:B:132:PRO:HG2	1:B:334:LEU:HD11	1.92	0.52
1:B:663:LEU:HB2	1:B:666:TYR:HB2	1.90	0.51
1:C:768:ARG:HG3	1:C:772:LYS:NZ	2.25	0.51
1:F:898:LEU:HD21	1:F:911:ARG:HD3	1.92	0.51
1:E:743:ARG:NH1	1:E:747:HIS:CE1	2.78	0.51
1:F:198:LEU:HD11	1:F:216:ILE:HD11	1.93	0.51
1:P:18:MET:HE3	1:P:33:TRP:CD1	2.45	0.51
1:A:132:PRO:HG2	1:A:334:LEU:HD11	1.92	0.51
1:F:683:THR:HB	1:F:756:THR:HG21	1.93	0.51
1:D:768:ARG:HG3	1:D:772:LYS:NZ	2.25	0.51
1:E:157:PHE:HA	1:E:160:LEU:HD12	1.92	0.51
1:C:577:LYS:HD3	1:C:580:LEU:HD12	1.91	0.51
1:A:768:ARG:HG3	1:A:772:LYS:NZ	2.26	0.51
1:A:898:LEU:HD21	1:A:911:ARG:HD3	1.92	0.51
1:A:577:LYS:HD3	1:A:580:LEU:HD12	1.92	0.51
1:C:193:HIS:ND1	1:C:220:GLU:OE2	2.29	0.51
1:C:768:ARG:HG3	1:C:772:LYS:HZ1	1.76	0.51
2:H:63:PRO:HD2	2:H:141:PHE:CE1	2.46	0.51
1:B:1022:SER:HB3	1:B:1206:PRO:HB3	1.91	0.51
1:E:897:ARG:NH1	1:E:946:TYR:HE2	2.09	0.51
1:B:240:ASP:CB	1:B:242:LYS:HZ2	2.20	0.51
1:C:994:SER:HB2	1:C:998:LYS:HG3	1.92	0.51
1:E:994:SER:HB2	1:E:998:LYS:HG3	1.92	0.51
1:E:706:ILE:HG21	1:E:708:HIS:CE1	2.46	0.51
1:F:278:ILE:HD11	1:F:325:PHE:HE2	1.75	0.51
1:A:542:ARG:NE	1:A:599:LEU:HD21	2.26	0.50
1:B:768:ARG:HG3	1:B:772:LYS:NZ	2.25	0.50
1:E:743:ARG:HH11	1:E:747:HIS:CE1	2.28	0.50
2:J:119:TYR:HB2	2:J:137:GLN:HB3	1.93	0.50
1:C:639:PRO:HB2	1:C:671:THR:HG23	1.93	0.50
1:C:645:ASP:OD1	1:C:678:ASN:OD1	2.30	0.50
1:D:180:ALA:O	1:D:187:THR:O	2.29	0.50
1:F:132:PRO:HG2	1:F:334:LEU:HD11	1.92	0.50
1:F:577:LYS:HD3	1:F:580:LEU:HD12	1.91	0.50
1:F:651:GLN:HE21	1:F:653:VAL:HG12	1.76	0.50

	t i c	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:C:132:PRO:HG2	1:C:334:LEU:HD11	1.92	0.50	
1:B:897:ARG:NH1	1:B:946:TYR:HE2	2.09	0.50	
1:B:994:SER:HB2	1:B:998:LYS:HG3	1.92	0.50	
1:D:377:TYR:HE2	1:D:444:CYS:HG	1.59	0.50	
1:D:994:SER:HB2	1:D:998:LYS:HG3	1.92	0.50	
1:E:540:ARG:NH2	1:E:747:HIS:CE1	2.80	0.50	
1:E:768:ARG:HG3	1:E:772:LYS:NZ	2.25	0.50	
1:F:540:ARG:NH2	1:F:747:HIS:CE1	2.79	0.50	
1:F:645:ASP:OD1	1:F:678:ASN:OD1	2.29	0.50	
2:H:61:ARG:HD3	2:H:142:ARG:HD3	1.93	0.50	
1:A:270:LEU:HD13	1:A:277:ILE:HG22	1.94	0.50	
1:B:380:ARG:HB2	1:B:383:LEU:HD12	1.92	0.50	
2:J:58:VAL:HG22	2:J:68:ARG:HG2	1.93	0.50	
1:A:540:ARG:NH2	1:A:747:HIS:CE1	2.79	0.50	
1:N:14:LEU:HG	1:N:18:MET:CG	2.42	0.50	
1:A:119:SER:CB	1:A:271:MET:HA	2.41	0.50	
2:G:61:ARG:HB2	2:G:142:ARG:HB2	1.94	0.50	
1:A:639:PRO:HB2	1:A:671:THR:HG23	1.94	0.49	
1:B:268:PRO:HD2	1:B:311:THR:CG2	2.42	0.49	
1:C:387:ILE:HB	1:C:740:LEU:HD13	1.93	0.49	
1:D:639:PRO:HB2	1:D:671:THR:HG23	1.93	0.49	
1:D:651:GLN:HE21	1:D:653:VAL:HG12	1.76	0.49	
1:F:897:ARG:NH1	1:F:946:TYR:HE2	2.09	0.49	
1:0:14:LEU:O	1:O:18:MET:HG2	2.12	0.49	
1:A:994:SER:HB2	1:A:998:LYS:HG3	1.93	0.49	
1:D:706:ILE:CG2	1:D:708:HIS:CE1	2.95	0.49	
1:F:542:ARG:HE	1:F:599:LEU:CD2	2.23	0.49	
1:O:14:LEU:HG	1:O:18:MET:CG	2.42	0.49	
1:O:18:MET:HE3	1:O:33:TRP:CD1	2.47	0.49	
1:Q:14:LEU:HG	1:Q:18:MET:CG	2.42	0.49	
1:A:331:GLN:O	1:A:335:ASP:HB2	2.12	0.49	
1:D:897:ARG:NH1	1:D:946:TYR:HE2	2.10	0.49	
1:E:639:PRO:HB2	1:E:671:THR:HG23	1.94	0.49	
1:E:683:THR:HB	1:E:756:THR:HG21	1.94	0.49	
1:F:994:SER:HB2	1:F:998:LYS:HG3	1.94	0.49	
1:0:21:LYS:O	1:0:25:ASP:0	2.31	0.49	
1:Q:18:MET:HE3	1:Q:33:TRP:CD1	2.47	0.49	
1:B:191:PRO:HA	1:F:101:GLU:HG2	1.94	0.49	
1:E:442:ALA:HB1	1:E:467:VAL:CG1	2.39	0.49	
1:P:14:LEU:HG	1:P:18:MET:CG	2.43	0.49	
1:A:897:ARG:NH1	1:A:946:TYR:HE2	2.09	0.49	

	A 4 O	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:C:377:TYR:HE2	1:C:444:CYS:SG	2.35	0.49	
1:E:1002:LEU:HB3	002:LEU:HB3 1:E:1061:GLN:HB2		0.49	
1:F:768:ARG:HG3	1:F:772:LYS:NZ	2.25	0.49	
2:K:58:VAL:HG22	2:K:68:ARG:HG2	1.95	0.49	
1:C:897:ARG:NH1	1:C:946:TYR:HE2	2.10	0.49	
1:E:748:ASN:HB2	1:E:751:ASP:HB2	1.94	0.49	
1:N:21:LYS:O	1:N:25:ASP:O	2.30	0.49	
1:A:125:ALA:HB3	1:A:314:HIS:CD2	2.47	0.49	
1:C:898:LEU:HD21	1:C:911:ARG:HD3	1.94	0.49	
1:F:793:LEU:CD2	1:Q:33:TRP:CD1	2.95	0.49	
1:N:14:LEU:O	1:N:18:MET:HG2	2.12	0.49	
1:C:1120:TYR:CZ	1:C:1139:ARG:NH1	2.81	0.49	
1:D:603:PRO:HD3	1:D:991:PHE:CZ	2.48	0.49	
1:C:663:LEU:HB2	1:C:666:TYR:HB2	1.94	0.49	
1:D:706:ILE:HG21	1:D:708:HIS:CE1	2.48	0.49	
1:D:898:LEU:HD21	1:D:911:ARG:HD3	1.94	0.49	
1:C:768:ARG:CG	1:C:772:LYS:HZ2	2.25	0.48	
1:F:481:TYR:HE1	2:L:92:THR:HG22	1.78	0.48	
1:A:540:ARG:NH2	1:A:747:HIS:CD2	2.81	0.48	
1:A:1120:TYR:CZ	1:A:1139:ARG:NH1	2.82	0.48	
1:D:1120:TYR:CZ	1:D:1139:ARG:NH1	2.81	0.48	
1:F:639:PRO:HB2	1:F:671:THR:HG23	1.94	0.48	
1:P:21:LYS:O	1:P:25:ASP:O	2.31	0.48	
1:B:1167:VAL:HG22	1:B:1198:ILE:HB	1.95	0.48	
1:D:125:ALA:HB2	1:D:314:HIS:HD2	1.77	0.48	
1:F:1120:TYR:CZ	1:F:1139:ARG:NH1	2.82	0.48	
1:Q:21:LYS:O	1:Q:25:ASP:O	2.31	0.48	
1:F:331:GLN:O	1:F:335:ASP:HB2	2.13	0.48	
1:Q:14:LEU:O	1:Q:18:MET:HG2	2.13	0.48	
1:A:125:ALA:CB	1:A:314:HIS:CD2	2.96	0.48	
1:A:1002:LEU:HB3	1:A:1061:GLN:HB2	1.96	0.48	
1:B:1002:LEU:HB3	1:B:1061:GLN:HB2	1.96	0.48	
1:B:1120:TYR:CZ	1:B:1139:ARG:NH1	2.82	0.48	
1:C:603:PRO:HD3	1:C:991:PHE:CZ	2.48	0.48	
1:C:706:ILE:CG2	1:C:708:HIS:CE1	2.97	0.48	
1:D:1120:TYR:CG	1:D:1139:ARG:HD3	2.49	0.48	
1:E:1120:TYR:CZ	1:E:1139:ARG:NH1	2.82	0.48	
2:J:81:HIS:CD2	2:J:95:ARG:HH11	2.32	0.48	
1:B:493:GLU:O	1:B:497:GLN:HG2	2.14	0.48	
1:B:706:ILE:CG2	1:B:708:HIS:CE1	2.97	0.48	
1:D:617:VAL:HG11	1:D:639:PRO:HG3	1.96	0.48	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:E:1120:TYR:CG	1:E:1139:ARG:HD3	2.49	0.48	
1:E:1182:LEU:HD22	182:LEU:HD22 1:F:1182:LEU:HB2		0.48	
1:B:639:PRO:HB2	1:B:671:THR:HG23	1.95	0.48	
1:B:1039:ILE:HD12	1:B:1144:ALA:HB3	1.96	0.48	
1:C:905:ARG:HD3	1:D:683:THR:HG21	1.94	0.48	
1:E:331:GLN:O	1:E:335:ASP:HB2	2.14	0.48	
1:P:14:LEU:O	1:P:18:MET:HG2	2.13	0.48	
1:C:617:VAL:HG11	1:C:639:PRO:HG3	1.96	0.48	
1:E:706:ILE:CG2	1:E:708:HIS:CE1	2.97	0.48	
1:F:1002:LEU:HB3	1:F:1061:GLN:HB2	1.95	0.48	
1:F:1120:TYR:CG	1:F:1139:ARG:HD3	2.49	0.48	
1:A:1120:TYR:CG	1:A:1139:ARG:HD3	2.49	0.47	
1:C:277:ILE:HG23	1:C:311:THR:HG23	1.95	0.47	
1:C:1039:ILE:HD12	1:C:1144:ALA:HB3	1.96	0.47	
1:D:793:LEU:CD2	1:N:33:TRP:CD1	2.97	0.47	
2:H:61:ARG:NH2	2:H:142:ARG:NH1	2.62	0.47	
1:N:18:MET:CE	1:N:33:TRP:CD1	2.97	0.47	
1:E:645:ASP:CB	1:E:677:ASN:HA	2.40	0.47	
1:C:128:VAL:HG13	1:C:309:THR:HG22	1.96	0.47	
1:C:1120:TYR:CG	1:C:1139:ARG:HD3	2.49	0.47	
1:A:617:VAL:HG11	1:A:639:PRO:HG3	1.96	0.47	
1:C:129:ARG:NH1	1:C:330:HIS:ND1	2.62	0.47	
1:C:706:ILE:HG21	1:C:708:HIS:CE1	2.50	0.47	
1:D:432:LEU:HA	1:D:435:ILE:HD12	1.96	0.47	
1:D:1002:LEU:HB3	1:D:1061:GLN:HB2	1.95	0.47	
1:E:146:HIS:ND1	1:E:445:ARG:NH1	2.61	0.47	
2:L:97:HIS:HA	2:L:114:SER:HB3	1.94	0.47	
1:A:603:PRO:HD3	1:A:991:PHE:CZ	2.49	0.47	
1:B:651:GLN:HE21	1:B:653:VAL:HG12	1.79	0.47	
1:E:1039:ILE:HD12	1:E:1144:ALA:HB3	1.96	0.47	
1:B:331:GLN:O	1:B:335:ASP:HB2	2.14	0.47	
1:D:331:GLN:O	1:D:335:ASP:HB2	2.14	0.47	
1:B:624:LEU:HB2	1:B:626:THR:HG22	1.97	0.47	
1:B:1120:TYR:CG	1:B:1139:ARG:HD3	2.50	0.47	
1:C:793:LEU:HG	1:O:32:SER:HB2	1.97	0.47	
1:D:663:LEU:HB2	1:D:666:TYR:HB2	1.97	0.47	
1:F:682:PHE:H	1:F:743:ARG:HH12	1.63	0.47	
2:H:92:THR:HG21	2:H:140:LYS:HG3	1.97	0.47	
1:O:18:MET:CE	1:O:33:TRP:CD1	2.98	0.47	
1:P:18:MET:CE	1:P:33:TRP:CD1	2.98	0.47	
1:Q:18:MET:CE	1:Q:33:TRP:CD1	2.98	0.47	

	h h o	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:A:1084:ASP:O	1:A:1088:SER:HB3	2.15	0.47	
1:C:1002:LEU:HB3	1:C:1061:GLN:HB2	1.95	0.47	
1:D:1039:ILE:HD12	1:D:1144:ALA:HB3	1.97	0.47	
1:F:603:PRO:HD3	1:F:991:PHE:CZ	2.49	0.47	
1:B:128:VAL:HG13	1:B:309:THR:HG22	1.97	0.47	
1:E:128:VAL:HG13	1:E:309:THR:HG22	1.97	0.47	
1:E:382:HIS:CE1	1:E:383:LEU:HG	2.50	0.47	
1:E:384:MET:HG2	1:E:397:PHE:HA	1.97	0.47	
1:D:128:VAL:HG13	1:D:309:THR:HG22	1.97	0.46	
2:H:83:ASP:OD2	2:H:96:ARG:NH2	2.43	0.46	
2:K:56:LEU:HD21	2:K:68:ARG:HD2	1.96	0.46	
1:A:487:ASN:OD1	1:A:771:ARG:HD2	2.16	0.46	
1:A:619:ALA:HB2	1:A:962:TYR:HA	1.98	0.46	
1:D:768:ARG:CG	1:D:772:LYS:HZ2	2.27	0.46	
1:F:617:VAL:HG11	1:F:639:PRO:HG3	1.97	0.46	
1:F:856:VAL:HG11	1:F:864:LEU:HD11	1.98	0.46	
1:F:1013:HIS:ND1	1:F:1021:THR:CG2	2.78	0.46	
1:B:603:PRO:HD3	1:B:991:PHE:CZ	2.49	0.46	
1:B:1013:HIS:ND1	1:B:1021:THR:CG2	2.79	0.46	
1:C:331:GLN:O	1:C:335:ASP:HB2	2.16	0.46	
1:D:768:ARG:CG	1:D:772:LYS:NZ	2.79	0.46	
1:A:768:ARG:CG	1:A:772:LYS:NZ	2.79	0.46	
1:C:466:ARG:HG3	1:C:723:LEU:HD11	1.96	0.46	
1:C:856:VAL:HG11	1:C:864:LEU:HD11	1.97	0.46	
1:E:856:VAL:HG11	1:E:864:LEU:HD11	1.98	0.46	
1:F:706:ILE:CG2	1:F:708:HIS:CE1	2.99	0.46	
1:A:1013:HIS:ND1	1:A:1021:THR:CG2	2.78	0.46	
1:C:768:ARG:CG	1:C:772:LYS:NZ	2.79	0.46	
1:D:387:ILE:HB	1:D:740:LEU:HD13	1.98	0.46	
1:D:856:VAL:HG11	1:D:864:LEU:HD11	1.98	0.46	
1:E:603:PRO:HD3	1:E:991:PHE:CZ	2.49	0.46	
1:F:1039:ILE:HD12	1:F:1144:ALA:HB3	1.97	0.46	
1:A:1039:ILE:HD12	1:A:1144:ALA:HB3	1.97	0.46	
1:C:1013:HIS:ND1	1:C:1021:THR:CG2	2.79	0.46	
1:C:487:ASN:OD1	1:C:771:ARG:HD2	2.16	0.46	
1:C:793:LEU:CD2	1:O:33:TRP:CD1	2.99	0.46	
1:E:155:ILE:HD13	1:E:159:HIS:ND1	2.31	0.46	
1:A:187:THR:HB	1:C:103:GLN:HB3	1.98	0.46	
1:A:857:HIS:CD2	1:A:918:ARG:HD3	2.50	0.46	
1:B:856:VAL:HG11	1:B:864:LEU:HD11	1.98	0.46	
1:D:487:ASN:OD1	1:D:771:ARG:HD2	2.16	0.46	

	the o	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:E:1013:HIS:ND1	1:E:1021:THR:CG2	2.79	0.46	
1:A:240:ASP:CB	1:A:242:LYS:HZ2	2.21	0.46	
1:B:619:ALA:HB2	1:B:962:TYR:HA	1.98	0.46	
1:B:768:ARG:CG	1:B:772:LYS:NZ	2.78	0.46	
1:E:487:ASN:OD1	1:E:771:ARG:HD2	2.16	0.46	
1:A:101:GLU:HG2	1:E:191:PRO:HA	1.97	0.46	
1:C:135:LEU:HD23	1:C:334:LEU:HA	1.98	0.46	
1:F:768:ARG:CG	1:F:772:LYS:NZ	2.78	0.45	
1:A:744:ARG:HD3	1:A:764:ILE:HG22	1.99	0.45	
1:B:617:VAL:HG11	1:B:639:PRO:HG3	1.98	0.45	
2:H:83:ASP:HB2	2:H:96:ARG:HH12	1.81	0.45	
1:A:768:ARG:HG3	1:A:772:LYS:HZ1	1.81	0.45	
1:D:385:ALA:H	1:D:396:ARG:HH12	1.65	0.45	
1:D:1013:HIS:ND1	1:D:1021:THR:CG2	2.79	0.45	
1:E:768:ARG:CG	1:E:772:LYS:NZ	2.79	0.45	
2:J:92:THR:HG21	2:J:140:LYS:HG3	1.98	0.45	
1:A:706:ILE:CG2	1:A:708:HIS:CE1	2.99	0.45	
1:C:645:ASP:OD1	1:C:680:ILE:O	2.34	0.45	
1:B:487:ASN:OD1	1:B:771:ARG:HD2	2.17	0.45	
1:C:455:LEU:HD21	1:D:383:LEU:HD21	1.98	0.45	
1:C:1084:ASP:O	1:C:1088:SER:HB3	2.17	0.45	
1:E:617:VAL:HG11	1:E:639:PRO:HG3	1.98	0.45	
1:E:619:ALA:HB2	1:E:962:TYR:HA	1.97	0.45	
1:F:487:ASN:OD1	1:F:771:ARG:HD2	2.15	0.45	
1:E:268:PRO:HD2	1:E:311:THR:CG2	2.47	0.45	
1:A:462:TRP:O	1:A:466:ARG:HG2	2.17	0.45	
1:C:619:ALA:HB2	1:C:962:TYR:HA	1.98	0.45	
1:D:125:ALA:HB2	1:D:314:HIS:CD2	2.51	0.45	
1:B:768:ARG:CG	1:B:772:LYS:HZ2	2.30	0.45	
1:C:579:HIS:CE1	1:C:603:PRO:HA	2.52	0.45	
1:D:1011:HIS:CE1	1:D:1025:ILE:CD1	2.98	0.45	
1:E:1148:ARG:HG2	1:E:1188:LEU:HD21	1.99	0.45	
1:F:128:VAL:HG13	1:F:309:THR:HG22	1.99	0.45	
1:F:619:ALA:HB2	1:F:962:TYR:HA	1.98	0.45	
1:B:542:ARG:NE	1:B:599:LEU:HD21	2.17	0.44	
1:B:1148:ARG:HG2	1:B:1188:LEU:HD21	1.99	0.44	
1:D:619:ALA:HB2	1:D:962:TYR:HA	1.98	0.44	
1:C:337:ASP:HA	1:C:340:ASP:HB2	1.99	0.44	
1:D:337:ASP:HA	1:D:340:ASP:HB2	2.00	0.44	
1:D:671:THR:H	1:D:734:ASP:HA	1.83	0.44	
1:D:1084:ASP:O	1:D:1088:SER:HB3	2.17	0.44	

	the o	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:382:HIS:H	1:A:382:HIS:CD2	2.35	0.44	
1:A:1148:ARG:HG2	1:A:1188:LEU:HD21	1.99	0.44	
1:C:1148:ARG:HG2	1:C:1188:LEU:HD21	1.98	0.44	
1:D:1002:LEU:HB3	1:D:1061:GLN:CB	2.48	0.44	
1:E:503:GLN:NE2	1:E:578:TYR:OH	2.48	0.44	
1:D:135:LEU:HD23	1:D:334:LEU:HA	1.98	0.44	
1:E:1002:LEU:HB3	1:E:1061:GLN:CB	2.47	0.44	
1:N:18:MET:SD	1:N:33:TRP:CD2	3.11	0.44	
1:A:400:HIS:HD2	1:A:402:ASP:OD1	2.01	0.44	
1:C:377:TYR:HB3	1:C:439:LEU:HD22	1.98	0.44	
1:C:1002:LEU:HB3	1:C:1061:GLN:CB	2.48	0.44	
1:E:905:ARG:HD3	1:F:683:THR:HG21	1.98	0.44	
1:F:1148:ARG:HG2	1:F:1188:LEU:HD21	1.97	0.44	
1:P:18:MET:SD	1:P:33:TRP:CD2	3.11	0.44	
1:B:268:PRO:HD2	1:B:311:THR:HG21	1.99	0.44	
1:F:387:ILE:HA	1:F:710:ASN:HB2	2.00	0.44	
2:K:122:ARG:HH12	2:K:142:ARG:HH21	1.66	0.44	
1:0:18:MET:SD	1:O:33:TRP:CD2	3.11	0.44	
1:C:432:LEU:HA	1:C:435:ILE:HD12	1.99	0.44	
1:E:337:ASP:HA	1:E:340:ASP:HB2	2.00	0.44	
1:F:337:ASP:HA	1:F:340:ASP:HB2	2.00	0.44	
1:F:1011:HIS:CE1	1:F:1025:ILE:CD1	2.99	0.44	
2:I:119:TYR:HB2	2:I:137:GLN:HB3	1.99	0.44	
1:Q:18:MET:SD	1:Q:33:TRP:CD2	3.11	0.44	
1:A:125:ALA:HB2	1:A:314:HIS:HD2	1.82	0.44	
1:A:135:LEU:HD23	1:A:334:LEU:HA	1.99	0.44	
1:B:135:LEU:HD23	1:B:334:LEU:HA	1.99	0.44	
1:B:1002:LEU:HB3	1:B:1061:GLN:CB	2.48	0.44	
1:D:894:LYS:HZ2	1:D:968:ASP:C	2.22	0.44	
1:E:135:LEU:HD23	1:E:334:LEU:HA	1.99	0.44	
1:C:240:ASP:CB	1:C:242:LYS:HZ2	2.28	0.44	
1:F:592:ASP:HA	2:L:61:ARG:HH12	1.83	0.43	
1:B:337:ASP:HA	1:B:340:ASP:HB2	2.00	0.43	
1:F:135:LEU:HD23	1:F:334:LEU:HA	2.00	0.43	
1:A:706:ILE:HG21	1:A:708:HIS:CE1	2.53	0.43	
1:D:385:ALA:O	1:D:396:ARG:NH1	2.51	0.43	
1:F:792:ALA:HA	2:L:115:LEU:HD22	2.00	0.43	
2:I:56:LEU:HD11	2:I:68:ARG:HB3	2.01	0.43	
1:B:382:HIS:ND1	1:B:694:TYR:OH	2.36	0.43	
1:D:387:ILE:HA	1:D:710:ASN:HB2	2.01	0.43	
1:D:1123:LEU:HD23	1:D:1222:LEU:HD23	2.01	0.43	

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:E:270:LEU:HD13	1:E:277:ILE:HG22	2.01	0.43	
1:F:280:ALA:HA	1:F:308:LEU:HD23	2.00	0.43	
1:F:1002:LEU:HB3	1:F:1061:GLN:CB	2.48	0.43	
2:I:76:THR:HB	2:I:100:PHE:HB2	2.00	0.43	
2:K:90:ASP:HB3	2:K:93:VAL:HG23	2.00	0.43	
1:A:1002:LEU:HB3	1:A:1061:GLN:CB	2.49	0.43	
1:B:835:VAL:HG22	1:B:1049:PHE:HZ	1.82	0.43	
1:E:155:ILE:HA	1:E:159:HIS:ND1	2.33	0.43	
1:E:380:ARG:HB2	1:E:383:LEU:HD12	2.00	0.43	
1:F:1013:HIS:CE1	1:F:1021:THR:CG2	3.02	0.43	
1:E:768:ARG:HG3	1:E:772:LYS:HZ1	1.82	0.43	
1:B:645:ASP:HB2	1:B:677:ASN:HA	2.01	0.43	
1:D:446:HIS:HD2	1:D:710:ASN:HD22	1.66	0.43	
1:D:1013:HIS:CE1	1:D:1021:THR:CG2	3.02	0.43	
1:E:1011:HIS:CE1	1:E:1025:ILE:CD1	2.99	0.43	
1:F:798:GLY:HA3	2:L:95:ARG:HB2	2.01	0.43	
1:A:294:GLU:H	1:A:294:GLU:HG3	1.68	0.43	
1:C:1109:VAL:HG12	1:C:1161:VAL:HG22	2.01	0.43	
1:F:1084:ASP:O	1:F:1088:SER:HB3	2.18	0.43	
1:A:384:MET:CG	1:A:397:PHE:HA	2.49	0.43	
1:A:1013:HIS:CE1	1:A:1021:THR:CG2	3.02	0.43	
1:B:329:ILE:O	1:B:333:LEU:HG	2.19	0.43	
1:B:1123:LEU:HD23	1:B:1222:LEU:HD23	2.00	0.43	
1:C:1123:LEU:HD23	1:C:1222:LEU:HD23	2.01	0.43	
1:E:466:ARG:HG3	1:E:723:LEU:HD11	2.01	0.43	
2:J:97:HIS:NE2	2:J:138:ILE:HG23	2.31	0.43	
1:A:337:ASP:HA	1:A:340:ASP:HB2	2.00	0.43	
1:B:280:ALA:HA	1:B:308:LEU:HD23	2.01	0.43	
1:B:446:HIS:HD2	1:B:710:ASN:HD22	1.65	0.43	
1:C:1013:HIS:CE1	1:C:1021:THR:CG2	3.02	0.43	
1:D:240:ASP:CB	1:D:242:LYS:HZ2	2.30	0.43	
1:E:755:MET:O	1:F:916:VAL:HB	2.19	0.43	
1:A:280:ALA:HA	1:A:308:LEU:HD23	2.01	0.42	
1:B:1200:ARG:HG3	1:B:1221:ILE:HD11	2.01	0.42	
1:F:1109:VAL:HG12	1:F:1161:VAL:HG22	2.01	0.42	
1:A:432:LEU:HA	1:A:435:ILE:HD12	2.00	0.42	
1:A:905:ARG:HD3	1:B:683:THR:HG21	2.01	0.42	
1:A:1123:LEU:HD23	1:A:1222:LEU:HD23	2.01	0.42	
1:A:1200:ARG:HG3	1:A:1221:ILE:HD11	2.01	0.42	
1:D:280:ALA:HA	1:D:308:LEU:HD23	2.00	0.42	
1:E:835:VAL:HG22	1:E:1049:PHE:HZ	1.84	0.42	

	t i c	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:E:1200:ARG:HG3	1:E:1221:ILE:HD11	2.01	0.42	
2:G:56:LEU:HG	2:G:68:ARG:HB3	2.00	0.42	
1:A:1096:GLU:HB2	1:A:1099:TYR:CD2	2.54	0.42	
1:E:479:GLN:HA	1:E:482:ILE:HD12	2.00	0.42	
1:A:857:HIS:CD2	1:B:755:MET:HA	2.53	0.42	
1:A:1109:VAL:HG12	1:A:1161:VAL:HG22	2.02	0.42	
1:B:1084:ASP:O	1:B:1088:SER:HB3	2.20	0.42	
1:E:1013:HIS:CE1	1:E:1021:THR:CG2	3.02	0.42	
1:A:380:ARG:HB2	1:A:383:LEU:HD12	2.00	0.42	
1:B:1096:GLU:HB2	1:B:1099:TYR:CD2	2.54	0.42	
1:D:1048:TYR:CE1	1:D:1066:VAL:HG11	2.54	0.42	
1:D:1096:GLU:HB2	1:D:1099:TYR:CD2	2.55	0.42	
1:D:1109:VAL:HG12	1:D:1161:VAL:HG22	2.02	0.42	
1:F:682:PHE:HB2	5:F:1303:TPP:H62	2.00	0.42	
1:C:671:THR:H	1:C:734:ASP:HA	1.84	0.42	
1:D:607:GLU:OE1	1:D:643:HIS:ND1	2.51	0.42	
1:F:1200:ARG:HG3	1:F:1221:ILE:HD11	2.02	0.42	
2:J:97:HIS:CG	2:J:138:ILE:CG2	2.99	0.42	
1:B:379:ASN:HA	1:B:452:THR:HG21	2.02	0.42	
1:C:798:GLY:HA3	2:I:95:ARG:HB2	2.02	0.42	
1:C:1096:GLU:HB2	1:C:1099:TYR:CD2	2.54	0.42	
1:C:1200:ARG:HG3	1:C:1221:ILE:HD11	2.02	0.42	
1:E:1109:VAL:HG12	1:E:1161:VAL:HG22	2.02	0.42	
1:E:1123:LEU:HD23	1:E:1222:LEU:HD23	2.01	0.42	
1:F:706:ILE:HG21	1:F:708:HIS:CE1	2.55	0.42	
1:F:956:VAL:HG12	1:F:987:ILE:HG21	2.02	0.42	
1:A:390:LEU:HB3	1:A:763:VAL:HG11	2.01	0.42	
1:B:530:LEU:HD13	1:B:638:VAL:HG21	2.01	0.42	
1:C:530:LEU:HD13	1:C:638:VAL:HG21	2.02	0.42	
1:C:1011:HIS:CE1	1:C:1025:ILE:CD1	2.98	0.42	
1:D:329:ILE:O	1:D:333:LEU:HG	2.20	0.42	
1:D:530:LEU:HD13	1:D:638:VAL:HG21	2.02	0.42	
1:F:1123:LEU:HD23	1:F:1222:LEU:HD23	2.01	0.42	
1:A:985:GLN:HG2	1:B:985:GLN:HG2	2.02	0.42	
1:A:1072:MET:HA	1:A:1075:ASN:HB2	2.02	0.42	
1:B:784:ILE:HB	1:B:788:GLU:HB2	2.02	0.42	
1:B:898:LEU:O	1:B:945:VAL:HA	2.20	0.42	
1:B:992:ILE:HD13	1:B:1007:LEU:HD11	2.02	0.42	
1:C:236:ARG:HD2	1:C:236:ARG:HA	1.93	0.42	
1:C:266:SER:O	1:C:268:PRO:HD3	2.20	0.42	
1:C:960:TYR:HE1	1:C:1003:SER:HB2	1.85	0.42	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)) overlap (Å)	
1:D:706:ILE:HG22	1:D:708:HIS:CE1	2.55	0.42	
1:F:671:THR:H	1:F:734:ASP:HA	1.85	0.42	
1:F:1096:GLU:HB2	1:F:1099:TYR:CD2	2.55	0.42	
1:B:236:ARG:HA	1:B:236:ARG:HD2	1.93	0.41	
1:B:238:ALA:HA	1:B:243:LEU:HG	2.02	0.41	
1:C:202:LEU:HD21	1:C:238:ALA:HB1	2.02	0.41	
1:C:992:ILE:HD13	1:C:1007:LEU:HD11	2.02	0.41	
1:D:992:ILE:HD13	1:D:1007:LEU:HD11	2.02	0.41	
1:E:266:SER:O	1:E:268:PRO:HD3	2.20	0.41	
1:E:784:ILE:HB	1:E:788:GLU:HB2	2.02	0.41	
1:F:1048:TYR:CE1	1:F:1066:VAL:HG11	2.55	0.41	
2:L:93:VAL:HA	2:L:97:HIS:CE1	2.55	0.41	
1:C:784:ILE:HB	1:C:788:GLU:HB2	2.02	0.41	
1:D:125:ALA:CB	1:D:314:HIS:CD2	3.03	0.41	
1:D:1072:MET:HA	1:D:1075:ASN:HB2	2.02	0.41	
1:E:992:ILE:HD13	1:E:1007:LEU:HD11	2.02	0.41	
1:E:1048:TYR:CE1	1:E:1066:VAL:HG11	2.54	0.41	
1:E:1096:GLU:HB2	1:E:1099:TYR:CD2	2.55	0.41	
1:A:238:ALA:HB2	1:A:243:LEU:HD11	2.02	0.41	
1:A:956:VAL:HG12	1:A:987:ILE:HG21	2.02	0.41	
1:B:956:VAL:HG12	1:B:987:ILE:HG21	2.02	0.41	
1:B:1109:VAL:HG12	1:B:1161:VAL:HG22	2.02	0.41	
1:D:236:ARG:O	1:D:240:ASP:OD1	2.38	0.41	
1:E:898:LEU:O	1:E:945:VAL:HA	2.20	0.41	
1:A:671:THR:H	1:A:734:ASP:HA	1.84	0.41	
1:A:1048:TYR:CE1	1:A:1066:VAL:HG11	2.54	0.41	
1:A:1155:LEU:HD22	1:A:1164:LYS:HE2	2.02	0.41	
1:B:1013:HIS:CE1	1:B:1021:THR:CG2	3.02	0.41	
1:C:516:PRO:HA	1:C:519:ASP:HB3	2.03	0.41	
1:E:446:HIS:HD2	1:E:710:ASN:HD22	1.67	0.41	
1:E:894:LYS:HZ2	1:E:968:ASP:C	2.24	0.41	
1:F:772:LYS:HB3	1:Q:36:PHE:HE1	1.85	0.41	
1:C:755:MET:O	1:D:916:VAL:HB	2.21	0.41	
1:D:784:ILE:HB	1:D:788:GLU:HB2	2.02	0.41	
1:E:671:THR:H	1:E:734:ASP:HA	1.86	0.41	
1:B:266:SER:O	1:B:268:PRO:HD3	2.20	0.41	
1:E:295:GLU:O	1:E:299:ASP:HB3	2.21	0.41	
1:A:682:PHE:HA	1:A:747:HIS:ND1	2.36	0.41	
1:A:992:ILE:HD13	1:A:1007:LEU:HD11	2.03	0.41	
1:B:671:THR:H	1:B:734:ASP:HA	1.86	0.41	
1:C:1048:TYR:CE1	1:C:1066:VAL:HG11	2.55	0.41	

	h i o	Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (Å)		
1:E:280:ALA:HA	1:E:308:LEU:HD23	2.02	0.41	
1:E:956:VAL:HG12	1:E:987:ILE:HG21	2.02	0.41	
1:E:1029:LEU:HD23	1:E:1039:ILE:HD13	2.03	0.41	
1:F:440:ARG:HA	1:F:444:CYS:HB2	2.02	0.41	
2:I:81:HIS:HD2	2:I:95:ARG:HD2	1.85	0.41	
2:K:55:ALA:HB3	2:K:71:LEU:HB2	2.02	0.41	
1:B:387:ILE:HB	1:B:740:LEU:HD13	2.01	0.41	
1:B:589:MET:SD	2:H:139:GLY:O	2.79	0.41	
1:B:1011:HIS:CE1	1:B:1025:ILE:CD1	2.98	0.41	
1:B:1048:TYR:CE1	1:B:1066:VAL:HG11	2.55	0.41	
1:C:772:LYS:HG3	1:O:36:PHE:CZ	2.55	0.41	
1:D:110:ALA:O	1:D:114:LYS:HG2	2.20	0.41	
1:E:387:ILE:HA	1:E:710:ASN:HB2	2.02	0.41	
1:F:530:LEU:HD13	1:F:638:VAL:HG21	2.03	0.41	
1:F:784:ILE:HB	1:F:788:GLU:HB2	2.02	0.41	
1:F:898:LEU:O	1:F:945:VAL:HA	2.20	0.41	
1:F:1072:MET:HA	1:F:1075:ASN:HB2	2.03	0.41	
2:L:92:THR:HG21	2:L:140:LYS:HG3	2.01	0.41	
1:A:530:LEU:HD13	1:A:638:VAL:HG21	2.02	0.41	
1:B:341:GLU:HG2	1:B:344:ARG:HH12	1.85	0.41	
1:B:907:THR:HG21	1:B:976:GLN:O	2.21	0.41	
1:C:383:LEU:HD11	1:D:455:LEU:HG	2.03	0.41	
1:C:898:LEU:O	1:C:945:VAL:HA	2.21	0.41	
1:D:571:HIS:NE2	5:D:1303:TPP:H2	2.36	0.41	
1:D:898:LEU:O	1:D:945:VAL:HA	2.20	0.41	
1:E:530:LEU:HD13	1:E:638:VAL:HG21	2.01	0.41	
1:F:125:ALA:CB	1:F:314:HIS:HD2	2.33	0.41	
1:F:446:HIS:HD2	1:F:710:ASN:HD22	1.68	0.41	
1:F:624:LEU:HB2	1:F:626:THR:HG22	2.02	0.41	
1:F:690:ARG:HD2	1:F:695:CYS:HA	2.02	0.41	
1:F:1021:THR:HA	1:F:1070:LYS:HZ1	1.82	0.41	
2:J:81:HIS:HB2	2:J:95:ARG:HG3	2.03	0.41	
1:A:798:GLY:HA3	2:G:95:ARG:HB2	2.03	0.41	
1:B:1029:LEU:HD23	1:B:1039:ILE:HD13	2.02	0.41	
1:C:956:VAL:HG12	1:C:987:ILE:HG21	2.03	0.41	
1:D:1150:ARG:O	1:D:1154:THR:OG1	2.31	0.41	
1:D:1200:ARG:HG3	1:D:1221:ILE:HD11	2.01	0.41	
1:E:542:ARG:NH2	1:E:600:THR:O	2.54	0.41	
1:E:907:THR:HG21	1:E:976:GLN:O	2.21	0.41	
1:A:898:LEU:O	1:A:945:VAL:HA	2.20	0.40	
1:A:1029:LEU:HD23	1:A:1039:ILE:HD13	2.03	0.40	

	1.0	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:202:LEU:HD21	1:B:238:ALA:HB1	2.03	0.40	
1:B:270:LEU:HD13	1:B:277:ILE:HG22	2.03	0.40	
1:B:295:GLU:O	1:B:299:ASP:HB3	2.20	0.40	
1:C:446:HIS:HD2	1:C:710:ASN:HD22	1.68	0.40	
1:D:516:PRO:HA	1:D:519:ASP:HB3	2.03	0.40	
1:E:329:ILE:O	1:E:333:LEU:HG	2.21	0.40	
1:E:571:HIS:ND1	1:E:682:PHE:HE2	2.19	0.40	
1:A:316:ILE:HG13	1:A:317:ILE:N	2.36	0.40	
1:B:216:ILE:O	1:B:219:CYS:SG	2.79	0.40	
1:B:479:GLN:HA	1:B:482:ILE:HD12	2.02	0.40	
1:C:385:ALA:O	1:C:396:ARG:NH1	2.54	0.40	
1:C:493:GLU:O	1:C:497:GLN:HG2	2.21	0.40	
1:F:907:THR:HG21	1:F:976:GLN:O	2.21	0.40	
1:F:992:ILE:HD13	1:F:1007:LEU:HD11	2.03	0.40	
1:C:1072:MET:HA	1:C:1075:ASN:HB2	2.03	0.40	
1:C:1111:ARG:NH1	1:C:1132:ARG:HH22	2.20	0.40	
1:F:295:GLU:O	1:F:299:ASP:HB3	2.21	0.40	
2:H:97:HIS:HA	2:H:114:SER:HB3	2.04	0.40	
1:A:784:ILE:HB	1:A:788:GLU:HB2	2.02	0.40	
1:A:792:ALA:HA	2:G:115:LEU:HD22	2.03	0.40	
1:B:258:PRO:HG3	1:B:266:SER:OG	2.22	0.40	
1:C:238:ALA:HA	1:C:243:LEU:HG	2.02	0.40	
1:C:380:ARG:HB2	1:C:383:LEU:HD12	2.03	0.40	
1:D:956:VAL:HG12	1:D:987:ILE:HG21	2.03	0.40	
1:F:159:HIS:NE2	1:F:231:TYR:CE1	2.90	0.40	
1:F:1029:LEU:HD23	1:F:1039:ILE:HD13	2.03	0.40	
2:G:76:THR:HB	2:G:100:PHE:HB2	2.03	0.40	
1:A:516:PRO:HA	1:A:519:ASP:HB3	2.03	0.40	
1:B:571:HIS:NE2	5:B:1303:TPP:H2	2.37	0.40	
1:B:1072:MET:HA	1:B:1075:ASN:HB2	2.02	0.40	
1:C:278:ILE:HD11	1:C:325:PHE:HE2	1.85	0.40	
1:D:569:GLN:NE2	1:D:748:ASN:HD22	2.20	0.40	
1:D:1029:LEU:HD23	1:D:1039:ILE:HD13	2.04	0.40	
1:E:341:GLU:HG2	1:E:344:ARG:HH12	1.86	0.40	
1:F:316:ILE:HG13	1:F:317:ILE:H	1.87	0.40	
1:F:638:VAL:HA	1:F:639:PRO:HD3	1.97	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	1100/1250~(88%)	1029 (94%)	68 (6%)	3(0%)	41	76
1	В	1102/1250~(88%)	1022~(93%)	76 (7%)	4 (0%)	34	72
1	С	1103/1250~(88%)	1028 (93%)	72 (6%)	3(0%)	41	76
1	D	1101/1250~(88%)	1026~(93%)	71 (6%)	4 (0%)	34	72
1	Е	1103/1250~(88%)	1022 (93%)	77 (7%)	4 (0%)	34	72
1	F	1099/1250~(88%)	1018~(93%)	77 (7%)	4 (0%)	34	72
1	Ν	28/1250~(2%)	24 (86%)	4 (14%)	0	100	100
1	Ο	28/1250~(2%)	24 (86%)	4 (14%)	0	100	100
1	Р	28/1250~(2%)	24 (86%)	4 (14%)	0	100	100
1	Q	28/1250~(2%)	25~(89%)	2(7%)	1 (4%)	3	28
2	G	96/158~(61%)	87~(91%)	8 (8%)	1 (1%)	15	54
2	Н	94/158~(60%)	79~(84%)	14 (15%)	1 (1%)	14	52
2	Ι	95/158~(60%)	87~(92%)	8 (8%)	0	100	100
2	J	95/158~(60%)	87~(92%)	8 (8%)	0	100	100
2	Κ	95/158~(60%)	87 (92%)	8 (8%)	0	100	100
2	L	95/158~(60%)	90~(95%)	5 (5%)	0	100	100
All	All	7290/13448~(54%)	6759~(93%)	506 (7%)	25~(0%)	41	76

All (25) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	358	ASP
1	В	358	ASP
1	С	358	ASP
1	С	445	ARG
1	D	358	ASP
1	Е	358	ASP

Mol	Chain	Res	Type
1	F	358	ASP
1	А	445	ARG
1	В	445	ARG
1	D	445	ARG
1	Е	445	ARG
1	F	445	ARG
2	Н	117	GLY
1	D	424	PHE
2	G	52	SER
1	А	682	PHE
1	В	424	PHE
1	В	682	PHE
1	С	682	PHE
1	D	682	PHE
1	Е	682	PHE
1	F	682	PHE
1	Е	424	PHE
1	F	503	GLN
1	Q	36	PHE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	892/1037~(86%)	862~(97%)	30~(3%)	37	60
1	В	894/1037~(86%)	865~(97%)	29 (3%)	39	62
1	С	893/1037~(86%)	863~(97%)	30 (3%)	37	60
1	D	885/1037~(85%)	852~(96%)	33~(4%)	34	59
1	Ε	880/1037~(85%)	848 (96%)	32~(4%)	35	59
1	F	878/1037~(85%)	854 (97%)	24 (3%)	44	66
1	Ν	30/1037~(3%)	24 (80%)	6(20%)	1	8
1	Ο	30/1037~(3%)	24 (80%)	6 (20%)	1	8
1	Р	30/1037~(3%)	24 (80%)	6 (20%)	1	8

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
1	Q	30/1037~(3%)	23~(77%)	7(23%)	1	5
2	G	81/127~(64%)	80~(99%)	1 (1%)	71	84
2	Н	72/127~(57%)	64~(89%)	8 (11%)	6	25
2	Ι	81/127~(64%)	81 (100%)	0	100	100
2	J	81/127~(64%)	79~(98%)	2 (2%)	47	68
2	Κ	81/127~(64%)	78~(96%)	3 (4%)	34	59
2	L	81/127~(64%)	79~(98%)	2 (2%)	47	68
All	All	5919/11132~(53%)	5700 (96%)	219 (4%)	34	59

All (219) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	251	VAL
1	А	261	LEU
1	А	269	ARG
1	А	294	GLU
1	А	299	ASP
1	А	305	LEU
1	А	307	THR
1	А	314	HIS
1	А	377	TYR
1	А	402	ASP
1	А	440	ARG
1	А	464	GLN
1	А	496	LEU
1	А	506	PHE
1	А	509	GLU
1	А	527	GLU
1	А	616	LEU
1	А	648	PHE
1	А	744	ARG
1	А	747	HIS
1	А	797	GLN
1	А	831	LEU
1	А	868	ARG
1	А	909	THR
1	А	950	LEU
1	А	976	GLN
1	А	1025	ILE
1	А	1041	MET

Mol	Chain	Res	Type
1	А	1191	HIS
1	А	1207	SER
1	В	101	GLU
1	В	251	VAL
1	В	261	LEU
1	В	294	GLU
1	В	299	ASP
1	В	305	LEU
1	В	307	THR
1	В	314	HIS
1	В	402	ASP
1	В	506	PHE
1	В	527	GLU
1	В	542	ARG
1	В	616	LEU
1	В	645	ASP
1	В	648	PHE
1	В	689	SER
1	В	748	ASN
1	В	797	GLN
1	В	831	LEU
1	В	868	ARG
1	В	909	THR
1	В	950	LEU
1	В	974	GLU
1	В	976	GLN
1	В	1025	ILE
1	В	1041	MET
1	В	1157	ARG
1	В	1191	HIS
1	В	1207	SER
1	C	251	VAL
1	С	261	LEU
1	С	294	GLU
1	С	299	ASP
1	С	305	LEU
1	С	307	THR
1	С	314	HIS
1	С	377	TYR
1	С	396	ARG
1	С	402	ASP
1	С	470	LYS

Mol	Chain	Res	Type
1	С	471	HIS
1	С	506	PHE
1	С	527	GLU
1	С	542	ARG
1	C	560	GLU
1	С	616	LEU
1	С	689	SER
1	С	747	HIS
1	С	748	ASN
1	С	797	GLN
1	С	831	LEU
1	С	909	THR
1	С	950	LEU
1	С	976	GLN
1	С	1025	ILE
1	С	1041	MET
1	С	1157	ARG
1	С	1191	HIS
1	С	1207	SER
1	D	105	LEU
1	D	251	VAL
1	D	254	SER
1	D	261	LEU
1	D	294	GLU
1	D	299	ASP
1	D	305	LEU
1	D	307	THR
1	D	314	HIS
1	D	331	GLN
1	D	377	TYR
1	D	402	ASP
1	D	471	HIS
1	D	506	PHE
1	D	527	GLU
1	D	542	ARG
1	D	560	GLU
1	D	616	LEU
1	D	645	ASP
1	D	648	PHE
1	D	688	ASP
1	D	689	SER
1	D	747	HIS

Mol	Chain	Res	Type
1	D	748	ASN
1	D	797	GLN
1	D	909	THR
1	D	950	LEU
1	D	976	GLN
1	D	1025	ILE
1	D	1041	MET
1	D	1157	ARG
1	D	1191	HIS
1	D	1207	SER
1	Е	158	THR
1	Е	198	LEU
1	Е	201	ASP
1	Е	251	VAL
1	Е	261	LEU
1	Е	294	GLU
1	Е	299	ASP
1	Е	305	LEU
1	Е	307	THR
1	Е	314	HIS
1	Е	377	TYR
1	Е	402	ASP
1	Е	506	PHE
1	Е	527	GLU
1	Е	542	ARG
1	Е	616	LEU
1	Е	645	ASP
1	Е	648	PHE
1	Е	682	PHE
1	Е	689	SER
1	Е	748	ASN
1	Е	797	GLN
1	Е	909	THR
1	Е	950	LEU
1	Е	974	GLU
1	Е	976	GLN
1	Е	1025	ILE
1	Е	1041	MET
1	Е	1157	ARG
1	Е	1187	ILE
1	Е	1191	HIS
1	Е	1207	SER

Mol	Chain	Res	Type
1	F	211	LEU
1	F	261	LEU
1	F	294	GLU
1	F	299	ASP
1	F	305	LEU
1	F	307	THR
1	F	314	HIS
1	F	402	ASP
1	F	471	HIS
1	F	505	ARG
1	F	527	GLU
1	F	616	LEU
1	F	689	SER
1	F	797	GLN
1	F	868	ARG
1	F	909	THR
1	F	950	LEU
1	F	974	GLU
1	F	976	GLN
1	F	1025	ILE
1	F	1041	MET
1	F	1157	ARG
1	F	1191	HIS
1	F	1207	SER
2	G	147	THR
2	Н	76	THR
2	Н	80	ARG
2	Н	81	HIS
2	Н	83	ASP
2	Н	97	HIS
2	Н	109	VAL
2	Н	112	VAL
2	Н	122	ARG
2	J	97	HIS
2	J	147	THR
2	K	76	THR
2	K	97	HIS
2	K	146	LEU
2	L	52	SER
2	L	147	THR
1	N	16	GLU
1	N	22	PHE

Mol	Chain	Res	Type
1	N	30	ASP
1	N	33	TRP
1	N	34	HIS
1	N	39	ASP
1	0	16	GLU
1	0	22	PHE
1	0	30	ASP
1	0	33	TRP
1	0	34	HIS
1	0	39	ASP
1	Р	16	GLU
1	Р	22	PHE
1	Р	30	ASP
1	Р	33	TRP
1	Р	34	HIS
1	Р	39	ASP
1	Q	16	GLU
1	Q	22	PHE
1	Q	30	ASP
1	Q	33	TRP
1	Q	34	HIS
1	Q	36	PHE
1	Q	39	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (59) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	314	HIS
1	А	400	HIS
1	А	446	HIS
1	А	976	GLN
1	А	982	ASN
1	А	1016	GLN
1	А	1020	HIS
1	А	1061	GLN
1	А	1107	ASN
1	В	446	HIS
1	В	503	GLN
1	В	569	GLN
1	В	651	GLN
1	В	797	GLN
1	B	976	GLN

Mol	Chain	Res	Type
1	В	982	ASN
1	В	1107	ASN
1	С	314	HIS
1	С	446	HIS
1	С	497	GLN
1	С	569	GLN
1	С	651	GLN
1	С	747	HIS
1	С	976	GLN
1	С	982	ASN
1	С	1061	GLN
1	С	1107	ASN
1	D	446	HIS
1	D	503	GLN
1	D	569	GLN
1	D	651	GLN
1	D	976	GLN
1	D	982	ASN
1	D	1016	GLN
1	D	1020	HIS
1	D	1107	ASN
1	Е	400	HIS
1	Е	408	HIS
1	Е	446	HIS
1	Е	497	GLN
1	Е	503	GLN
1	Е	797	GLN
1	Е	976	GLN
1	Е	982	ASN
1	Е	1061	GLN
1	Е	1107	ASN
1	F	446	HIS
1	F	651	GLN
1	F	976	GLN
1	F	982	ASN
1	F	1020	HIS
1	F	1061	GLN
1	F	1107	ASN
2	G	81	HIS
2	Н	116	ASN
2	Ι	81	HIS
2	J	81	HIS

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type
2	Κ	116	ASN
2	L	81	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 20 ligands modelled in this entry, 14 are monoatomic - leaving 6 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	ths	B	ond ang	gles
INIOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
5	TPP	А	1303	3	$22,\!27,\!27$	0.63	0	29,40,40	0.69	1 (3%)
5	TPP	Е	1303	3	$22,\!27,\!27$	0.66	0	29,40,40	0.65	1 (3%)
5	TPP	С	1303	3	$22,\!27,\!27$	0.70	0	29,40,40	0.80	2 (6%)
5	TPP	В	1303	3	$22,\!27,\!27$	0.68	0	29,40,40	0.80	1 (3%)
5	TPP	F	1303	3	$22,\!27,\!27$	0.71	0	29,40,40	0.77	1 (3%)
5	TPP	D	1303	3	22,27,27	0.66	0	29,40,40	0.77	1 (3%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	TPP	А	1303	3	-	8/16/17/17	0/2/2/2
5	TPP	Е	1303	3	-	8/16/17/17	0/2/2/2
5	TPP	С	1303	3	-	3/16/17/17	0/2/2/2
5	TPP	В	1303	3	-	8/16/17/17	0/2/2/2
5	TPP	F	1303	3	-	11/16/17/17	0/2/2/2
5	TPP	D	1303	3	-	8/16/17/17	0/2/2/2

'-' means no outliers of that kind were identified.

There are no bond length outliers.

All (7) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	D	1303	TPP	C5-C4-N3	2.24	112.04	107.57
5	В	1303	TPP	C5-C4-N3	2.22	112.01	107.57
5	Е	1303	TPP	C5-C4-N3	2.21	111.99	107.57
5	С	1303	TPP	C5-C4-N3	2.15	111.87	107.57
5	F	1303	TPP	C5-C4-N3	2.14	111.86	107.57
5	А	1303	TPP	C5-C4-N3	2.11	111.79	107.57
5	С	1303	TPP	O3B-PB-O3A	2.02	111.42	104.64

There are no chirality outliers.

Mol	Chain	\mathbf{Res}	Type	Atoms
5	А	1303	TPP	C4'-C5'-C7'-N3
5	А	1303	TPP	C4-C5-C6-C7
5	А	1303	TPP	C5-C6-C7-O7
5	А	1303	TPP	C7-O7-PA-O1A
5	А	1303	TPP	C7-O7-PA-O2A
5	А	1303	TPP	C7-O7-PA-O3A
5	А	1303	TPP	PA-O3A-PB-O3B
5	В	1303	TPP	C4'-C5'-C7'-N3
5	В	1303	TPP	C4-C5-C6-C7
5	В	1303	TPP	C5-C6-C7-O7
5	В	1303	TPP	C7-O7-PA-O2A
5	В	1303	TPP	С7-О7-РА-ОЗА
5	С	1303	TPP	C4'-C5'-C7'-N3
5	D	1303	TPP	C4-C5-C6-C7
5	D	1303	TPP	C5-C6-C7-O7
5	D	1303	TPP	С7-О7-РА-ОЗА

All (46) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
5	D	1303	TPP	PA-O3A-PB-O3B
5	Е	1303	TPP	C4'-C5'-C7'-N3
5	Е	1303	TPP	C4-C5-C6-C7
5	Е	1303	TPP	C5-C6-C7-O7
5	Е	1303	TPP	C7-O7-PA-O1A
5	Е	1303	TPP	C7-O7-PA-O2A
5	Е	1303	TPP	C7-O7-PA-O3A
5	Е	1303	TPP	PA-O3A-PB-O3B
5	F	1303	TPP	C4'-C5'-C7'-N3
5	F	1303	TPP	C4-C5-C6-C7
5	F	1303	TPP	C5-C6-C7-O7
5	F	1303	TPP	C7-O7-PA-O2A
5	F	1303	TPP	C7-O7-PA-O3A
5	F	1303	TPP	PA-O3A-PB-O2B
5	Е	1303	TPP	PA-O3A-PB-O1B
5	С	1303	TPP	PA-O3A-PB-O2B
5	D	1303	TPP	PA-O3A-PB-O2B
5	В	1303	TPP	PB-O3A-PA-O1A
5	В	1303	TPP	C7-O7-PA-O1A
5	D	1303	TPP	C7-O7-PA-O1A
5	D	1303	TPP	C7-O7-PA-O2A
5	F	1303	TPP	C7-O7-PA-O1A
5	С	1303	TPP	C4-C5-C6-C7
5	F	1303	TPP	PB-O3A-PA-O1A
5	D	1303	TPP	C4'-C5'-C7'-N3
5	F	1303	TPP	PA-O3A-PB-O1B
5	A	1303	TPP	PA-O3A-PB-O2B
5	F	1303	TPP	PA-O3A-PB-O3B
5	В	1303	TPP	PB-O3A-PA-O2A
5	F	1303	TPP	C6'-C5'-C7'-N3

Continued from previous page...

There are no ring outliers.

5 monomers are involved in 7 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	А	1303	TPP	2	0
5	С	1303	TPP	1	0
5	В	1303	TPP	1	0
5	F	1303	TPP	2	0
5	D	1303	TPP	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths,

bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ > 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
1	А	1106/1250~(88%)	0.42	55 (4%) 28 25	155, 233, 300, 300	0
1	В	1108/1250~(88%)	0.40	40 (3%) 42 35	138, 225, 289, 300	0
1	С	1109/1250~(88%)	0.44	50 (4%) 33 28	148, 231, 298, 300	0
1	D	1107/1250~(88%)	0.44	54 (4%) 29 25	150, 232, 296, 300	0
1	Е	1109/1250~(88%)	0.40	41 (3%) 41 33	145, 225, 290, 300	0
1	F	1105/1250~(88%)	0.41	56 (5%) 28 24	162, 233, 299, 300	0
1	Ν	30/1250~(2%)	1.02	6 (20%) 1 1	268, 300, 300, 300	0
1	Ο	30/1250~(2%)	0.91	3 (10%) 7 7	280, 300, 300, 300	0
1	Р	30/1250~(2%)	0.77	7 (23%) 0 1	274, 300, 300, 300	0
1	Q	30/1250~(2%)	1.37	10 (33%) 0 1	259, 300, 300, 300	0
2	G	98/158~(62%)	0.83	18 (18%) 1 2	211, 283, 300, 300	0
2	Н	96/158~(60%)	0.17	3 (3%) 49 39	179, 238, 300, 300	0
2	Ι	97/158~(61%)	0.58	12 (12%) 4 5	207, 279, 300, 300	0
2	J	97/158~(61%)	0.59	16 (16%) 1 2	218, 281, 300, 300	0
2	K	97/158~(61%)	0.29	4 (4%) 37 30	183, 236, 295, 300	0
2	L	97/158~(61%)	0.79	14 (14%) 2 3	230, 284, 300, 300	0
All	All	7346/13448~(54%)	0.44	389 (5%) 26 23	138, 233, 300, 300	0

All (389) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	Е	629	GLU	11.4
1	В	629	GLU	9.1
1	А	629	GLU	6.9
1	F	629	GLU	6.6
1	С	747	HIS	6.0

Mol	Chain	Res	Type	RSRZ
1	С	629	GLU	5.3
1	D	269	ARG	5.3
1	D	629	GLU	5.0
1	А	911	ARG	4.9
1	А	215	ALA	4.8
1	Q	40	TYR	4.8
1	D	270	LEU	4.7
1	F	628	GLU	4.6
1	D	847	HIS	4.6
2	K	96	ARG	4.5
1	F	215	ALA	4.5
1	F	745	ARG	4.5
1	В	270	LEU	4.4
1	С	270	LEU	4.4
2	G	116	ASN	4.4
1	D	747	HIS	4.3
2	G	71	LEU	4.3
1	В	745	ARG	4.3
1	Е	1072	MET	4.2
1	Q	15	VAL	4.2
1	Q	14	LEU	4.2
1	D	1116	SER	4.1
1	А	214	ALA	4.1
1	В	271	MET	4.0
1	D	911	ARG	3.9
1	N	15	VAL	3.9
2	Ι	147	THR	3.9
1	Е	745	ARG	3.9
1	D	138	ASP	3.9
1	Е	271	MET	3.8
1	Е	270	LEU	3.8
1	F	214	ALA	3.8
1	С	746	GLY	3.8
1	0	15	VAL	3.8
2	G	88	LEU	3.7
1	F	911	ARG	3.7
1	Е	355	TRP	3.6
2	G	57	LEU	3.6
1	Q	13	TRP	3.6
1	С	847	HIS	3.6
2	L	88	LEU	3.5
1	А	1164	LYS	3.5

Mol	Chain	Res	Type	RSRZ
2	Ι	140	LYS	3.5
1	D	799	GLN	3.5
1	Р	14	LEU	3.4
1	Р	33	TRP	3.4
1	В	976	GLN	3.4
1	Е	269	ARG	3.4
1	D	175	MET	3.4
1	В	269	ARG	3.4
1	Q	36	PHE	3.4
2	G	136	VAL	3.4
2	L	100	PHE	3.3
1	С	1116	SER	3.3
1	D	745	ARG	3.3
2	L	99	GLU	3.3
1	F	927	LEU	3.3
1	С	927	LEU	3.3
1	F	972	LEU	3.3
1	Е	1118	LYS	3.3
1	0	40	TYR	3.3
1	D	746	GLY	3.3
1	Е	573	SER	3.3
1	D	913	ALA	3.3
2	K	95	ARG	3.3
1	С	269	ARG	3.3
1	А	745	ARG	3.3
1	А	1115	THR	3.3
1	Е	539	HIS	3.3
1	Е	744	ARG	3.3
1	А	1167	VAL	3.3
2	L	116	ASN	3.3
1	С	799	GLN	3.3
2	Ι	116	ASN	3.2
2	J	147	THR	3.2
2	L	57	LEU	3.2
1	А	270	LEU	3.2
1	F	1008	LEU	3.2
1	D	912	HIS	3.2
1	А	970	MET	3.2
1	D	1140	ILE	3.2
2	G	70	LEU	3.2
1	В	764	ILE	3.2
1	Е	743	ARG	3.1

Mol	Chain	Res	Type	RSRZ
1	С	214	ALA	3.1
1	F	970	MET	3.1
1	А	1136	ALA	3.1
1	С	837	LYS	3.1
1	С	1140	ILE	3.1
1	D	271	MET	3.0
1	А	175	MET	3.0
1	D	198	LEU	3.0
1	В	742	TYR	3.0
1	D	517	MET	3.0
1	В	770	SER	3.0
1	Q	35	GLU	3.0
1	D	403	LEU	3.0
1	А	1135	VAL	3.0
1	Е	911	ARG	3.0
2	J	140	LYS	3.0
1	В	628	GLU	3.0
2	J	116	ASN	3.0
1	Е	509	GLU	2.9
1	В	744	ARG	2.9
1	В	1118	LYS	2.9
1	Е	847	HIS	2.9
1	В	214	ALA	2.9
1	С	943	PHE	2.9
2	G	98	ALA	2.9
1	С	517	MET	2.9
1	С	569	GLN	2.9
1	С	1095	GLU	2.9
1	Е	1116	SER	2.9
1	D	770	SER	2.9
1	Е	628	GLU	2.9
1	В	1072	MET	2.8
2	J	100	PHE	2.8
1	F	847	HIS	2.8
2	L	86	ILE	2.8
2	G	119	TYR	2.8
1	Е	910	GLN	2.8
1	Р	15	VAL	2.8
1	F	1164	LYS	2.8
1	D	215	ALA	2.8
2	G	78	ALA	2.8
1	D	569	GLN	2.8

Mol	Chain	Res	Type	RSRZ
1	F	882	GLU	2.8
2	Ι	146	LEU	2.8
1	D	214	ALA	2.8
1	Е	742	TYR	2.8
2	L	78	ALA	2.7
1	А	1137	ILE	2.7
2	Ι	145	PHE	2.7
1	А	628	GLU	2.7
1	F	912	HIS	2.7
1	Q	18	MET	2.7
1	Q	41	SER	2.7
1	Е	574	GLY	2.7
2	G	100	PHE	2.7
1	Е	214	ALA	2.7
1	F	1135	VAL	2.7
1	А	912	HIS	2.7
1	F	913	ALA	2.7
1	А	1048	TYR	2.7
1	С	913	ALA	2.7
1	А	896	VAL	2.7
1	D	709	VAL	2.7
1	В	911	ARG	2.7
1	А	1143	LEU	2.7
2	L	71	LEU	2.7
1	А	886	LEU	2.6
1	Е	197	GLY	2.6
1	Q	33	TRP	2.6
1	С	570	ALA	2.6
1	Р	13	TRP	2.6
1	F	403	LEU	2.6
2	Κ	71	LEU	2.6
1	D	1016	GLN	2.6
1	В	942	LYS	2.6
1	D	973	TRP	2.6
2	J	92	THR	2.6
1	N	16	GLU	2.6
1	D	649	ALA	2.6
1	С	911	ARG	2.6
1	N	14	LEU	2.6
1	С	745	ARG	2.5
2	Н	95	ARG	2.5
1	А	402	ASP	2.5

8P5R

Mol	Chain	Res	Type	RSRZ
1	А	927	LEU	2.5
1	N	40	TYR	2.5
2	J	134	ASP	2.5
1	С	846	ALA	2.5
1	F	883	LEU	2.5
1	А	196	LEU	2.5
1	А	973	TRP	2.5
2	L	69	PHE	2.5
2	J	136	VAL	2.5
1	С	196	LEU	2.5
2	L	119	TYR	2.5
1	Е	510	GLY	2.5
1	Q	39	ASP	2.5
1	D	272	GLN	2.5
1	С	914	VAL	2.5
1	А	121	GLU	2.5
1	F	886	LEU	2.5
1	В	1085	PHE	2.5
2	Ι	91	VAL	2.5
1	В	355	TRP	2.5
1	D	196	LEU	2.5
1	F	742	TYR	2.4
1	В	1091	ARG	2.4
1	F	971	VAL	2.4
1	Ε	569	GLN	2.4
2	L	70	LEU	2.4
1	В	207	GLY	2.4
1	В	196	LEU	2.4
1	F	216	ILE	2.4
2	Ι	110	VAL	2.4
1	D	570	ALA	2.4
1	C	1008	LEU	2.4
1	В	882	GLU	2.4
1	F	315	ARG	2.4
1	В	679	GLN	2.4
1	F	251	VAL	2.4
1	F	269	ARG	2.4
1	Р	36	PHE	2.4
1	C	272	GLN	2.4
2	Ι	98	ALA	2.4
1	A	424	PHE	2.4
1	А	882	GLU	2.4

$\alpha \cdots $	C	•	
Continued	trom	nremous	naae
Contracta	JIONU	precious	pagem

Mol	Chain	Res	Type	RSRZ
1	С	175	MET	2.4
1	F	1163	GLU	2.4
1	А	913	ALA	2.4
1	С	199	ALA	2.4
1	А	1112	LEU	2.4
1	В	847	HIS	2.4
1	А	1165	PHE	2.4
2	J	80	ARG	2.4
1	А	847	HIS	2.4
1	F	1115	THR	2.4
1	В	1073	LEU	2.4
1	С	134	LYS	2.4
1	В	747	HIS	2.4
2	Ι	143	LEU	2.4
1	Е	196	LEU	2.4
1	Е	976	GLN	2.4
1	В	573	SER	2.4
2	G	143	LEU	2.4
1	А	1111	ARG	2.4
1	А	972	LEU	2.3
2	G	138	ILE	2.3
1	D	251	VAL	2.3
1	С	1227	GLY	2.3
1	Е	942	LYS	2.3
1	F	991	PHE	2.3
1	F	1167	VAL	2.3
1	С	739	MET	2.3
1	Е	424	PHE	2.3
1	Ε	770	SER	2.3
2	G	69	PHE	2.3
2	G	109	VAL	2.3
1	A	1192	PHE	2.3
1	C	1094	LEU	2.3
1	D	1008	LEU	2.3
1	F	747	HIS	2.3
2	J	145	PHE	2.3
1	D	1181	GLY	2.3
1	F	744	ARG	2.3
1	N	20	ARG	2.3
2	L	136	VAL	2.3
1	С	485	LYS	2.3
1	С	198	LEU	2.3

8F	25R	

Mol	Chain	Res	Type	RSRZ
1	С	1093	VAL	2.3
1	D	485	LYS	2.3
1	D	552	LYS	2.3
1	D	943	PHE	2.3
2	J	146	LEU	2.3
1	D	134	LYS	2.3
2	J	89	ASP	2.3
1	F	1072	MET	2.3
2	L	98	ALA	2.3
1	С	1052	LEU	2.3
1	F	1137	ILE	2.3
1	Е	215	ALA	2.3
1	А	1074	ARG	2.3
1	F	213	VAL	2.3
1	A	216	ILE	2.2
1	Е	649	ALA	2.2
2	G	99	GLU	2.2
1	А	1140	ILE	2.2
1	Е	664	ARG	2.2
2	Ι	95	ARG	2.2
1	А	1011	HIS	2.2
1	С	215	ALA	2.2
1	F	1112	LEU	2.2
1	А	638	VAL	2.2
1	А	1008	LEU	2.2
1	F	1011	HIS	2.2
1	А	1066	VAL	2.2
1	F	606	LEU	2.2
1	В	518	MET	2.2
1	С	138	ASP	2.2
1	D	1225	ALA	2.2
1	Е	175	MET	2.2
1	Ε	1085	PHE	2.2
1	A	954	ALA	2.2
1	С	1041	MET	2.2
1	D	1095	GLU	2.2
2	Ι	80	ARG	2.2
1	A	1085	PHE	2.2
1	Ε	1048	TYR	2.2
1	F	1052	LEU	2.2
1	D	711	GLY	2.2
1	0	41	SER	2.2

Continued from previous page				
Mol	Chain	\mathbf{Res}	Type	RSRZ
1	F	480	LYS	2.2
2	G	56	LEU	2.2
1	В	649	ALA	2.2
1	D	837	LYS	2.2
1	D	914	VAL	2.2
1	В	910	GLN	2.2
1	D	835	VAL	2.2
1	F	1165	PHE	2.2
2	J	101	ARG	2.2
1	А	1181	GLY	2.2
1	В	760	MET	2.1
1	С	403	LEU	2.1
1	С	970	MET	2.1
1	Е	543	LEU	2.1
1	F	1143	LEU	2.1
2	Н	98	ALA	2.1
1	D	268	PRO	2.1
1	В	574	GLY	2.1
1	С	649	ALA	2.1
1	Р	40	TYR	2.1
1	F	274	GLN	2.1
1	В	346	LEU	2.1
1	В	1048	TYR	2.1
1	Р	18	MET	2.1
1	А	138	ASP	2.1
1	В	1041	MET	2.1
1	С	976	GLN	2.1
1	F	248	PHE	2.1
1	F	408	HIS	2.1
1	В	213	VAL	2.1
1	Е	1069	PRO	2.1
1	F	571	HIS	2.1
1	F	477	ALA	2.1
1	D	518	MET	2.1
1	А	898	LEU	2.1
1	С	518	MET	2.1
1	Е	274	GLN	2.1
1	F	272	GLN	2.1
2	Н	116	ASN	2.1
1	С	1181	GLY	2.1
1	F	161	LEU	2.1
1	F	554	TYR	2.1

554TYR2.1Continued on next page...

8P5R

Mol	Chain	Res	Type	RSRZ
1	С	1042	PRO	2.1
1	А	702	ILE	2.1
1	D	380	ARG	2.1
1	F	196	LEU	2.1
1	В	480	LYS	2.1
1	Ν	41	SER	2.1
1	С	956	VAL	2.1
2	J	91	VAL	2.1
1	А	403	LEU	2.1
1	D	886	LEU	2.1
1	С	515	ILE	2.1
2	L	122	ARG	2.1
1	В	138	ASP	2.1
1	F	637	VAL	2.1
1	D	927	LEU	2.1
1	А	408	HIS	2.1
1	А	1041	MET	2.1
1	Е	764	ILE	2.1
1	А	477	ALA	2.1
1	Е	1073	LEU	2.1
1	F	1114	LEU	2.1
2	J	78	ALA	2.1
2	Κ	98	ALA	2.1
1	D	842	ARG	2.0
1	С	1225	ALA	2.0
2	J	56	LEU	2.0
1	А	943	PHE	2.0
1	В	901	GLN	2.0
1	D	970	MET	2.0
1	D	897	ARG	2.0
2	G	134	ASP	2.0
2	Ι	130	LEU	2.0
1	D	739	MET	2.0
1	D	1048	TYR	2.0
1	F	714	PRO	2.0
1	С	648	PHE	2.0
1	Е	1140	ILE	2.0
2	G	89	ASP	2.0
1	А	1195	LEU	2.0
1	F	485	LYS	2.0
1	F	1136	ALA	2.0
1	D	896	VAL	2.0

Continued from previous page...

Continued on next page...

Mol	Chain Res Type		RSRZ	
1	А	1122	GLU	2.0
1	С	944	LEU	2.0
1	А	991	PHE	2.0
1	В	972	LEU	2.0
1	F	402	ASP	2.0
2	J	88	LEU	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
4	CA	А	1302	1/1	0.56	0.64	300,300,300,300	0
4	CA	В	1304	1/1	0.75	0.12	170,170,170,170	0
4	CA	F	1302	1/1	0.76	0.39	300,300,300,300	0
4	CA	В	1302	1/1	0.84	0.55	220,220,220,220	0
4	CA	Е	1302	1/1	0.93	0.54	239,239,239,239	0
5	TPP	А	1303	26/26	0.93	0.48	226,226,226,226	0
4	CA	D	1302	1/1	0.94	0.21	298,298,298,298	0
5	TPP	В	1303	26/26	0.94	0.42	216,216,216,216	0
5	TPP	D	1303	26/26	0.94	0.42	223,223,223,223	0
5	TPP	F	1303	26/26	0.94	0.48	230,230,230,230	0
5	TPP	Е	1303	26/26	0.95	0.42	223,223,223,223	0
4	CA	А	1304	1/1	0.95	0.12	176,176,176,176	0
5	TPP	С	1303	26/26	0.96	0.41	225,225,225,225	0
4	CA	С	1302	1/1	0.96	0.21	289,289,289,289	0
3	MG	В	1301	1/1	0.96	0.31	216,216,216,216	0
3	MG	Е	1301	1/1	0.96	0.30	190,190,190,190	0
3	MG	D	1301	1/1	0.98	0.31	149,149,149,149	0

Continued on next page...

pagem								
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
3	MG	F	1301	1/1	0.99	0.30	119,119,119,119	0
3	MG	А	1301	1/1	0.99	0.24	106,106,106,106	0
3	MG	С	1301	1/1	0.99	0.32	160,160,160,160	0

Continued from previous page...

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

