

wwPDB EM Validation Summary Report (i)

Mar 6, 2025 - 05:31 pm GMT

PDB ID	:	8PHJ
EMDB ID	:	EMD-17667
Title	:	cA4-bound Cami1 in complex with 70S ribosome
Authors	:	Tamulaitiene, G.; Mogila, I.; Sasnauskas, G.; Tamulaitis, G.
Deposited on	:	2023-06-20
Resolution	:	3.67 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev117
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.41

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.67 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	EM structures
wietric	$(\# {\rm Entries})$	$(\# { m Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	0	55	91%	• 7%
2	1	46		
3	2	65	97%	
4	3	38	100%	
5	4	70	86%	14%
6	5	165	7%	27%
7	6	142	5% 94%	• 6%
8	7	77	16%	25% •••

Mol	Chain	Length	Quality of chain	
8	8	77	9% 70%	26% •
9	9	31	10% 90%	
10	А	1542	85%	12% •
11	В	241	• 92%	• 7%
12	С	233	87%	• 12%
13	D	206	99%	•
14	Е	167	92%	•• 7%
15	F	135	76% .	24%
16	G	179	• 84%	• 15%
17	Н	130	98%	••
18	Ι	130	95%	•••
19	J	103	94%	• 5%
20	K	129	88%	• 9%
21	L	124	• 97%	••
22	М	118	97%	•••
23	Ν	101	99%	•
24	О	89	▲ 96%	••
25	Р	82	98%	••
26	Q	84	92%	• 6%
27	R	75	85%	• 13%
28	S	92	87%	• 10%
29	Т	87	98%	••
30	U	71	97%	••
31	W	120	5 1% 49%	
32	Х	406	94%	5%

Mol	Chain	Length	Quality of chain	
32	Y	406	92%	8%
33	a	2904	87%	12% •
34	b	120	91%	8% •
35	с	273	99%	•
36	d	209	98%	•
37	е	201	99%	•
38	f	179	97%	••
39	g	177	95%	• •
40	h	149	97%	•
41	i	142	99%	•
42	j	123	98%	•
43	k	144	97%	••
44	l	136	• 99%	•
45	m	127	91%	• 7%
46	n	117	97%	••
47	0	115	99%	•
48	р	118	98%	••
49	q	103	99%	•
50	r	110	98%	•
51	\mathbf{S}	100	92%	• 7%
52	t	104	92%	• 7%
53	u	94	98%	•
54	v	85	89%	• 9%
55	W	78	97%	••
56	х	63	94%	• 5%

Mol	Chain	Length	Quality of chain
57	У	59	93% • •
58	Z	57	96% •
59	Z	4	25% 75%

2 Entry composition (i)

There are 61 unique types of molecules in this entry. The entry contains 152518 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Large ribosomal subunit protein bL33.

Mol	Chain	Residues	Atoms				AltConf	Trace
1	0	51	Total 417	C 269	N 76	O 72	0	0

• Molecule 2 is a protein called Large ribosomal subunit protein bL34.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	1	46	Total 377	C 228	N 90	O 57	S 2	0	0

• Molecule 3 is a protein called Large ribosomal subunit protein bL35.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	2	64	Total 504	C 323	N 105	0 74	${ m S}_2$	0	0
			504	323	105	14	L		

• Molecule 4 is a protein called Large ribosomal subunit protein bL36A.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	3	38	Total 302	C 185	N 65	O 48	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 5 is a protein called Large ribosomal subunit protein bL31A.

Mol	Chain	Residues	Atoms					AltConf	Trace
Б	1	60	Total	С	Ν	Ο	\mathbf{S}	0	0
5	4	00	480	299	90	85	6	0	0

• Molecule 6 is a protein called Large ribosomal subunit protein uL10.

Mol	Chain	Residues		At	oms			AltConf	Trace
6	5	121	Total 907	C 577	N 161	0 166	${ m S} { m 3}$	0	0

• Molecule 7 is a protein called Large ribosomal subunit protein uL11.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
7	6	134	Total 968	C 613	N 167	0 182	S 6	0	0

• Molecule 8 is a RNA chain called fMet-tRNA(fMet).

Mol	Chain	Residues			Atom		AltConf	Trace		
8	7	76	Total	С	Ν	Ο	Р	S	0	0
0	1	70	1625	726	294	528	76	1	0	0
8	8	77	Total	С	Ν	0	Р	S	0	0
0	0	11	1642	735	297	533	76	1	0	0

• Molecule 9 is a RNA chain called mRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	9	3	Total 65	C 29	N 12	0 21	Р 3	0	0

• Molecule 10 is a RNA chain called 16S rRNA.

Mol	Chain	Residues		1	Atoms			AltConf	Trace
10	А	1503	Total 32276	C 14402	N 5932	O 10439	Р 1503	0	0

• Molecule 11 is a protein called Small ribosomal subunit protein uS2.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	В	224	Total 1753	C 1109	N 315	0 321	S 8	0	0

• Molecule 12 is a protein called Small ribosomal subunit protein uS3.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
12	С	206	Total 1624	C 1028	N 305	0 288	${ m S} { m 3}$	0	0

• Molecule 13 is a protein called Small ribosomal subunit protein uS4.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
13	D	205	Total 1643	C 1026	N 315	O 298	$\frac{S}{4}$	0	0

• Molecule 14 is a protein called Small ribosomal subunit protein uS5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	Е	156	Total 1152	С 717	N 217	0 212	S 6	0	0

• Molecule 15 is a protein called Small ribosomal subunit protein bS6, fully modified isoform.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	F	103	Total 839	C 530	N 151	0 151	${ m S} 7$	0	0

• Molecule 16 is a protein called Small ribosomal subunit protein uS7.

Mol	Chain	Residues	Atoms					AltConf	Trace
16	G	152	Total 1185	C 738	N 227	0 216	S 4	0	0

• Molecule 17 is a protein called Small ribosomal subunit protein uS8.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
17	Н	129	Total 979	C 616	N 173	0 184	${ m S}{ m 6}$	0	0

• Molecule 18 is a protein called Small ribosomal subunit protein uS9.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	Ι	127	Total 1022	C 634	N 206	0 179	${ m S} { m 3}$	0	0

• Molecule 19 is a protein called Small ribosomal subunit protein uS10.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	J	98	Total 786	C 493	N 150	0 142	S 1	0	0

• Molecule 20 is a protein called Small ribosomal subunit protein uS11.

Mol	Chain	Residues		At	AltConf	Trace			
20	К	117	Total 877	C 540	N 173	0 161	${ m S} { m 3}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
K	119	IAS	ASN	modified residue	UNP P0A7R9

• Molecule 21 is a protein called Small ribosomal subunit protein uS12.

Mol	Chain	Residues		At	AltConf	Trace			
21	L	123	Total 949	C 585	N 195	0 165	${S \atop 4}$	0	0

• Molecule 22 is a protein called Small ribosomal subunit protein uS13.

Mol	Chain	Residues		At	AltConf	Trace			
22	М	115	Total 891	C 552	N 179	O 157	${ m S} { m 3}$	0	0

• Molecule 23 is a protein called Small ribosomal subunit protein uS14.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	Ν	100	Total 805	C 499	N 164	O 139	${ m S} { m 3}$	0	0

• Molecule 24 is a protein called Small ribosomal subunit protein uS15.

Mol	Chain	Residues		At	AltConf	Trace			
24	О	88	Total 714	C 439	N 144	O 130	S 1	0	0

• Molecule 25 is a protein called Small ribosomal subunit protein bS16.

Mol	Chain	Residues		At	AltConf	Trace			
25	Р	81	Total 643	C 403	N 127	0 112	S 1	0	0

• Molecule 26 is a protein called Small ribosomal subunit protein uS17.

Mol	Chain	Residues		At	oms		AltConf	Trace	
26	Q	79	Total 641	C 406	N 120	0 112	${ m S} { m 3}$	0	0

• Molecule 27 is a protein called Small ribosomal subunit protein bS18.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
27	R	65	Total 535	C 339	N 100	O 95	S 1	0	0

• Molecule 28 is a protein called Small ribosomal subunit protein uS19.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	S	83	Total 663	C 424	N 126	0 111	${ m S} { m 2}$	0	0

• Molecule 29 is a protein called Small ribosomal subunit protein bS20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	Т	86	Total 670	C 414	N 138	0 115	${ m S} { m 3}$	0	0

• Molecule 30 is a protein called Small ribosomal subunit protein bS21.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
30	U	70	Total 589	C 366	N 125	O 97	S 1	0	0

• Molecule 31 is a protein called Large ribosomal subunit protein bL12.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
31	W	61	Total 402	C 251	N 71	O 80	0	0

• Molecule 32 is a protein called CRISPR-associated protein, APE2256 family.

Mol	Chain	Residues	Atoms					AltConf	Trace
32 X	201	Total	С	Ν	0	\mathbf{S}	0	0	
	Λ	364	2984	1905	531	538	10	0	0
20	V	275	Total	С	Ν	0	S	0	0
32	Ĩ	575	2912	1852	517	533	10	0	0

There are 56 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Х	2	ALA	PRO	engineered mutation	UNP D3RW14
Х	11	ALA	SER	engineered mutation	UNP D3RW14
Х	343	ALA	HIS	engineered mutation	UNP D3RW14
Х	382	GLY	-	expression tag	UNP D3RW14

Chain	Residue	Modelled	Actual	Comment	Reference
Х	383	GLU	-	expression tag	UNP D3RW14
Х	384	GLY	_	expression tag	UNP D3RW14
Х	385	TRP	-	expression tag	UNP D3RW14
Х	386	SER	-	expression tag	UNP D3RW14
Х	387	HIS	-	expression tag	UNP D3RW14
Х	388	PRO	-	expression tag	UNP D3RW14
Х	389	GLN	-	expression tag	UNP D3RW14
Х	390	PHE	-	expression tag	UNP D3RW14
Х	391	GLU	-	expression tag	UNP D3RW14
Х	392	LYS	-	expression tag	UNP D3RW14
Х	393	GLY	-	expression tag	UNP D3RW14
Х	394	VAL	-	expression tag	UNP D3RW14
Х	395	GLU	-	expression tag	UNP D3RW14
Х	396	GLY	-	expression tag	UNP D3RW14
Х	397	HIS	-	expression tag	UNP D3RW14
Х	398	HIS	-	expression tag	UNP D3RW14
Х	399	HIS	-	expression tag	UNP D3RW14
Х	400	HIS	-	expression tag	UNP D3RW14
Х	401	HIS	-	expression tag	UNP D3RW14
X	402	HIS	-	expression tag	UNP D3RW14
X	403	HIS	-	expression tag	UNP D3RW14
X	404	HIS	-	expression tag	UNP D3RW14
X	405	HIS	-	expression tag	UNP D3RW14
X	406	HIS	-	expression tag	UNP D3RW14
Y	2	ALA	PRO	engineered mutation	UNP D3RW14
Y	11	ALA	SER	engineered mutation	UNP D3RW14
Y	343	ALA	HIS	engineered mutation	UNP D3RW14
Y	382	GLY	-	expression tag	UNP D3RW14
Y	383	GLU	-	expression tag	UNP D3RW14
Y	384	GLY	-	expression tag	UNP D3RW14
Y	385	TRP	-	expression tag	UNP D3RW14
Y	386	SER	-	expression tag	UNP D3RW14
Y	387	HIS	-	expression tag	UNP D3RW14
Y	388	PRO	-	expression tag	UNP D3RW14
Y	389	GLN	-	expression tag	UNP D3RW14
Y	390	PHE	-	expression tag	UNP D3RW14
Y	391	GLU	-	expression tag	UNP D3RW14
Y	392	LYS	-	expression tag	UNP D3RW14
Y	393	GLY	-	expression tag	UNP D3RW14
Y	394	VAL	-	expression tag	UNP D3RW14
Y	395	GLU	-	expression tag	UNP D3RW14
Y Y	396	GLY	-	expression tag	UNP D3RW14

Chain	Residue	Modelled	Actual	Comment	Reference
Y	397	HIS	-	expression tag	UNP D3RW14
Y	398	HIS	-	expression tag	UNP D3RW14
Y	399	HIS	-	expression tag	UNP D3RW14
Y	400	HIS	-	expression tag	UNP D3RW14
Y	401	HIS	-	expression tag	UNP D3RW14
Y	402	HIS	-	expression tag	UNP D3RW14
Y	403	HIS	-	expression tag	UNP D3RW14
Y	404	HIS	-	expression tag	UNP D3RW14
Y	405	HIS	-	expression tag	UNP D3RW14
Y	406	HIS	-	expression tag	UNP D3RW14

• Molecule 33 is a RNA chain called 23S rRNA (2862-MER).

Mol	Chain	Residues			Atoms			AltConf	Trace
33	a	2862	Total 61456	C 27423	N 11310	O 19861	Р 2862	0	0

• Molecule 34 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		A	AltConf	Trace			
34	b	119	Total 2549	C 1135	N 466	O 829	Р 119	0	0

• Molecule 35 is a protein called Large ribosomal subunit protein uL2.

Mol	Chain	Residues		At	AltConf	Trace			
35	с	271	Total 2082	C 1288	N 423	O 364	${ m S} 7$	0	0

• Molecule 36 is a protein called Large ribosomal subunit protein uL3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	d	209	Total 1566	C 980	N 288	0 294	S 4	0	0

• Molecule 37 is a protein called Large ribosomal subunit protein uL4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	е	201	Total 1552	C 974	N 283	O 290	${ m S}{ m 5}$	0	0

• Molecule 38 is a protein called Large ribosomal subunit protein uL5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
38	f	177	Total 1410	C 899	N 249	O 256	S 6	0	0

• Molecule 39 is a protein called Large ribosomal subunit protein uL6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	g	174	Total 1301	C 819	N 239	0 241	${ m S} { m 2}$	0	0

• Molecule 40 is a protein called Large ribosomal subunit protein bL9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	h	145	Total 1079	C 682	N 192	0 204	S 1	0	0

• Molecule 41 is a protein called Large ribosomal subunit protein uL13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	i	142	Total 1129	C 714	N 212	O 199	${S \over 4}$	0	0

• Molecule 42 is a protein called Large ribosomal subunit protein uL14.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	j	123	Total 946	C 593	N 181	0 166	S 6	0	0

• Molecule 43 is a protein called Large ribosomal subunit protein uL15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	k	143	Total 1043	C 649	N 206	0 186	${ m S} { m 2}$	0	0

• Molecule 44 is a protein called Large ribosomal subunit protein uL16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
44	1	136	Total 1074	C 686	N 205	0 177	${f S}{f 6}$	0	0

• Molecule 45 is a protein called Large ribosomal subunit protein bL17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
45	m	118	Total 945	$\begin{array}{c} \mathrm{C} \\ 585 \end{array}$	N 194	0 161	${f S}{5}$	0	0

• Molecule 46 is a protein called Large ribosomal subunit protein uL18.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
46	n	116	Total 892	$\begin{array}{c} \mathrm{C} \\ 552 \end{array}$	N 178	O 162	0	0

• Molecule 47 is a protein called Large ribosomal subunit protein bL19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
47	О	114	Total 917	C 574	N 179	0 163	S 1	0	0

• Molecule 48 is a protein called Large ribosomal subunit protein bL20.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
48	р	117	Total 947	C 604	N 192	O 151	0	0

• Molecule 49 is a protein called Large ribosomal subunit protein bL21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
49	q	103	Total 816	C 516	N 153	0 145	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 50 is a protein called Large ribosomal subunit protein uL22.

Mol	Chain	Residues	Atoms				AltConf	Trace	
50	r	110	Total 857	C 532	N 166	0 156	${ m S} { m 3}$	0	0

• Molecule 51 is a protein called Large ribosomal subunit protein uL23.

Mol	Chain	Residues	Atoms				AltConf	Trace	
51	S	93	Total 738	C 466	N 139	0 131	${ m S} { m 2}$	0	0

• Molecule 52 is a protein called Large ribosomal subunit protein uL24.

Mol	Chain	Residues	Atoms			AltConf	Trace	
52	t	97	Total 742	C 469	N 139	0 134	0	0

• Molecule 53 is a protein called Large ribosomal subunit protein bL25.

Mol	Chain	Residues	Atoms				AltConf	Trace	
53	u	94	Total 753	C 479	N 137	0 134	${f S}\ 3$	0	0

• Molecule 54 is a protein called Large ribosomal subunit protein bL27.

Mol	Chain	Residues	Atoms				AltConf	Trace	
54	V	77	Total 582	C 360	N 115	O 106	S 1	0	0

• Molecule 55 is a protein called Large ribosomal subunit protein bL28.

Mol	Chain	Residues	Atoms				AltConf	Trace	
55	W	77	Total 625	C 388	N 129	O 106	${S \over 2}$	0	0

• Molecule 56 is a protein called Large ribosomal subunit protein uL29.

Mol	Chain	Residues	Atoms				AltConf	Trace	
56	х	60	Total 491	C 303	N 96	0 91	S 1	0	0

• Molecule 57 is a protein called Large ribosomal subunit protein uL30.

Mol	Chain	Residues	Atoms				AltConf	Trace	
57	17	57	Total	С	Ν	0	S	0	0
51	У	51	440	275	85	78	2	0	0

• Molecule 58 is a protein called Large ribosomal subunit protein bL32.

Mol	Chain	Residues	Atoms				AltConf	Trace	
58	Z	55	Total 434	C 263	N 92	0 78	S 1	0	0

• Molecule 59 is a RNA chain called Cyclic tetraadenosine monophosphate (cA4).

Mol	Chain	Residues	Atoms			AltConf	Trace		
59	Ζ	4	Total 88	C 40	N 20	0 24	Р 4	0	0

• Molecule 60 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
60	3	1	Total Zn 1 1	0
60	4	1	Total Zn 1 1	0

• Molecule 61 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
61	А	79	Total Mg 79 79	0
61	a	156	Total Mg 156 156	0
61	b	4	Total Mg 4 4	0
61	С	1	Total Mg 1 1	0
61	Z	1	Total Mg 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Large ribosomal subunit protein bL33

• Molecule 7: Large ribosomal subunit protein uL11

• Molecule 16: Small ribosom	nal subunit protein uS7	
Chain G:	84%	• 15%
MET P2 R5 M1 30 M1 30 M1 30 F1R AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC	GLY SER SER LYS CLYS GLN PRO GLN CLY CLY ALA ALA ALA ALA ALA ASN	
• Molecule 17: Small riboson	nal subunit protein uS8	
Chain H:	98%	
MET 82 829 A130		
• Molecule 18: Small ribosom	nal subunit protein uS9	
Chain I:	95%	
MET ALA GLU GLU VG7 V14 1105 R130 R130		
• Molecule 19: Small ribosom	nal subunit protein uS10	
Chain J:	94%	• 5%
MET GLM ASN GLN R5 R3 1 + 7 C C 1 C C C C C C		
• Molecule 20: Small ribosom	nal subunit protein uS11	
Chain K:	88%	• 9%
MET ALA LYS ALA ALA ALA PRO PRO PRO ALA ARG CVAL ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG		
• Molecule 21: Small ribosom	nal subunit protein uS12	
Chain L:	97%	<mark></mark>
MET A2 135 N59 A124		
• Molecule 22: Small ribosom	nal subunit protein uS13	
Chain M:	97%	
MET A2 A2 A2 A2 A2 A13 A2 A14 A2 A14 A2 A14		

• Molecule 23: Small ribosomal subunit protein uS14	
Chain N: 99%	
MET M101	
\bullet Molecule 24: Small ribosomal subunit protein uS15	
Chain O:	
MET S13 K13 K89	
\bullet Molecule 25: Small ribosomal subunit protein bS16	
Chain P: 98%	
M1 AB1 ALA	
\bullet Molecule 26: Small ribosomal subunit protein uS17	
Chain Q: 92%	• 6%
MET THR ASP ASP ASP N51 VAL LEU LEU	
\bullet Molecule 27: Small ribosomal subunit protein bS18	
Chain R: 85%	• 13%
MET ALA ALA ARG ARG ARG ARG CARG CARG CARG CLN	
\bullet Molecule 28: Small ribosomal subunit protein uS19	
Chain S: 87%	• 10%
MET 111 148 148 148 148 148 148 148 148 148	
\bullet Molecule 29: Small ribosomal subunit protein bS20	
Chain T: 98%	
AST AST AST AST AST AST	

• Molecule 38: Large ribosomal subunit protein uL5

Chain f:	97%
MET A2 L152 1159 F175 F175 R178 LYS	
• Molecule 39: 1	Large ribosomal subunit protein uL6
Chain g:	95% .
MET 82 V17 D60 184 T127	LYS LYS LYS
• Molecule 40: 1	Large ribosomal subunit protein bL9
Chain h:	97%
M1 463 464 465 474	177 180 481 882 882 887 897 800 4005 8105 8105 8105 8105 8105 8105 8105 8
• Molecule 41: 1	Large ribosomal subunit protein uL13
Chain i:	99%
M131 0135 0135	
• Molecule 42: 1	Large ribosomal subunit protein uL14
Chain j:	98%
M1 828 158 158 104 1104	
• Molecule 43: 1	Large ribosomal subunit protein uL15
Chain k:	97%
M1 842 842 842 842 767 794 794 6113	
• Molecule 44: 2	Large ribosomal subunit protein uL16
Chain l:	99%

W I D E TA BANK

• Molecule 45: Large ribosomal subunit protein bL17

Chain m:	91%	• 7%
M1 815 151 116 1117	R118 SER GLU ALA GLU ALA ALA CLU	
• Molecule	46: Large ribosomal subunit protein uL18	
Chain n:	97%	• •
MET D2 R16 T31 F117		
• Molecule	47: Large ribosomal subunit protein bL19	
Chain o:	99%	
MET S2 N115		
• Molecule	48: Large ribosomal subunit protein bL20	
Chain p:	98%	
MET A2 117 A118 A118		
• Molecule	49: Large ribosomal subunit protein bL21	
Chain q:	99%	
M1 E37 A103		
• Molecule	50: Large ribosomal subunit protein uL22	
Chain r:	98%	·
M1 14 V29 R110		
• Molecule	51: Large ribosomal subunit protein uL23	
Chain s:	92%	• 7%

• Molecule 52: Large ribosomal subunit protein uL24

Chain t:	92%	• 7%
MET A2 V36 V36 V39 PR0 A1A ASN ASN CASN CASN CASN CASN CASN CASN		
• Molecule 53: Large r	ibosomal subunit protein bL25	
Chain u:	98%	
M1 162 A94 A94		
• Molecule 54: Large r	ibosomal subunit protein bL27	
Chain v:	89%	• 9%
MET ALLA HTS LIYS LIYS GLY GLY GLY GLY BB5		
• Molecule 55: Large r	ibosomal subunit protein bL28	
Chain w:	97%	
805 718 718		
• Molecule 56: Large r	ibosomal subunit protein uL29	
Chain x:	94%	• 5%
MET K2 155 617 617 ALA		
• Molecule 57: Large r	ibosomal subunit protein uL30	
Chain y:	93%	
MET K3 T35 E59		
• Molecule 58: Large r	ibosomal subunit protein bL32	
Chain z:	96%	•

• Molecule 59: Cyclic tetraadenosine monophosphate (cA4)

Chain Z:	25%	75%
A1 A3 A4		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	158387	Depositor
Resolution determination method	OTHER	Depositor
CTF correction method	NONE	Depositor
Microscope	TFS GLACIOS	Depositor
Voltage (kV)	200	Depositor
Electron dose $(e^-/\text{\AA}^2)$	30	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	2000	Depositor
Magnification	Not provided	
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	33.264	Depositor
Minimum map value	-14.170	Depositor
Average map value	0.000	Depositor
Map value standard deviation	1.000	Depositor
Recommended contour level	2	Depositor
Map size (Å)	448.0, 448.0, 448.0	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.12, 1.12, 1.12	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, G7M, MEQ, 3TD, 6MZ, MA6, 4SU, IAS, OMG, 5MC, MG, PSU, UR3, OMC, 2MG, 2MA, 1MG, 5MU, H2U, 4OC, OMU

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles	
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	0	0.34	0/424	0.53	0/565
2	1	0.32	0/380	0.65	0/498
3	2	0.31	0/513	0.53	0/676
4	3	0.33	0/303	0.57	0/397
5	4	0.27	0/488	0.48	0/649
6	5	0.25	0/916	0.50	0/1232
7	6	0.25	0/982	0.46	0/1328
8	7	0.25	0/1701	0.69	0/2649
8	8	0.22	0/1720	0.69	0/2679
9	9	0.33	0/72	0.63	0/110
10	А	0.54	0/35860	0.72	2/55930~(0.0%)
11	В	0.26	0/1784	0.47	0/2403
12	С	0.29	0/1651	0.52	0/2225
13	D	0.30	0/1665	0.51	0/2227
14	Е	0.32	0/1165	0.51	0/1568
15	F	0.29	0/858	0.50	0/1160
16	G	0.26	0/1200	0.50	0/1610
17	Н	0.31	0/989	0.51	0/1326
18	Ι	0.29	0/1034	0.56	0/1375
19	J	0.29	0/796	0.57	0/1077
20	К	0.29	0/884	0.54	0/1191
21	L	0.32	0/963	0.58	0/1293
22	М	0.27	0/900	0.54	0/1204
23	N	0.28	0/817	0.52	0/1088
24	0	0.27	0/722	0.52	0/964
25	Р	0.32	0/653	0.56	0/877
26	Q	0.31	0/650	0.53	0/871
27	R	0.31	0/544	0.52	0/731
28	S	0.28	0/680	0.50	0/915
29	Т	0.27	0/676	0.45	0/895
30	U	0.27	0/597	0.56	0/792

Mal	Chain	Bond	lengths	В	ond angles
INIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
31	W	0.24	0/401	0.43	0/541
32	Х	0.33	0/3049	0.51	0/4143
32	Y	0.34	0/2972	0.52	0/4039
33	a	0.63	0/68253	0.75	5/106469~(0.0%)
34	b	0.49	0/2850	0.70	0/4444
35	с	0.35	0/2121	0.57	0/2852
36	d	0.34	0/1576	0.54	0/2119
37	е	0.30	0/1571	0.52	0/2113
38	f	0.28	0/1434	0.50	0/1926
39	g	0.30	0/1321	0.51	0/1790
40	h	0.26	0/1088	0.50	0/1468
41	i	0.34	0/1152	0.51	0/1551
42	j	0.33	0/955	0.58	0/1279
43	k	0.31	0/1052	0.57	0/1401
44	1	0.33	0/1093	0.56	0/1460
45	m	0.32	0/958	0.57	0/1281
46	n	0.30	0/902	0.54	0/1209
47	0	0.33	0/929	0.54	0/1242
48	р	0.36	0/960	0.53	0/1278
49	q	0.33	0/829	0.56	0/1107
50	r	0.30	0/864	0.53	0/1156
51	s	0.30	0/744	0.51	0/994
52	t	0.29	0/748	0.50	0/994
53	u	0.31	0/766	0.50	0/1025
54	V	0.33	0/589	0.55	0/780
55	W	0.31	0/635	0.58	0/848
56	Х	0.25	0/492	0.51	0/655
57	У	0.29	0/444	0.55	0/594
58	Z	0.34	0/440	0.59	0/588
59	Ζ	0.69	0/99	0.82	0/152
All	All	0.52	0/163874	0.68	7/244003~(0.0%)

There are no bond length outliers.

The worst 5 of 7 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
33	a	512	G	O4'-C1'-N9	6.07	113.06	108.20
33	a	1313	U	C2-N1-C1'	6.00	124.91	117.70
33	a	12	U	N3-C2-O2	-5.73	118.19	122.20
10	А	1158	С	C2-N1-C1'	5.58	124.93	118.80
33	a	12	U	N1-C2-O2	5.45	126.61	122.80

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	0	49/55~(89%)	48 (98%)	1 (2%)	0	100	100
2	1	44/46~(96%)	44 (100%)	0	0	100	100
3	2	62/65~(95%)	57 (92%)	5 (8%)	0	100	100
4	3	36/38~(95%)	36 (100%)	0	0	100	100
5	4	56/70~(80%)	54 (96%)	2 (4%)	0	100	100
6	5	113/165~(68%)	111 (98%)	2 (2%)	0	100	100
7	6	132/142~(93%)	123 (93%)	9 (7%)	0	100	100
11	В	222/241~(92%)	211 (95%)	11 (5%)	0	100	100
12	С	204/233~(88%)	197 (97%)	7 (3%)	0	100	100
13	D	203/206~(98%)	199 (98%)	4 (2%)	0	100	100
14	Ε	154/167~(92%)	149 (97%)	4 (3%)	1 (1%)	22	54
15	F	101/135~(75%)	97~(96%)	4 (4%)	0	100	100
16	G	150/179~(84%)	145 (97%)	5 (3%)	0	100	100
17	Н	127/130~(98%)	124 (98%)	3 (2%)	0	100	100
18	Ι	125/130~(96%)	120 (96%)	5 (4%)	0	100	100
19	J	96/103~(93%)	90~(94%)	6 (6%)	0	100	100
20	Κ	$11\overline{3}/129~(88\%)$	109 (96%)	4 (4%)	0	100	100
21	L	121/124 (98%)	115 (95%)	6 (5%)	0	100	100

$\alpha \cdot \cdot \cdot \cdot \cdot$	ſ	•	
Continuea	jrom	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentile	
22	М	113/118~(96%)	109 (96%)	4 (4%)	0	100	100
23	Ν	98/101~(97%)	97~(99%)	1 (1%)	0	100	100
24	Ο	86/89~(97%)	84 (98%)	2(2%)	0	100	100
25	Р	79/82~(96%)	75~(95%)	4 (5%)	0	100	100
26	Q	77/84~(92%)	73~(95%)	4 (5%)	0	100	100
27	R	63/75~(84%)	62 (98%)	1 (2%)	0	100	100
28	S	81/92~(88%)	79~(98%)	2 (2%)	0	100	100
29	Т	84/87~(97%)	84 (100%)	0	0	100	100
30	U	68/71~(96%)	68 (100%)	0	0	100	100
31	W	57/120~(48%)	54 (95%)	3 (5%)	0	100	100
32	Х	382/406~(94%)	363~(95%)	19 (5%)	0	100	100
32	Y	371/406 (91%)	351 (95%)	20 (5%)	0	100	100
35	с	269/273~(98%)	261 (97%)	8 (3%)	0	100	100
36	d	206/209~(99%)	199 (97%)	7 (3%)	0	100	100
37	е	199/201~(99%)	195 (98%)	4 (2%)	0	100	100
38	f	175/179~(98%)	169 (97%)	6 (3%)	0	100	100
39	g	172/177~(97%)	163 (95%)	9(5%)	0	100	100
40	h	141/149~(95%)	129 (92%)	12 (8%)	0	100	100
41	i	140/142~(99%)	139 (99%)	1 (1%)	0	100	100
42	j	121/123~(98%)	117 (97%)	4 (3%)	0	100	100
43	k	141/144 (98%)	139 (99%)	2 (1%)	0	100	100
44	1	134/136~(98%)	129 (96%)	5 (4%)	0	100	100
45	m	116/127~(91%)	112 (97%)	4 (3%)	0	100	100
46	n	114/117~(97%)	111 (97%)	3 (3%)	0	100	100
47	О	112/115~(97%)	110 (98%)	2 (2%)	0	100	100
48	р	115/118 (98%)	115 (100%)	0	0	100	100
49	q	101/103~(98%)	97~(96%)	4 (4%)	0	100	100
50	r	108/110~(98%)	105 (97%)	3 (3%)	0	100	100
51	s	91/100 (91%)	89 (98%)	2 (2%)	0	100	100
52	t	93/104 (89%)	88 (95%)	5(5%)	0	100	100
53	u	92/94~(98%)	90 (98%)	2 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
54	v	75/85~(88%)	74~(99%)	1 (1%)	0	100 100
55	W	75/78~(96%)	74 (99%)	1 (1%)	0	100 100
56	х	58/63~(92%)	56~(97%)	2(3%)	0	100 100
57	У	55/59~(93%)	54 (98%)	1 (2%)	0	100 100
58	Z	53/57~(93%)	53~(100%)	0	0	100 100
All	All	6623/7152~(93%)	6396~(97%)	226 (3%)	1 (0%)	100 100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
14	Е	90	THR

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	0	46/49~(94%)	45 (98%)	1 (2%)	47	65
2	1	38/38~(100%)	38 (100%)	0	100	100
3	2	51/52~(98%)	50 (98%)	1 (2%)	50	68
4	3	34/34~(100%)	34 (100%)	0	100	100
5	4	55/62~(89%)	55 (100%)	0	100	100
6	5	90/123~(73%)	90 (100%)	0	100	100
7	6	101/110~(92%)	100 (99%)	1 (1%)	73	82
11	В	186/199~(94%)	183 (98%)	3(2%)	58	74
12	С	170/190~(90%)	166 (98%)	4 (2%)	44	63
13	D	172/173~(99%)	170 (99%)	2(1%)	67	79
14	Е	119/126~(94%)	117 (98%)	2(2%)	56	73
15	F	90/116~(78%)	89 (99%)	1 (1%)	70	80
16	G	124/147~(84%)	123 (99%)	1 (1%)	79	85

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
17	Η	104/105~(99%)	103~(99%)	1 (1%)	73	82
18	Ι	105/107~(98%)	101 (96%)	4 (4%)	28	53
19	J	86/90~(96%)	85~(99%)	1 (1%)	67	79
20	Κ	89/98~(91%)	87~(98%)	2(2%)	47	65
21	L	101/104~(97%)	98~(97%)	3~(3%)	36	58
22	М	93/96~(97%)	92~(99%)	1 (1%)	70	80
23	Ν	83/84~(99%)	83 (100%)	0	100	100
24	О	76/77~(99%)	73~(96%)	3 (4%)	27	53
25	Р	65/65~(100%)	64 (98%)	1 (2%)	60	75
26	Q	73/78~(94%)	71 (97%)	2(3%)	40	60
27	R	56/65~(86%)	55 (98%)	1 (2%)	54	71
28	S	72/79~(91%)	69 (96%)	3 (4%)	25	51
29	Т	65/66~(98%)	64 (98%)	1 (2%)	60	75
30	U	60/61~(98%)	59~(98%)	1 (2%)	56	73
31	W	33/84~(39%)	33 (100%)	0	100	100
32	Х	305/339~(90%)	303 (99%)	2 (1%)	81	88
32	Y	299/339~(88%)	298 (100%)	1 (0%)	91	94
35	с	216/218~(99%)	215 (100%)	1 (0%)	86	91
36	d	163/163~(100%)	158~(97%)	5(3%)	35	57
37	е	165/165~(100%)	162 (98%)	3(2%)	54	71
38	f	148/150~(99%)	145 (98%)	3 (2%)	50	68
39	g	134/138~(97%)	129 (96%)	5 (4%)	29	54
40	h	110/114 (96%)	110 (100%)	0	100	100
41	i	116/116 (100%)	114 (98%)	2 (2%)	56	73
42	j	104/104~(100%)	101 (97%)	3 (3%)	37	59
43	k	102/103~(99%)	98 (96%)	4 (4%)	27	53
44	1	109/109~(100%)	107 (98%)	2 (2%)	54	71
45	m	98/103~(95%)	95~(97%)	3 (3%)	35	57
46	n	86/87~(99%)	83 (96%)	3 (4%)	31	56
47	0	99/100~(99%)	99 (100%)	0	100	100
48	р	89/90~(99%)	88 (99%)	1 (1%)	70	80

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
49	q	84/84~(100%)	83~(99%)	1 (1%)	67	79
50	r	93/93~(100%)	91~(98%)	2(2%)	47	65
51	s	80/84~(95%)	79~(99%)	1 (1%)	65	77
52	t	79/85~(93%)	78~(99%)	1 (1%)	65	77
53	u	78/78~(100%)	76~(97%)	2(3%)	41	61
54	v	58/63~(92%)	57~(98%)	1 (2%)	56	73
55	W	67/68~(98%)	66~(98%)	1 (2%)	60	75
56	х	54/55~(98%)	53~(98%)	1 (2%)	52	70
57	У	47/49~(96%)	45 (96%)	2(4%)	25	50
58	Z	46/48~(96%)	46 (100%)	0	100	100
All	All	5466/5823~(94%)	5376~(98%)	90 (2%)	58	74

5 of 90 residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
39	g	84	THR
45	m	15	SER
39	g	175	LYS
43	k	42	SER
46	n	16	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 23 such side chains are listed below:

Mol	Chain	Res	Type
38	f	135	GLN
41	i	76	HIS
40	h	135	HIS
41	i	135	GLN
16	G	52	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
10	А	1495/1542~(96%)	180 (12%)	3(0%)
33	a	2854/2904~(98%)	327~(11%)	0
34	b	118/120~(98%)	10 (8%)	0

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
59	Ζ	3/4~(75%)	3 (100%)	0
8	7	74/77~(96%)	22~(29%)	0
8	8	76/77~(98%)	22 (28%)	1 (1%)
9	9	2/31~(6%)	0	0
All	All	4622/4755~(97%)	564 (12%)	4 (0%)

5 of 564 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
8	7	4	G
8	7	8	4SU
8	7	9	G
8	7	14	А
8	7	16	С

All (4) RNA pucker outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
8	8	1	С
10	А	4	U
10	А	1026	G
10	А	1035	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

47 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Pos Link		ond lengths		Bond angles		
INIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
10	UR3	А	1498	10	19,22,23	0.39	0	26,32,35	0.63	0
33	5MU	a	747	33	19,22,23	0.36	0	28,32,35	0.45	0
33	PSU	a	2604	33	18,21,22	0.68	0	22,30,33	1.08	1 (4%)
33	PSU	a	955	33	18,21,22	0.69	0	22,30,33	1.03	1 (4%)
8	H2U	8	21	8	18,21,22	0.58	0	21,30,33	0.81	1 (4%)

N.T. 1	T		D	T	Bo	ond leng	ths	В	ond ang	les
IVIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
33	OMU	a	2552	33	19,22,23	0.39	0	26,31,34	0.46	0
33	H2U	a	2449	33	18,21,22	0.41	0	21,30,33	0.57	0
33	3TD	a	1915	33	19,22,23	0.58	0	21,32,35	0.86	0
33	OMG	a	2251	33,8	18,26,27	1.23	3 (16%)	19,38,41	0.89	1 (5%)
8	5MU	7	55	8	19,22,23	0.36	0	28,32,35	0.52	0
8	H2U	7	21	8	18,21,22	0.58	0	21,30,33	0.82	1 (4%)
8	40C	8	33	8	20,23,24	0.36	0	$26,\!32,\!35$	0.66	0
10	4OC	А	1402	10	20,23,24	0.34	0	26,32,35	0.58	0
10	MA6	А	1519	10	18,26,27	0.75	1 (5%)	$19,\!38,\!41$	0.72	0
8	4OC	7	33	8	20,23,24	0.34	0	26,32,35	0.54	0
33	2MA	a	2503	33,61	$19,\!25,\!26$	1.36	2 (10%)	$21,\!37,\!40$	2.10	2 (9%)
33	2MG	a	2445	33	18,26,27	1.19	2 (11%)	$16,\!38,\!41$	0.81	1 (6%)
10	PSU	А	516	10	18,21,22	0.65	0	22,30,33	0.93	1 (4%)
10	5MC	А	967	10	18,22,23	0.37	0	26,32,35	0.70	0
20	IAS	K	119	20	6,7,8	1.03	0	6,8,10	1.31	1 (16%)
33	6MZ	a	2030	33	18,25,26	0.82	1 (5%)	16,36,39	0.95	1 (6%)
10	2MG	А	966	10	18,26,27	1.15	3 (16%)	16,38,41	0.80	0
33	PSU	a	2504	33	18,21,22	0.65	0	22,30,33	1.00	1 (4%)
33	OMC	a	2498	33,61	19,22,23	0.64	0	26,31,34	0.83	1 (3%)
33	PSU	a	746	33,61	18,21,22	0.77	0	22,30,33	0.82	1 (4%)
33	PSU	a	1911	33	18,21,22	0.62	0	22,30,33	0.95	1 (4%)
8	PSU	8	56	8	18,21,22	0.60	0	22,30,33	0.98	1 (4%)
8	4SU	7	8	8	18,21,22	0.37	0	26,30,33	1.19	2 (7%)
33	6MZ	a	1618	33	18,25,26	0.79	1 (5%)	16,36,39	1.00	1 (6%)
10	2MG	А	1207	10	18,26,27	1.17	3 (16%)	16,38,41	0.87	0
8	PSU	7	56	8	18,21,22	0.60	0	22,30,33	0.98	1 (4%)
33	PSU	a	2580	33	18,21,22	0.72	0	22,30,33	0.93	1 (4%)
33	5MC	a	1962	33	18,22,23	0.37	0	$26,\!32,\!35$	0.75	0
10	5MC	А	1407	10	18,22,23	0.36	0	$26,\!32,\!35$	0.78	0
10	G7M	А	527	10	20,26,27	0.64	0	17,39,42	0.73	0
33	PSU	a	1917	33	18,21,22	0.65	0	22,30,33	0.96	1 (4%)
33	G7M	a	2069	33	20,26,27	0.63	0	17,39,42	0.67	0
33	PSU	a	2605	33	18,21,22	0.68	0	22,30,33	1.04	1 (4%)
33	2MG	a	1835	33	18,26,27	1.15	3 (16%)	16,38,41	0.83	0
10	2MG	A	1516	10	18,26,27	1.15	2(11%)	16,38,41	1.18	3 (18%)
8	5MU	8	55	8	19,22,23	0.37	0	28,32,35	0.51	0
33	1MG	a	745	33	18,26,27	1.05	3 (16%)	$19,\!39,\!42$	0.71	0

Mal	Turne	Chain	Dog	Tink	Bo	ond leng	$_{\rm ths}$	В	ond ang	les
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
33	PSU	a	2457	33	18,21,22	0.70	0	22,30,33	0.98	1 (4%)
36	MEQ	d	150	36	8,9,10	0.82	0	5,10,12	0.41	0
10	MA6	А	1518	10	18,26,27	0.74	1 (5%)	19,38,41	0.69	0
8	4SU	8	8	8	18,21,22	0.36	0	26,30,33	1.16	2 (7%)
33	5MU	a	1939	33	19,22,23	0.40	0	28,32,35	0.57	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
10	UR3	А	1498	10	-	0/7/25/26	0/2/2/2
33	5MU	a	747	33	-	0/7/25/26	0/2/2/2
33	PSU	а	2604	33	-	0/7/25/26	0/2/2/2
33	PSU	a	955	33	-	0/7/25/26	0/2/2/2
8	H2U	8	21	8	-	5/7/38/39	0/2/2/2
33	OMU	a	2552	33	-	0/9/27/28	0/2/2/2
33	H2U	a	2449	33	-	0/7/38/39	0/2/2/2
33	3TD	a	1915	33	-	0/7/25/26	0/2/2/2
33	OMG	a	2251	33,8	-	1/5/27/28	0/3/3/3
8	5MU	7	55	8	-	0/7/25/26	0/2/2/2
8	H2U	7	21	8	-	5/7/38/39	0/2/2/2
8	4OC	8	33	8	-	0/9/29/30	0/2/2/2
10	4OC	А	1402	10	-	0/9/29/30	0/2/2/2
10	MA6	А	1519	10	-	0/7/29/30	0/3/3/3
8	4OC	7	33	8	-	0/9/29/30	0/2/2/2
33	2MA	a	2503	33,61	-	2/3/25/26	0/3/3/3
33	2MG	a	2445	33	-	0/5/27/28	0/3/3/3
10	PSU	А	516	10	-	0/7/25/26	0/2/2/2
10	5MC	А	967	10	-	0/7/25/26	0/2/2/2
20	IAS	Κ	119	20	-	1/7/7/8	-
33	6MZ	a	2030	33	-	2/5/27/28	0/3/3/3
10	2MG	А	966	10	-	2/5/27/28	0/3/3/3
33	PSU	a	2504	33	-	2/7/25/26	0/2/2/2
33	OMC	a	2498	33,61	-	2/9/27/28	0/2/2/2
33	PSU	a	746	33,61	-	4/7/25/26	0/2/2/2
33	PSU	a	1911	33	-	$0\overline{/7/25/26}$	0/2/2/2
8	PSU	8	56	8	-	$1/7/\overline{25/26}$	0/2/2/2
8	4SU	7	8	8	-	0/7/25/26	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
33	6MZ	a	1618	33	-	0/5/27/28	0/3/3/3
10	2MG	А	1207	10	-	0/5/27/28	0/3/3/3
8	PSU	7	56	8	-	1/7/25/26	0/2/2/2
33	PSU	a	2580	33	-	0/7/25/26	0/2/2/2
33	5MC	a	1962	33	-	4/7/25/26	0/2/2/2
10	5MC	А	1407	10	-	0/7/25/26	0/2/2/2
10	G7M	А	527	10	-	0/3/25/26	0/3/3/3
33	PSU	a	1917	33	-	0/7/25/26	0/2/2/2
33	G7M	a	2069	33	-	2/3/25/26	0/3/3/3
33	PSU	a	2605	33	-	0/7/25/26	0/2/2/2
33	2MG	a	1835	33	-	0/5/27/28	0/3/3/3
10	2MG	А	1516	10	-	0/5/27/28	0/3/3/3
8	5MU	8	55	8	-	0/7/25/26	0/2/2/2
33	1MG	a	745	33	-	0/3/25/26	0/3/3/3
33	PSU	a	2457	33	-	0/7/25/26	0/2/2/2
36	MEQ	d	150	36	-	3/8/9/11	-
10	MA6	А	1518	10	-	0/7/29/30	0/3/3/3
8	4SU	8	8	8	-	0/7/25/26	0/2/2/2
33	5MU	a	1939	33	-	0/7/25/26	0/2/2/2

The worst 5 of 25 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
33	а	2503	2MA	C2-N1	3.70	1.40	1.34
33	a	2503	2MA	C6-N1	3.16	1.39	1.33
10	А	1516	2MG	C6-N1	-3.04	1.33	1.37
33	а	2251	OMG	C8-N7	-3.00	1.29	1.35
33	a	2445	2MG	C5-C6	-2.58	1.42	1.47

The worst 5 of 29 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
33	a	2503	2MA	C5-C6-N1	-7.92	115.81	121.01
33	a	2503	2MA	C5-C6-N6	4.40	127.04	120.35
8	7	8	4SU	C4-N3-C2	-3.72	123.73	127.34
8	8	8	4SU	C4-N3-C2	-3.67	123.77	127.34
10	А	1516	2MG	C5-C6-N1	2.73	118.77	113.95

There are no chirality outliers.

5 of 37 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
8	7	21	H2U	O4'-C1'-N1-C2
8	7	21	H2U	O4'-C1'-N1-C6
8	8	21	H2U	O4'-C1'-N1-C2
8	8	21	H2U	O4'-C1'-N1-C6
36	d	150	MEQ	N-CA-CB-CG

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 243 ligands modelled in this entry, 243 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-17667. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

6.2Central slices (i)

6.2.1Primary map

X Index: 200

Y Index: 200

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 218

Y Index: 202

Z Index: 222

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 2.0. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1507 nm^3 ; this corresponds to an approximate mass of 1361 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.272 $\rm \AA^{-1}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-17667 and PDB model 8PHJ. Per-residue inclusion information can be found in section 3 on page 17.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 2.0 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (2).

9.4 Atom inclusion (i)

At the recommended contour level, 98% of all backbone atoms, 96% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (2) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.9590	0.5840
0	0.9310	0.5990
1	0.9690	0.6370
2	0.9900	0.6380
3	0.9630	0.6130
4	0.8920	0.5190
5	0.7130	0.3780
6	0.7240	0.3250
7	0.6370	0.4920
8	0.7150	0.2620
9	0.9690	0.6100
А	0.9930	0.6020
В	0.8570	0.5190
С	0.9260	0.5740
D	0.9360	0.5740
E	0.9500	0.5960
F	0.9120	0.5440
G	0.8830	0.5330
Н	0.9500	0.5980
Ι	0.9380	0.5710
J	0.8700	0.5200
K	0.9320	0.5790
L	0.9390	0.6010
M	0.9200	0.5630
N	0.9560	0.5860
0	0.9320	0.5770
<u>Р</u>	0.9500	0.5940
Q	0.9340	0.5770
R	0.9320	0.5720
S	0.9370	0.5720
<u>'Γ</u>	0.9470	0.5820
U	0.7870	0.5150
W	0.8450	0.3380
X	0.8920	0.4820
Y	0.9270	0.4780

0.0 <0.0

1.0

Chain	Atom inclusion	Q-score
Z	0.9660	0.5170
a	0.9880	0.6050
b	0.9920	0.5990
С	0.9700	0.6280
d	0.9600	0.6160
е	0.9470	0.5880
f	0.8910	0.5390
g	0.9230	0.5530
h	0.6830	0.4230
i	0.9660	0.6160
j	0.9520	0.6170
k	0.9670	0.6080
1	0.9560	0.6220
m	0.9810	0.6280
n	0.9550	0.5820
0	0.9390	0.6070
р	0.9850	0.6330
q	0.9510	0.6080
r	0.9510	0.6130
s	0.9280	0.5830
t	0.9450	0.5810
u	0.9400	0.5960
V	0.9560	0.6200
W	0.9670	0.6180
x	0.9270	0.5570
У	0.9440	0.6070
Z	0.9740	0.6220

