This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org

A user guide is available at
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

- MolProbity : 4.02b-467
- Mogul : 1.7.3 (157068), CSD as539be (2018)
- Xtriage (Phenix) : 1.13
- EDS : trunk30967
- Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
- Refmac : 5.8.0158
- CCP4 : 7.0 (Gargrove)
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : trunk30967
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

X-RAY DIFFRACTION

The reported resolution of this entry is 2.59 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>R<sub>free</sub></td>
<td>111664</td>
<td>2767 (2.60-2.60)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>122126</td>
<td>3110 (2.60-2.60)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>120053</td>
<td>3062 (2.60-2.60)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>120020</td>
<td>3062 (2.60-2.60)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>108989</td>
<td>2706 (2.60-2.60)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for ≥3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <5%. The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>256</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Chirality</th>
<th>Geometry</th>
<th>Clashes</th>
<th>Electron density</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>PGT</td>
<td>K</td>
<td>302</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 7 unique types of molecules in this entry. The entry contains 20853 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called unknown peptide.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>19</td>
<td>Total C 95 57 19 19</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>20</td>
<td>Total C 100 60 20 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>24</td>
<td>Total C 120 72 24 24</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 2 is a protein called Particulate methane monooxygenase subunit C.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>K</td>
<td>213</td>
<td>Total C 1738 1166 275 289 8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>214</td>
<td>Total C 1742 1168 276 290 8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>212</td>
<td>Total C 1731 1161 274 288 8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 3 is a protein called Particulate methane monooxygenase subunit B.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>388</td>
<td>Total C 3026 1946 521 555 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>388</td>
<td>Total C 3026 1946 521 555 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>388</td>
<td>Total C 3026 1946 521 555 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 4 is a protein called Particulate methane monooxygenase subunit A.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>B</td>
<td>244</td>
<td>Total C 1974 1336 311 316 11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>F</td>
<td>244</td>
<td>Total C</td>
<td>N</td>
<td>O</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1974</td>
<td>1336</td>
<td>311</td>
<td>316</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>J</td>
<td>244</td>
<td>Total C</td>
<td>N</td>
<td>O</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1974</td>
<td>1336</td>
<td>311</td>
<td>316</td>
</tr>
</tbody>
</table>

- Molecule 5 is COPPER (II) ION (three-letter code: CU) (formula: Cu).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>G</td>
<td>1</td>
<td>Total Cu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>K</td>
<td>1</td>
<td>Total Cu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>E</td>
<td>1</td>
<td>Total Cu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>I</td>
<td>1</td>
<td>Total Cu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>C</td>
<td>1</td>
<td>Total Cu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>A</td>
<td>1</td>
<td>Total Cu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 6 is (1S)-2-{{[(2R)-2,3-DIHYDROXYPROPYL]OXY}(HYDROXY)PHOSPHORYL]OXY}-1-[(PALMITOYLOXY)METHYL]ETHYL STEARATE (three-letter code: PGT) (formula: C$_{40}$H$_{79}$O$_{10}$P).
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>K</td>
<td>1</td>
<td>Total C O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>51 40 10 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>1</td>
<td>Total C O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>51 40 10 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>1</td>
<td>Total C O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>51 40 10 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>1</td>
<td>Total C O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>51 40 10 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 7 is water.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>K</td>
<td>7</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>13</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>11</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>E</td>
<td>25</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>I</td>
<td>12</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>18</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>J</td>
<td>16</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>4</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>11</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: unknown peptide

Chain D:

- Molecule 1: unknown peptide

Chain H:

- Molecule 1: unknown peptide

Chain N:

- Molecule 2: Particulate methane monooxygenase subunit C

Chain K:

- Molecule 2: Particulate methane monooxygenase subunit C
Chain C:

Molecule 2: Particulate methane monooxygenase subunit C

Chain G:

Molecule 3: Particulate methane monooxygenase subunit B

Chain A:

Molecule 3: Particulate methane monooxygenase subunit B

Chain E:
• Molecule 3: Particulate methane monooxygenase subunit B

Chain I:

• Molecule 4: Particulate methane monooxygenase subunit A

Chain B:

• Molecule 4: Particulate methane monooxygenase subunit A

Chain F:
• Molecule 4: Particulate methane monooxygenase subunit A

Chain J:
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 2 1 2 1 2 1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>117.46Å 184.53Å 189.42Å</td>
<td>Depositor</td>
</tr>
<tr>
<td>a, b, c, α, β, γ</td>
<td>90.00° 90.00° 90.00°</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>50.00 – 2.59</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>49.55 – 2.59</td>
<td>EDS</td>
</tr>
<tr>
<td>% Data completeness (in resolution range)</td>
<td>72.3 (50.00-2.59)</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>72.4 (49.55-2.59)</td>
<td>EDS</td>
</tr>
<tr>
<td>R_{merge}</td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R_{sym}</td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td>$< I/\sigma(I) >$</td>
<td>1.34 (at 2.58Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>REFMAC 5.6.0117</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, R_{free}</td>
<td>0.237 , 0.289</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>0.235 , 0.286</td>
<td>DCC</td>
</tr>
<tr>
<td>R_{free} test set</td>
<td>4678 reflections (5.02%)</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Wilson B-factor (Å²)</td>
<td>40.4</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.120</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$</td>
<td>0.31 , 44.2</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning</td>
<td>$<</td>
<td>L</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>0.002 for -h,l,k</td>
<td>Xtriage</td>
</tr>
<tr>
<td>F_o-F_c correlation</td>
<td>0.88</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>20853</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å²)</td>
<td>42.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.82% of the height of the origin peak. No significant pseudotranslation is detected.

1Intensities estimated from amplitudes.

2Theoretical values of $< |L| >$, $< L^2 >$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: PGT, CU

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>0.73</td>
<td>8/1796 (0.4%)</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>0.73</td>
<td>5/1785 (0.3%)</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>0.77</td>
<td>5/1792 (0.3%)</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>0.68</td>
<td>5/3103 (0.2%)</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>0.77</td>
<td>4/3103 (0.1%)</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>0.70</td>
<td>4/3103 (0.1%)</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>0.82</td>
<td>8/2052 (0.4%)</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>0.93</td>
<td>9/2052 (0.4%)</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>0.95</td>
<td>10/2052 (0.5%)</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.78</td>
<td>58/20838 (0.3%)</td>
</tr>
</tbody>
</table>

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>#Chirality outliers</th>
<th>#Planarity outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

All (58) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>F</td>
<td>242</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>6.74</td>
<td>1.49</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>85</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>6.55</td>
<td>1.49</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>236</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>6.54</td>
<td>1.49</td>
<td>1.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>E</td>
<td>132</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>6.49</td>
<td>1.49</td>
<td>1.41</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>187</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>6.46</td>
<td>1.49</td>
<td>1.41</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>198</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>6.45</td>
<td>1.49</td>
<td>1.41</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>372</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>6.43</td>
<td>1.49</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>28</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>6.41</td>
<td>1.49</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>25</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>6.36</td>
<td>1.49</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>242</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>6.35</td>
<td>1.49</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>59</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>6.25</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>65</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>6.18</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>45</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>6.07</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>191</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>6.05</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>106</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>6.04</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>53</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.97</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>152</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.96</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>56</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.96</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>106</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.92</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>53</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.89</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>132</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.81</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>372</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.81</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>198</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.77</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>110</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.73</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>152</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.73</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>237</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.71</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>135</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.67</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>47</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.66</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>47</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.65</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>166</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.65</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>85</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.64</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>135</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.64</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>47</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.56</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>116</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.56</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>236</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.54</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>25</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.50</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>67</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.48</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>236</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.46</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>62</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.46</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>116</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.38</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>242</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.35</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>114</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.33</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>106</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.31</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>116</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.29</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>67</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.27</td>
<td>1.47</td>
<td>1.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>G</td>
<td>62</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.25</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>120</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.24</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>50</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.23</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>85</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.22</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>132</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.16</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>67</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.15</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>28</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.09</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>25</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.09</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>157</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.07</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>50</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.06</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>191</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.05</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>157</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.03</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>85</td>
<td>TRP</td>
<td>CD2-CE2</td>
<td>5.02</td>
<td>1.47</td>
<td>1.41</td>
</tr>
</tbody>
</table>

All (10) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>K</td>
<td>84</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>-6.87</td>
<td>99.50</td>
<td>115.30</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>33</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>6.59</td>
<td>130.47</td>
<td>115.30</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>33</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>6.54</td>
<td>130.35</td>
<td>115.30</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>260</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>6.48</td>
<td>130.20</td>
<td>115.30</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>33</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>6.29</td>
<td>129.76</td>
<td>115.30</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>33</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>-5.82</td>
<td>101.11</td>
<td>111.00</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>102</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>-5.11</td>
<td>103.55</td>
<td>115.30</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>39</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.09</td>
<td>127.00</td>
<td>115.30</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>253</td>
<td>THR</td>
<td>N-CA-C</td>
<td>-5.07</td>
<td>97.30</td>
<td>111.00</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>184</td>
<td>LEU</td>
<td>CB-CG-CD2</td>
<td>-5.05</td>
<td>102.41</td>
<td>111.00</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

All (10) planarity outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>333</td>
<td>THR</td>
<td>Peptide</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>36</td>
<td>PHE</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>274</td>
<td>GLU</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>333</td>
<td>THR</td>
<td>Peptide</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>36</td>
<td>PHE</td>
<td>Peptide</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>50</td>
<td>ALA</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>274</td>
<td>GLU</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>333</td>
<td>THR</td>
<td>Peptide</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>36</td>
<td>PHE</td>
<td>Peptide</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>50</td>
<td>ALA</td>
<td>Peptide</td>
</tr>
</tbody>
</table>
5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>95</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>100</td>
<td>0</td>
<td>23</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>120</td>
<td>0</td>
<td>28</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1742</td>
<td>0</td>
<td>1749</td>
<td>68</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>1731</td>
<td>0</td>
<td>1737</td>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>1738</td>
<td>0</td>
<td>1746</td>
<td>158</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>3026</td>
<td>0</td>
<td>3015</td>
<td>103</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>3026</td>
<td>0</td>
<td>3015</td>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>3026</td>
<td>0</td>
<td>3015</td>
<td>88</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1974</td>
<td>0</td>
<td>1932</td>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>1974</td>
<td>0</td>
<td>1932</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>1974</td>
<td>0</td>
<td>1932</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>G</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>K</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>51</td>
<td>0</td>
<td>78</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>102</td>
<td>0</td>
<td>156</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>K</td>
<td>51</td>
<td>0</td>
<td>78</td>
<td>94</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>E</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>I</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>J</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>K</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>20853</td>
<td>0</td>
<td>20458</td>
<td>734</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 18.

All (734) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:K:84:LEU:HD22</td>
<td>6:K:302:PGT:C34</td>
<td>1.72</td>
<td>1.16</td>
</tr>
<tr>
<td>3:I:78:ALA:CB</td>
<td>3:I:142:GLY:HA3</td>
<td>1.82</td>
<td>1.08</td>
</tr>
<tr>
<td>4:B:51:GLY:HA3</td>
<td>4:B:52:ASP:HB2</td>
<td>1.36</td>
<td>1.07</td>
</tr>
<tr>
<td>2:K:81:ALA:HA</td>
<td>6:K:302:PGT:H402</td>
<td>1.05</td>
<td>1.02</td>
</tr>
<tr>
<td>2:C:23:GLY:HA3</td>
<td>6:C:302:PGT:O11</td>
<td>1.60</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:B:116:TRP:O</td>
<td>2:C:47:TRP:CH2</td>
<td>2.16</td>
<td>0.98</td>
</tr>
<tr>
<td>2:C:251:VAL:HG12</td>
<td>2:C:252:LYS:N</td>
<td>1.78</td>
<td>0.98</td>
</tr>
<tr>
<td>4:B:51:GLY:HA3</td>
<td>4:B:52:ASP:CB</td>
<td>1.91</td>
<td>0.97</td>
</tr>
<tr>
<td>2:K:167:TYR:CD1</td>
<td>6:K:302:PGT:H331</td>
<td>2.00</td>
<td>0.97</td>
</tr>
<tr>
<td>4:J:51:GLY:HA3</td>
<td>4:J:52:ASP:CB</td>
<td>1.94</td>
<td>0.96</td>
</tr>
<tr>
<td>2:K:251:VAL:HG12</td>
<td>2:C:252:LYS:H</td>
<td>1.31</td>
<td>0.96</td>
</tr>
<tr>
<td>4:J:51:GLY:CA</td>
<td>4:J:52:ASP:HB2</td>
<td>1.95</td>
<td>0.96</td>
</tr>
<tr>
<td>2:K:47:TRP:CH2</td>
<td>4:J:116:TRP:O</td>
<td>2.18</td>
<td>0.95</td>
</tr>
<tr>
<td>2:K:166:PHE:CB</td>
<td>6:K:302:PGT:C37</td>
<td>2.43</td>
<td>0.95</td>
</tr>
<tr>
<td>2:K:81:ALA:CA</td>
<td>6:K:302:PGT:C40</td>
<td>2.33</td>
<td>0.95</td>
</tr>
<tr>
<td>2:K:84:LEU:CD2</td>
<td>6:K:302:PGT:C34</td>
<td>2.38</td>
<td>0.94</td>
</tr>
<tr>
<td>3:I:334:THR:HA</td>
<td>3:I:335:LYS:CB</td>
<td>1.96</td>
<td>0.94</td>
</tr>
<tr>
<td>4:F:51:GLY:CA</td>
<td>4:F:52:ASP:HB2</td>
<td>1.98</td>
<td>0.94</td>
</tr>
<tr>
<td>2:G:138:ARG:HH12</td>
<td>2:G:141:ASP:HA</td>
<td>1.33</td>
<td>0.93</td>
</tr>
<tr>
<td>3:E:274:GLU:H</td>
<td>3:E:275:GLY:HA2</td>
<td>1.33</td>
<td>0.92</td>
</tr>
<tr>
<td>3:I:78:ALA:HB3</td>
<td>3:I:142:GLY:HA3</td>
<td>1.48</td>
<td>0.92</td>
</tr>
<tr>
<td>3:E:334:THR:HA</td>
<td>3:E:335:LYS:CB</td>
<td>2.00</td>
<td>0.92</td>
</tr>
<tr>
<td>2:K:81:ALA:CB</td>
<td>6:K:302:PGT:C41</td>
<td>2.46</td>
<td>0.92</td>
</tr>
<tr>
<td>4:B:242:TRP:HB3</td>
<td>7:B:305:HOH:O</td>
<td>1.70</td>
<td>0.91</td>
</tr>
<tr>
<td>4:B:51:GLY:CA</td>
<td>4:B:52:ASP:HB2</td>
<td>2.02</td>
<td>0.90</td>
</tr>
<tr>
<td>2:K:166:PHE:HB3</td>
<td>6:K:302:PGT:H372</td>
<td>1.52</td>
<td>0.89</td>
</tr>
<tr>
<td>2:K:84:LEU:HB3</td>
<td>6:K:302:PGT:H371</td>
<td>1.55</td>
<td>0.89</td>
</tr>
<tr>
<td>3:I:78:ALA:HB2</td>
<td>3:I:142:GLY:HA3</td>
<td>1.51</td>
<td>0.89</td>
</tr>
<tr>
<td>3:A:78:ALA:HB2</td>
<td>3:A:142:GLY:HA3</td>
<td>1.54</td>
<td>0.88</td>
</tr>
<tr>
<td>2:K:84:LEU:HD22</td>
<td>6:K:302:PGT:H341</td>
<td>0.89</td>
<td>0.87</td>
</tr>
<tr>
<td>2:K:251:VAL:HG12</td>
<td>2:K:252:LYS:N</td>
<td>1.88</td>
<td>0.87</td>
</tr>
<tr>
<td>2:K:84:LEU:HD13</td>
<td>6:K:302:PGT:C34</td>
<td>2.05</td>
<td>0.86</td>
</tr>
<tr>
<td>1:N:3:UNK:C</td>
<td>1:N:5:UNK:H</td>
<td>1.85</td>
<td>0.86</td>
</tr>
<tr>
<td>3:E:283:ASN:O</td>
<td>3:E:309:ASN:HB3</td>
<td>1.73</td>
<td>0.86</td>
</tr>
<tr>
<td>2:K:166:PHE:CG</td>
<td>6:K:302:PGT:H392</td>
<td>2.10</td>
<td>0.86</td>
</tr>
<tr>
<td>2:C:24:MET:HB2</td>
<td>2:C:109:GLN:HG2</td>
<td>1.55</td>
<td>0.86</td>
</tr>
<tr>
<td>2:K:167:TYR:CA</td>
<td>6:K:302:PGT:C35</td>
<td>2.53</td>
<td>0.86</td>
</tr>
<tr>
<td>2:K:166:PHE:HB3</td>
<td>6:K:302:PGT:C37</td>
<td>2.06</td>
<td>0.86</td>
</tr>
<tr>
<td>2:K:167:TYR:HD1</td>
<td>6:K:302:PGT:C34</td>
<td>1.89</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:E:78:ALA:HB2</td>
<td>3:E:142:GLY:HA3</td>
<td>1.57</td>
<td>0.85</td>
</tr>
<tr>
<td>3:E:356:ALA:HB1</td>
<td>3:E:357:PRO:CA</td>
<td>2.07</td>
<td>0.84</td>
</tr>
<tr>
<td>2:K:84:LEU:CG</td>
<td>6:K:302:PGT:H341</td>
<td>2.09</td>
<td>0.83</td>
</tr>
<tr>
<td>2:C:138:ARG:HH12</td>
<td>2:C:141:ASP:HA</td>
<td>1.44</td>
<td>0.82</td>
</tr>
<tr>
<td>3:A:318:GLU:HG3</td>
<td>3:A:327:LEU:HD23</td>
<td>1.60</td>
<td>0.82</td>
</tr>
<tr>
<td>4:F:129:LEU:O</td>
<td>4:F:132:PRO:HD2</td>
<td>1.78</td>
<td>0.82</td>
</tr>
<tr>
<td>2:K:81:ALA:CB</td>
<td>6:K:302:PGT:C40</td>
<td>2.55</td>
<td>0.82</td>
</tr>
<tr>
<td>2:K:81:ALA:C</td>
<td>6:K:302:PGT:H421</td>
<td>2.00</td>
<td>0.82</td>
</tr>
<tr>
<td>2:G:251:VAL:HG12</td>
<td>2:G:252:LYS:N</td>
<td>1.95</td>
<td>0.82</td>
</tr>
<tr>
<td>2:G:138:ARG:NH1</td>
<td>2:G:141:ASP:HA</td>
<td>1.95</td>
<td>0.81</td>
</tr>
<tr>
<td>4:F:116:TRP:O</td>
<td>2:G:47:TRP:CH2</td>
<td>2.33</td>
<td>0.81</td>
</tr>
<tr>
<td>2:K:47:TRP:CZ3</td>
<td>4:J:116:TRP:O</td>
<td>2.33</td>
<td>0.81</td>
</tr>
<tr>
<td>3:E:312:GLN:HG3</td>
<td>7:E:615:HOH:O</td>
<td>1.80</td>
<td>0.81</td>
</tr>
<tr>
<td>2:K:47:TRP:HZ3</td>
<td>4:J:116:TRP:CD1</td>
<td>1.99</td>
<td>0.80</td>
</tr>
<tr>
<td>6:K:302:PGT:H122</td>
<td>6:K:302:PGT:C16</td>
<td>2.10</td>
<td>0.80</td>
</tr>
<tr>
<td>2:K:167:TYR:HD1</td>
<td>6:K:302:PGT:H331</td>
<td>1.44</td>
<td>0.80</td>
</tr>
<tr>
<td>2:K:167:TYR:HD1</td>
<td>6:K:302:PGT:C33</td>
<td>1.92</td>
<td>0.80</td>
</tr>
<tr>
<td>2:K:84:LEU:HB2</td>
<td>6:K:302:PGT:H371</td>
<td>1.60</td>
<td>0.80</td>
</tr>
<tr>
<td>4:B:116:TRP:CD1</td>
<td>2:C:47:TRP:HZ3</td>
<td>1.99</td>
<td>0.79</td>
</tr>
<tr>
<td>2:C:138:ARG:NH1</td>
<td>2:C:141:ASP:HA</td>
<td>1.95</td>
<td>0.79</td>
</tr>
<tr>
<td>2:K:138:ARG:NH1</td>
<td>2:K:141:ASP:HA</td>
<td>1.97</td>
<td>0.79</td>
</tr>
<tr>
<td>6:K:302:PGT:H122</td>
<td>6:K:302:PGT:H162</td>
<td>1.64</td>
<td>0.79</td>
</tr>
<tr>
<td>3:I:356:ALA:HB1</td>
<td>3:I:357:PRO:CA</td>
<td>2.13</td>
<td>0.78</td>
</tr>
<tr>
<td>4:J:63:ARG:HD3</td>
<td>7:J:304:HOH:O</td>
<td>1.82</td>
<td>0.78</td>
</tr>
<tr>
<td>3:E:334:THR:CA</td>
<td>3:E:335:LYS:HB2</td>
<td>2.13</td>
<td>0.77</td>
</tr>
<tr>
<td>4:J:33:LEU:O</td>
<td>4:J:37:ALA:HB2</td>
<td>1.84</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:G:188:ILE:HD11</td>
<td>6:G:303:PGT:C36</td>
<td>2.08</td>
<td>0.77</td>
</tr>
<tr>
<td>3:I:334:THR:CA</td>
<td>3:I:335:LYS:HB2</td>
<td>2.13</td>
<td>0.77</td>
</tr>
<tr>
<td>2:K:167:TYR:HA</td>
<td>6:K:302:PGT:C35</td>
<td>2.11</td>
<td>0.77</td>
</tr>
<tr>
<td>3:A:274:GLU:N</td>
<td>3:A:275:GLY:HA2</td>
<td>1.95</td>
<td>0.76</td>
</tr>
<tr>
<td>2:K:92:VAL:N</td>
<td>2:K:95:VAL:HG12</td>
<td>1.85</td>
<td>0.76</td>
</tr>
<tr>
<td>4:F:116:TRP:CD1</td>
<td>2:G:47:TRP:HZ3</td>
<td>2.04</td>
<td>0.76</td>
</tr>
<tr>
<td>3:E:62:VAL:HB</td>
<td>7:E:612:HOH:O</td>
<td>1.86</td>
<td>0.76</td>
</tr>
<tr>
<td>2:G:35:TYR:HE1</td>
<td>2:G:152:MET:HE3</td>
<td>1.51</td>
<td>0.75</td>
</tr>
<tr>
<td>3:E:346:ARG:HD2</td>
<td>3:E:368:GLN:HG2</td>
<td>1.69</td>
<td>0.75</td>
</tr>
<tr>
<td>3:E:350:VAL:CB</td>
<td>3:E:356:ALA:CB</td>
<td>2.64</td>
<td>0.75</td>
</tr>
<tr>
<td>4:F:51:GLY:CA</td>
<td>4:F:52:ASP:CB</td>
<td>2.60</td>
<td>0.74</td>
</tr>
<tr>
<td>2:C:226:TRP:CE3</td>
<td>2:C:226:TRP:HA</td>
<td>2.22</td>
<td>0.74</td>
</tr>
<tr>
<td>2:K:84:LEU:CD1</td>
<td>6:K:302:PGT:C34</td>
<td>2.65</td>
<td>0.74</td>
</tr>
<tr>
<td>3:E:308:ASN:HA</td>
<td>3:E:309:ASN:HB2</td>
<td>1.69</td>
<td>0.74</td>
</tr>
<tr>
<td>2:C:92:VAL:O</td>
<td>2:C:95:VAL:HG12</td>
<td>1.88</td>
<td>0.74</td>
</tr>
<tr>
<td>3:I:283:ASN:O</td>
<td>3:I:309:ASN:HB3</td>
<td>1.87</td>
<td>0.73</td>
</tr>
<tr>
<td>2:G:226:TRP:HA</td>
<td>2:G:226:TRP:CE3</td>
<td>2.22</td>
<td>0.73</td>
</tr>
<tr>
<td>3:A:346:ARG:HD2</td>
<td>3:A:368:GLN:HG2</td>
<td>1.71</td>
<td>0.73</td>
</tr>
<tr>
<td>2:C:251:VAL:CG1</td>
<td>2:C:252:LYS:N</td>
<td>2.51</td>
<td>0.72</td>
</tr>
<tr>
<td>4:F:33:LEU:O</td>
<td>4:F:37:ALA:HB2</td>
<td>1.89</td>
<td>0.72</td>
</tr>
<tr>
<td>2:K:24:MET:HB2</td>
<td>2:K:109:GLN:HG2</td>
<td>1.72</td>
<td>0.71</td>
</tr>
<tr>
<td>3:I:346:ARG:HD2</td>
<td>3:I:368:GLN:HG2</td>
<td>1.71</td>
<td>0.71</td>
</tr>
<tr>
<td>4:B:36:PHE:O</td>
<td>4:B:36:PHE:HD1</td>
<td>1.73</td>
<td>0.71</td>
</tr>
<tr>
<td>2:C:194:ILE:HG23</td>
<td>2:C:195:PRO:HD3</td>
<td>1.73</td>
<td>0.71</td>
</tr>
<tr>
<td>2:G:45:PHE:O</td>
<td>2:G:49:ALA:HB3</td>
<td>1.91</td>
<td>0.71</td>
</tr>
<tr>
<td>4:B:116:TRP:O</td>
<td>2:C:47:TRP:CZ3</td>
<td>2.42</td>
<td>0.71</td>
</tr>
<tr>
<td>2:K:251:VAL:HG12</td>
<td>2:K:252:LYS:H</td>
<td>1.53</td>
<td>0.71</td>
</tr>
<tr>
<td>2:K:84:LEU:CB</td>
<td>6:K:302:PGT:C37</td>
<td>2.67</td>
<td>0.71</td>
</tr>
<tr>
<td>4:J:166:TRP:HB3</td>
<td>4:J:167:PRO:HD3</td>
<td>1.71</td>
<td>0.70</td>
</tr>
<tr>
<td>2:K:166:PHE:CD2</td>
<td>6:K:302:PGT:H392</td>
<td>2.25</td>
<td>0.70</td>
</tr>
<tr>
<td>3:1:55:VAL:HG2</td>
<td>3:1:59:GLU:HB3</td>
<td>1.72</td>
<td>0.70</td>
</tr>
<tr>
<td>2:K:226:TRP:HA</td>
<td>2:K:226:TRP:CE3</td>
<td>2.25</td>
<td>0.70</td>
</tr>
<tr>
<td>3:E:348:LEU:HB2</td>
<td>7:E:601:HOH:O</td>
<td>1.90</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:A:334:THR:CA</td>
<td>3:A:335:LYS:HB2</td>
<td>2.18</td>
<td>0.70</td>
</tr>
<tr>
<td>3:E:274:GLU:N</td>
<td>3:E:275:GLY:HA2</td>
<td>2.07</td>
<td>0.70</td>
</tr>
<tr>
<td>4:F:51:GLY:HA3</td>
<td>4:F:52:ASP:HB3</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>3:I:308:ASN:CA</td>
<td>3:I:309:ASN:HB2</td>
<td>2.22</td>
<td>0.69</td>
</tr>
<tr>
<td>2:C:113:VAL:HG21</td>
<td>6:C:302:PGT:H162</td>
<td>1.75</td>
<td>0.69</td>
</tr>
<tr>
<td>2:K:166:PHE:CB</td>
<td>6:K:302:PGT:H392</td>
<td>2.21</td>
<td>0.69</td>
</tr>
<tr>
<td>4:B:36:PHE:O</td>
<td>4:B:36:PHE:CD1</td>
<td>2.45</td>
<td>0.69</td>
</tr>
<tr>
<td>3:E:78:ALA:HB3</td>
<td>3:E:142:GLY:CA</td>
<td>2.20</td>
<td>0.69</td>
</tr>
<tr>
<td>2:K:167:TYR:CB</td>
<td>6:K:302:PGT:C35</td>
<td>2.69</td>
<td>0.69</td>
</tr>
<tr>
<td>2:K:84:LEU:HD21</td>
<td>6:K:302:PGT:C32</td>
<td>2.17</td>
<td>0.69</td>
</tr>
<tr>
<td>3:A:250:THR:HG21</td>
<td>4:B:167:PRO:HA</td>
<td>1.74</td>
<td>0.69</td>
</tr>
<tr>
<td>2:K:109:GLN:HG3</td>
<td>4:J:129:MET:HE3</td>
<td>1.75</td>
<td>0.69</td>
</tr>
<tr>
<td>2:K:84:LEU:CD1</td>
<td>6:K:302:PGT:C37</td>
<td>2.70</td>
<td>0.69</td>
</tr>
<tr>
<td>2:K:47:TRP:CH2</td>
<td>4:J:117:THR:HA</td>
<td>2.27</td>
<td>0.69</td>
</tr>
<tr>
<td>3:I:250:THR:HG21</td>
<td>4:J:167:PRO:HA</td>
<td>1.73</td>
<td>0.68</td>
</tr>
<tr>
<td>2:K:194:ILE:HG23</td>
<td>2:K:195:PRO:HD3</td>
<td>1.74</td>
<td>0.68</td>
</tr>
<tr>
<td>3:E:275:GLY:CA</td>
<td>3:E:276:THR:HB</td>
<td>2.18</td>
<td>0.68</td>
</tr>
<tr>
<td>3:E:308:ASN:CA</td>
<td>3:E:309:ASN:HB2</td>
<td>2.23</td>
<td>0.68</td>
</tr>
<tr>
<td>3:E:182:SER:HA</td>
<td>7:E:610:HOH:O</td>
<td>1.93</td>
<td>0.68</td>
</tr>
<tr>
<td>4:B:82:ALA:HB1</td>
<td>4:B:241:ARG:HD2</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>2:C:31:LEU:HD23</td>
<td>2:C:116:ILE:HG22</td>
<td>1.77</td>
<td>0.67</td>
</tr>
<tr>
<td>3:E:318:GLU:HG3</td>
<td>3:E:327:LEU:HD23</td>
<td>1.77</td>
<td>0.66</td>
</tr>
<tr>
<td>2:K:84:LEU:HB2</td>
<td>6:K:302:PGT:C37</td>
<td>2.25</td>
<td>0.66</td>
</tr>
<tr>
<td>2:K:167:TYR:CD1</td>
<td>6:K:302:PGT:H342</td>
<td>2.28</td>
<td>0.66</td>
</tr>
<tr>
<td>4:B:33:LEU:O</td>
<td>4:B:37:ALA:HB2</td>
<td>1.95</td>
<td>0.66</td>
</tr>
<tr>
<td>2:K:81:ALA:HB1</td>
<td>6:K:302:PGT:C42</td>
<td>2.26</td>
<td>0.66</td>
</tr>
<tr>
<td>2:K:166:PHE:HB2</td>
<td>6:K:302:PGT:C38</td>
<td>2.26</td>
<td>0.66</td>
</tr>
<tr>
<td>2:C:226:TRP:HE3</td>
<td>2:C:226:TRP:HA</td>
<td>1.61</td>
<td>0.65</td>
</tr>
<tr>
<td>2:K:81:ALA:HA</td>
<td>6:K:302:PGT:H391</td>
<td>1.75</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:K:90:ARG:HG2</td>
<td>7:K:407:HOH:O</td>
<td>1.96</td>
<td>0.65</td>
</tr>
<tr>
<td>4:J:34:LEU:O</td>
<td>4:J:38:VAL:HG13</td>
<td>1.97</td>
<td>0.65</td>
</tr>
<tr>
<td>2:G:226:TRP:HE3</td>
<td>2:G:226:TRP:HA</td>
<td>1.61</td>
<td>0.65</td>
</tr>
<tr>
<td>3:I:318:GLU:HB3</td>
<td>3:I:393:PHE:HB2</td>
<td>1.78</td>
<td>0.65</td>
</tr>
<tr>
<td>3:I:308:ASN:ND2</td>
<td>3:I:356:ALA:HB3</td>
<td>2.11</td>
<td>0.65</td>
</tr>
<tr>
<td>3:I:356:ALA:CB</td>
<td>3:I:357:PRO:CA</td>
<td>2.74</td>
<td>0.65</td>
</tr>
<tr>
<td>2:G:24:MET:HB2</td>
<td>2:G:109:GLN:HG2</td>
<td>1.79</td>
<td>0.64</td>
</tr>
<tr>
<td>3:I:218:GLY:O</td>
<td>3:I:219:LYS:HE2</td>
<td>1.98</td>
<td>0.64</td>
</tr>
<tr>
<td>2:K:35:TYR:HE1</td>
<td>2:K:152:MET:HE3</td>
<td>1.62</td>
<td>0.64</td>
</tr>
<tr>
<td>2:K:31:LEU:HD23</td>
<td>2:K:116:ILE:HG22</td>
<td>1.80</td>
<td>0.64</td>
</tr>
<tr>
<td>2:K:80:LEU:O</td>
<td>6:K:302:PGT:H382</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>3:I:334:THR:CA</td>
<td>3:I:335:LYS:CB</td>
<td>2.73</td>
<td>0.64</td>
</tr>
<tr>
<td>3:A:269:THR:HG23</td>
<td>7:A:602:HOH:O</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>4:B:166:TRP:HB3</td>
<td>4:B:167:PRO:HD3</td>
<td>1.79</td>
<td>0.64</td>
</tr>
<tr>
<td>4:F:166:TRP:HB3</td>
<td>4:F:167:PRO:HD3</td>
<td>1.77</td>
<td>0.64</td>
</tr>
<tr>
<td>3:I:164:ASP:OD2</td>
<td>3:I:176:LEU:HB2</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>4:B:117:THR:HA</td>
<td>2:C:47:TRP:CH2</td>
<td>2.33</td>
<td>0.64</td>
</tr>
<tr>
<td>2:K:112:VAL:HA</td>
<td>4:J:33:LEU:HB2</td>
<td>1.79</td>
<td>0.64</td>
</tr>
<tr>
<td>2:K:47:TRP:CZ3</td>
<td>4:J:116:TRP:CD1</td>
<td>2.86</td>
<td>0.63</td>
</tr>
<tr>
<td>3:E:334:THR:CA</td>
<td>3:E:335:LYS:CB</td>
<td>2.76</td>
<td>0.63</td>
</tr>
<tr>
<td>4:B:35:PHE:HA</td>
<td>4:B:96:PHE:CZ</td>
<td>2.34</td>
<td>0.63</td>
</tr>
<tr>
<td>2:G:251:VAL:HG12</td>
<td>2:G:252:LYS:H</td>
<td>1.60</td>
<td>0.63</td>
</tr>
<tr>
<td>4:F:36:PHE:CD1</td>
<td>4:F:36:PHE:O</td>
<td>2.52</td>
<td>0.63</td>
</tr>
<tr>
<td>2:C:251:VAL:CG1</td>
<td>2:C:252:LYS:H</td>
<td>2.03</td>
<td>0.62</td>
</tr>
<tr>
<td>4:J:9:ALA:HA</td>
<td>4:J:14:ASN:O</td>
<td>2.00</td>
<td>0.62</td>
</tr>
<tr>
<td>2:K:228:ALA:HB2</td>
<td>7:K:403:HOH:O</td>
<td>1.99</td>
<td>0.62</td>
</tr>
<tr>
<td>4:F:116:TRP:O</td>
<td>2:G:47:TRP:CZ3</td>
<td>2.52</td>
<td>0.62</td>
</tr>
<tr>
<td>2:G:154:TYR:CD1</td>
<td>2:G:157:TYR:HE2</td>
<td>2.16</td>
<td>0.62</td>
</tr>
<tr>
<td>2:K:226:TRP:HA</td>
<td>2:K:226:TRP:HE3</td>
<td>1.65</td>
<td>0.61</td>
</tr>
<tr>
<td>4:F:117:THR:HA</td>
<td>2:G:47:TRP:CH2</td>
<td>2.36</td>
<td>0.61</td>
</tr>
<tr>
<td>2:G:88:ARG:HB2</td>
<td>2:G:170:THR:HB</td>
<td>1.81</td>
<td>0.61</td>
</tr>
<tr>
<td>2:K:167:TYR:CD1</td>
<td>6:K:302:PGT:C34</td>
<td>2.80</td>
<td>0.61</td>
</tr>
<tr>
<td>2:G:188:ILE:CD1</td>
<td>6:G:303:PGT:H361</td>
<td>2.11</td>
<td>0.61</td>
</tr>
<tr>
<td>4:J:36:PHE:CD1</td>
<td>4:J:36:PHE:O</td>
<td>2.54</td>
<td>0.61</td>
</tr>
<tr>
<td>4:B:185:LEU:O</td>
<td>4:B:189:ILE:HG13</td>
<td>2.00</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:C:35:TYR:HE1</td>
<td>2:C:152:MET:HE3</td>
<td>1.66</td>
<td>0.61</td>
</tr>
<tr>
<td>3:A:334:THR:CA</td>
<td>3:A:335:LYS:CB</td>
<td>2.77</td>
<td>0.60</td>
</tr>
<tr>
<td>3:A:218:GLY:O</td>
<td>3:A:219:LYS:HE2</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>2:G:128:GLN:O</td>
<td>2:G:131:THR:HG22</td>
<td>2.01</td>
<td>0.60</td>
</tr>
<tr>
<td>3:E:352:ALA:O</td>
<td>3:E:354:PRO:HD3</td>
<td>2.01</td>
<td>0.60</td>
</tr>
<tr>
<td>4:J:203:ARG:O</td>
<td>4:J:204:MET:HB2</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>3:I:196:ALA:O</td>
<td>3:I:200:PHE:HD1</td>
<td>1.85</td>
<td>0.60</td>
</tr>
<tr>
<td>3:A:102:GLY:HA3</td>
<td>3:A:268:LEU:HB3</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>3:E:308:ASN:ND2</td>
<td>3:E:356:ALA:HB3</td>
<td>2.16</td>
<td>0.60</td>
</tr>
<tr>
<td>3:E:55:VAL:CG2</td>
<td>3:E:59:GLU:HB3</td>
<td>2.30</td>
<td>0.60</td>
</tr>
<tr>
<td>2:K:163:GLY:O</td>
<td>6:K:302:PGT:H361</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>3:E:218:GLY:O</td>
<td>3:E:219:LYS:HE2</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>4:B:55:PHE:O</td>
<td>4:B:124:VAL:HA</td>
<td>2.01</td>
<td>0.59</td>
</tr>
<tr>
<td>3:E:274:GLU:O</td>
<td>3:E:275:GLY:CA</td>
<td>2.06</td>
<td>0.59</td>
</tr>
<tr>
<td>2:G:92:VAL:O</td>
<td>2:G:95:VAL:HG12</td>
<td>2.01</td>
<td>0.59</td>
</tr>
<tr>
<td>4:F:36:PHE:O</td>
<td>4:F:36:PHE:HD1</td>
<td>1.86</td>
<td>0.59</td>
</tr>
<tr>
<td>4:F:35:PHE:HA</td>
<td>4:F:36:PHE:HZ</td>
<td>2.37</td>
<td>0.59</td>
</tr>
<tr>
<td>4:B:203:ARG:O</td>
<td>4:B:204:MET:HB2</td>
<td>2.03</td>
<td>0.59</td>
</tr>
<tr>
<td>4:F:175:ALA:HB1</td>
<td>4:F:182:LEU:HD11</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>2:K:154:TYR:HD1</td>
<td>2:K:157:TYR:HE2</td>
<td>1.50</td>
<td>0.59</td>
</tr>
<tr>
<td>3:A:318:GLU:HG3</td>
<td>3:A:327:LEU:CD2</td>
<td>2.32</td>
<td>0.59</td>
</tr>
<tr>
<td>2:G:154:TYR:HD1</td>
<td>2:G:157:TYR:CE2</td>
<td>2.20</td>
<td>0.59</td>
</tr>
<tr>
<td>2:G:194:ILE:CG2</td>
<td>2:G:195:PRO:HD3</td>
<td>2.31</td>
<td>0.58</td>
</tr>
<tr>
<td>4:B:236:TRP:CD2</td>
<td>4:B:239:MET:HE3</td>
<td>2.38</td>
<td>0.58</td>
</tr>
<tr>
<td>3:E:33:SER:HG</td>
<td>4:J:213:PHE:HD1</td>
<td>1.46</td>
<td>0.58</td>
</tr>
<tr>
<td>3:A:346:ARG:HB3</td>
<td>3:A:368:GLN:O</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>3:E:318:GLU:HB3</td>
<td>3:E:393:PHE:HB2</td>
<td>1.83</td>
<td>0.58</td>
</tr>
<tr>
<td>2:K:166:PHE:CG</td>
<td>6:K:302:PGT:C39</td>
<td>2.84</td>
<td>0.58</td>
</tr>
<tr>
<td>2:K:81:ALA:O</td>
<td>6:K:302:PGT:H421</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>4:B:9:ALA:HA</td>
<td>4:B:14:ASN:O</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>4:B:12:PRO:HB2</td>
<td>2:C:98:ARG:HA</td>
<td>1.86</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:K:68:THR:HG21</td>
<td>1:N:8:UNK:HA</td>
<td>1.85</td>
<td>0.58</td>
</tr>
<tr>
<td>2:K:54:PHE:HE2</td>
<td>3:I:33:SER:HB3</td>
<td>1.69</td>
<td>0.57</td>
</tr>
<tr>
<td>4:J:175:ALA:HB1</td>
<td>4:J:182:LEU:HD11</td>
<td>1.85</td>
<td>0.57</td>
</tr>
<tr>
<td>4:B:116:TRP:CD1</td>
<td>2:C:47:TRP:CZ3</td>
<td>2.86</td>
<td>0.57</td>
</tr>
<tr>
<td>3:E:33:SER:HB3</td>
<td>2:G:54:PHE:HE2</td>
<td>1.70</td>
<td>0.57</td>
</tr>
<tr>
<td>4:B:214:GLY:HA2</td>
<td>4:B:215:LYS:HB2</td>
<td>1.85</td>
<td>0.57</td>
</tr>
<tr>
<td>4:J:185:LEU:O</td>
<td>4:J:189:ILE:HG13</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>2:K:251:VAL:CG1</td>
<td>2:K:252:LYS:N</td>
<td>2.60</td>
<td>0.57</td>
</tr>
<tr>
<td>2:C:192:MET:HB2</td>
<td>7:C:404:HOH:O</td>
<td>2.02</td>
<td>0.57</td>
</tr>
<tr>
<td>2:K:154:TYR:CD1</td>
<td>2:K:157:TYR:HE2</td>
<td>2.21</td>
<td>0.57</td>
</tr>
<tr>
<td>2:K:99:GLU:O</td>
<td>2:K:103:ARG:HG3</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>3:A:127:ARG:O</td>
<td>3:A:159:MET:HG3</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>2:K:167:TYR:N</td>
<td>6:K:302:PGT:C35</td>
<td>2.65</td>
<td>0.56</td>
</tr>
<tr>
<td>4:B:129:LEU:O</td>
<td>4:B:132:PRO:HD2</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>4:B:236:TRP:CE2</td>
<td>4:B:239:MET:HE3</td>
<td>2.40</td>
<td>0.56</td>
</tr>
<tr>
<td>3:E:121:SER:HB2</td>
<td>7:E:612:HOH:O</td>
<td>2.04</td>
<td>0.56</td>
</tr>
<tr>
<td>2:K:166:PHE:CD1</td>
<td>6:K:302:PGT:H401</td>
<td>2.41</td>
<td>0.56</td>
</tr>
<tr>
<td>3:A:348:LEU:HB2</td>
<td>3:A:349:SER:HB2</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>4:J:236:TRP:CE2</td>
<td>4:J:239:MET:HE3</td>
<td>2.39</td>
<td>0.56</td>
</tr>
<tr>
<td>3:I:356:ALA:HA</td>
<td>3:I:359:GLU:HB3</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>4:F:34:LEU:O</td>
<td>4:F:38:VAL:HG13</td>
<td>2.05</td>
<td>0.55</td>
</tr>
<tr>
<td>4:J:36:PHE:O</td>
<td>4:J:36:PHE:HD1</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>2:C:154:TYR:HD1</td>
<td>2:C:157:TYR:HE2</td>
<td>1.54</td>
<td>0.55</td>
</tr>
<tr>
<td>4:J:35:PHE:HA</td>
<td>4:J:96:PHE:CZ</td>
<td>2.41</td>
<td>0.55</td>
</tr>
<tr>
<td>3:E:127:ARG:O</td>
<td>3:E:159:MET:HG3</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>2:C:154:TYR:CD1</td>
<td>2:C:157:TYR:HE2</td>
<td>2.25</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:E:58:ASN:OD1</td>
<td>3:E:125:ARG:NH2</td>
<td>2.34</td>
<td>0.55</td>
</tr>
<tr>
<td>2:C:154:TYR:HD1</td>
<td>2:C:157:TYR:CE2</td>
<td>2.25</td>
<td>0.55</td>
</tr>
<tr>
<td>3:I:260:LEU:HD22</td>
<td>3:I:260:LEU:H</td>
<td>1.70</td>
<td>0.54</td>
</tr>
<tr>
<td>3:I:318:GLU:HG3</td>
<td>3:I:327:LEU:HD23</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>3:E:260:LEU:HD22</td>
<td>3:E:260:LEU:H</td>
<td>1.72</td>
<td>0.54</td>
</tr>
<tr>
<td>4:F:116:TRP:CD1</td>
<td>2:G:47:TRP:CE3</td>
<td>2.92</td>
<td>0.54</td>
</tr>
<tr>
<td>3:I:164:ASP:CB</td>
<td>3:I:165:PRO:HA</td>
<td>2.37</td>
<td>0.54</td>
</tr>
<tr>
<td>3:A:32:LYS:O</td>
<td>3:A:376:ARG:NH1</td>
<td>2.31</td>
<td>0.54</td>
</tr>
<tr>
<td>2:C:19:VAL:HG12</td>
<td>2:C:105:VAL:HG11</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>2:C:16:GLU:N</td>
<td>2:C:16:GLU:OE1</td>
<td>2.40</td>
<td>0.54</td>
</tr>
<tr>
<td>3:E:68:HIS:HE1</td>
<td>3:E:405:GLU:OE1</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>3:E:349:SER:HB2</td>
<td>7:E:601:HOH:O</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>3:I:102:GLY:HA3</td>
<td>3:I:268:LEU:HB3</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>4:B:29:MET:CE</td>
<td>2:C:109:GLN:HG3</td>
<td>2.38</td>
<td>0.54</td>
</tr>
<tr>
<td>3:E:346:ARG:HB3</td>
<td>3:E:368:GLN:O</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>2:K:154:TYR:HD1</td>
<td>2:K:157:TYR:CE2</td>
<td>2.25</td>
<td>0.54</td>
</tr>
<tr>
<td>3:E:252:SER:C</td>
<td>3:E:253:THR:O</td>
<td>2.43</td>
<td>0.53</td>
</tr>
<tr>
<td>2:K:45:PHE:O</td>
<td>2:K:49:ALA:HB3</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>3:I:32:LYS:O</td>
<td>3:I:376:ARG:NH1</td>
<td>2.30</td>
<td>0.53</td>
</tr>
<tr>
<td>3:A:207:GLY:HA3</td>
<td>7:A:611:HOH:O</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>3:I:44:ASN:HD21</td>
<td>3:I:70:PHE:HD1</td>
<td>1.57</td>
<td>0.53</td>
</tr>
<tr>
<td>3:E:76:ALA:HB1</td>
<td>4:J:208:GLY:O</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>3:I:348:LEU:HB2</td>
<td>3:I:349:SER:HB2</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>3:A:258:ILE:HG13</td>
<td>4:B:184:THR:HG22</td>
<td>1.91</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:F:129:LEU:C</td>
<td>4:F:132:PRO:HD2</td>
<td>2.30</td>
<td>0.52</td>
</tr>
<tr>
<td>4:B:116:TRP:O</td>
<td>2:C:47:TRP:HH2</td>
<td>1.87</td>
<td>0.52</td>
</tr>
<tr>
<td>2:C:119:TYR:C</td>
<td>2:C:119:TYR:CD2</td>
<td>2.83</td>
<td>0.52</td>
</tr>
<tr>
<td>3:E:283:ASN:O</td>
<td>3:E:309:ASN:CB</td>
<td>2.50</td>
<td>0.52</td>
</tr>
<tr>
<td>3:E:32:LYS:O</td>
<td>3:E:376:ARG:NH1</td>
<td>2.31</td>
<td>0.52</td>
</tr>
<tr>
<td>2:K:137:ILE:HG22</td>
<td>2:K:137:ILE:O</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>3:E:41:ARG:NE</td>
<td>3:E:387:GLN:HG2</td>
<td>2.24</td>
<td>0.52</td>
</tr>
<tr>
<td>4:B:214:GLY:CA</td>
<td>4:B:215:LYS:HB2</td>
<td>2.39</td>
<td>0.52</td>
</tr>
<tr>
<td>2:K:102:ARG:NH2</td>
<td>6:K:302:PGT:O1P</td>
<td>2.32</td>
<td>0.52</td>
</tr>
<tr>
<td>2:K:98:ARG:HA</td>
<td>4:J:12:PRO:HB2</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>2:K:81:ALA:C</td>
<td>6:K:302:PGT:H391</td>
<td>2.30</td>
<td>0.52</td>
</tr>
<tr>
<td>4:B:175:ALA:HB1</td>
<td>4:B:182:LEU:HD11</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>4:B:34:LEU:O</td>
<td>4:B:38:VAL:HG13</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>2:K:20:ASP:OD1</td>
<td>2:K:22:ARG:HG2</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>3:A:318:GLU:HB3</td>
<td>3:A:393:PHE:HB2</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>3:E:77:VAL:HG13</td>
<td>3:E:143:GLY:HA3</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>4:F:9:ALA:HA</td>
<td>4:F:14:ASN:N</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>2:K:88:ARG:HB2</td>
<td>2:K:170:THR:HB</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>3:E:100:PHE:HA</td>
<td>3:E:104:GLN:O</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>4:B:29:MET:HE3</td>
<td>2:C:109:GLN:HG3</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>3:I:341:TYR:CZ</td>
<td>3:I:342:LEU:HD22</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>2:K:81:ALA:CA</td>
<td>6:K:302:PGT:H391</td>
<td>2.40</td>
<td>0.51</td>
</tr>
<tr>
<td>6:K:302:PGT:C16</td>
<td>6:K:302:PGT:C12</td>
<td>2.87</td>
<td>0.51</td>
</tr>
<tr>
<td>3:E:164:ASP:CB</td>
<td>3:E:165:PRO:HA</td>
<td>2.41</td>
<td>0.51</td>
</tr>
<tr>
<td>3:I:46:TYR:CE2</td>
<td>3:I:66:LYS:HD2</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>3:I:127:ARG:O</td>
<td>3:I:159:MET:HG3</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>2:K:53:SER:OG</td>
<td>2:K:139:ASP:CB</td>
<td>2.59</td>
<td>0.51</td>
</tr>
<tr>
<td>3:A:100:PHE:HA</td>
<td>3:A:104:GLN:O</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>3:I:68:HIS:HE1</td>
<td>3:I:405:GLU:OE1</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>4:B:150:ALA:O</td>
<td>4:B:154:SER:OG</td>
<td>2.27</td>
<td>0.50</td>
</tr>
<tr>
<td>3:E:327:LEU:HD11</td>
<td>3:E:343:LEU:HD11</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>4:F:82:ALA:HB1</td>
<td>4:F:241:ARG:HD2</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>4:J:38:VAL:HG22</td>
<td>7:J:301:HOH:O</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>3:E:108:ARG:HD3</td>
<td>7:E:620:HOH:O</td>
<td>2.10</td>
<td>0.50</td>
</tr>
<tr>
<td>2:K:167:TYR:CD1</td>
<td>6:K:302:PGT:C33</td>
<td>2.72</td>
<td>0.50</td>
</tr>
<tr>
<td>2:K:16:GLU:OE1</td>
<td>2:K:16:GLU:N</td>
<td>2.45</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:N:7:UNK:O</td>
<td>1:N:8:UNK:C</td>
<td>2.59</td>
<td>0.50</td>
</tr>
<tr>
<td>3:E:102:GLY:HA3</td>
<td>3:E:268:LEU:HB3</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>2:G:35:TYR:CE1</td>
<td>2:G:152:MET:HE3</td>
<td>2.41</td>
<td>0.50</td>
</tr>
<tr>
<td>3:E:196:ALA:O</td>
<td>3:E:200:PHE:HD1</td>
<td>1.95</td>
<td>0.50</td>
</tr>
<tr>
<td>4:F:203:ARG:O</td>
<td>4:F:204:MET:HB2</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>4:J:102:LEU:CD1</td>
<td>4:J:130:ILE:HD12</td>
<td>2.41</td>
<td>0.50</td>
</tr>
<tr>
<td>2:K:85:TRP:O</td>
<td>2:K:88:ARG:HB3</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>4:B:117:THR:HA</td>
<td>2:C:47:TRP:HB2</td>
<td>1.74</td>
<td>0.49</td>
</tr>
<tr>
<td>4:F:12:PRO:HB2</td>
<td>2:G:98:ARG:HA</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>2:G:251:VAL:CG1</td>
<td>2:G:252:LYS:N</td>
<td>2.66</td>
<td>0.49</td>
</tr>
<tr>
<td>2:K:166:PHE:CB</td>
<td>6:K:302:PGT:C39</td>
<td>2.89</td>
<td>0.49</td>
</tr>
<tr>
<td>3:E:276:THR:HG22</td>
<td>3:E:279:VAL:HB</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>4:F:246:THR:HG22</td>
<td>2:G:237:GLN:HG3</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>3:E:382:TYR:HB2</td>
<td>4:J:215:LYS:NZ</td>
<td>2.28</td>
<td>0.49</td>
</tr>
<tr>
<td>3:E:316:LEU:HB2</td>
<td>3:E:394:PHE:CE2</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>2:K:83:TYR:HD2</td>
<td>2:K:84:LEU:HG</td>
<td>1.76</td>
<td>0.49</td>
</tr>
<tr>
<td>2:C:114:TYR:CE1</td>
<td>2:C:161:ALA:HB2</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>3:I:307:LYS:HD3</td>
<td>3:I:360:ALA:HB2</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>3:I:186:ALA:O</td>
<td>3:I:190:PRO:HG2</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>3:E:68:HIS:HD2</td>
<td>3:E:117:ASP:OD1</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>4:F:166:TRP:CE2</td>
<td>4:F:170:ALA:HB2</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>4:B:105:GLU:O</td>
<td>4:B:109:ARG:HG2</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>3:I:276:THR:HG22</td>
<td>3:I:279:VAL:HB</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>2:C:20:ASP:OD1</td>
<td>2:C:22:ARG:HG2</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>4:F:51:GLY:HA2</td>
<td>4:F:52:ASP:HB2</td>
<td>1.88</td>
<td>0.49</td>
</tr>
<tr>
<td>2:C:59:GLN:HA</td>
<td>2:C:63:MET:HB2</td>
<td>1.94</td>
<td>0.48</td>
</tr>
<tr>
<td>4:J:114:TRP:CE3</td>
<td>4:J:118:TYR:HA</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>4:J:214:GLY:HA2</td>
<td>4:J:215:LYS:HB2</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>2:K:81:ALA:CA</td>
<td>6:K:302:PGT:C41</td>
<td>2.88</td>
<td>0.48</td>
</tr>
<tr>
<td>3:E:57:VAL:O</td>
<td>3:E:58:ASN:HB2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>2:G:137:ILE:O</td>
<td>2:G:137:ILE:HG22</td>
<td>2.11</td>
<td>0.48</td>
</tr>
<tr>
<td>2:C:194:ILE:CG2</td>
<td>2:C:195:PRO:HD3</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>2:C:137:ILE:O</td>
<td>2:C:137:ILE:HG22</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>3:I:137:GLN:HE2</td>
<td>3:I:139:ASN:HD2</td>
<td>1.60</td>
<td>0.48</td>
</tr>
<tr>
<td>3:I:313:PRO:HB2</td>
<td>3:I:354:PRO:HB2</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>3:E:186:ALA:O</td>
<td>3:E:190:PRO:HG2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:I:137:GLN:NE2</td>
<td>3:I:139:ASN:HD21</td>
<td>2.11</td>
<td>0.48</td>
</tr>
<tr>
<td>2:K:84:LEU:HB2</td>
<td>6:K:302:PGT:C38</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>4:B:116:TRP:C</td>
<td>2:C:47:TRP:CH2</td>
<td>2.87</td>
<td>0.48</td>
</tr>
<tr>
<td>4:F:117:THR:HA</td>
<td>2:G:47:TRP:HH2</td>
<td>1.77</td>
<td>0.48</td>
</tr>
<tr>
<td>2:K:519:TYR:C</td>
<td>2:K:119:TYR:CD2</td>
<td>2.87</td>
<td>0.48</td>
</tr>
<tr>
<td>2:K:19:VAL:HG12</td>
<td>2:K:105:VAL:HG11</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>3:E:382:TYR:CD1</td>
<td>4:J:215:LYS:HD3</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>4:F:47:MET:SD</td>
<td>2:G:126:THR:HG22</td>
<td>2.53</td>
<td>0.48</td>
</tr>
<tr>
<td>2:C:148:ILE:HG23</td>
<td>2:C:152:MET:HE2</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>2:C:100:GLU:OE1</td>
<td>2:C:245:LEU:HD11</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>4:F:33:LEU:HB2</td>
<td>2:G:112:VAL:HA</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>4:B:166:TRP:CE3</td>
<td>6:K:302:PGT:C38</td>
<td>2.90</td>
<td>0.47</td>
</tr>
<tr>
<td>2:K:84:LEU:HA</td>
<td>2:K:84:LEU:HD23</td>
<td>1.56</td>
<td>0.47</td>
</tr>
<tr>
<td>4:B:166:TRP:CE3</td>
<td>4:B:169:ILE:HG22</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>4:J:59:TRP:CZ3</td>
<td>4:J:203:ARG:O</td>
<td>2.66</td>
<td>0.47</td>
</tr>
<tr>
<td>2:K:84:LEU:CD1</td>
<td>6:K:302:PGT:C35</td>
<td>2.53</td>
<td>0.47</td>
</tr>
<tr>
<td>3:E:35:GLN:HB2</td>
<td>3:E:38:LEU:HD12</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>3:I:312:GLN:N</td>
<td>3:I:357:PRO:HG3</td>
<td>2.30</td>
<td>0.47</td>
</tr>
<tr>
<td>4:B:208:GLY:O</td>
<td>4:B:209:THR:HG22</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>4:J:51:GLY:HA3</td>
<td>4:J:52:ASP:HB3</td>
<td>1.91</td>
<td>0.47</td>
</tr>
<tr>
<td>2:K:166:PHE:HB3</td>
<td>6:K:302:PGT:H392</td>
<td>1.94</td>
<td>0.46</td>
</tr>
<tr>
<td>4:B:33:LEU:O</td>
<td>4:B:37:ALA:CB</td>
<td>2.62</td>
<td>0.46</td>
</tr>
<tr>
<td>2:C:128:GLN:O</td>
<td>2:C:131:THR:HG22</td>
<td>2.14</td>
<td>0.46</td>
</tr>
<tr>
<td>4:J:214:GLY:CA</td>
<td>4:J:215:LYS:HB2</td>
<td>2.44</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:B:162:TYR:HB3</td>
<td>4:B:163:PRO:HD3</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>4:B:69:VAL:O</td>
<td>4:B:73:GLY:N</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>3:A:35:GLN:HB2</td>
<td>3:A:38:LEU:HD12</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>4:J:64:MET:HG3</td>
<td>4:J:204:MET:O</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>4:B:47:MET:O</td>
<td>4:B:51:GLY:HA2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>4:B:51:GLY:HA3</td>
<td>4:B:52:ASP:HB3</td>
<td>1.90</td>
<td>0.46</td>
</tr>
<tr>
<td>2:G:111:LEU:O</td>
<td>2:G:114:TYR:HB3</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>4:J:34:LEU:HD13</td>
<td>4:J:84:TRP:HZ2</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>2:K:39:ARG:O</td>
<td>2:K:42:GLU:HG2</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>2:C:84:LEU:HA</td>
<td>2:C:84:LEU:HD23</td>
<td>1.69</td>
<td>0.46</td>
</tr>
<tr>
<td>4:F:29:MET:O</td>
<td>4:F:33:LEU:HB3</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>4:J:236:TRP:CD2</td>
<td>4:J:239:MET:HE3</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>4:J:82:ALA:HB1</td>
<td>4:J:241:ARG:HD2</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>2:C:42:GLU:OE2</td>
<td>2:C:128:GLN:NE2</td>
<td>2.34</td>
<td>0.45</td>
</tr>
<tr>
<td>3:E:310:THR:O</td>
<td>3:E:357:PRO:HB3</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>2:G:248:LYS:HG2</td>
<td>2:G:252:LYS:HD2</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>4:F:117:THR:HG2</td>
<td>2:G:47:TRP:CH2</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>3:I:352:ALA:O</td>
<td>3:I:354:PRO:HD3</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>3:E:382:TYR:CE1</td>
<td>4:J:215:LYS:HA</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>2:K:68:THR:HG2</td>
<td>1:N:8:UNK:CA</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>3:E:80:PRO:HA</td>
<td>3:E:140:VAL:HG13</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>4:J:60:LYS:HD3</td>
<td>4:J:65:TRP:CH2</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>4:B:218:VAL:HB</td>
<td>4:B:219:PRO:HD3</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>2:C:53:SER:OG</td>
<td>2:C:139:ASP:CB</td>
<td>2.65</td>
<td>0.45</td>
</tr>
<tr>
<td>2:C:248:LYS:HG2</td>
<td>2:C:252:LYS:HD2</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>4:B:129:LEU:C</td>
<td>4:B:132:PRO:HD2</td>
<td>2.37</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:B:212:THR:HG22</td>
<td>4:B:214:GLY:O</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>3:E:366:LYS:NZ</td>
<td>3:E:368:GLN:HE21</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>3:E:382:TYR:CZ</td>
<td>4:J:215:LYS:HA</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>2:G:169:LYS:HD2</td>
<td>2:G:175:PHE:O</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>4:B:125:PHE:CZ</td>
<td>4:B:169:ILE:HD12</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>2:K:84:LEU:HD12</td>
<td>6:K:302:PGT:C37</td>
<td>2.43</td>
<td>0.45</td>
</tr>
<tr>
<td>4:B:43:HIS:HE2</td>
<td>4:B:105:GLU:HG2</td>
<td>1.82</td>
<td>0.45</td>
</tr>
<tr>
<td>4:F:44:VAL:HG23</td>
<td>2:G:122:ALA:O</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>2:K:241:ARG:NE</td>
<td>2:K:241:ARG:HA</td>
<td>2.32</td>
<td>0.45</td>
</tr>
<tr>
<td>2:G:53:SER:OG</td>
<td>2:G:139:ASP:CB</td>
<td>2.65</td>
<td>0.45</td>
</tr>
<tr>
<td>4:B:198:MET:HG3</td>
<td>4:B:198:MET:O</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>2:C:179:TYR:HA</td>
<td>7:C:401:HOH:O</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>4:B:102:LEU:HA</td>
<td>4:B:102:LEU:HD23</td>
<td>1.71</td>
<td>0.44</td>
</tr>
<tr>
<td>4:B:215:LYS:HD3</td>
<td>3:I:382:TYR:CD1</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>3:A:274:GLU:N</td>
<td>3:A:275:GLY:CA</td>
<td>2.64</td>
<td>0.44</td>
</tr>
<tr>
<td>3:I:50:TRP:O</td>
<td>3:I:51:SER:C</td>
<td>2.56</td>
<td>0.44</td>
</tr>
<tr>
<td>4:B:116:TRP:C</td>
<td>2:C:47:TRP:HH2</td>
<td>2.21</td>
<td>0.44</td>
</tr>
<tr>
<td>2:K:59:GLN:HA</td>
<td>2:K:63:MET:HB2</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>2:C:126:THR:HA</td>
<td>2:C:149:GLU:OE1</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>3:E:225:GLY:HA2</td>
<td>3:E:229:ARG:NH2</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>2:C:241:ARG:HA</td>
<td>2:C:241:ARG:NE</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>3:E:137:GLN:NE2</td>
<td>3:E:139:ASN:HD21</td>
<td>2.15</td>
<td>0.44</td>
</tr>
<tr>
<td>4:F:200:GLU:HG2</td>
<td>4:F:203:ARG:HD2</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>2:G:169:LYS:NZ</td>
<td>2:G:178:GLY:O</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>3:E:33:SER:OG</td>
<td>4:J:213:PHE:HD1</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>2:K:53:SER:OG</td>
<td>2:K:139:ASP:HB2</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>3:E:307:LYS:HD3</td>
<td>3:E:360:ALA:HB2</td>
<td>2.00</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:K:90:ARG:CG</td>
<td>7:K:407:HOH:O</td>
<td>2.61</td>
<td>0.44</td>
</tr>
<tr>
<td>3:A:313:PRO:HB2</td>
<td>3:A:354:PRO:HB2</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>4:B:64:MET:O</td>
<td>4:B:68:VAL:HG13</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>2:C:39:ARG:O</td>
<td>2:C:42:GLU:HG2</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>3:E:282:GLU:HB3</td>
<td>3:E:310:THR:HG22</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>2:G:85:TRP:O</td>
<td>2:G:88:ARG:HB3</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>4:J:129:LEU:O</td>
<td>4:J:132:PRO:HD2</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>4:B:171:ALA:O</td>
<td>4:B:174:GLN:HG3</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>2:K:87:THR:HG21</td>
<td>7:K:405:HOH:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>3:A:393:PHE:CD1</td>
<td>3:A:401:ARG:HD2</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>3:A:272:GLU:O</td>
<td>3:A:279:VAL:HG11</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>2:C:114:TYR:HE1</td>
<td>2:C:161:ALA:HB2</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>3:I:164:ASP:HB3</td>
<td>3:I:165:PRO:CA</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>3:I:164:ASP:CB</td>
<td>3:I:165:PRO:CA</td>
<td>2.96</td>
<td>0.43</td>
</tr>
<tr>
<td>4:J:49:THR:OG1</td>
<td>4:J:72:LEU:HD22</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>3:A:324:LEU:HD11</td>
<td>3:A:375:GLU:HG3</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>4:F:64:MET:HG3</td>
<td>4:F:204:MET:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>4:J:159:LEU:HA</td>
<td>4:J:159:LEU:HD23</td>
<td>1.79</td>
<td>0.43</td>
</tr>
<tr>
<td>2:K:239:LEU:HA</td>
<td>2:K:239:LEU:HD23</td>
<td>1.86</td>
<td>0.43</td>
</tr>
<tr>
<td>2:K:166:PHE:CA</td>
<td>6:K:302:PGT:H372</td>
<td>2.39</td>
<td>0.43</td>
</tr>
<tr>
<td>3:A:293:TYR:CZ</td>
<td>3:A:412:PRO:HB3</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>4:B:36:PHE:HB3</td>
<td>4:B:39:LEU:HD23</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>4:F:90:LEU:HA</td>
<td>4:F:91:PRO:HD3</td>
<td>1.94</td>
<td>0.43</td>
</tr>
<tr>
<td>3:E:316:LEU:HD11</td>
<td>3:E:392:LEU:HD22</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>4:F:59:TRP:O</td>
<td>4:F:61:ASP:N</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>2:G:44:VAL:HG12</td>
<td>2:G:45:PHE:CD1</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>2:C:197:VAL:HA</td>
<td>2:C:198:GLY:HA3</td>
<td>1.71</td>
<td>0.43</td>
</tr>
<tr>
<td>3:E:164:ASP:OD2</td>
<td>3:E:176:LEU:HB2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>2:C:138:ARG:HH12</td>
<td>2:C:141:ASP:CA</td>
<td>2.24</td>
<td>0.43</td>
</tr>
<tr>
<td>3:E:46:TYR:CE2</td>
<td>3:E:66:LYS:HD2</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>2:G:190:PRO:O</td>
<td>2:G:193:ILE:HG22</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>2:K:148:ILE:HG23</td>
<td>2:K:152:MET:HE2</td>
<td>2.01</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:A:212:TYR:CE2</td>
<td>2:C:239:LEU:HB3</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>3:E:137:GLN:HE21</td>
<td>3:E:139:ASN:ND2</td>
<td>2.16</td>
<td>0.43</td>
</tr>
<tr>
<td>2:G:35:TYR:HE1</td>
<td>2:G:152:MET:CE</td>
<td>2.27</td>
<td>0.43</td>
</tr>
<tr>
<td>3:I:113:GLU:HB2</td>
<td>3:I:116:LYS:CG</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>3:I:176:LEU:HD2</td>
<td>4:J:185:LEU:HD22</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>2:C:249:GLU:O</td>
<td>2:C:253:LEU:HB2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>2:C:83:TYR:CD2</td>
<td>6:C:302:PGT:H391</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>2:K:248:LYS:HG2</td>
<td>2:K:252:LYS:HD2</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>3:A:212:TYR:CD2</td>
<td>2:C:239:LEU:HB3</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>3:E:164:ASP:CB</td>
<td>3:E:165:PRO:CA</td>
<td>2.96</td>
<td>0.42</td>
</tr>
<tr>
<td>2:G:16:GLU:OE1</td>
<td>2:G:16:GLU:N</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>2:G:165:PHE:HE2</td>
<td>6:G:303:PGT:H331</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>2:K:166:PHE:HB3</td>
<td>6:K:302:PGT:H371</td>
<td>1.95</td>
<td>0.42</td>
</tr>
<tr>
<td>4:B:33:LEU:HD2</td>
<td>4:B:33:LEU:C</td>
<td>2.39</td>
<td>0.42</td>
</tr>
<tr>
<td>2:C:95:VAL:HG2</td>
<td>2:C:99:GLU:HG3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>3:I:308:ASN:O</td>
<td>3:I:358:GLY:N</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>2:K:47:TRP:CH2</td>
<td>4:J:117:THR:HG2</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>3:A:141:GLU:HA</td>
<td>4:B:201:TYR:CZ</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>2:G:53:SER:OG</td>
<td>2:G:139:ASP:HB3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>4:J:36:PHE:N</td>
<td>4:J:37:ALA:HB3</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>2:C:32:ASN:O</td>
<td>2:C:36:LEU:HB2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>3:E:312:GLN:N</td>
<td>3:E:357:PRO:HG3</td>
<td>2.35</td>
<td>0.42</td>
</tr>
<tr>
<td>4:B:213:PHE:HD1</td>
<td>3:I:33:SER:OG</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>2:K:19:VAL:O</td>
<td>2:K:19:VAL:HG23</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>2:K:159:VAL:HG11</td>
<td>6:K:302:PGT:H252</td>
<td>2.01</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:G:169:LYS:HE3</td>
<td>6:G:303:PGT:O5</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>3:E:185:TYR:HD2</td>
<td>7:E:610:HOH:O</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>4:J:33:LEU:O</td>
<td>4:J:37:ALA:CB</td>
<td>2.62</td>
<td>0.41</td>
</tr>
<tr>
<td>2:K:109:GLN:HG3</td>
<td>4:J:29:MET:CE</td>
<td>2.47</td>
<td>0.41</td>
</tr>
<tr>
<td>2:C:48:ARG:O</td>
<td>2:C:49:ALA:HB2</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>4:F:29:MET:CE</td>
<td>2:G:109:GLN:HG3</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>2:G:188:ILE:O</td>
<td>2:G:189:GLY:C</td>
<td>2.57</td>
<td>0.41</td>
</tr>
<tr>
<td>3:A:68:HIS:HE1</td>
<td>3:A:405:GLU:OE1</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>4:B:87:ASN:HB2</td>
<td>4:B:88:PHE:CE1</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>2:C:157:TYR:CD1</td>
<td>2:C:157:TYR:C</td>
<td>2.93</td>
<td>0.41</td>
</tr>
<tr>
<td>3:E:219:LYS:CA</td>
<td>3:E:220:ALA:CB</td>
<td>2.94</td>
<td>0.41</td>
</tr>
<tr>
<td>2:C:190:PRO:O</td>
<td>2:C:193:ILE:HG22</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>4:J:185:LEU:HD23</td>
<td>4:J:185:LEU:HA</td>
<td>1.90</td>
<td>0.41</td>
</tr>
<tr>
<td>1:N:7:UNK:C</td>
<td>1:N:9:UNK:N</td>
<td>2.83</td>
<td>0.41</td>
</tr>
<tr>
<td>2:C:239:LEU:HA</td>
<td>2:C:239:LEU:HD23</td>
<td>1.70</td>
<td>0.41</td>
</tr>
<tr>
<td>3:A:164:ASP:HB3</td>
<td>3:E:165:PRO:CA</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>4:F:166:TRP:CE3</td>
<td>4:F:169:ILE:HG22</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>2:G:22:ARG:HG3</td>
<td>7:G:408:HOH:O</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>2:K:239:LEU:HB3</td>
<td>3:I:212:TYR:CE2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>4:J:212:THR:HG22</td>
<td>4:J:214:GLY:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>2:K:134:MET:HG3</td>
<td>4:J:56:TRP:CH2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>2:K:249:GLU:O</td>
<td>2:K:253:LEU:HB2</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>3:A:312:GLN:N</td>
<td>3:A:357:PRO:HG3</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>3:I:57:VAL:O</td>
<td>3:J:58:ASN:HB2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>4:J:29:MET:O</td>
<td>4:J:33:LEU:HB3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>2:K:104:LEU:HD23</td>
<td>2:K:172:ILE:HD13</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>3:E:44:ASN:HD21</td>
<td>3:E:70:PHE:HD1</td>
<td>1.68</td>
<td>0.41</td>
</tr>
<tr>
<td>4:B:39:LEU:HD13</td>
<td>4:J:100:GLY:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>6:C:302:PGT:H322</td>
<td>6:C:302:PGT:H352</td>
<td>1.50</td>
<td>0.41</td>
</tr>
<tr>
<td>2:G:21:LEU:HD23</td>
<td>2:G:109:GLN:NE2</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>3:I:137:GLN:HE21</td>
<td>3:I:139:ASN:ND2</td>
<td>2.18</td>
<td>0.41</td>
</tr>
<tr>
<td>3:I:356:ALA:HB1</td>
<td>3:I:357:PRO:HA</td>
<td>1.94</td>
<td>0.41</td>
</tr>
<tr>
<td>3:A:282:GLU:HB3</td>
<td>3:A:310:THR:HG22</td>
<td>2.03</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:B:140:LEU:O</td>
<td>4:B:143:SER:O</td>
<td>2.37</td>
<td>0.41</td>
</tr>
<tr>
<td>4:B:125:PHE:HZ</td>
<td>4:B:169:ILE:HD12</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>3:E:257:THR:HB</td>
<td>4:F:173:HIS:HB3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>3:I:398:ASP:HB2</td>
<td>3:I:399:GLY:H</td>
<td>1.75</td>
<td>0.41</td>
</tr>
<tr>
<td>4:B:208:GLY:O</td>
<td>3:I:76:AL:HB1</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>4:B:36:PHE:HB3</td>
<td>4:B:39:LEU:HB3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>3:E:308:ASN:O</td>
<td>3:E:358:GLY:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>2:K:100:GLU:OE1</td>
<td>2:K:245:LEU:HD11</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>2:K:247:GLY:C</td>
<td>2:K:249:GLU:N</td>
<td>2.74</td>
<td>0.41</td>
</tr>
<tr>
<td>2:C:45:TRP:O</td>
<td>2:C:88:ARG:HB3</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>2:G:150:PHE:O</td>
<td>2:G:155:PRO:HD3</td>
<td>2.20</td>
<td>0.40</td>
</tr>
<tr>
<td>2:G:249:GLU:O</td>
<td>2:G:253:LEU:HB2</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>3:A:260:LEU:HD23</td>
<td>4:B:138:ASP:HA</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>2:C:53:SER:OG</td>
<td>2:C:139:ASP:HB3</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>2:C:88:ARG:HB2</td>
<td>2:C:170:THR:HB</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>2:K:137:ILE:O</td>
<td>2:K:137:ILE:CG2</td>
<td>2.69</td>
<td>0.40</td>
</tr>
<tr>
<td>2:C:247:GLY:C</td>
<td>2:C:249:GLU:N</td>
<td>2.74</td>
<td>0.40</td>
</tr>
<tr>
<td>2:C:73:GLU:OE2</td>
<td>2:C:152:MET:HA</td>
<td>2.22</td>
<td>0.40</td>
</tr>
<tr>
<td>3:E:73:TRP:HA</td>
<td>3:E:74:PRO:HD3</td>
<td>1.94</td>
<td>0.40</td>
</tr>
<tr>
<td>2:K:126:THR:HG2</td>
<td>4:J:47:MET:SD</td>
<td>2.62</td>
<td>0.40</td>
</tr>
<tr>
<td>6:K:302:PCT:122</td>
<td>6:K:302:PCT:161</td>
<td>2.01</td>
<td>0.40</td>
</tr>
<tr>
<td>4:J:92:PHE:O</td>
<td>4:J:96:PHE:HB2</td>
<td>2.22</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.
5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C</td>
<td>210/256 (82%)</td>
<td>180 (86%)</td>
<td>25 (12%)</td>
<td>5 (2%)</td>
<td>6 12</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>208/256 (81%)</td>
<td>184 (88%)</td>
<td>21 (10%)</td>
<td>3 (1%)</td>
<td>12 24</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>209/256 (82%)</td>
<td>181 (87%)</td>
<td>26 (12%)</td>
<td>2 (1%)</td>
<td>17 35</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>386/420 (92%)</td>
<td>339 (88%)</td>
<td>34 (9%)</td>
<td>13 (3%)</td>
<td>4 6</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>386/420 (92%)</td>
<td>339 (88%)</td>
<td>32 (8%)</td>
<td>15 (4%)</td>
<td>3 4</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>386/420 (92%)</td>
<td>334 (86%)</td>
<td>39 (10%)</td>
<td>13 (3%)</td>
<td>4 6</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>242/252 (96%)</td>
<td>212 (88%)</td>
<td>27 (11%)</td>
<td>3 (1%)</td>
<td>14 30</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>242/252 (96%)</td>
<td>213 (88%)</td>
<td>25 (10%)</td>
<td>4 (2%)</td>
<td>10 20</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>242/252 (96%)</td>
<td>216 (89%)</td>
<td>24 (10%)</td>
<td>2 (1%)</td>
<td>21 42</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>2511/2784 (90%)</td>
<td>2198 (88%)</td>
<td>253 (10%)</td>
<td>60 (2%)</td>
<td>6 12</td>
</tr>
</tbody>
</table>

All (60) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>K</td>
<td>251</td>
<td>VAL</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>164</td>
<td>ASP</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>274</td>
<td>GLU</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>335</td>
<td>LYS</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>350</td>
<td>VAL</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>356</td>
<td>ALA</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>37</td>
<td>ALA</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>52</td>
<td>ASP</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>274</td>
<td>GLU</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>335</td>
<td>LYS</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>350</td>
<td>VAL</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>356</td>
<td>ALA</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>335</td>
<td>LYS</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>356</td>
<td>ALA</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>37</td>
<td>ALA</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>52</td>
<td>ASP</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>J</td>
<td>37</td>
<td>ALA</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>52</td>
<td>ASP</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>251</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>251</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>49</td>
<td>ALA</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>220</td>
<td>ALA</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>309</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>355</td>
<td>ILE</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>358</td>
<td>GLY</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>164</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>220</td>
<td>ALA</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>309</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>355</td>
<td>ILE</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>164</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>220</td>
<td>ALA</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>350</td>
<td>VAL</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>355</td>
<td>ILE</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>49</td>
<td>ALA</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>49</td>
<td>ALA</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>142</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>76</td>
<td>ALA</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>309</td>
<td>ASN</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>142</td>
<td>LEU</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>196</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>189</td>
<td>GLY</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>276</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>353</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>354</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>276</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>353</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>358</td>
<td>GLY</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>354</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>274</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>353</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>149</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>90</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>354</td>
<td>PRO</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>86</td>
<td>VAL</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>339</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>358</td>
<td>GLY</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>90</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>339</td>
<td>PRO</td>
</tr>
</tbody>
</table>

Continued on next page...
5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C</td>
<td>182/213 (85%)</td>
<td>172 (94%)</td>
<td>10 (6%)</td>
<td>24 47</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>181/213 (85%)</td>
<td>171 (94%)</td>
<td>10 (6%)</td>
<td>24 47</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>182/213 (85%)</td>
<td>170 (93%)</td>
<td>12 (7%)</td>
<td>18 37</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>319/336 (95%)</td>
<td>303 (95%)</td>
<td>16 (5%)</td>
<td>27 51</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>319/336 (95%)</td>
<td>298 (93%)</td>
<td>21 (7%)</td>
<td>18 37</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>319/336 (95%)</td>
<td>298 (93%)</td>
<td>21 (7%)</td>
<td>18 37</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>202/208 (97%)</td>
<td>185 (92%)</td>
<td>17 (8%)</td>
<td>12 23</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>202/208 (97%)</td>
<td>185 (92%)</td>
<td>17 (8%)</td>
<td>12 23</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>202/208 (97%)</td>
<td>185 (92%)</td>
<td>17 (8%)</td>
<td>12 23</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>2108/2271 (93%)</td>
<td>1967 (93%)</td>
<td>141 (7%)</td>
<td>18 36</td>
</tr>
</tbody>
</table>

All (141) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>K</td>
<td>36</td>
<td>LEU</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>40</td>
<td>ILE</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>90</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>116</td>
<td>ILE</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>157</td>
<td>TYR</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>162</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>177</td>
<td>HIS</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>183</td>
<td>PHE</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>197</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>226</td>
<td>TRP</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>231</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>235</td>
<td>VAL</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>29</td>
<td>HIS</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>116</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>154</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>173</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>182</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>206</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>260</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>274</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>283</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>284</td>
<td>VAL</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>299</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>359</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>363</td>
<td>ILE</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>368</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>384</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>388</td>
<td>ILE</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>15</td>
<td>SER</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>33</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>36</td>
<td>PHE</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>39</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>42</td>
<td>TYR</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>48</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>68</td>
<td>VAL</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>89</td>
<td>ARG</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>92</td>
<td>PHE</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>143</td>
<td>SER</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>152</td>
<td>VAL</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>164</td>
<td>ASN</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>169</td>
<td>ILE</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>176</td>
<td>THR</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>209</td>
<td>THR</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>234</td>
<td>PHE</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>251</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>29</td>
<td>HIS</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>61</td>
<td>MET</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>63</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>97</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>116</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>154</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>173</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>182</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>204</td>
<td>VAL</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>E</td>
<td>206</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>274</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>279</td>
<td>VAL</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>283</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>299</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>305</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>359</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>363</td>
<td>ILE</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>366</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>368</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>384</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>388</td>
<td>ILE</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>29</td>
<td>HIS</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>61</td>
<td>MET</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>63</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>75</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>89</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>97</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>116</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>117</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>154</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>173</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>182</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>206</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>253</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>274</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>279</td>
<td>VAL</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>283</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>299</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>359</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>363</td>
<td>ILE</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>368</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>388</td>
<td>ILE</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>15</td>
<td>SER</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>25</td>
<td>THR</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>33</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>36</td>
<td>PHE</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>38</td>
<td>VAL</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>42</td>
<td>TYR</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>47</td>
<td>MET</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>48</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>68</td>
<td>VAL</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>F</td>
<td>92</td>
<td>PHE</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>143</td>
<td>SER</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>164</td>
<td>ASN</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>169</td>
<td>ILE</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>176</td>
<td>THR</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>202</td>
<td>ILE</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>234</td>
<td>PHE</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>251</td>
<td>THR</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>15</td>
<td>SER</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>25</td>
<td>THR</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>33</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>36</td>
<td>PHE</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>38</td>
<td>VAL</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>42</td>
<td>TYR</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>47</td>
<td>MET</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>48</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>68</td>
<td>VAL</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>143</td>
<td>SER</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>152</td>
<td>VAL</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>164</td>
<td>ASN</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>169</td>
<td>ILE</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>176</td>
<td>THR</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>202</td>
<td>ILE</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>234</td>
<td>PHE</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>251</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>36</td>
<td>LEU</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>75</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>90</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>126</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>127</td>
<td>GLU</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>157</td>
<td>TYR</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>162</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>177</td>
<td>HIS</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>183</td>
<td>PHE</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>226</td>
<td>TRP</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>36</td>
<td>LEU</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>40</td>
<td>ILE</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>90</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>118</td>
<td>ILE</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>157</td>
<td>TYR</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>162</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>177</td>
<td>HIS</td>
</tr>
</tbody>
</table>

Continued on next page...
Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (23) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>K</td>
<td>91</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>44</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>68</td>
<td>HIS</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>137</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>368</td>
<td>GLN</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>87</td>
<td>ASN</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>178</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>44</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>68</td>
<td>HIS</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>75</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>137</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>289</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>368</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>29</td>
<td>HIS</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>44</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>68</td>
<td>HIS</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>137</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>368</td>
<td>GLN</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>87</td>
<td>ASN</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>178</td>
<td>GLN</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>173</td>
<td>HIS</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>178</td>
<td>GLN</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>91</td>
<td>ASN</td>
</tr>
</tbody>
</table>

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.
5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

Of 10 ligands modelled in this entry, 6 are monoatomic - leaving 4 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>6</td>
<td>PGT</td>
<td>C</td>
<td>302</td>
<td>-</td>
<td>50,50,50</td>
<td>1.20</td>
</tr>
<tr>
<td>6</td>
<td>PGT</td>
<td>G</td>
<td>302</td>
<td>-</td>
<td>50,50,50</td>
<td>1.30</td>
</tr>
<tr>
<td>6</td>
<td>PGT</td>
<td>G</td>
<td>303</td>
<td>-</td>
<td>50,50,50</td>
<td>1.28</td>
</tr>
<tr>
<td>6</td>
<td>PGT</td>
<td>K</td>
<td>302</td>
<td>-</td>
<td>50,50,50</td>
<td>1.41</td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>PGT</td>
<td>C</td>
<td>302</td>
<td>-</td>
<td>0/55/55</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PGT</td>
<td>G</td>
<td>302</td>
<td>-</td>
<td>0/55/55</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PGT</td>
<td>G</td>
<td>303</td>
<td>-</td>
<td>0/55/55</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PGT</td>
<td>K</td>
<td>302</td>
<td>-</td>
<td>0/55/55</td>
<td>0/0/0/0</td>
<td></td>
</tr>
</tbody>
</table>

All (16) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>G</td>
<td>302</td>
<td>PGT</td>
<td>O2-C2</td>
<td>-2.73</td>
<td>1.39</td>
<td>1.46</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>302</td>
<td>PGT</td>
<td>O2-C2</td>
<td>-2.72</td>
<td>1.39</td>
<td>1.46</td>
</tr>
<tr>
<td>6</td>
<td>K</td>
<td>302</td>
<td>PGT</td>
<td>O2-C2</td>
<td>-2.68</td>
<td>1.39</td>
<td>1.46</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>303</td>
<td>PGT</td>
<td>O2-C2</td>
<td>-2.61</td>
<td>1.40</td>
<td>1.46</td>
</tr>
<tr>
<td>6</td>
<td>K</td>
<td>302</td>
<td>PGT</td>
<td>C12-C11</td>
<td>2.48</td>
<td>1.57</td>
<td>1.50</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>302</td>
<td>PGT</td>
<td>C12-C11</td>
<td>2.54</td>
<td>1.57</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>C</td>
<td>302</td>
<td>PGT</td>
<td>C12-C11</td>
<td>2.54</td>
<td>1.57</td>
<td>1.50</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>303</td>
<td>PGT</td>
<td>C12-C11</td>
<td>2.66</td>
<td>1.58</td>
<td>1.50</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>302</td>
<td>PGT</td>
<td>O2-C31</td>
<td>3.25</td>
<td>1.43</td>
<td>1.34</td>
</tr>
<tr>
<td>6</td>
<td>K</td>
<td>302</td>
<td>PGT</td>
<td>O2-C31</td>
<td>3.47</td>
<td>1.44</td>
<td>1.34</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>302</td>
<td>PGT</td>
<td>O2-C31</td>
<td>3.60</td>
<td>1.44</td>
<td>1.34</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>303</td>
<td>PGT</td>
<td>O3-C11</td>
<td>3.70</td>
<td>1.44</td>
<td>1.33</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>303</td>
<td>PGT</td>
<td>O2-C31</td>
<td>3.78</td>
<td>1.45</td>
<td>1.34</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>302</td>
<td>PGT</td>
<td>O3-C11</td>
<td>3.83</td>
<td>1.44</td>
<td>1.33</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>303</td>
<td>PGT</td>
<td>O3-C11</td>
<td>3.86</td>
<td>1.44</td>
<td>1.33</td>
</tr>
<tr>
<td>6</td>
<td>K</td>
<td>302</td>
<td>PGT</td>
<td>O3-C11</td>
<td>4.31</td>
<td>1.45</td>
<td>1.33</td>
</tr>
</tbody>
</table>

All (9) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>G</td>
<td>302</td>
<td>PGT</td>
<td>O2-C31-O31</td>
<td>-3.49</td>
<td>115.08</td>
<td>123.69</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>302</td>
<td>PGT</td>
<td>O3-C11-O11</td>
<td>-2.90</td>
<td>116.51</td>
<td>123.58</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>303</td>
<td>PGT</td>
<td>O3-C11-O11</td>
<td>-2.09</td>
<td>118.48</td>
<td>123.58</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>303</td>
<td>PGT</td>
<td>O3-C3-C2</td>
<td>2.79</td>
<td>115.60</td>
<td>108.64</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>302</td>
<td>PGT</td>
<td>O2-C31-C32</td>
<td>3.30</td>
<td>118.51</td>
<td>111.55</td>
</tr>
<tr>
<td>6</td>
<td>K</td>
<td>302</td>
<td>PGT</td>
<td>O2-C31-C32</td>
<td>3.35</td>
<td>118.61</td>
<td>111.55</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>303</td>
<td>PGT</td>
<td>O3-C11-C12</td>
<td>3.44</td>
<td>121.86</td>
<td>111.92</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>303</td>
<td>PGT</td>
<td>O2-C31-C32</td>
<td>3.95</td>
<td>119.87</td>
<td>111.55</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>302</td>
<td>PGT</td>
<td>O2-C31-C32</td>
<td>4.76</td>
<td>121.58</td>
<td>111.55</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

4 monomers are involved in 105 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>C</td>
<td>302</td>
<td>PGT</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>302</td>
<td>PGT</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>303</td>
<td>PGT</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>K</td>
<td>302</td>
<td>PGT</td>
<td>94</td>
<td>0</td>
</tr>
</tbody>
</table>

5.7 Other polymers

There are no such residues in this entry.
5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ> 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q< 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ>2</th>
<th>OWAB(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>0/24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>0/24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>0/24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>214/256 (83%)</td>
<td>0.39</td>
<td>15 (7%)</td>
<td>16 11</td>
<td>26, 51, 93, 124 0</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>212/256 (82%)</td>
<td>0.28</td>
<td>17 (8%)</td>
<td>12 8</td>
<td>22, 46, 86, 112 0</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>213/256 (83%)</td>
<td>0.18</td>
<td>14 (6%)</td>
<td>18 13</td>
<td>14, 37, 92, 120 0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>388/420 (92%)</td>
<td>0.28</td>
<td>25 (6%)</td>
<td>19 14</td>
<td>18, 49, 82, 105 0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>388/420 (92%)</td>
<td>-0.21</td>
<td>8 (2%)</td>
<td>63 58</td>
<td>7, 28, 55, 82 0</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>388/420 (92%)</td>
<td>0.32</td>
<td>34 (8%)</td>
<td>10 6</td>
<td>18, 43, 83, 141 0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>244/252 (96%)</td>
<td>-0.03</td>
<td>9 (3%)</td>
<td>41 33</td>
<td>24, 39, 71, 123 0</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>244/252 (96%)</td>
<td>-0.16</td>
<td>3 (1%)</td>
<td>79 75</td>
<td>10, 24, 63, 93 0</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>244/252 (96%)</td>
<td>-0.31</td>
<td>2 (0%)</td>
<td>86 84</td>
<td>11, 24, 52, 88 0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>2535/2856 (88%)</td>
<td>0.08</td>
<td>127 (5%)</td>
<td>29 22</td>
<td>7, 37, 80, 141 0</td>
</tr>
</tbody>
</table>

All (127) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>G</td>
<td>252</td>
<td>LYS</td>
<td>10.0</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>350</td>
<td>VAL</td>
<td>9.9</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>252</td>
<td>LYS</td>
<td>9.2</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>253</td>
<td>LEU</td>
<td>7.9</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>17</td>
<td>SER</td>
<td>7.2</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>198</td>
<td>GLY</td>
<td>7.0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>399</td>
<td>GLY</td>
<td>6.5</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>346</td>
<td>ARG</td>
<td>6.1</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>47</td>
<td>TRP</td>
<td>5.9</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>337</td>
<td>ASP</td>
<td>5.5</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>252</td>
<td>LYS</td>
<td>5.3</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>47</td>
<td>TRP</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>G</td>
<td>140</td>
<td>THR</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>254</td>
<td>LEU</td>
<td>4.9</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>348</td>
<td>LEU</td>
<td>4.7</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>196</td>
<td>ASN</td>
<td>4.6</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>397</td>
<td>PRO</td>
<td>4.6</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>48</td>
<td>ARG</td>
<td>4.4</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>348</td>
<td>LEU</td>
<td>4.4</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>253</td>
<td>LEU</td>
<td>4.3</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>316</td>
<td>LEU</td>
<td>4.3</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>18</td>
<td>VAL</td>
<td>4.3</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>336</td>
<td>PRO</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>226</td>
<td>TRP</td>
<td>3.9</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>350</td>
<td>VAL</td>
<td>3.9</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>352</td>
<td>ALA</td>
<td>3.9</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>17</td>
<td>SER</td>
<td>3.8</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>311</td>
<td>SER</td>
<td>3.8</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>256</td>
<td>GLU</td>
<td>3.7</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>48</td>
<td>ARG</td>
<td>3.7</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>370</td>
<td>ALA</td>
<td>3.7</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>170</td>
<td>ASP</td>
<td>3.7</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>139</td>
<td>ASP</td>
<td>3.6</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>193</td>
<td>ILE</td>
<td>3.6</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>352</td>
<td>ALA</td>
<td>3.6</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>10</td>
<td>VAL</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>17</td>
<td>ALA</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>60</td>
<td>THR</td>
<td>3.4</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>242</td>
<td>TRP</td>
<td>3.4</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>313</td>
<td>PRO</td>
<td>3.4</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>194</td>
<td>ILE</td>
<td>3.4</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>169</td>
<td>LEU</td>
<td>3.4</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>219</td>
<td>LYS</td>
<td>3.4</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>252</td>
<td>ILE</td>
<td>3.3</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>17</td>
<td>SER</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>47</td>
<td>TRP</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>139</td>
<td>ASP</td>
<td>3.2</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>349</td>
<td>SER</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>255</td>
<td>THR</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>355</td>
<td>ILE</td>
<td>3.1</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>140</td>
<td>THR</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>67</td>
<td>TRP</td>
<td>2.9</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>317</td>
<td>GLY</td>
<td>2.9</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>298</td>
<td>ARG</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>G</td>
<td>48</td>
<td>ARG</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>398</td>
<td>ASP</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>17</td>
<td>ALA</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>397</td>
<td>PRO</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>159</td>
<td>MET</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>59</td>
<td>GLU</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>328</td>
<td>ASN</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>157</td>
<td>GLY</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>14</td>
<td>ASN</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>254</td>
<td>LEU</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>227</td>
<td>MET</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>158</td>
<td>ASP</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>10</td>
<td>VAL</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>314</td>
<td>LEU</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>191</td>
<td>PHE</td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>9</td>
<td>ALA</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>354</td>
<td>PRO</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>413</td>
<td>LYS</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>382</td>
<td>TYR</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>416</td>
<td>ALA</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>196</td>
<td>ASN</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>274</td>
<td>GLU</td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>10</td>
<td>VAL</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>61</td>
<td>TYR</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>382</td>
<td>TYR</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>350</td>
<td>VAL</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>214</td>
<td>GLY</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>67</td>
<td>TRP</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>61</td>
<td>TYR</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>91</td>
<td>ASN</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>64</td>
<td>SER</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>330</td>
<td>ASP</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>294</td>
<td>LYS</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>334</td>
<td>THR</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>256</td>
<td>ARG</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>324</td>
<td>LEU</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>366</td>
<td>LYS</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>194</td>
<td>ILE</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>416</td>
<td>ALA</td>
<td>2.3</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>11</td>
<td>GLY</td>
<td>2.3</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>16</td>
<td>VAL</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>332</td>
<td>PHE</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C</td>
<td>33</td>
<td>VAL</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>86</td>
<td>LYS</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>319</td>
<td>TYR</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>249</td>
<td>GLU</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>363</td>
<td>ILE</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>213</td>
<td>PHE</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>180</td>
<td>GLY</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>415</td>
<td>VAL</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>332</td>
<td>PHE</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>132</td>
<td>TRP</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>227</td>
<td>MET</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>139</td>
<td>ASP</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>K</td>
<td>51</td>
<td>LEU</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>315</td>
<td>ARG</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>351</td>
<td>ASP</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>400</td>
<td>LYS</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>204</td>
<td>VAL</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>352</td>
<td>ALA</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>60</td>
<td>GLU</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>256</td>
<td>ARG</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>219</td>
<td>LYS</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>328</td>
<td>ASN</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>192</td>
<td>MET</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>230</td>
<td>ARG</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>353</td>
<td>THR</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>182</td>
<td>SER</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>312</td>
<td>GLN</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>13</td>
<td>PHE</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>357</td>
<td>PRO</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>160</td>
<td>LYS</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>368</td>
<td>GLN</td>
<td>2.0</td>
</tr>
</tbody>
</table>

6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates

There are no carbohydrates in this entry.
6.4 Ligands

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q< 0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RCC</th>
<th>RSR</th>
<th>B-factors(Å2)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>PGT</td>
<td>G</td>
<td>303</td>
<td>51/51</td>
<td>0.81</td>
<td>0.33</td>
<td>53,71,114,115</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>PGT</td>
<td>C</td>
<td>302</td>
<td>51/51</td>
<td>0.86</td>
<td>0.34</td>
<td>51,75,90,95</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>PGT</td>
<td>G</td>
<td>302</td>
<td>51/51</td>
<td>0.89</td>
<td>0.34</td>
<td>45,59,99,106</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>PGT</td>
<td>K</td>
<td>302</td>
<td>51/51</td>
<td>0.89</td>
<td>0.26</td>
<td>24,39,51,53</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>CU</td>
<td>A</td>
<td>501</td>
<td>1/1</td>
<td>0.97</td>
<td>0.10</td>
<td>49,49,49,49</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>CU</td>
<td>C</td>
<td>301</td>
<td>1/1</td>
<td>0.98</td>
<td>0.04</td>
<td>62,62,62,62</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>CU</td>
<td>G</td>
<td>301</td>
<td>1/1</td>
<td>0.98</td>
<td>0.07</td>
<td>70,70,70,70</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>CU</td>
<td>I</td>
<td>501</td>
<td>1/1</td>
<td>0.99</td>
<td>0.07</td>
<td>60,60,60,60</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>CU</td>
<td>K</td>
<td>301</td>
<td>1/1</td>
<td>0.99</td>
<td>0.05</td>
<td>62,62,62,62</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>CU</td>
<td>E</td>
<td>501</td>
<td>1/1</td>
<td>1.00</td>
<td>0.10</td>
<td>24,24,24,24</td>
<td>1</td>
</tr>
</tbody>
</table>

6.5 Other polymers

There are no such residues in this entry.