Full wwPDB X-ray Structure Validation Report

Mar 9, 2018 – 09:12 am GMT

PDB ID: 1P8J
Title: CRYSTAL STRUCTURE OF THE PROPONTEIN CONVERTASE FURIN
Authors: Henrich, S.; Cameron, A.; Bourenkov, G.P.; Kiefersauer, R.; Huber, R.; Lindberg, I.; Bode, W.; Than, M.E.
Deposited on: 2003-05-07
Resolution: 2.60 Å (reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

- MolProbity: 4.02b-467
- Mogul: 1.7.3 (157068), CSD as539be (2018)
- Xtriage (Phenix): 1.13
- EDS: trunk30967
- Percentile statistics: 20171227.v01 (using entries in the PDB archive December 27th 2017)
- Refmac: 5.8.0158
- CCP4: 7.0 (Gargrove)
- Ideal geometry (proteins): Engh & Huber (2001)
- Ideal geometry (DNA, RNA): Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP): trunk30967
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

X-RAY DIFFRACTION

The reported resolution of this entry is 2.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clashscore</td>
<td>122126</td>
<td>3110 (2.60-2.60)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>120053</td>
<td>3062 (2.60-2.60)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>120020</td>
<td>3062 (2.60-2.60)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>108989</td>
<td>2706 (2.60-2.60)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for ≥3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <5%. The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>471</td>
<td>83% 15%</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>471</td>
<td>82% 16%</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>471</td>
<td>81% 17%</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>471</td>
<td>82% 16%</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>471</td>
<td>80% 17%</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>471</td>
<td>81% 18%</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>471</td>
<td>82% 17%</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>471</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>6</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>6</td>
<td>67% 33%</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>6</td>
<td>67% 33%</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>6</td>
<td>83% 17%</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>6</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>6</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>Q</td>
<td>6</td>
<td>50% 50%</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
<td>6</td>
<td>67% 33%</td>
</tr>
</tbody>
</table>

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Chirality</th>
<th>Geometry</th>
<th>Clashes</th>
<th>Electron density</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>FUC</td>
<td>G</td>
<td>953</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>B</td>
<td>901</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>F</td>
<td>951</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>H</td>
<td>901</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 11 unique types of molecules in this entry. The entry contains 31923 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Furin precursor.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>470</td>
<td>Total C N O S</td>
<td>3591 2227 640 710 14</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>468</td>
<td>Total C N O S</td>
<td>3578 2219 638 707 14</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>467</td>
<td>Total C N O S</td>
<td>3569 2214 637 704 14</td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>467</td>
<td>Total C N O S</td>
<td>3569 2214 637 704 14</td>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>467</td>
<td>Total C N O S</td>
<td>3569 2214 637 704 14</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>468</td>
<td>Total C N O S</td>
<td>3577 2218 638 707 14</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>467</td>
<td>Total C N O S</td>
<td>3569 2214 637 704 14</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>466</td>
<td>Total C N O S</td>
<td>3562 2209 636 703 14</td>
<td>60</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 2 is a protein called DECANOYL-ARG-VAL-LYS-ARG-CHLOROMETHYLKE TONE INHIBITOR.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>J</td>
<td>6</td>
<td>Total C N O</td>
<td>50 34 11 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>6</td>
<td>Total C N O</td>
<td>50 34 11 5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>6</td>
<td>Total C N O</td>
<td>50 34 11 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>6</td>
<td>Total C N O</td>
<td>50 34 11 5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>6</td>
<td>Total C N O</td>
<td>50 34 11 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>6</td>
<td>Total C N O</td>
<td>50 34 11 5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Q</td>
<td>6</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 34 11 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>R</td>
<td>6</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 34 11 5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 3 is N-ACETYL-D-GLUCOSAMINE (three-letter code: NAG) (formula: C₈H₁₅NO₆).

![NAG Structure Diagram]

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>F</td>
<td>1</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14 8 1 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>1</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14 8 1 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>1</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14 8 1 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>1</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14 8 1 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 4 is BETA-L-FUCOSE (three-letter code: FUL) (formula: C₆H₁₂O₅).

![FUCOSE molecule diagram](image)

- Molecule 5 is BETA-D-MANNOSE (three-letter code: BMA) (formula: C₆H₁₂O₆).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 6 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Molecule 6 is ALPHA-D-MANNOSE (three-letter code: MAN) (formula: $C_6H_{12}O_6$).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>A</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 6 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>G</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 6 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>A</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 6 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 6 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Molecule 7 is BETA-D-GALACTOSE (three-letter code: GAL) (formula: \(C_6H_{12}O_6\)).

![GAL](image)

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>A</td>
<td>1</td>
<td>Total C O</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 8 is CALCIUM ION (three-letter code: CA) (formula: \(Ca\)).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>G</td>
<td>2</td>
<td>Total Ca</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
<td>2</td>
<td>Total Ca</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>E</td>
<td>2</td>
<td>Total Ca</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>2</td>
<td>Total Ca</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>2</td>
<td>Total Ca</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>2</td>
<td>Total Ca</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>2</td>
<td>Total Ca</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>2</td>
<td>Total Ca</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 9 is SULFATE ION (three-letter code: SO4) (formula: \(O_4S\)).
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>A</td>
<td>1</td>
<td>Total O 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>1</td>
<td>Total O 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>1</td>
<td>Total O 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>1</td>
<td>Total O 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>1</td>
<td>Total O 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>1</td>
<td>Total O 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>B</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>E</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>G</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>G</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>G</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>G</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>G</td>
<td>1</td>
<td>Total O S</td>
<td>5 4 1</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>H</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>H</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>H</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>H</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>H</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>N</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>P</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Q</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 11 is water.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>G</td>
<td>1</td>
<td>Total C O</td>
<td>10 6 4</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>352</td>
<td>Total O</td>
<td>352</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>291</td>
<td>Total O</td>
<td>291</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>292</td>
<td>Total O</td>
<td>292</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
<td>181</td>
<td>Total O</td>
<td>181</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>E</td>
<td>270</td>
<td>Total O</td>
<td>270</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>325</td>
<td>Total O</td>
<td>325</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>G</td>
<td>319</td>
<td>Total O</td>
<td>319</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>H</td>
<td>231</td>
<td>Total O</td>
<td>231</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>J</td>
<td>6</td>
<td>Total O</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>7</td>
<td>Total O</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>L</td>
<td>5</td>
<td>Total O</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>M</td>
<td>5</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>N</td>
<td>8</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>P</td>
<td>6</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Q</td>
<td>3</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>4</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Furin precursor

Chain A:

• Molecule 1: Furin precursor

Chain B:

• Molecule 1: Furin precursor

Chain C:
• Molecule 1: Furin precursor

Chain D:

• Molecule 1: Furin precursor

Chain E:

• Molecule 1: Furin precursor

Chain F:

• Molecule 1: Furin precursor

Chain G:
• Molecule 1: Furin precursor

Chain H:

• Molecule 2: DECANOYL-ARG-VAL-LYS-ARG-CHLOROMETHYLKETONE INHIBITOR

Chain J:

There are no outlier residues recorded for this chain.

• Molecule 2: DECANOYL-ARG-VAL-LYS-ARG-CHLOROMETHYLKETONE INHIBITOR

Chain K:

• Molecule 2: DECANOYL-ARG-VAL-LYS-ARG-CHLOROMETHYLKETONE INHIBITOR

Chain L:

• Molecule 2: DECANOYL-ARG-VAL-LYS-ARG-CHLOROMETHYLKETONE INHIBITOR

Chain M:

• Molecule 2: DECANOYL-ARG-VAL-LYS-ARG-CHLOROMETHYLKETONE INHIBITOR

Chain N:
There are no outlier residues recorded for this chain.

- Molecule 2: DECANOYL-ARG-VAL-LYS-ARG-CHLOROMETHYLKETONE INHIBITOR

Chain P:

There are no outlier residues recorded for this chain.

- Molecule 2: DECANOYL-ARG-VAL-LYS-ARG-CHLOROMETHYLKETONE INHIBITOR

Chain Q:

- Molecule 2: DECANOYL-ARG-VAL-LYS-ARG-CHLOROMETHYLKETONE INHIBITOR

Chain R:
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>93.31Å 135.39Å 137.81Å</td>
<td>Depositor</td>
</tr>
<tr>
<td>a, b, c, α, β, γ</td>
<td>103.56° 98.98° 107.09°</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>18.82 – 2.60</td>
<td>Depositor</td>
</tr>
<tr>
<td>% Data completeness</td>
<td>97.9 (18.82-2.60)</td>
<td>Depositor</td>
</tr>
<tr>
<td>(in resolution range)</td>
<td>98.0 (18.82-2.60)</td>
<td>Depositor</td>
</tr>
<tr>
<td>Rmerge</td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td>Rsym</td>
<td>0.10</td>
<td>Depositor</td>
</tr>
<tr>
<td>(< I/\sigma(I) >^1)</td>
<td>2.77 (at 2.59Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>CNS 1.1</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, R_free</td>
<td>0.188 , 0.219</td>
<td>Depositor</td>
</tr>
<tr>
<td>Rfree test set</td>
<td>No test flags present.</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Wilson B-factor (Å²)</td>
<td>22.8</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.176</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent (k_{sol}(e/Å³)), (B_{sol}(Å²))</td>
<td>0.32 , 48.1</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning^2</td>
<td>(<</td>
<td>L</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>No twinning to report.</td>
<td>Xtriage</td>
</tr>
<tr>
<td>(F_o,F_c) correlation</td>
<td>0.93</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>31923</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å²)</td>
<td>21.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.30% of the height of the origin peak. No significant pseudotranslation is detected.

1: Intensities estimated from amplitudes.
2: Theoretical values of \(< |L| >, < L^2 >\) for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: 0QE, BMA, NAG, AR7, CA, GAL, SO4, DKA, FUL, MAN, FUC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>$</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.38</td>
<td>0/3674</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>0.38</td>
<td>0/3661</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>0.38</td>
<td>0/3652</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>0.38</td>
<td>0/3652</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>0.38</td>
<td>0/3652</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>0.38</td>
<td>0/3660</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>0.39</td>
<td>0/3652</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>0.38</td>
<td>0/3645</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>0.45</td>
<td>0/26</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>0.45</td>
<td>0/26</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>0.41</td>
<td>0/26</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>0.38</td>
<td>0/26</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>0.37</td>
<td>0/26</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>0.38</td>
<td>0/26</td>
</tr>
<tr>
<td>2</td>
<td>Q</td>
<td>0.38</td>
<td>0/26</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
<td>0.46</td>
<td>0/26</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.38</td>
<td>0/29456</td>
</tr>
</tbody>
</table>

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>3591</td>
<td>0</td>
<td>3406</td>
<td>62</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>3578</td>
<td>0</td>
<td>3393</td>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>3569</td>
<td>0</td>
<td>3388</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>3569</td>
<td>0</td>
<td>3388</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>3569</td>
<td>0</td>
<td>3387</td>
<td>69</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>3577</td>
<td>0</td>
<td>3389</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>3569</td>
<td>0</td>
<td>3387</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>3562</td>
<td>0</td>
<td>3378</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>50</td>
<td>0</td>
<td>66</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>50</td>
<td>0</td>
<td>66</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>50</td>
<td>0</td>
<td>66</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>50</td>
<td>0</td>
<td>66</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>50</td>
<td>0</td>
<td>66</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>50</td>
<td>0</td>
<td>66</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Q</td>
<td>50</td>
<td>0</td>
<td>66</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
<td>50</td>
<td>0</td>
<td>66</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>84</td>
<td>0</td>
<td>73</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>14</td>
<td>0</td>
<td>13</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>14</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>14</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>11</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>G</td>
<td>11</td>
<td>0</td>
<td>10</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>22</td>
<td>0</td>
<td>17</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>22</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>E</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>G</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>G</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>H</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>J</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>K</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>L</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>N</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>P</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Q</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>G</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>352</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>291</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>292</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
<td>181</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>E</td>
<td>270</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>325</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>G</td>
<td>319</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>H</td>
<td>231</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>J</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>L</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>N</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>P</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Q</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>31923</td>
<td>0</td>
<td>27880</td>
<td>447</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (447) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:298:ARG:HB2</td>
<td>1:E:298:ARG:HH21</td>
<td>1.02</td>
<td>1.11</td>
</tr>
<tr>
<td>1:E:475:LEU:HA</td>
<td>1:E:480:HIS:CD2</td>
<td>1.99</td>
<td>0.98</td>
</tr>
<tr>
<td>1:E:475:LEU:HA</td>
<td>1:E:480:HIS:HD2</td>
<td>1.28</td>
<td>0.95</td>
</tr>
<tr>
<td>1:A:509:MET:HE2</td>
<td>1:A:542:ASP:H</td>
<td>1.32</td>
<td>0.92</td>
</tr>
<tr>
<td>1:E:298:ARG:HB2</td>
<td>1:E:298:ARG:NH2</td>
<td>1.83</td>
<td>0.91</td>
</tr>
<tr>
<td>1:H:304:ASN:OD1</td>
<td>1:H:333:CYS:HB2</td>
<td>1.72</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:190:ASN:HD21</td>
<td>1:C:357:ARG:HE</td>
<td>1.26</td>
<td>0.83</td>
</tr>
<tr>
<td>1:D:304:ASN:OD1</td>
<td>1:D:333:CYS:HB2</td>
<td>1.79</td>
<td>0.81</td>
</tr>
<tr>
<td>1:C:120:GLN:NE2</td>
<td>1:C:362:GLU:HG2</td>
<td>1.96</td>
<td>0.81</td>
</tr>
<tr>
<td>3:G:952:NAG:H4</td>
<td>5:G:954:BMA:O2</td>
<td>1.77</td>
<td>0.80</td>
</tr>
<tr>
<td>1:D:519:ARG:HD3</td>
<td>11:D:4069:HOH:O</td>
<td>1.82</td>
<td>0.78</td>
</tr>
<tr>
<td>1:F:304:ASN:OD1</td>
<td>1:F:333:CYS:HB2</td>
<td>1.85</td>
<td>0.75</td>
</tr>
<tr>
<td>1:E:257:GLU:HB3</td>
<td>1:E:262:THR:HG21</td>
<td>1.70</td>
<td>0.73</td>
</tr>
<tr>
<td>1:G:519:ARG:HD3</td>
<td>11:G:4176:HOH:O</td>
<td>1.89</td>
<td>0.72</td>
</tr>
<tr>
<td>1:C:440:ASN:HB3</td>
<td>11:C:4282:HOH:O</td>
<td>1.90</td>
<td>0.71</td>
</tr>
<tr>
<td>1:G:455:LEU:HD12</td>
<td>1:G:455:LEU:O</td>
<td>1.90</td>
<td>0.71</td>
</tr>
<tr>
<td>1:E:120:GLN:HE21</td>
<td>1:E:120:GLN:H</td>
<td>1.36</td>
<td>0.71</td>
</tr>
<tr>
<td>1:C:257:GLU:HB3</td>
<td>1:C:262:THR:HG21</td>
<td>1.74</td>
<td>0.70</td>
</tr>
<tr>
<td>1:D:111:GLN:HG3</td>
<td>11:D:4217:HOH:O</td>
<td>1.92</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:509:MET:HE2</td>
<td>1:A:542:ASP:N</td>
<td>2.07</td>
<td>0.70</td>
</tr>
<tr>
<td>1:C:483:ARG:HD3</td>
<td>1:C:540:ASP:OD2</td>
<td>1.92</td>
<td>0.70</td>
</tr>
<tr>
<td>3:G:952:NAG:O3</td>
<td>5:G:954:BMA:H2</td>
<td>1.92</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:304:ASN:OD1</td>
<td>1:A:333:CYS:HB2</td>
<td>1.92</td>
<td>0.69</td>
</tr>
<tr>
<td>1:E:519:ARG:HD3</td>
<td>11:E:4068:HOH:O</td>
<td>1.92</td>
<td>0.69</td>
</tr>
<tr>
<td>1:F:298:ARG:HD2</td>
<td>11:F:4242:HOH:O</td>
<td>1.92</td>
<td>0.69</td>
</tr>
<tr>
<td>1:B:304:ASN:OD1</td>
<td>1:B:333:CYS:HB2</td>
<td>1.92</td>
<td>0.69</td>
</tr>
<tr>
<td>1:G:127:VAL:HA</td>
<td>1:G:133:ASN:ND2</td>
<td>2.08</td>
<td>0.69</td>
</tr>
<tr>
<td>1:B:220:ARG:HG3</td>
<td>11:B:4140:HOH:O</td>
<td>1.92</td>
<td>0.68</td>
</tr>
<tr>
<td>1:C:519:ARG:HD3</td>
<td>11:C:4065:HOH:O</td>
<td>1.92</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:128:THR:HG23</td>
<td>1:A:130:ARG:H</td>
<td>1.59</td>
<td>0.68</td>
</tr>
<tr>
<td>1:E:120:GLN:NE2</td>
<td>1:E:120:GLN:H</td>
<td>1.92</td>
<td>0.67</td>
</tr>
<tr>
<td>1:H:519:ARG:HD3</td>
<td>11:H:4074:HOH:O</td>
<td>1.94</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:220:ARG:HD3</td>
<td>11:A:4119:HOH:O</td>
<td>1.95</td>
<td>0.66</td>
</tr>
<tr>
<td>1:C:468:ARG:HG2</td>
<td>1:C:548:VAL:HG22</td>
<td>1.79</td>
<td>0.65</td>
</tr>
<tr>
<td>1:H:399:GLN:HE22</td>
<td>1:H:441:TRP:HZ3</td>
<td>1.44</td>
<td>0.65</td>
</tr>
<tr>
<td>1:H:261:LYS:HG2</td>
<td>1:H:521:HIS:O</td>
<td>1.97</td>
<td>0.65</td>
</tr>
<tr>
<td>11:A:4162:HOH:O</td>
<td>1:B:565:LYS:HE2</td>
<td>1.96</td>
<td>0.64</td>
</tr>
<tr>
<td>1:G:124:LEU:HD22</td>
<td>1:G:134:VAL:HG21</td>
<td>1.79</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:509:MET:CE</td>
<td>1:A:542:ASP:H</td>
<td>2.09</td>
<td>0.64</td>
</tr>
<tr>
<td>1:H:414:ASN:ND2</td>
<td>1:H:537:HIS:O</td>
<td>2.27</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:128:THR:O</td>
<td>1:A:129:GLN:HB2</td>
<td>1.98</td>
<td>0.64</td>
</tr>
<tr>
<td>1:E:399:GLN:HE22</td>
<td>1:E:441:TRP:HZ3</td>
<td>1.46</td>
<td>0.64</td>
</tr>
<tr>
<td>1:G:136:GLU:OE1</td>
<td>1:G:432:GLY:HA3</td>
<td>1.98</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:440:ASN:HB3</td>
<td>11:B:4307:HOH:O</td>
<td>1.98</td>
<td>0.63</td>
</tr>
<tr>
<td>1:C:304:ASN:OD1</td>
<td>1:C:333:CYS:HB2</td>
<td>1.99</td>
<td>0.63</td>
</tr>
<tr>
<td>1:G:403:PRO:O</td>
<td>1:G:406:LEU:HB2</td>
<td>1.99</td>
<td>0.62</td>
</tr>
<tr>
<td>1:G:418:ARG:NH1</td>
<td>1:G:540:ASP:OD1</td>
<td>2.32</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:323:PHC:CD1</td>
<td>1:B:348:GLU:HG2</td>
<td>2.35</td>
<td>0.62</td>
</tr>
<tr>
<td>1:C:399:GLN:HE22</td>
<td>1:C:441:TRP:H3</td>
<td>1.46</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:465:LEU:HD22</td>
<td>1:D:466:GLU:N</td>
<td>2.16</td>
<td>0.61</td>
</tr>
<tr>
<td>1:G:245:ASN:ND2</td>
<td>1:G:283:GLY:H</td>
<td>1.97</td>
<td>0.61</td>
</tr>
<tr>
<td>1:E:418:ARG:NH1</td>
<td>1:E:540:ASP:OD1</td>
<td>2.33</td>
<td>0.61</td>
</tr>
<tr>
<td>1:F:234:ALA:O</td>
<td>1:F:238:ARG:HG3</td>
<td>2.01</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:455:LEU:HA</td>
<td>11:A:4318:HOH:O</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:H:418:ARG:NH1</td>
<td>1:H:540:ASP:OD1</td>
<td>2.33</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:268:ARG:HH11</td>
<td>1:B:268:ARG:HG2</td>
<td>1.66</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:493:LEU:C</td>
<td>1:D:493:LEU:HD12</td>
<td>2.21</td>
<td>0.61</td>
</tr>
<tr>
<td>1:F:418:ARG:NH1</td>
<td>1:F:540:ASP:OD1</td>
<td>2.34</td>
<td>0.60</td>
</tr>
<tr>
<td>1:F:399:GLN:HE22</td>
<td>1:F:441:TRP:H3</td>
<td>1.46</td>
<td>0.60</td>
</tr>
<tr>
<td>1:E:340:THR:HG21</td>
<td>1:E:370:SER:HA</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:E:120:GLN:N</td>
<td>1:E:120:GLN:NE2</td>
<td>2.50</td>
<td>0.60</td>
</tr>
<tr>
<td>1:F:440:ASN:HB3</td>
<td>3:F:951:NAG:O7</td>
<td>2.01</td>
<td>0.59</td>
</tr>
<tr>
<td>1:E:475:LEU:HD12</td>
<td>1:E:480:HIS:CD2</td>
<td>2.37</td>
<td>0.58</td>
</tr>
<tr>
<td>1:E:232:THR:HB</td>
<td>9:E:4060:SO4:O1</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>1:E:122:TRP:NE1</td>
<td>1:E:349:LYS:HB3</td>
<td>2.18</td>
<td>0.58</td>
</tr>
<tr>
<td>1:E:298:ARG:CG</td>
<td>1:E:298:ARG:HH21</td>
<td>2.16</td>
<td>0.58</td>
</tr>
<tr>
<td>1:G:257:GLU:HB3</td>
<td>1:G:262:THR:HG21</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:234:ALA:O</td>
<td>1:C:238:ARG:HG3</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:418:ARG:NH1</td>
<td>1:B:540:ASP:OD1</td>
<td>2.36</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:399:GLN:NE2</td>
<td>1:D:441:TRP:CH2</td>
<td>2.73</td>
<td>0.57</td>
</tr>
<tr>
<td>1:E:339:THR:HG22</td>
<td>1:E:340:THR:N</td>
<td>2.20</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:220:ARG:NH1</td>
<td>1:A:246:HIS:HE1</td>
<td>2.03</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:418:ARG:NH1</td>
<td>1:A:540:ASP:OD1</td>
<td>2.37</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:345:ASN:OD1</td>
<td>1:D:348:GLU:HG3</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:E:145:His:HB2</td>
<td>1:E:383:GLU:OE2</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:471:VAL:HG12</td>
<td>1:C:473:ALA:H</td>
<td>1.69</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:145:HIS:HB2</td>
<td>1:B:383:GLU:OE2</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:455:LEU:HD23</td>
<td>1:A:455:LEU:O</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:418:ARG:NH1</td>
<td>1:C:540:ASP:OD1</td>
<td>2.39</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:418:ARG:NH1</td>
<td>1:D:540:ASP:OD1</td>
<td>2.39</td>
<td>0.56</td>
</tr>
<tr>
<td>3:B:901:NAG:H61</td>
<td>11:B:4336:HOH:O</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:539:TRP:O</td>
<td>1:E:540:ASP:HB2</td>
<td>2.04</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:456:VAL:N</td>
<td>11:A:4318:HOH:O</td>
<td>2.34</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:493:LEU:C</td>
<td>1:F:493:LEU:HD12</td>
<td>2.25</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:234:ALA:O</td>
<td>1:B:238:ARG:HG3</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:304:ASN:OD1</td>
<td>1:E:333:CYS:HB2</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:483:ARG:HG2</td>
<td>1:C:540:ASP:HA</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>1:E:556:GLU:OE2</td>
<td>1:E:556:GLU:HA</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:288:ILE:HA</td>
<td>11:A:4113:HOH:O</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:122:TRP:NE1</td>
<td>1:A:349:LYS:HB3</td>
<td>2.21</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:512:ARG:NH2</td>
<td>11:B:4289:HOH:O</td>
<td>2.39</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:333:CYS:HA</td>
<td>11:C:4169:HOH:O</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:F:435:VAL:O</td>
<td>1:F:439:GLN:HG3</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:F:124:LEU:HD22</td>
<td>1:F:134:VAL:HG21</td>
<td>1.88</td>
<td>0.54</td>
</tr>
<tr>
<td>1:G:539:TRP:O</td>
<td>1:G:540:ASP:HB2</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:396:LEU:HD21</td>
<td>1:A:441:TRP:CE3</td>
<td>2.42</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:483:ARG:HD3</td>
<td>1:A:540:ASP:OD2</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:193:ARG:HA</td>
<td>1:D:356:LEU:HG</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:H:414:ASN:HB3</td>
<td>1:H:416:VAL:H</td>
<td>1.72</td>
<td>0.54</td>
</tr>
<tr>
<td>11:B:4279:HOH:O</td>
<td>2*K:803:VAL:HB</td>
<td>2.06</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:190:ASN:ND2</td>
<td>1:C:357:ARG:HE</td>
<td>2.01</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:497:ARG:HG3</td>
<td>1:E:497:ARG:HH21</td>
<td>1.72</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:339:THR:HG22</td>
<td>1:C:340:THR:N</td>
<td>2.23</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:468:ARG:NH2</td>
<td>1:C:546:GLU:OE2</td>
<td>2.41</td>
<td>0.54</td>
</tr>
<tr>
<td>1:H:178:GLN:HE21</td>
<td>1:H:178:GLN:CA</td>
<td>2.18</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:145:HIS:HB2</td>
<td>1:C:383:GLU:OE2</td>
<td>2.06</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:471:VAL:HG12</td>
<td>1:E:473:ALA:H</td>
<td>1.73</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:234:ALA:O</td>
<td>1:E:238:ARG:HG3</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:490:ARG:NH1</td>
<td>9:F:4070:SO4:O1</td>
<td>2.41</td>
<td>0.54</td>
</tr>
<tr>
<td>1:H:234:ALA:O</td>
<td>1:H:238:ARG:HG3</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:418:ARG:HD3</td>
<td>11:A:4124:HOH:O</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:435:VAL:O</td>
<td>1:C:439:GLN:HG3</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:128:THR:HG22</td>
<td>1:B:130:ARG:HB2</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:293:SER:HA</td>
<td>1:E:309:THR:HG21</td>
<td>1.90</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:493:LEU:C</td>
<td>1:C:493:LEU:HD12</td>
<td>2.29</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:445:ALA:HB1</td>
<td>1:D:446:PRO:HD2</td>
<td>1.89</td>
<td>0.53</td>
</tr>
<tr>
<td>1:H:400:THR:O</td>
<td>1:H:402:LYS:HE3</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:565:LYS:HE3</td>
<td>11:A:4300:HOH:O</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:493:LEU:HD12</td>
<td>1:E:493:LEU:C</td>
<td>2.29</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:539:TRP:O</td>
<td>1:F:540:ASP:HB2</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:399:GLN:NE2</td>
<td>1:F:441:TRP:CE2</td>
<td>2.76</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:519:ARG:HD3</td>
<td>11:B:4082:HOH:O</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:201:GLU:OE2</td>
<td>1:B:364:HIS:ND1</td>
<td>2.40</td>
<td>0.53</td>
</tr>
<tr>
<td>2:K:801:DKA:H82</td>
<td>11:K:780:HOH:O</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:399:GLN:NE2</td>
<td>1:D:441:TRP:CE3</td>
<td>2.75</td>
<td>0.52</td>
</tr>
<tr>
<td>1:G:234:ALA:O</td>
<td>1:G:238:ARG:HG3</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>2:R:801:DKA:H82</td>
<td>11:R:587:HOH:O</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:471:VAL:HG12</td>
<td>1:D:473:ALA:H</td>
<td>1.73</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:159:ASN:HB2</td>
<td>11:E:4298:HOH:O</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:261:LYS:HG2</td>
<td>1:F:521:HIS:O</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:H:452:VAL:HG13</td>
<td>1:H:568:LEU:HB3</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:508:PRO:HD3</td>
<td>1:B:547:TRP:CE2</td>
<td>2.44</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:399:GLN:NE2</td>
<td>1:C:441:TRP:CE3</td>
<td>2.78</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:435:VAL:O</td>
<td>1:D:439:GLN:HG3</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:G:245:ASN:HD21</td>
<td>1:G:283:GLY:H</td>
<td>1.58</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:259:ASP:OD2</td>
<td>1:A:262:THR:HG22</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:399:GLN:NE2</td>
<td>1:A:441:TRP:CH2</td>
<td>2.78</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:261:LYS:HG2</td>
<td>1:C:521:HIS:O</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:445:ALA:HB1</td>
<td>1:E:446:PRO:HD2</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>1:F:178:GLN:OE1</td>
<td>1:F:178:GLN:HA</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:455:LEU:HD12</td>
<td>1:C:455:LEU:O</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:493:LEU:HD12</td>
<td>1:A:493:LEU:C</td>
<td>2.31</td>
<td>0.51</td>
</tr>
<tr>
<td>1:H:539:TRP:O</td>
<td>1:H:540:ASP:HB2</td>
<td>2.08</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:293:SER:HA</td>
<td>1:C:309:THR:HG21</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:497:ARG:HD2</td>
<td>1:C:523:TYR:HA</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:480:HIS:HE1</td>
<td>11:B:4173:HOH:O</td>
<td>1.94</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:346:GLN:HA</td>
<td>11:D:4232:HOH:O</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:471:VAL:HG12</td>
<td>1:A:473:ALA:H</td>
<td>1.75</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:339:THR:HG22</td>
<td>1:B:340:THR:N</td>
<td>2.25</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:399:GLN:HE2</td>
<td>1:B:441:TRP:HZ3</td>
<td>1.58</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:147:ILE:HD11</td>
<td>1:C:386:LYS:HD3</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:F:508:PRO:HD3</td>
<td>1:F:547:TRP:CE2</td>
<td>2.46</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:G:418:ARG:HD3</td>
<td>11:G:4279:HOH:O</td>
<td>2.09</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:220:ARG:HD3</td>
<td>11:C:4218:HOH:O</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:480:HIS:HE1</td>
<td>1:E:482:THR:HG22</td>
<td>1.75</td>
<td>0.51</td>
</tr>
<tr>
<td>1:G:399:GLN:HE22</td>
<td>1:G:441:TRP:HZ3</td>
<td>1.58</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:508:PRO:HD3</td>
<td>1:D:547:TRP:CE2</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:172:SER:HB3</td>
<td>1:B:182:PRO:HG3</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:574:ALA:HB2</td>
<td>11:B:4321:HOH:O</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:391:ARG:CZ</td>
<td>1:D:447:GLN:HB2</td>
<td>2.40</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:539:TRP:O</td>
<td>1:D:540:ASP:HB2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:H:288:ILE:HA</td>
<td>11:H:4060:HOH:O</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:H:493:LEU:C</td>
<td>1:H:493:LEU:HD12</td>
<td>2.31</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:539:TRP:O</td>
<td>1:B:540:ASP:HB2</td>
<td>2.10</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:220:ARG:HG3</td>
<td>11:D:4113:HOH:O</td>
<td>2.10</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:268:ARG:NE</td>
<td>11:F:4230:HOH:O</td>
<td>2.44</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:483:ARG:HD3</td>
<td>1:E:540:ASP:OD2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:234:ALA:O</td>
<td>1:A:238:ARG:HG3</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:128:THR:O</td>
<td>1:F:129:GLN:HB2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:130:ARG:HD3</td>
<td>11:E:4256:HOH:O</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:323:PHE:HD1</td>
<td>1:B:348:GLU:HG2</td>
<td>1.75</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:120:GLN:OE1</td>
<td>1:D:120:GLN:N</td>
<td>2.44</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:186:TYR:CE2</td>
<td>1:E:356:LEU:HD22</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:465:LEU:HD12</td>
<td>1:C:466:GLU:N</td>
<td>2.27</td>
<td>0.50</td>
</tr>
<tr>
<td>1:G:391:ARG:HD2</td>
<td>1:G:485:GLU:OE2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:455:LEU:C</td>
<td>1:B:455:LEU:HD12</td>
<td>2.32</td>
<td>0.50</td>
</tr>
<tr>
<td>1:G:293:SER:HA</td>
<td>1:G:309:THR:HG21</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:H:508:PRO:HD3</td>
<td>1:H:547:TRP:CE2</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:134:VAL:HG12</td>
<td>1:B:138:TRP:CE2</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:452:VAL:HG13</td>
<td>1:A:568:LEU:HB3</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:234:ALA:O</td>
<td>1:D:238:ARG:HG3</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:363:SER:HB2</td>
<td>11:D:4181:HOH:O</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:193:ARG:HA</td>
<td>1:C:356:LEU:HG</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:483:ARG:HG2</td>
<td>1:E:540:ASP:HA</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:539:TRP:O</td>
<td>1:A:540:ASP:HB2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:358:GLN:NE2</td>
<td>11:C:4220:HOH:O</td>
<td>2.39</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:H:178:GLN:CA</td>
<td>1:H:178:GLN:NE2</td>
<td>2.76</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:339:THR:HG22</td>
<td>1:D:340:THR:N</td>
<td>2.27</td>
<td>0.48</td>
</tr>
<tr>
<td>1:G:471:VAL:HG12</td>
<td>1:G:473:ALA:H</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:123:TYR:O</td>
<td>1:B:131:ASP:HB2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:471:VAL:HG12</td>
<td>1:B:473:ALA:H</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:468:ARG:HG2</td>
<td>1:B:548:VAL:HG22</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:293:SER:HA</td>
<td>1:A:309:THR:HG21</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:458:PRO:HD2</td>
<td>1:G:558:ASN:HD22</td>
<td>1.77</td>
<td>0.48</td>
</tr>
<tr>
<td>1:G:339:THR:HG22</td>
<td>1:G:340:THR:N</td>
<td>2.28</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:230:GLU:HA</td>
<td>1:D:560:TYR:CE2</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:452:VAL:HG13</td>
<td>1:C:568:LEU:HB3</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:490:ARG:NH1</td>
<td>9:D:4012:SO4:O4</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>1:G:154:ASP:HB3</td>
<td>2:Q:804:LYS:HE2</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:539:TRP:O</td>
<td>1:C:540:ASP:HB2</td>
<td>2.12</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:323:PHE:CD1</td>
<td>1:F:348:GLU:HG2</td>
<td>2.48</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:508:PRO:HD3</td>
<td>1:A:547:TRP:CE2</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:558:ASN:ND2</td>
<td>1:A:558:ASN:C</td>
<td>2.67</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:293:SER:HA</td>
<td>1:D:309:THR:HG21</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:404:ALA:O</td>
<td>1:F:405:HIS:HB2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:H:391:ARG:HZ</td>
<td>1:H:447:GLN:HB2</td>
<td>2.44</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:172:SER:HB3</td>
<td>1:A:182:PRO:HG3</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:122:TRP:NE1</td>
<td>1:C:349:LYS:HB3</td>
<td>2.29</td>
<td>0.48</td>
</tr>
<tr>
<td>1:H:189:MET:O</td>
<td>1:H:190:ASN:HB2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:G:259:ASP:OD2</td>
<td>1:G:262:THR:CG2</td>
<td>2.62</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:508:PRO:HD3</td>
<td>1:G:547:TRP:CE2</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:261:LYS:HG2</td>
<td>1:E:521:HIS:O</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:435:VAL:O</td>
<td>1:E:439:GLN:HG3</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:H:190:ASN:OD1</td>
<td>1:H:357:ARG:NE</td>
<td>2.43</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:193:ARG:HA</td>
<td>1:B:356:LEU:HG</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:H:268:ARG:HH11</td>
<td>1:H:268:ARG:HG3</td>
<td>1.78</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:465:LEU:HD22</td>
<td>1:D:466:GLU:H</td>
<td>1.78</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:130:ARG:HA</td>
<td>1:G:404:ALA:HB1</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:340:THR:CG2</td>
<td>1:E:370:SER:HA</td>
<td>2.44</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:508:PRO:HD3</td>
<td>1:E:547:TRP:CE2</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>1:F:391:ARG:HZ</td>
<td>1:F:447:GLN:HB2</td>
<td>2.45</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:259:ASP:OD2</td>
<td>1:B:262:THR:CG2</td>
<td>2.62</td>
<td>0.47</td>
</tr>
<tr>
<td>1:H:399:GLN:NE2</td>
<td>1:H:441:TRP:CE2</td>
<td>2.79</td>
<td>0.47</td>
</tr>
<tr>
<td>1:H:469:LYS:HE3</td>
<td>1:H:469:LYS:HE3</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:508:PRO:HD3</td>
<td>1:C:547:TRP:CE2</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:496:ASN:OD1</td>
<td>1:G:559:ASN:OE1</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:127:VAL:HA</td>
<td>1:G:133:ASN:HD22</td>
<td>1.79</td>
<td>0.47</td>
</tr>
<tr>
<td>1:F:323:PHE:HD1</td>
<td>1:F:348:GLU:HG2</td>
<td>1.78</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:506:ILE:HE1</td>
<td>1:B:506:ILE:HD12</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:259:ASP:OD2</td>
<td>1:C:262:THR:CG2</td>
<td>2.63</td>
<td>0.46</td>
</tr>
<tr>
<td>1:G:404:ALA:O</td>
<td>1:G:405:HIS:HB2</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:399:GLN:NE2</td>
<td>1:A:441:TRP:HH2</td>
<td>2.13</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:490:ARG:NH1</td>
<td>9:A:4069:SO4:O3</td>
<td>2.49</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:457:GLU:CD</td>
<td>1:B:457:GLU:H</td>
<td>2.18</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:243:ASN:HB3</td>
<td>1:D:246:HIS:HB3</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:120:GLN:N</td>
<td>1:E:120:GLN:HE21</td>
<td>2.07</td>
<td>0.46</td>
</tr>
<tr>
<td>1:G:264:ASP:OD2</td>
<td>2:Q:802:ARG:NE2</td>
<td>2.44</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:282:ARG:HE1</td>
<td>1:D:286:GLY:O</td>
<td>2.44</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:399:GLN:HE22</td>
<td>1:D:441:TRP:HZ3</td>
<td>1.60</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:459:LYS:HG2</td>
<td>1:A:465:LEU:CD1</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:465:LEU:HD12</td>
<td>1:C:466:GLU:H</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>1:G:395:HIS:CD2</td>
<td>1:G:444:VAL:HG11</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:391:ARG:CE2</td>
<td>1:E:447:GLN:HE2</td>
<td>2.45</td>
<td>0.46</td>
</tr>
<tr>
<td>1:G:129:GLN:HA</td>
<td>9:G:4029:SO4:O2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:490:ARG:HE1</td>
<td>9:B:4027:SO4:OE</td>
<td>2.47</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:452:VAL:HG13</td>
<td>1:E:568:LEU:HE3</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:268:ARG:HE2</td>
<td>11:H:4097:HOH:O</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:452:VAL:HG13</td>
<td>1:D:568:LEU:HE3</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:F:259:ASP:OD2</td>
<td>1:F:262:THR:HG2</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:509:MET:HE2</td>
<td>1:A:541:GLU:HE3</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:558:ASN:C</td>
<td>1:A:558:ASN:HE2</td>
<td>2.18</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:184:PRO:HG3</td>
<td>1:C:356:LEU:HD2</td>
<td>1.96</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:399:GLN:NE2</td>
<td>1:E:441:TRP:CE2</td>
<td>2.79</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:113:PRO:HB3</td>
<td>1:B:213:VAL:HG11</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:497:ARG:HE2</td>
<td>1:D:523:TYR:CE2</td>
<td>2.85</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:456:VAL:O</td>
<td>1:B:456:VAL:HG13</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:323:PHE:CE1</td>
<td>1:B:348:GLU:HE2</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:391:ARG:CE2</td>
<td>1:B:447:GLN:HE2</td>
<td>2.46</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:465:LEU:HD11</td>
<td>1:D:467:VAL:HG23</td>
<td>1.99</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:H:496:ASN:O</td>
<td>1:H:497:ARG:HD2</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:455:LEU:HD12</td>
<td>1:C:455:LEU:C</td>
<td>2.37</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:497:ARG:HG3</td>
<td>1:A:497:ARG:HH21</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:197:ARG:O</td>
<td>1:C:201:GLU:HG3</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:G:172:SER:HB3</td>
<td>1:G:182:PRO:HG3</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:F:172:SER:HB3</td>
<td>1:F:182:PRO:HG3</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:352:VAL:HG22</td>
<td>1:E:362:GLU:HG2</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:298:ARG:NH2</td>
<td>1:E:328:TRP:CE3</td>
<td>2.85</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:184:PRO:HG3</td>
<td>1:B:356:LEU:HD21</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:328:TRP:HD1</td>
<td>11:E:4267:HOH:O</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:G:391:ARG:CZ</td>
<td>1:G:447:GLN:HB2</td>
<td>2.48</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:268:ARG:HH11</td>
<td>1:B:268:ARG:CG</td>
<td>2.30</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:118:PHE:N</td>
<td>1:D:119:PRO:CD</td>
<td>2.81</td>
<td>0.44</td>
</tr>
<tr>
<td>1:G:118:PHE:N</td>
<td>1:G:119:PRO:CD</td>
<td>2.81</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:259:ASP:OD2</td>
<td>1:A:262:THR:CG2</td>
<td>2.66</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:118:PHE:N</td>
<td>1:F:119:PRO:CD</td>
<td>2.81</td>
<td>0.44</td>
</tr>
<tr>
<td>1:G:261:LYS:HG2</td>
<td>1:G:521:HIS:O</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:G:132:LEU:HD23</td>
<td>1:G:429:LEU:O</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:H:404:ALA:O</td>
<td>1:H:405:HIS:HB2</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:126:GLY:C</td>
<td>1:D:128:THR:H</td>
<td>2.21</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:402:LYS:HA</td>
<td>1:E:403:PRO:HD2</td>
<td>1.92</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:445:ALA:HB1</td>
<td>1:G:446:PRO:HD2</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:242:LEU:O</td>
<td>1:A:247:ILE:HD12</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:242:LEU:O</td>
<td>1:B:247:ILE:HD12</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:343:SER:OG</td>
<td>1:C:365:THR:HB</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:382:LEU:HD23</td>
<td>1:F:382:LEU:HA</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:402:LYS:HA</td>
<td>1:F:403:PRO:HD3</td>
<td>1.81</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:294:GLY:HA2</td>
<td>2:M:805:AR7:HD1</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:455:LEU:HG</td>
<td>1:D:566:PHE:HB3</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:157:GLU:HG3</td>
<td>1:H:186:TYR:OH</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:220:ARG:NH1</td>
<td>1:A:246:HIS:CE1</td>
<td>2.85</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:118:PHE:N</td>
<td>1:B:119:PRO:CD</td>
<td>2.82</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:391:ARG:NH1</td>
<td>1:D:445:ALA:O</td>
<td>2.44</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:565:LYS:HE3</td>
<td>11:F:4270:HOH:O</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:122:TRP:NE1</td>
<td>1:G:349:LYS:HB3</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:113:PRO:HB3</td>
<td>1:G:213:VAL:HG11</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:391:ARG: CZ</td>
<td>1:C:447:GLN:HB2</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:149:VAL:HG11</td>
<td>1:E:202:VAL:HG11</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:110:TYR:HA</td>
<td>11:G:4189:HOH:O</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:496:ASN:OD1</td>
<td>1:E:559:ASN:HB3</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:404:ALA:O</td>
<td>1:C:405:HIS:HB2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:293:SER:HA</td>
<td>1:B:309:THR:HG21</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:189:MET:O</td>
<td>1:F:190:ASN:HB2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:243:ASN:HB3</td>
<td>1:F:246:HIS:HB3</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:352:VAL:HG22</td>
<td>1:G:362:GLU:HG2</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:268:ARG:NH1</td>
<td>1:H:268:ARG:HG3</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:497:ARG:HG22</td>
<td>1:H:523:TYR:HB3</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:278:VAL:HG13</td>
<td>1:C:390:TRP:NE1</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:121:GLN:HG2</td>
<td>1:G:352:VAL:HB</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:203:ALA:HB3</td>
<td>1:G:221:ILE:HB</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:343:SER:OG</td>
<td>1:B:365:THR:HB</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:386:LYS:NZ</td>
<td>1:B:386:LYS:HB3</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:113:PRO:HB3</td>
<td>1:D:213:VAL:HG11</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:230:GLU:HG3</td>
<td>1:D:560:TYR:CZ</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:H:184:PRO:HG3</td>
<td>1:H:356:LEU:HD21</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:151:ILE:HD13</td>
<td>1:E:251:SER:HB3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:H:484:LEU:HD21</td>
<td>1:H:543:PRO:HB3</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:282:ARG:NH1</td>
<td>1:F:286:GLY:O</td>
<td>2.44</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:122:TRP:NE1</td>
<td>1:D:349:LYS:HB2</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:339:THR:CG2</td>
<td>1:E:340:THR:N</td>
<td>2.83</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:399:GLN:NE2</td>
<td>1:F:441:TRP:CH2</td>
<td>2.88</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:259:ASP:OD2</td>
<td>1:G:262:THR:HG22</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:483:ARG:NH2</td>
<td>11:C:4123:HOH:O</td>
<td>2.51</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:145:HIS:HB3</td>
<td>11:E:4081:HOH:O</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:395:HIS:CD2</td>
<td>1:E:444:VAL:HG11</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:458:PRO:CD2</td>
<td>1:G:558:ASN:ND2</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:H:351:ILE:HB</td>
<td>1:H:364:HIS:HB3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:H:294:GLY:HA2</td>
<td>2:R:805:AR7:HD1</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:298:ARG:NH2</td>
<td>1:E:298:ARG:CG</td>
<td>2.78</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:293:SER:HA</td>
<td>1:F:309:THR:HG21</td>
<td>2.02</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:342:SER:HA</td>
<td>1:F:351:ILE:HD11</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:174:ASP:HB2</td>
<td>1:G:181:ASP:O</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:346:GLN:HG3</td>
<td>11:G:4315:HOH:O</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:490:ARG:NH1</td>
<td>11:G:4256:HOH:O</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:452:VAL:HG13</td>
<td>1:G:568:LEU:HB3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:243:ASN:HB3</td>
<td>1:A:246:HIS:HB3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:142:PHE:CE1</td>
<td>1:F:384:ALA:HA</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:560:TYR:CE1</td>
<td>1:C:230:GLU:HG3</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:382:LEU:HA</td>
<td>1:D:382:LEU:HD23</td>
<td>1.88</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:113:PRO:HB3</td>
<td>1:E:213:VAL:HG11</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:446:PRO:HG2</td>
<td>1:F:448:ARG:NH1</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:H:282:ARG:NH1</td>
<td>1:H:286:GLY:O</td>
<td>2.47</td>
<td>0.42</td>
</tr>
<tr>
<td>6:A:955:MAN:H61</td>
<td>3:A:958:NAG:C8</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:186:TYR:CE2</td>
<td>1:C:356:LEU:HD22</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:259:ASP:OD2</td>
<td>1:B:262:THR:HG22</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:178:GLN:C</td>
<td>1:D:178:GLN:HE21</td>
<td>2.24</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:172:SER:HB3</td>
<td>1:E:182:PRO:HG3</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:142:PHE:CE1</td>
<td>1:E:384:ALA:HA</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:117:LYS:O</td>
<td>1:G:120:GLN:HB2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:483:ARG:HB2</td>
<td>1:B:483:ARG:HH21</td>
<td>1.84</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:243:ASN:HB3</td>
<td>1:C:246:HIS:HB3</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:403:PRO:O</td>
<td>1:D:406:LEU:HB2</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:H:259:ASP:OD2</td>
<td>1:H:262:THR:CG2</td>
<td>2.68</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:455:LEU:O</td>
<td>11:A:4321:HOH:O</td>
<td>2.22</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:356:LEU:HD23</td>
<td>1:C:356:LEU:HA</td>
<td>1.94</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:123:TYR:O</td>
<td>1:F:131:ASP:HB2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:H:243:ASN:HB3</td>
<td>1:H:246:HIS:HB3</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:259:ASP:OD2</td>
<td>1:C:262:THR:HG22</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:160:HIS:CD2</td>
<td>1:D:358:GLN:HA</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:243:ASN:HB3</td>
<td>1:E:246:HIS:HB3</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:403:PRO:HB3</td>
<td>1:E:411:TRP:CH2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:H:391:ARG:HD2</td>
<td>1:H:485:GLU:OE2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:455:LEU:HB2</td>
<td>1:B:457:GLU:OE2</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:232:THR:OG1</td>
<td>1:D:235:VAL:HG23</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:466:GLU:OE1</td>
<td>1:E:468:ARG:NH2</td>
<td>2.41</td>
<td>0.41</td>
</tr>
<tr>
<td>1:H:497:ARG:NH2</td>
<td>1:H:523:TYR:HB3</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:261:LYS:HG2</td>
<td>1:B:521:HIS:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:134:VAL:HA</td>
<td>1:C:431:ALA:HB3</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:455:LEU:O</td>
<td>1:E:455:LEU:HD23</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:278:VAL:HG13</td>
<td>1:F:390:TRP:CE2</td>
<td>2.56</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Continued on next page...
There are no symmetry-related clashes.

5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.
### Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1 | A | 468/471 (99%) | 450 (96%) | 16 (3%) | 2 (0%) | 36 | 60
1 | B | 466/471 (99%) | 441 (95%) | 22 (5%) | 3 (1%) | 27 | 51
1 | C | 465/471 (99%) | 445 (96%) | 19 (4%) | 1 (0%) | 49 | 74
1 | D | 465/471 (99%) | 448 (96%) | 16 (3%) | 1 (0%) | 49 | 74
1 | E | 465/471 (99%) | 447 (96%) | 17 (4%) | 1 (0%) | 49 | 74
1 | F | 466/471 (99%) | 445 (96%) | 20 (4%) | 1 (0%) | 49 | 74
1 | G | 465/471 (99%) | 452 (97%) | 12 (3%) | 1 (0%) | 49 | 74
1 | H | 464/471 (98%) | 443 (96%) | 19 (4%) | 2 (0%) | 36 | 60
2 | J | 2/6 (33%) | 2 (100%) | 0 | 0 | 100 | 100
2 | K | 2/6 (33%) | 2 (100%) | 0 | 0 | 100 | 100
2 | L | 2/6 (33%) | 2 (100%) | 0 | 0 | 100 | 100
2 | M | 2/6 (33%) | 2 (100%) | 0 | 0 | 100 | 100
2 | N | 2/6 (33%) | 2 (100%) | 0 | 0 | 100 | 100
2 | P | 2/6 (33%) | 2 (100%) | 0 | 0 | 100 | 100
2 | Q | 2/6 (33%) | 2 (100%) | 0 | 0 | 100 | 100
2 | R | 2/6 (33%) | 2 (100%) | 0 | 0 | 100 | 100
All | All | 3740/3816 (98%) | 3587 (96%) | 141 (4%) | 12 (0%) | 43 | 68

All (12) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>127</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>127</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>575</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>109</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>153</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>153</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>153</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>575</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>153</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>458</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>127</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>127</td>
<td>VAL</td>
</tr>
</tbody>
</table>
5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>379/380 (100%)</td>
<td>366 (97%)</td>
<td>13 (3%)</td>
<td>40 67</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>378/380 (100%)</td>
<td>364 (96%)</td>
<td>14 (4%)</td>
<td>37 64</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>377/380 (99%)</td>
<td>368 (98%)</td>
<td>9 (2%)</td>
<td>52 77</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>377/380 (99%)</td>
<td>366 (97%)</td>
<td>11 (3%)</td>
<td>45 72</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>377/380 (99%)</td>
<td>365 (97%)</td>
<td>12 (3%)</td>
<td>42 69</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>378/380 (100%)</td>
<td>367 (97%)</td>
<td>11 (3%)</td>
<td>45 72</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>377/380 (99%)</td>
<td>368 (98%)</td>
<td>9 (2%)</td>
<td>52 77</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>376/380 (99%)</td>
<td>365 (97%)</td>
<td>11 (3%)</td>
<td>45 72</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>3/3 (100%)</td>
<td>3 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>3/3 (100%)</td>
<td>3 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>3/3 (100%)</td>
<td>3 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>3/3 (100%)</td>
<td>3 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>3/3 (100%)</td>
<td>3 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>3/3 (100%)</td>
<td>3 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>2</td>
<td>Q</td>
<td>3/3 (100%)</td>
<td>3 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
<td>3/3 (100%)</td>
<td>3 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3043/3064 (99%)</td>
<td>2953 (97%)</td>
<td>90 (3%)</td>
<td>44 71</td>
</tr>
</tbody>
</table>

All (90) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>129</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>178</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>262</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>268</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>291</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>303</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>340</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>406</td>
<td>LEU</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>452</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>455</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>483</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>509</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>558</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>130</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>178</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>240</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>262</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>275</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>291</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>303</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>406</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>452</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>456</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>457</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>483</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>497</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>556</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>129</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>130</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>262</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>268</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>291</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>303</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>406</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>420</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>452</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>129</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>135</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>178</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>262</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>275</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>291</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>303</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>406</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>452</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>469</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>497</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>120</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>240</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>262</td>
<td>THR</td>
</tr>
</tbody>
</table>

Continued on next page...
Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (37) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>268</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>275</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>291</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>298</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>303</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>340</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>452</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>455</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>497</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>112</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>120</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>178</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>262</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>268</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>275</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>291</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>303</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>406</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>452</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>456</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>127</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>262</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>278</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>291</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>303</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>406</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>452</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>455</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>497</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>111</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>178</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>240</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>262</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>275</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>291</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>303</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>414</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>440</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>452</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>497</td>
<td>ARG</td>
</tr>
</tbody>
</table>
There are no RNA molecules in this entry.
5.4 Non-standard residues in protein, DNA, RNA chains

8 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>J</td>
<td>805</td>
<td>2</td>
<td>10,10,11</td>
<td>0.40</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>K</td>
<td>805</td>
<td>2</td>
<td>10,10,11</td>
<td>0.36</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>L</td>
<td>805</td>
<td>2</td>
<td>10,10,11</td>
<td>0.46</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>M</td>
<td>805</td>
<td>2</td>
<td>10,10,11</td>
<td>0.54</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>N</td>
<td>805</td>
<td>2</td>
<td>10,10,11</td>
<td>0.47</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>P</td>
<td>805</td>
<td>2</td>
<td>10,10,11</td>
<td>0.45</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>Q</td>
<td>805</td>
<td>2</td>
<td>10,10,11</td>
<td>0.52</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>R</td>
<td>805</td>
<td>2</td>
<td>10,10,11</td>
<td>0.64</td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>AR7</td>
<td>J</td>
<td>805</td>
<td>2</td>
<td>-</td>
<td>0/9/9/11</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>K</td>
<td>805</td>
<td>2</td>
<td>-</td>
<td>0/9/9/11</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>L</td>
<td>805</td>
<td>2</td>
<td>-</td>
<td>0/9/9/11</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>M</td>
<td>805</td>
<td>2</td>
<td>-</td>
<td>0/9/9/11</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>N</td>
<td>805</td>
<td>2</td>
<td>-</td>
<td>0/9/9/11</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>P</td>
<td>805</td>
<td>2</td>
<td>-</td>
<td>0/9/9/11</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>Q</td>
<td>805</td>
<td>2</td>
<td>-</td>
<td>0/9/9/11</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>R</td>
<td>805</td>
<td>2</td>
<td>-</td>
<td>0/9/9/11</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

There are no bond length outliers.
There are no bond angle outliers.
There are no chirality outliers.
There are no torsion outliers.
There are no ring outliers.
2 monomers are involved in 2 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>M</td>
<td>805</td>
<td>AR7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
<td>805</td>
<td>AR7</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

Of 107 ligands modelled in this entry, 16 are monoatomic - leaving 91 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMS</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4004</td>
<td>-</td>
<td>4,4,4</td>
<td>0.33</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4005</td>
<td>-</td>
<td>4,4,4</td>
<td>0.39</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4014</td>
<td>-</td>
<td>4,4,4</td>
<td>0.38</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4025</td>
<td>-</td>
<td>4,4,4</td>
<td>0.34</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4028</td>
<td>-</td>
<td>4,4,4</td>
<td>0.36</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4054</td>
<td>-</td>
<td>4,4,4</td>
<td>0.38</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4055</td>
<td>-</td>
<td>4,4,4</td>
<td>0.41</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4061</td>
<td>-</td>
<td>4,4,4</td>
<td>0.36</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4064</td>
<td>-</td>
<td>4,4,4</td>
<td>0.36</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4066</td>
<td>-</td>
<td>4,4,4</td>
<td>0.38</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4069</td>
<td>-</td>
<td>4,4,4</td>
<td>0.40</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>901</td>
<td>1</td>
<td>14,14,15</td>
<td>0.72</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>951</td>
<td>1,3,4</td>
<td>14,14,15</td>
<td>0.55</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>952</td>
<td>3,5</td>
<td>14,14,15</td>
<td>0.40</td>
</tr>
<tr>
<td>4</td>
<td>FUL</td>
<td>A</td>
<td>953</td>
<td>3</td>
<td>9,10,11</td>
<td>0.50</td>
</tr>
<tr>
<td>5</td>
<td>BMA</td>
<td>A</td>
<td>954</td>
<td>3,6</td>
<td>11,11,12</td>
<td>0.37</td>
</tr>
<tr>
<td>6</td>
<td>MAN</td>
<td>A</td>
<td>955</td>
<td>3,5</td>
<td>11,11,12</td>
<td>0.68</td>
</tr>
<tr>
<td>6</td>
<td>MAN</td>
<td>A</td>
<td>956</td>
<td>3,5</td>
<td>11,11,12</td>
<td>0.77</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>957</td>
<td>7,6</td>
<td>14,14,15</td>
<td>0.62</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>958</td>
<td>7,6</td>
<td>14,14,15</td>
<td>0.58</td>
</tr>
<tr>
<td>Mol</td>
<td>Type</td>
<td>Chain</td>
<td>Res</td>
<td>Link</td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>959</td>
<td>6</td>
<td>14,14,15</td>
<td>0.75</td>
</tr>
<tr>
<td>7</td>
<td>GAL</td>
<td>A</td>
<td>960</td>
<td>3</td>
<td>11,11,12</td>
<td>0.58</td>
</tr>
<tr>
<td>7</td>
<td>GAL</td>
<td>A</td>
<td>961</td>
<td>3</td>
<td>11,11,12</td>
<td>0.49</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>B</td>
<td>4021</td>
<td>-</td>
<td>4,4,4</td>
<td>0.37</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>B</td>
<td>4022</td>
<td>-</td>
<td>4,4,4</td>
<td>0.34</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>B</td>
<td>4023</td>
<td>-</td>
<td>4,4,4</td>
<td>0.37</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>B</td>
<td>4026</td>
<td>-</td>
<td>4,4,4</td>
<td>0.34</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>B</td>
<td>4027</td>
<td>-</td>
<td>4,4,4</td>
<td>0.40</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>B</td>
<td>4050</td>
<td>-</td>
<td>4,4,4</td>
<td>0.34</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>B</td>
<td>901</td>
<td>1</td>
<td>14,14,15</td>
<td>0.65</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>C</td>
<td>4007</td>
<td>-</td>
<td>4,4,4</td>
<td>0.35</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>C</td>
<td>4008</td>
<td>-</td>
<td>4,4,4</td>
<td>0.35</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>C</td>
<td>4010</td>
<td>-</td>
<td>4,4,4</td>
<td>0.39</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>C</td>
<td>4013</td>
<td>-</td>
<td>4,4,4</td>
<td>0.42</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>C</td>
<td>4058</td>
<td>-</td>
<td>4,4,4</td>
<td>0.38</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>C</td>
<td>4059</td>
<td>-</td>
<td>4,4,4</td>
<td>0.41</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4011</td>
<td>-</td>
<td>4,4,4</td>
<td>0.40</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4012</td>
<td>-</td>
<td>4,4,4</td>
<td>0.38</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4015</td>
<td>-</td>
<td>4,4,4</td>
<td>0.38</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4016</td>
<td>-</td>
<td>4,4,4</td>
<td>0.43</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4018</td>
<td>-</td>
<td>4,4,4</td>
<td>0.35</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4019</td>
<td>-</td>
<td>4,4,4</td>
<td>0.40</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4020</td>
<td>-</td>
<td>4,4,4</td>
<td>0.39</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4063</td>
<td>-</td>
<td>4,4,4</td>
<td>0.37</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4065</td>
<td>-</td>
<td>4,4,4</td>
<td>0.37</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4037</td>
<td>-</td>
<td>4,4,4</td>
<td>0.38</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4038</td>
<td>-</td>
<td>4,4,4</td>
<td>0.32</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4039</td>
<td>-</td>
<td>4,4,4</td>
<td>0.39</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4040</td>
<td>-</td>
<td>4,4,4</td>
<td>0.38</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4041</td>
<td>-</td>
<td>4,4,4</td>
<td>0.40</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4046</td>
<td>-</td>
<td>4,4,4</td>
<td>0.36</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4049</td>
<td>-</td>
<td>4,4,4</td>
<td>0.39</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4060</td>
<td>-</td>
<td>4,4,4</td>
<td>0.36</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4062</td>
<td>-</td>
<td>4,4,4</td>
<td>0.40</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>E</td>
<td>901</td>
<td>1</td>
<td>14,14,15</td>
<td>0.66</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4002</td>
<td>-</td>
<td>4,4,4</td>
<td>0.36</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4003</td>
<td>-</td>
<td>4,4,4</td>
<td>0.41</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4036</td>
<td>-</td>
<td>4,4,4</td>
<td>0.37</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4051</td>
<td>-</td>
<td>4,4,4</td>
<td>0.35</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4056</td>
<td>-</td>
<td>4,4,4</td>
<td>0.37</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4057</td>
<td>-</td>
<td>4,4,4</td>
<td>0.38</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4067</td>
<td>-</td>
<td>4,4,4</td>
<td>0.39</td>
</tr>
</tbody>
</table>
In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4004</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4005</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4014</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4025</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4028</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4054</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4055</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4061</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4064</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4066</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4069</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>901</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>951</td>
<td>1,3,4</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>952</td>
<td>3,5</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>FUL</td>
<td>A</td>
<td>953</td>
<td>3</td>
<td>-</td>
<td>0/0/17/20</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>BMA</td>
<td>A</td>
<td>954</td>
<td>3,6</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>6</td>
<td>MAN</td>
<td>A</td>
<td>955</td>
<td>3,5</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>956</td>
<td>3,5</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>957</td>
<td>7,6</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>958</td>
<td>7,6</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>959</td>
<td>6</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>7</td>
<td>GAL</td>
<td>A</td>
<td>960</td>
<td>3</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>7</td>
<td>GAL</td>
<td>A</td>
<td>961</td>
<td>3</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>B</td>
<td>4021</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>B</td>
<td>4022</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>B</td>
<td>4023</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>B</td>
<td>4026</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>B</td>
<td>4027</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>B</td>
<td>4050</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>B</td>
<td>901</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>C</td>
<td>4007</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>C</td>
<td>4008</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>C</td>
<td>4010</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>C</td>
<td>4013</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>C</td>
<td>4058</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>C</td>
<td>4059</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4011</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4012</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4015</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4016</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4018</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4019</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4020</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4063</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4065</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4037</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4038</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4039</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4040</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4041</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4046</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4049</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4060</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4062</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>E</td>
<td>901</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4002</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4003</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4036</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4051</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4056</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4057</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4067</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4068</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4070</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>F</td>
<td>901</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>F</td>
<td>951</td>
<td>1</td>
<td>-</td>
<td>1/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>G</td>
<td>4029</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>G</td>
<td>4030</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>G</td>
<td>4031</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>G</td>
<td>4032</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>G</td>
<td>4034</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>G</td>
<td>4035</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>G</td>
<td>951</td>
<td>1,10,3</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>G</td>
<td>952</td>
<td>3.5</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>10</td>
<td>FUC</td>
<td>G</td>
<td>953</td>
<td>3</td>
<td>1/1/4/5</td>
<td>0/0/17/20</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>BMA</td>
<td>G</td>
<td>954</td>
<td>3</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>H</td>
<td>4042</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>H</td>
<td>4043</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>H</td>
<td>4044</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>H</td>
<td>4045</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>H</td>
<td>4047</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>H</td>
<td>4048</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>H</td>
<td>901</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>J</td>
<td>4001</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>K</td>
<td>4024</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>L</td>
<td>4009</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>M</td>
<td>4017</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>N</td>
<td>4006</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>P</td>
<td>4052</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>Q</td>
<td>4033</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>SO4</td>
<td>R</td>
<td>4053</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

All (1) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>959</td>
<td>NAG</td>
<td>C1-C2</td>
<td>2.09</td>
<td>1.55</td>
<td>1.52</td>
</tr>
</tbody>
</table>

All (10) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>G</td>
<td>953</td>
<td>FUC</td>
<td>C1-C2-C3</td>
<td>-3.76</td>
<td>104.90</td>
<td>109.66</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>954</td>
<td>BMA</td>
<td>C6-C5-C4</td>
<td>-2.92</td>
<td>106.09</td>
<td>112.99</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>951</td>
<td>NAG</td>
<td>C2-N2-C7</td>
<td>-2.64</td>
<td>119.09</td>
<td>122.94</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>901</td>
<td>NAG</td>
<td>C2-N2-C7</td>
<td>-2.46</td>
<td>119.35</td>
<td>122.94</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>901</td>
<td>NAG</td>
<td>C2-N2-C7</td>
<td>-2.11</td>
<td>119.87</td>
<td>122.94</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>901</td>
<td>NAG</td>
<td>C2-N2-C7</td>
<td>-2.05</td>
<td>119.95</td>
<td>122.94</td>
</tr>
<tr>
<td>5</td>
<td>G</td>
<td>954</td>
<td>BMA</td>
<td>C2-C3-C4</td>
<td>-2.01</td>
<td>107.37</td>
<td>110.87</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>953</td>
<td>FUL</td>
<td>C1-C2-C3</td>
<td>2.06</td>
<td>112.26</td>
<td>109.66</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>951</td>
<td>NAG</td>
<td>C4-C3-C2</td>
<td>2.14</td>
<td>114.16</td>
<td>111.02</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>954</td>
<td>BMA</td>
<td>C3-C4-C5</td>
<td>3.06</td>
<td>115.72</td>
<td>110.24</td>
</tr>
</tbody>
</table>

All (1) chirality outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>G</td>
<td>953</td>
<td>FUC</td>
<td>C1</td>
</tr>
</tbody>
</table>

All (1) torsion outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>F</td>
<td>951</td>
<td>NAG</td>
<td>O7-C7-N2-C2</td>
</tr>
</tbody>
</table>

There are no ring outliers.

16 monomers are involved in 15 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>A</td>
<td>4069</td>
<td>SO4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>951</td>
<td>NAG</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>952</td>
<td>NAG</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>955</td>
<td>MAN</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>958</td>
<td>NAG</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>4027</td>
<td>SO4</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>901</td>
<td>NAG</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>4012</td>
<td>SO4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>4060</td>
<td>SO4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>4062</td>
<td>SO4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>4070</td>
<td>SO4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>951</td>
<td>NAG</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>G</td>
<td>4029</td>
<td>SO4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>952</td>
<td>NAG</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>G</td>
<td>954</td>
<td>BMA</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>L</td>
<td>4009</td>
<td>SO4</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ > 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q < 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ > 2</th>
<th>OWAB(Å²)</th>
<th>Q < 0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>470/471 (99%)</td>
<td>-0.79</td>
<td>1 (0%)</td>
<td>94 95</td>
<td>8, 18, 31, 52</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>468/471 (99%)</td>
<td>-0.75</td>
<td>2 (0%)</td>
<td>92 91</td>
<td>8, 18, 33, 52</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>467/471 (99%)</td>
<td>-0.79</td>
<td>4 (0%)</td>
<td>84 81</td>
<td>8, 18, 32, 49</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>467/471 (99%)</td>
<td>-0.66</td>
<td>7 (1%)</td>
<td>73 69</td>
<td>9, 21, 37, 61</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>467/471 (99%)</td>
<td>-0.78</td>
<td>2 (0%)</td>
<td>92 91</td>
<td>7, 19, 33, 52</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>468/471 (99%)</td>
<td>-0.81</td>
<td>1 (0%)</td>
<td>94 95</td>
<td>7, 18, 31, 47</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>467/471 (99%)</td>
<td>-0.82</td>
<td>0 100 100</td>
<td></td>
<td>8, 17, 28, 42</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>466/471 (98%)</td>
<td>-0.73</td>
<td>3 (0%)</td>
<td>89 88</td>
<td>8, 20, 36, 55</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>3/6 (50%)</td>
<td>-1.37</td>
<td>0 100 100</td>
<td></td>
<td>11, 11, 15, 17</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>3/6 (50%)</td>
<td>-1.04</td>
<td>0 100 100</td>
<td></td>
<td>14, 14, 18, 18</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>3/6 (50%)</td>
<td>-1.47</td>
<td>0 100 100</td>
<td></td>
<td>12, 12, 16, 17</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>3/6 (50%)</td>
<td>-0.88</td>
<td>0 100 100</td>
<td></td>
<td>15, 15, 19, 20</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>3/6 (50%)</td>
<td>-1.50</td>
<td>0 100 100</td>
<td></td>
<td>11, 11, 14, 16</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>3/6 (50%)</td>
<td>-1.40</td>
<td>0 100 100</td>
<td></td>
<td>11, 11, 16, 19</td>
</tr>
<tr>
<td>2</td>
<td>Q</td>
<td>3/6 (50%)</td>
<td>-1.28</td>
<td>0 100 100</td>
<td></td>
<td>11, 11, 18, 18</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
<td>3/6 (50%)</td>
<td>-0.86</td>
<td>0 100 100</td>
<td></td>
<td>14, 14, 19, 20</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3764/3816 (98%)</td>
<td>-0.77</td>
<td>20 (0%)</td>
<td>90 89</td>
<td>7, 19, 33, 61</td>
</tr>
</tbody>
</table>

All (20) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>127</td>
<td>VAL</td>
<td>4.8</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>109</td>
<td>VAL</td>
<td>4.7</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>129</td>
<td>GLN</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>109</td>
<td>VAL</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>575</td>
<td>PRO</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>576</td>
<td>GLU</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>108</td>
<td>ASP</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>128</td>
<td>THR</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>109</td>
<td>VAL</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>128</td>
<td>THR</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>110</td>
<td>TYR</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>128</td>
<td>THR</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>109</td>
<td>VAL</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>575</td>
<td>PRO</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>179</td>
<td>ASP</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>575</td>
<td>PRO</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>127</td>
<td>VAL</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>177</td>
<td>ASP</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>127</td>
<td>VAL</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>126</td>
<td>GLY</td>
<td>2.0</td>
</tr>
</tbody>
</table>

6.2 Non-standard residues in protein, DNA, RNA chains

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q<0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>AR7</td>
<td>R</td>
<td>805</td>
<td>11/12</td>
<td>0.96</td>
<td>0.12</td>
<td>15,15,17,18</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>K</td>
<td>805</td>
<td>11/12</td>
<td>0.96</td>
<td>0.12</td>
<td>9,12,16,16</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>M</td>
<td>805</td>
<td>11/12</td>
<td>0.96</td>
<td>0.12</td>
<td>15,16,17,18</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>N</td>
<td>805</td>
<td>11/12</td>
<td>0.97</td>
<td>0.11</td>
<td>9,11,15,16</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>P</td>
<td>805</td>
<td>11/12</td>
<td>0.97</td>
<td>0.12</td>
<td>11,14,16,17</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>J</td>
<td>805</td>
<td>11/12</td>
<td>0.97</td>
<td>0.09</td>
<td>13,14,15,16</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>Q</td>
<td>805</td>
<td>11/12</td>
<td>0.98</td>
<td>0.10</td>
<td>13,13,15,15</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>AR7</td>
<td>L</td>
<td>805</td>
<td>11/12</td>
<td>0.98</td>
<td>0.09</td>
<td>13,14,15,15</td>
<td>0</td>
</tr>
</tbody>
</table>

6.3 Carbohydrates

There are no carbohydrates in this entry.

6.4 Ligands

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum,
median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q< 0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>NAG</td>
<td>H</td>
<td>901</td>
<td>14/15</td>
<td>0.63</td>
<td>0.43</td>
<td>58,64,66,66</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>E</td>
<td>901</td>
<td>14/15</td>
<td>0.67</td>
<td>0.40</td>
<td>52,55,58,59</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>BMA</td>
<td>G</td>
<td>954</td>
<td>11/12</td>
<td>0.67</td>
<td>0.39</td>
<td>54,56,57,57</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>F</td>
<td>951</td>
<td>14/15</td>
<td>0.75</td>
<td>0.43</td>
<td>55,58,59,59</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>B</td>
<td>901</td>
<td>14/15</td>
<td>0.75</td>
<td>0.41</td>
<td>53,58,60,60</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>MAN</td>
<td>A</td>
<td>956</td>
<td>11/12</td>
<td>0.76</td>
<td>0.40</td>
<td>59,62,63,63</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>F</td>
<td>901</td>
<td>14/15</td>
<td>0.76</td>
<td>0.37</td>
<td>54,59,61,62</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>C</td>
<td>4013</td>
<td>5/5</td>
<td>0.79</td>
<td>0.26</td>
<td>63,63,65,66</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4016</td>
<td>5/5</td>
<td>0.79</td>
<td>0.31</td>
<td>90,90,90,91</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>959</td>
<td>14/15</td>
<td>0.80</td>
<td>0.33</td>
<td>62,64,64,65</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>901</td>
<td>14/15</td>
<td>0.81</td>
<td>0.33</td>
<td>45,50,52,52</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4057</td>
<td>5/5</td>
<td>0.81</td>
<td>0.38</td>
<td>89,90,90,91</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>957</td>
<td>14/15</td>
<td>0.83</td>
<td>0.29</td>
<td>57,59,61,63</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4065</td>
<td>5/5</td>
<td>0.83</td>
<td>0.26</td>
<td>86,86,87,87</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4070</td>
<td>5/5</td>
<td>0.84</td>
<td>0.21</td>
<td>61,61,63,63</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4039</td>
<td>5/5</td>
<td>0.85</td>
<td>0.22</td>
<td>83,83,84,84</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>B</td>
<td>4027</td>
<td>5/5</td>
<td>0.85</td>
<td>0.20</td>
<td>62,63,64,65</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>958</td>
<td>14/15</td>
<td>0.86</td>
<td>0.30</td>
<td>44,51,53,56</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>GAL</td>
<td>A</td>
<td>960</td>
<td>11/12</td>
<td>0.86</td>
<td>0.41</td>
<td>64,64,65,65</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4040</td>
<td>5/5</td>
<td>0.87</td>
<td>0.27</td>
<td>85,85,86,86</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>C</td>
<td>4010</td>
<td>5/5</td>
<td>0.87</td>
<td>0.28</td>
<td>89,89,90,90</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>B</td>
<td>4021</td>
<td>5/5</td>
<td>0.87</td>
<td>0.20</td>
<td>85,85,86,86</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4012</td>
<td>5/5</td>
<td>0.87</td>
<td>0.22</td>
<td>73,74,75,75</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4056</td>
<td>5/5</td>
<td>0.88</td>
<td>0.25</td>
<td>100,100,100,100</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>H</td>
<td>4047</td>
<td>5/5</td>
<td>0.88</td>
<td>0.36</td>
<td>87,87,88,88</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>G</td>
<td>952</td>
<td>14/15</td>
<td>0.88</td>
<td>0.30</td>
<td>39,46,48,51</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4062</td>
<td>5/5</td>
<td>0.89</td>
<td>0.36</td>
<td>89,90,90,90</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4054</td>
<td>5/5</td>
<td>0.89</td>
<td>0.22</td>
<td>80,80,80,80</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>G</td>
<td>4034</td>
<td>5/5</td>
<td>0.89</td>
<td>0.21</td>
<td>77,77,78,78</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4063</td>
<td>5/5</td>
<td>0.90</td>
<td>0.31</td>
<td>91,91,91,91</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>BMA</td>
<td>A</td>
<td>954</td>
<td>11/12</td>
<td>0.90</td>
<td>0.24</td>
<td>51,53,57,58</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>GAL</td>
<td>A</td>
<td>961</td>
<td>11/12</td>
<td>0.90</td>
<td>0.41</td>
<td>59,60,61,62</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4064</td>
<td>5/5</td>
<td>0.90</td>
<td>0.23</td>
<td>91,91,91,92</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4030</td>
<td>5/5</td>
<td>0.90</td>
<td>0.17</td>
<td>53,54,55,56</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4020</td>
<td>5/5</td>
<td>0.91</td>
<td>0.27</td>
<td>82,82,83,83</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>951</td>
<td>14/15</td>
<td>0.91</td>
<td>0.18</td>
<td>33,35,44,44</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4069</td>
<td>5/5</td>
<td>0.91</td>
<td>0.20</td>
<td>65,65,67,67</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>C</td>
<td>4058</td>
<td>5/5</td>
<td>0.91</td>
<td>0.22</td>
<td>80,80,81,81</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>MAN</td>
<td>A</td>
<td>955</td>
<td>11/12</td>
<td>0.91</td>
<td>0.17</td>
<td>51,52,54,56</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>A</td>
<td>952</td>
<td>14/15</td>
<td>0.91</td>
<td>0.18</td>
<td>41,43,46,49</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>H</td>
<td>4048</td>
<td>5/5</td>
<td>0.92</td>
<td>0.18</td>
<td>90,90,90,90</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>SO4</td>
<td>M</td>
<td>4017</td>
<td>5/5</td>
<td>0.92</td>
<td>0.20</td>
<td>82,82,83,83</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4005</td>
<td>5/5</td>
<td>0.92</td>
<td>0.26</td>
<td>84,84,85,85</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>C</td>
<td>4059</td>
<td>5/5</td>
<td>0.92</td>
<td>0.21</td>
<td>64,64,65,66</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4055</td>
<td>5/5</td>
<td>0.92</td>
<td>0.28</td>
<td>72,72,73,73</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4066</td>
<td>5/5</td>
<td>0.92</td>
<td>0.25</td>
<td>94,94,95,95</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4051</td>
<td>5/5</td>
<td>0.92</td>
<td>0.25</td>
<td>76,76,77,77</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>FUL</td>
<td>A</td>
<td>953</td>
<td>10/11</td>
<td>0.93</td>
<td>0.11</td>
<td>25,28,29,30</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>NAG</td>
<td>G</td>
<td>951</td>
<td>10/11</td>
<td>0.93</td>
<td>0.17</td>
<td>30,32,33,39</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4067</td>
<td>5/5</td>
<td>0.93</td>
<td>0.35</td>
<td>95,95,96,96</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>B</td>
<td>4023</td>
<td>5/5</td>
<td>0.93</td>
<td>0.20</td>
<td>63,64,64,64</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4014</td>
<td>5/5</td>
<td>0.93</td>
<td>0.20</td>
<td>82,82,83,83</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>G</td>
<td>4031</td>
<td>5/5</td>
<td>0.93</td>
<td>0.25</td>
<td>74,74,75,75</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>B</td>
<td>4050</td>
<td>5/5</td>
<td>0.93</td>
<td>0.24</td>
<td>71,71,72,72</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>G</td>
<td>4029</td>
<td>5/5</td>
<td>0.93</td>
<td>0.17</td>
<td>67,68,68,68</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>G</td>
<td>4035</td>
<td>5/5</td>
<td>0.93</td>
<td>0.23</td>
<td>58,58,59,59</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>FUC</td>
<td>G</td>
<td>953</td>
<td>10/11</td>
<td>0.93</td>
<td>0.20</td>
<td>38,39,40,41</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4019</td>
<td>5/5</td>
<td>0.93</td>
<td>0.23</td>
<td>76,77,78,78</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>R</td>
<td>4053</td>
<td>5/5</td>
<td>0.93</td>
<td>0.27</td>
<td>81,81,82,82</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>H</td>
<td>4042</td>
<td>5/5</td>
<td>0.94</td>
<td>0.24</td>
<td>58,59,60,60</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4041</td>
<td>5/5</td>
<td>0.94</td>
<td>0.21</td>
<td>63,63,64,64</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4061</td>
<td>5/5</td>
<td>0.94</td>
<td>0.25</td>
<td>64,65,65,65</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>C</td>
<td>4007</td>
<td>5/5</td>
<td>0.94</td>
<td>0.23</td>
<td>72,72,73,73</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4068</td>
<td>5/5</td>
<td>0.94</td>
<td>0.28</td>
<td>75,76,77,77</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>C</td>
<td>4008</td>
<td>5/5</td>
<td>0.94</td>
<td>0.16</td>
<td>58,58,58,59</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4028</td>
<td>5/5</td>
<td>0.94</td>
<td>0.18</td>
<td>66,66,67,67</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4002</td>
<td>5/5</td>
<td>0.95</td>
<td>0.23</td>
<td>61,62,62,63</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4049</td>
<td>5/5</td>
<td>0.95</td>
<td>0.28</td>
<td>77,78,78,78</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>B</td>
<td>4026</td>
<td>5/5</td>
<td>0.95</td>
<td>0.17</td>
<td>52,52,53,54</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4060</td>
<td>5/5</td>
<td>0.95</td>
<td>0.27</td>
<td>72,72,74,74</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>K</td>
<td>4024</td>
<td>5/5</td>
<td>0.96</td>
<td>0.18</td>
<td>61,61,62,62</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>H</td>
<td>4044</td>
<td>5/5</td>
<td>0.96</td>
<td>0.24</td>
<td>71,72,72,72</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>H</td>
<td>4045</td>
<td>5/5</td>
<td>0.96</td>
<td>0.18</td>
<td>71,71,72,72</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>P</td>
<td>4052</td>
<td>5/5</td>
<td>0.96</td>
<td>0.16</td>
<td>66,66,66,66</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4046</td>
<td>5/5</td>
<td>0.96</td>
<td>0.17</td>
<td>63,63,64,64</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>H</td>
<td>4043</td>
<td>5/5</td>
<td>0.97</td>
<td>0.12</td>
<td>55,55,56,56</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>B</td>
<td>4022</td>
<td>5/5</td>
<td>0.97</td>
<td>0.09</td>
<td>45,47,48,48</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>A</td>
<td>4004</td>
<td>5/5</td>
<td>0.97</td>
<td>0.14</td>
<td>49,49,49,49</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>D</td>
<td>4011</td>
<td>5/5</td>
<td>0.97</td>
<td>0.32</td>
<td>67,68,68,69</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>G</td>
<td>4032</td>
<td>5/5</td>
<td>0.97</td>
<td>0.18</td>
<td>48,48,50,50</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>J</td>
<td>4001</td>
<td>5/5</td>
<td>0.97</td>
<td>0.18</td>
<td>41,42,43,44</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>F</td>
<td>4003</td>
<td>5/5</td>
<td>0.97</td>
<td>0.10</td>
<td>40,41,42,42</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SO4</td>
<td>E</td>
<td>4037</td>
<td>5/5</td>
<td>0.97</td>
<td>0.18</td>
<td>58,59,60,60</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
6.5 Other polymers

There are no such residues in this entry.