

wwPDB EM Validation Summary Report (i)

Jan 11, 2024 - 07:36 pm GMT

PDB ID	:	7PNT
EMDB ID	:	EMD-13551
Title	:	Assembly intermediate of mouse mitochondrial ribosome small subunit without
		mS37 in complex with RbfA and Tfb1m
Authors	:	Itoh, Y.; Khawaja, A.; Laptev, I.; Sergiev, P.; Rorbach, J.; Amunts, A.
Deposited on	:	2021-09-08
Resolution	:	3.19 Å(reported)
Based on initial model	:	6RW4

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev70
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.19 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	956	7%76%	18% • 5%
2	В	291	• • 72% •	23%
3	С	167	75%	• 21%
4	D	432	8%	22%
5	Е	125	93%	5% •
6	F	242	8%	• 14%
7	G	390	7%	• 17%

Continued on next page...

Mol	Chain	Length	Quality of chain	
8	Н	160	79%	8% 12%
9	Ι	191	68% •••	28%
10	J	139	74%	• 22%
11	K	128	77%	• 21%
12	L	258	8%	32%
13	M	135	7%	70/
14	N	100	5%	• 7%
14	N	120	92%	• 6%
15	0	254	77%	• 22%
16	Р	143	66% ·	32%
17	Q	86	97%	•
18	R	359	81%	• 18%
19	S	177	6% 75%	• 23%
20	Т	171	95%	5%•
21	U	200	86%	• 13%
22	V	415	<u>6%</u> 84%	• 12%
23	W	186	5 2% • 2	16%
24	Х	391	87%	• 9%
25	Y	384	<u>9%</u> <u>39%</u> 61%	
26	Z	106	9%	• 5%
27	0	218	94%	5% •
28	1	320	84%	13%
20	2	200	17%	- 15%
 	ე	200	24% /5% 29%	
30	4	685	83%	• 14%
31	a	350	38% 62%	
32	с	345	86%	13%

Continued from previous page...

2 Entry composition (i)

There are 38 unique types of molecules in this entry. The entry contains 128436 atoms, of which 59523 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 12S mitochondrial rRNA.

Mol	Chain	Residues			AltConf	Trace				
1	А	909	Total 29056	C 8669	H 9755	N 3459	O 6264	Р 909	0	0

• Molecule 2 is a protein called 28S ribosomal protein S2, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
2	В	223	Total	C	H 1700	N	0	S	0	0
			3590	1142	1799	326	315	8		

• Molecule 3 is a protein called 28S ribosomal protein S24, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
3	С	132	Total 2163	C 690	Н 1091	N 197	0 180	${ m S}{ m 5}$	0	0

• Molecule 4 is a protein called 28S ribosomal protein S5, mitochondrial.

Mol	Chain	Residues		Atoms						Trace
4	Л	227	Total	С	Η	Ν	0	\mathbf{S}	0	0
4	D	557	5414	1686	2732	513	473	10	0	0

• Molecule 5 is a protein called 28S ribosomal protein S6, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
5	Е	122	Total 1986	C 617	Н 1007	N 181	0 178	${ m S} { m 3}$	0	0

• Molecule 6 is a protein called 28S ribosomal protein S7, mitochondrial.

Mol	Chain	Residues			Atom	\mathbf{s}			AltConf	Trace
6	F	208	Total 3472	C 1096	Н 1750	N 316	O 299	S 11	0	0

• Molecule 7 is a protein called 28S ribosomal protein S9, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
7	G	325	Total 5304	C 1689	Н 2630	N 480	0 491	S 14	0	0

• Molecule 8 is a protein called 28S ribosomal protein S10, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
8	Н	140	Total 2346	С 742	Н 1193	N 200	O 207	${S \over 4}$	0	0

• Molecule 9 is a protein called 28S ribosomal protein S11, mitochondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
9	Ι	137	Total 2047	C 629	Н 1038	N 191	0 184	${f S}{5}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
I	181	5F0	ASN	conflict	UNP Q9DCA2

• Molecule 10 is a protein called 28S ribosomal protein S12, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
10	J	108	Total 1749	C 528	Н 903	N 172	0 141	${ m S}{ m 5}$	0	0

• Molecule 11 is a protein called 28S ribosomal protein S14, mitochondrial.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
11	K	101	Total 1743	C 534	H 888	N 175	0 140	S 6	0	0

• Molecule 12 is a protein called 28S ribosomal protein S15, mitochondrial.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
12	L	176	Total 3041	C 930	H 1576	N 274	O 255	S 6	0	0

• Molecule 13 is a protein called 28S ribosomal protein S16, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
13	М	126	Total 2004	C 623	Н 1009	N 194	O 172	${ m S}{ m 6}$	0	0

• Molecule 14 is a protein called 28S ribosomal protein S17, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
14	Ν	113	Total 1839	$\begin{array}{c} \mathrm{C} \\ 575 \end{array}$	Н 951	N 160	O 150	${ m S} { m 3}$	0	0

• Molecule 15 is a protein called 28S ribosomal protein S18b, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
15	О	197	Total 3146	C 1014	Н 1548	N 289	O 286	S 9	0	0

• Molecule 16 is a protein called 28S ribosomal protein S18c, mitochondrial.

Mol	Chain	Residues	Atoms						AltConf	Trace
16	Р	97	Total 1610	C 505	Н 818	N 140	O 139	S 8	0	0

• Molecule 17 is a protein called 28S ribosomal protein S21, mitochondrial.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
17	Q	86	Total 1482	C 453	Н 750	N 146	0 126	S 7	0	0

• Molecule 18 is a protein called 28S ribosomal protein S22, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
18	R	294	Total 4816	C 1526	Н 2416	N 418	0 449	${ m S} 7$	0	0

• Molecule 19 is a protein called 28S ribosomal protein S23, mitochondrial.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
19	S	136	Total 2257	C 722	Н 1133	N 199	O 201	${S \over 2}$	0	0

• Molecule 20 is a protein called 28S ribosomal protein S25, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
20	Т	170	Total 2801	C 892	Н 1413	N 238	O 246	S 12	0	0

• Molecule 21 is a protein called 28S ribosomal protein S26, mitochondrial.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
21	U	174	Total 2908	C 894	Н 1459	N 283	O 270	$\frac{S}{2}$	0	0

• Molecule 22 is a protein called 28S ribosomal protein S27, mitochondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
22	V	365	Total 5970	C 1911	Н 2972	N 506	O 570	S 11	0	0

• Molecule 23 is a protein called 28S ribosomal protein S28, mitochondrial.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
23	W	100	Total 1606	C 503	Н 813	N 141	0 146	${ m S} { m 3}$	0	0

• Molecule 24 is a protein called 28S ribosomal protein S29, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
24	Х	357	Total 5762	C 1834	Н 2881	N 515	O 522	S 10	0	0

• Molecule 25 is a protein called 28S ribosomal protein S31, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
25	Y	149	Total 2439	C 809	Н 1193	N 201	0 233	${ m S} { m 3}$	0	0

• Molecule 26 is a protein called 28S ribosomal protein S33, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
26	Z	101	Total 1682	C 526	H 848	N 157	0 148	${ m S} { m 3}$	0	0

• Molecule 27 is a protein called 28S ribosomal protein S34, mitochondrial.

Mol	Chain	Residues			Atom	5			AltConf	Trace
27	0	216	Total 3649	C 1139	Н 1838	N 355	0 313	$\frac{S}{4}$	0	0

• Molecule 28 is a protein called 28S ribosomal protein S35, mitochondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
28	1	278	Total 4464	C 1403	Н 2241	N 384	O 424	S 12	0	0

• Molecule 29 is a protein called Aurora kinase A-interacting protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
29	3	50	Total 929	C 286	Н 489	N 86	O 68	0	0

• Molecule 30 is a protein called Pentatric opeptide repeat domain-containing protein 3, mito-chondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
30	4	589	Total 9558	C 3064	Н 4800	N 800	0 872	S 22	0	0

• Molecule 31 is a protein called Putative ribosome-binding factor A, mitochondrial.

Mol	Chain	Residues			Atom	s			AltConf	Trace
31	a	134	Total	С	H	N	0	S	0	0
			2169	680	1099	190	197	3		

• Molecule 32 is a protein called Dimethyladenosine transferase 1, mitochondrial.

Mol	Chain	Residues			Atom	\mathbf{s}			AltConf	Trace
32	с	299	Total 4871	C 1543	Н 2478	N 419	O 421	S 10	0	0

• Molecule 33 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
33	А	32	TotalMg3232	0
33	В	1	Total Mg 1 1	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
33	Х	1	Total Mg 1 1	0

• Molecule 34 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
34	А	7	Total K 7 7	0

• Molecule 35 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
35	О	1	Total Zn 1 1	0

• Molecule 36 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula: Fe_2S_2) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf	
36	D	1	Total Fe S	0	
50	Г	1	4 2 2	0	
26	Т	1	Total Fe S	0	
- 50	L	1	4 2 2	U	

• Molecule 37 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$).

Mol	Chain	Residues	Atoms				AltConf		
97	v	1	Total	С	Η	Ν	Ο	Р	0
51	Λ	1	43	10	12	5	13	3	0

• Molecule 38 is water.

Mol	Chain	Residues	Atoms	AltConf
38	А	268	Total O 268 268	0
38	В	7	Total O 7 7	0
38	С	23	TotalO2323	0
38	D	14	Total O 14 14	0
38	F	5	Total O 5 5	0
38	G	9	Total O 9 9	0
38	Н	11	Total O 11 11	0
38	Ι	3	Total O 3 3	0
38	J	4	Total O 4 4	0
38	K	15	Total O 15 15	0
38	L	1	Total O 1 1	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
38	М	17	Total O 17 17	0
38	Ν	2	Total O 2 2	0
38	О	20	TotalO2020	0
38	Р	6	Total O 6 6	0
38	Q	2	Total O 2 2	0
38	R	5	$\begin{array}{cc} \text{Total} & \text{O} \\ 5 & 5 \end{array}$	0
38	S	2	Total O 2 2	0
38	Т	6	Total O 6 6	0
38	U	3	Total O 3 3	0
38	Х	4	Total O 4 4	0
38	Y	3	Total O 3 3	0
38	Ζ	17	Total O 17 17	0
38	0	5	Total O 5 5	0
38	1	11	Total O 11 11	0
38	4	7	Total O 7 7	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 12S mitochondrial rRNA

T165 R185 191 191 191 191 191 191 191 191 191 19	R269 1270 2271 2272 8272 P273 617 GLY GLY GLY GLY GLY SER CLU GLY SER SER SER SER SER SER SER SER SER SER	SER HIS SER PRO	
• Molecule 3: 28S rib	osomal protein S24, mitochor	ıdrial	
Chain C:	75%	·	21%
MET ALA ALA ALA SER SER VAL CLU GLY GLN GLN ARG GLN ALA ALA	CYS SER ARG ALG CLU FLU PLU CLU ALA ALA ALA ALA ALA ALA ALA ALA ALA A	V42 R43 V44 A45 A45 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4	187 111 118 118 1187 1187
• Molecule 4: 28S rib	osomal protein S5, mitochono	drial	
Chain D:	74%	•	22%
MET ALA ALA ALA ALA ALA ALA ALA ALA CYS CYS CYS CYS CYS SCR SCR SCR	LEU GLM ALA ALA CLF HIS PHE CLEU SER CLEU ASN ASN ALA ALA ALA ALA ALA	SER PHE LEU LEU ALA VAL LYS THR ALA LEU SER HIS GLY	SER LEU SER SER ARG ARG ARG ARG ARG ARG ARG
CYS THR SER SER LEU SER HIS CLEU GLN GLN CYS SER VAL SER SER SER	SER PRU GIV ASN THR THR GIV GIN CYS CYS CYS CYS PRU FRU TYR TYR A110 C111 C111	R113 K114 G115 G115 G17 LYS LYS K122 K122	K123 K125 K125 K125 K125 K130 E150 M174 W175
E176 Q177 E178 E179 E179 W181 V181 K184 K184 K186 K185 K185	N188 K190 K190 L205 L205 L205 K235 K235 K235 K235 K235 K237 K274 N275 N275	1278 286 7286 1286 1298 1298 1305 1305 1305 1305	E374 K414 L419 T432
• Molecule 5: 28S rib	osomal protein S6, mitochono	drial	
Chain E:	93%		5%•
MET 151 151 154 154 154 151 151 151 153 153 133 133	LYS		
• Molecule 6: 28S rib	osomal protein S7, mitochono	drial	
Chain F:	82%	·	14%
MET ALA ALA ALA ALA ALA ALA ALA CUT TRP STR STR STR STR STR STR STR STR STR STR	LEU VAL VAL CYS CYS CYS CYS CYS CYS ALA ALA ASN CIN CIN VAL CIN CIN CIN CIN CIN CIN CIN CIN CIN CIN	P84 V55 A56 E57 T59 E61 E61 S34	q113 q113 1156 1161 1161 1161 1161 1163 6163 6
Y168 K195 L235 A237 H238 Y239 W241 W241			
• Molecule 7: 28S rib	osomal protein S9, mitochono	drial	
Chain G:	79%		17%
MET ALA ALA ALA ALA PRO CYS SER SER SER SER SER SER SER SER SER PHE	THR ALA ALA VAL ALA ALA ALA ALA CTS GLN GLN GLN ALA ALA ALA ALA ALA ALA CLY CLY CTS GLY CLS CLY CLS CLN CLS CLN CLS CLS CLS CLS CLS CLS CLS CLS CLS CLS	TRP GLN THR THR GLN PHE CLEU SER SER LEU LEU	ILE THR THR THR VAL VAL THR THR LVS VAL VAL

V61 062 854 854 855 854 857 1136 1136 1136	nt 76 CLY FRO LLEU LLEU ALA ALA ALA ALA SER ALA SER AL8 SER AL8 SER AL8 SER C199 C199	1203 V204 1207 S208 D209 Q236 S241 V242	1243 1244 0245 1250 1250 1250	K271 V292 D293 L314 V350
K375 K375 R383 K384 K389 K389 K389				
• Molecule 8: 28S rib	posomal protein S10, mite	ochondrial		
Chain H:	79%		8% 12%	
MET LYS TRP VAL FRO LEU SER SER 124 124 122 132	v39 E51 E51 E51 K81 K81 K87 K87 K87 K87 K87 K87 K87 K87 K87 K87	E145 P146 M147 C110 C110 P148 C110 P148 P148 P148 P148 P148 P148 P148 P148	LYS GLU SER SER SER	
• Molecule 9: 28S rib	posomal protein S11, mite	ochondrial		
Chain I:	68%		28%	
MET GLN VAL LEU ARG ASN SER SER SER TRP LEU LEU LEU LEU LEU LEU	ALA GLY GLY MET THR MET THE PHE VAL ALA ALA ALA ALA ASN ASN ASN ASN ASN ASN ASN ASN ASN AS	GLY ALA PRO PRO ARC CLU GLU GLU SER ALA ALA ARG	GLN ASN THR GLU GLU ALA ALA PRO SSS	R56 N91 V146
V147 V148 V169 D174 D174 570181 L191				
• Molecule 10: 28S r	ibosomal protein S12, mi	tochondrial		
Chain J:	74%		22%	
MET NER TRP CRD CRU CRU CRU LEU CLEU CLEU THR THR THR SER SER	ARK CLEU LLEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	P/3 R78 E111 D117 K138		
• Molecule 11: 28S r	ibosomal protein S14, mi	tochondrial		
Chain K:	77%	•	21%	I
MET ALA ALA ALA ALA SEL CLEU CLEU LLEU LLEU THR ARG ARG CLN	ALA ALA PRO PRO PRO CLY ALA ALA ALA CLY VAL CLY VAL ALA R96 R96 R96 R97 R97 R97 R97 R12 R12 R12 R12 R12 R12 R12 R12 R12 R12	138 138		
• Molecule 12: 28S r	ibosomal protein S15, mi	tochondrial		
Chain L:	66%	·	32%	
MET LLEU ARG ALA ALA TRP TRP TRP TRP SER SER SER VAL ALA ALA ALA ALA ALA	ALA THR THR ARG ARG ALA PRO PRO PRO CLY GLY GLY GLY ALA ALA ALA ILEU	SER ALA ARG CYS GLY CLEU GLN PRO PRO FRO SER LEU	LLEU ARG ALA ALA ALA ALA ALA ALA ALA VAL	GLN LYS PRO VAL GLN
PR0 K62 D64 D64 P193 P199 K202 K220 K220	K223 Q224 K226 R226 A227 A227 A227 A230 A230 A231 A233 A234 A233 A234 A235 A235 A235	K237 0.1.0 1.178 ASN 0.1.0 0.1.1 PRO 0.1.0 ASN ASN PRO	SER ASN VAL ALA PRO CLU CLU CLY CLN VAL	ASN
	w o PRot	R L D W I D E EIN DATA BANK		_

• Molecule 13:	28S ribosomal protein S16, mitochondrial	
Chain M:	90%	• 7%
MET VAL GLN CLN LEU THR THR TLE FHE CVS K10	L17 N28 N28 N28 N28 N28 N165 N110 E128 M110 E128 M130 E133 M132 M132 E133 S135 S135	
• Molecule 14:	28S ribosomal protein S17, mitochondrial	
Chain N:	92%	• 6%
MET SER I3 V4 V8 V88 E112 P113	E115 GLU LEU LAS VAL SER	
• Molecule 15:	28S ribosomal protein S18b, mitochondrial	
Chain O:	77%	22%
MET ALA ALA ALA PRO LEU LEU LEU LY	PRAL PRAL PRA PRA PRA PRA PRA PRA PRA PRA	K146 K146 T2335 FRO FRO ALLA ALLA ALLA CLU
GLN PRO GLY SER GLN SER ALA		
• Molecule 16:	28S ribosomal protein S18c, mitochondrial	
Chain P:	66% ·	32%
MET ALA ALA ALA LEU VAL LEU VAL LEU CYS SER GLY TLE	GLY ARG LYS ASN ASN THR THR THR ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	S47 148 168 1139 ■ 1139
• Molecule 17:	28S ribosomal protein S21, mitochondrial	
Chain Q:	97%	
A2 132 P83 C87		
• Molecule 18:	28S ribosomal protein S22, mitochondrial	
Chain R:	81%	• 18%
MET ALA ALA ALA ARG THR PRO LEU SER LEU TRP	ARG GLN GLN GLN SER ARG ARG ARG ARG ARG ARG ARG ARG ARG AR	CLY CLY GLN PRO ARG ARG ARG LEU SER SER SER SER SER CLU SER CLU
SER SER E63 V65 K65 K65 S146	R169 L306 L306 E318 C354 C355	

• Molecule 19:	28S ribosomal protein S23, mitocho	ondrial
Chain S:	75%	• 23%
MET A2 V9 R50 G110 G110 C110	F112 E128 G129 1131	GLU GLU GLY HIS GLU GLU GLU GLU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
PRO		
• Molecule 20:	28S ribosomal protein S25, mitocho	ondrial
Chain T:	95%	5%•
MET P2 V48 M66 192 0122	446 1160 1163 1163 1163 1163 1163 1163 116	
• Molecule 21:	28S ribosomal protein S26, mitoche	ondrial
Chain U:	86%	• 13%
MET LEU ARG ARG ALA ALA ASN ALA ALA ALA ARG ARG	CTAN THR ARG PRO PRO PRO PRO PRO PRO PRO PRO	0139 146 146 146 146 146 146 146 146
• Molecule 22:	28S ribosomal protein S27, mitocho	ondrial
Chain V:	84%	• 12%
MET ALA ALA ALA ALA PRO MET VAL ARC CYS GLY MET LEU	ALEO ARG ARG ARG ARG ARG ARG ARG CTS CTS CTS CTS CTS CTS CTS CTS CTS CTS	H49 V67 E83 B3 N100 N100 P175 P175 P175 S177 S177 S177 S177 S177 S177 S177 S
V279 P293 VAL VAL CLN CLN CLN CLN CLN CLN CLN CLN CLN CL	PRD GLN GLU GLU GLU ASP AS11 A312 A312 A312 A312 C310 C310 C310 C310 C310 C310 C310 C310	K402 9403 8404 7405 9406 9406 1408 858 A1A A1A A1A A1A A1A A1A A1A A1A A1A
• Molecule 23:	28S ribosomal protein S28, mitoche	ondrial
Chain W:	52% ·	46%
MET ALA ALA ALA LEU CYS SER ALS ALA ALA ALA ALA	GLAN SER PHE LEU LEU LEU ARG PHE PRE SER ARG ARG ARG ARG ARG ARG ARG ARG ARG AR	ALA HIR ASP ASP ASP ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
ASP LEU GLN GLN ARG ALA GLU CLU CLU CLU STN STN STN STN STN STN STN STN STN STN	PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	21
• Molecule 24:	28S ribosomal protein S29, mitoche	ondrial
Chain X:	87%	• 9%

• Molecule 29: Aurora kinase A-interacting protein

• Molecule 30: Pentatricopeptide repeat domain-containing protein 3, mitochondrial

• Molecule 31: Putative ribosome-binding factor A, mitochondrial

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	52361	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	31	Depositor
Minimum defocus (nm)	800	Depositor
Maximum defocus (nm)	3600	Depositor
Magnification	165000	Depositor
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	1.622	Depositor
Minimum map value	-0.805	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.030	Depositor
Recommended contour level	0.12	Depositor
Map size (Å)	398.40192, 398.40192, 398.40192	wwPDB
Map dimensions	576, 576, 576	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.69167, 0.69167, 0.69167	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ATP, K, 5F0, ZN, MG, AYA, FES

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	nd lengths	Bond angles		
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.24	1/21600~(0.0%)	0.67	1/33606~(0.0%)	
2	В	0.26	0/1832	0.41	0/2479	
3	С	0.26	0/1100	0.43	0/1485	
4	D	0.25	0/2737	0.42	0/3671	
5	Ε	0.25	0/997	0.41	0/1347	
6	F	0.24	0/1763	0.37	0/2368	
7	G	0.25	0/2734	0.39	0/3669	
8	Н	0.25	0/1179	0.41	0/1597	
9	Ι	0.25	0/1018	0.45	0/1374	
10	J	0.26	0/862	0.46	0/1155	
11	Κ	0.24	0/871	0.40	0/1167	
12	L	0.23	0/1485	0.36	0/1980	
13	М	0.26	0/1017	0.42	0/1366	
14	Ν	0.26	0/907	0.45	0/1228	
15	0	0.25	0/1653	0.39	0/2254	
16	Р	0.26	0/809	0.40	0/1085	
17	Q	0.24	0/735	0.40	0/980	
18	R	0.25	0/2449	0.38	0/3311	
19	S	0.26	0/1148	0.39	0/1541	
20	Т	0.25	0/1420	0.39	0/1903	
21	U	0.24	0/1470	0.37	0/1976	
22	V	0.23	0/3059	0.35	0/4135	
23	W	0.25	0/805	0.43	0/1084	
24	Х	0.24	0/2952	0.38	0/3995	
25	Y	0.25	0/1283	0.36	0/1730	
26	Ζ	0.26	0/851	0.37	0/1133	
27	0	0.24	0/1856	0.42	0/2511	
28	1	0.24	0/2271	0.38	0/3078	
29	3	0.24	0/448	0.38	0/591	
30	4	0.24	0/4868	0.36	0/6597	
31	a	0.23	0/1087	0.36	0/1470	
32	с	0.24	0/2447	0.38	0/3309	

Mol	Chain	Bo	nd lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
All	All	0.24	1/71713~(0.0%)	0.50	1/101175~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
9	Ι	0	1

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	А	1	А	OP3-P	-10.80	1.48	1.61

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	824	A	C5-C6-N1	-5.29	115.05	117.70

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
9	Ι	181	5F0	Mainchain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	19301	9755	9761	40	0
2	В	1791	1799	1797	9	0
3	С	1072	1091	1087	5	0
4	D	2682	2732	2727	12	0
5	Е	979	1007	1007	3	0
6	F	1722	1750	1748	8	0

Continued on next page...

Conti	nueu fron	i previous	page			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
7	G	2674	2630	2626	11	0
8	Н	1153	1193	1190	9	0
9	Ι	1009	1038	1029	4	0
10	J	846	903	901	3	0
11	K	855	888	887	2	0
12	L	1465	1576	1574	3	0
13	М	995	1009	1006	4	0
14	N	888	951	947	2	0
15	0	1598	1548	1547	2	0
16	Р	792	818	817	3	0
17	Q	732	750	750	3	0
18	R	2400	2416	2415	3	0
19	S	1124	1133	1132	3	0
20	Т	1388	1413	1413	6	0
21	U	1449	1459	1456	2	0
22	V	2998	2972	2967	10	0
23	W	793	813	811	3	0
24	Х	2881	2881	2879	10	0
25	Y	1246	1193	1191	1	0
26	Z	834	848	847	1	0
27	0	1811	1838	1834	5	0
28	1	2223	2241	2238	4	0
29	3	440	489	488	1	0
30	4	4758	4800	4793	13	0
31	a	1070	1099	1096	0	0
32	с	2393	2478	2478	0	0
33	А	32	0	0	0	0
33	В	1	0	0	0	0
33	Х	1	0	0	0	0
34	А	7	0	0	0	0
35	0	1	0	0	0	0
36	Р	4	0	0	0	0
36	Т	4	0	0	0	0
37	Х	31	12	12	0	0
38	0	5	0	0	1	0
38	1	11	0	0	0	0
38	4	7	0	0	0	0
38	A	268	0	0	4	0
38	В	7	0	0	0	0
38	С	23	0	0	1	0
38	D	14	0	0	0	0
38	F	5	0	0	2	0

Continued from previous page...

Continued on next page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
38	G	9	0	0	1	0
38	Н	11	0	0	0	0
38	Ι	3	0	0	0	0
38	J	4	0	0	1	0
38	Κ	15	0	0	0	0
38	L	1	0	0	0	0
38	М	17	0	0	0	0
38	Ν	2	0	0	0	0
38	0	20	0	0	1	0
38	Р	6	0	0	0	0
38	Q	2	0	0	0	0
38	R	5	0	0	0	0
38	S	2	0	0	0	0
38	Т	6	0	0	0	0
38	U	3	0	0	0	0
38	Х	4	0	0	0	0
38	Y	3	0	0	0	0
38	Ζ	17	0	0	0	0
All	All	68913	59523	59451	157	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

The worst 5 of 157 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:567:G:N2	1:A:576:C:O2	2.20	0.74
10:J:111:GLU:OE1	38:J:201:HOH:O	2.05	0.74
1:A:217:U:OP1	15:O:146:LYS:NZ	2.22	0.73
1:A:192:A:N7	38:A:1105:HOH:O	2.21	0.72
6:F:84:SER:OG	24:X:372:GLU:OE2	2.07	0.72

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

Mol	Chain	Analysed	Favoured	Allowed Outliers Per		Perce	ntiles
2	В	221/291~(76%)	219 (99%)	2(1%)	0	100	100
3	\mathbf{C}	130/167~(78%)	124 (95%)	6~(5%)	0	100	100
4	D	333/432~(77%)	328 (98%)	5 (2%)	0	100	100
5	Ε	120/125~(96%)	118 (98%)	2(2%)	0	100	100
6	F	206/242~(85%)	200 (97%)	6 (3%)	0	100	100
7	G	321/390~(82%)	315 (98%)	5 (2%)	1 (0%)	41	74
8	Н	138/160~(86%)	135~(98%)	2(1%)	1 (1%)	22	61
9	Ι	134/191~(70%)	130 (97%)	4 (3%)	0	100	100
10	J	106/139~(76%)	105 (99%)	1 (1%)	0	100	100
11	Κ	99/128~(77%)	98 (99%)	1 (1%)	0	100	100
12	L	174/258~(67%)	173 (99%)	1 (1%)	0	100	100
13	М	124/135~(92%)	124 (100%)	0	0	100	100
14	Ν	111/120~(92%)	108 (97%)	3 (3%)	0	100	100
15	Ο	195/254~(77%)	192 (98%)	3 (2%)	0	100	100
16	Р	95/143~(66%)	94 (99%)	1 (1%)	0	100	100
17	Q	84/86~(98%)	83 (99%)	1 (1%)	0	100	100
18	R	292/359~(81%)	284 (97%)	8 (3%)	0	100	100
19	S	134/177~(76%)	132 (98%)	2 (2%)	0	100	100
20	Т	168/171~(98%)	167 (99%)	1 (1%)	0	100	100
21	U	172/200~(86%)	170 (99%)	2 (1%)	0	100	100
22	V	361/415~(87%)	357 (99%)	4 (1%)	0	100	100
23	W	98/186~(53%)	96 (98%)	2 (2%)	0	100	100
24	Х	355/391~(91%)	350 (99%)	5 (1%)	0	100	100
25	Y	147/384 (38%)	145 (99%)	2 (1%)	0	100	100
26	Z	99/106~(93%)	98 (99%)	1 (1%)	0	100	100
27	0	214/218~(98%)	211 (99%)	3 (1%)	0	100	100
28	1	276/320~(86%)	274 (99%)	2 (1%)	0	100	100
29	3	48/200 (24%)	48 (100%)	0	0	100	100
30	4	585/685~(85%)	579 (99%)	6 (1%)	0	100	100
31	a	128/350~(37%)	126 (98%)	2 (2%)	0	100	100

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
32	с	297/345~(86%)	292~(98%)	5(2%)	0	100	100
All	All	5965/7768~(77%)	5875 (98%)	88 (2%)	2~(0%)	100	100

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
8	Н	85	ILE
7	G	204	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	В	195/247~(79%)	195 (100%)	0	100	100
3	С	113/139~(81%)	113 (100%)	0	100	100
4	D	277/354~(78%)	277 (100%)	0	100	100
5	Ε	107/110~(97%)	107~(100%)	0	100	100
6	F	180/204~(88%)	180 (100%)	0	100	100
7	G	282/335~(84%)	281 (100%)	1 (0%)	91	95
8	Н	130/150~(87%)	130 (100%)	0	100	100
9	Ι	102/143~(71%)	102 (100%)	0	100	100
10	J	93/117~(80%)	93~(100%)	0	100	100
11	Κ	90/110~(82%)	90 (100%)	0	100	100
12	L	161/224~(72%)	161 (100%)	0	100	100
13	М	103/112~(92%)	103 (100%)	0	100	100
14	Ν	97/104~(93%)	97~(100%)	0	100	100
15	Ο	176/225~(78%)	$176\ (100\%)$	0	100	100
16	Р	89/125~(71%)	89~(100%)	0	100	100
17	Q	77/77~(100%)	77~(100%)	0	100	100
18	R	261/313 (83%)	261 (100%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
19	S	117/152~(77%)	117~(100%)	0	100	100
20	Т	153/154~(99%)	153~(100%)	0	100	100
21	U	149/171~(87%)	149 (100%)	0	100	100
22	V	326/362~(90%)	325~(100%)	1 (0%)	92	96
23	W	87/156~(56%)	87~(100%)	0	100	100
24	Х	314/346~(91%)	312~(99%)	2(1%)	86	94
25	Y	133/341~(39%)	133 (100%)	0	100	100
26	Z	88/93~(95%)	88 (100%)	0	100	100
27	0	190/191~(100%)	188 (99%)	2 (1%)	73	88
28	1	248/279~(89%)	248 (100%)	0	100	100
29	3	46/176~(26%)	46 (100%)	0	100	100
30	4	519/599~(87%)	519 (100%)	0	100	100
31	a	122/299~(41%)	122 (100%)	0	100	100
32	с	266/304~(88%)	265 (100%)	1 (0%)	91	95
All	All	5291/6712~(79%)	5284 (100%)	7 (0%)	93	98

Continued from previous page...

5 of 7 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
24	Х	112	HIS
27	0	30	ASP
32	с	202	TYR
27	0	48	ARG
24	Х	74	HIS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 15 such sidechains are listed below:

Mol	Chain	Res	Type
18	R	246	HIS
30	4	372	HIS
22	V	325	GLN
30	4	376	HIS
26	Z	82	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	А	902/956~(94%)	138~(15%)	0

5 of 138 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	А	3	A
1	А	7	U
1	А	16	G
1	А	23	А
1	А	32	G

There are no RNA pucker outliers to report.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

2 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	True	Chain	Dec	Tinle	B	ond leng	gths	В	Bond ang	gles
	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
9	5F0	Ι	181	9	8,8,9	0.60	0	7,9,11	1.05	1 (14%)
17	AYA	Q	2	17	6,7,8	0.76	0	5,8,10	0.54	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	5F0	Ι	181	9	-	0/9/9/10	-
17	AYA	Q	2	17	-	0/4/6/8	-

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	Ι	181	5F0	O-C-CB	-2.43	118.34	125.43

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 45 ligands modelled in this entry, 42 are monoatomic - leaving 3 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dog	Link	Bo	ond leng	$_{\rm ths}$	Bond angles		
	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
37	ATP	Х	401	33	26,33,33	0.75	0	31,52,52	0.67	0
36	FES	Т	201	13,20	0,4,4	-	-	-		•
36	FES	Р	201	16,5	0,4,4	-	-	-		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
36	FES	Т	201	13,20	-	-	0/1/1/1
36	FES	Р	201	16,5	-	-	0/1/1/1
37	ATP	Х	401	33	-	0/18/38/38	0/3/3/3

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-13551. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 288

Y Index: 288

Z Index: 288

6.2.2 Raw map

X Index: 240

Y Index: 240

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 348

Y Index: 265

Z Index: 241

6.3.2 Raw map

X Index: 262

Y Index: 232

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.12. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{13551}_{msk}_{1.map}$ (i) 6.6.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 453 nm^3 ; this corresponds to an approximate mass of 410 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.313 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.313 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)				
Resolution estimate (A)	0.143	0.5	Half-bit		
Reported by author	3.19	-	-		
Author-provided FSC curve	3.18	4.18	3.30		
Unmasked-calculated*	4.13	8.66	4.25		

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 4.13 differs from the reported value 3.19 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-13551 and PDB model 7PNT. Per-residue inclusion information can be found in section 3 on page 12.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.12 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.12).

9.4 Atom inclusion (i)

At the recommended contour level, 79% of all backbone atoms, 80% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.12) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.8020	0.5160
0	0.8830	0.5530
1	0.8110	0.5240
3	0.2940	0.3520
4	0.5530	0.4090
А	0.8700	0.5360
В	0.9280	0.6050
С	0.9350	0.5990
D	0.8100	0.5270
Е	0.8750	0.5470
F	0.7720	0.4890
G	0.7910	0.5150
Н	0.8730	0.5570
Ι	0.9060	0.5570
J	0.8870	0.5300
K	0.9370	0.5950
L	0.7720	0.5040
М	0.8940	0.6000
Ν	0.8970	0.5800
0	0.9250	0.5970
Р	0.9140	0.5750
Q	0.9090	0.5620
R	0.8540	0.5550
S	0.8020	0.5040
Т	0.9020	0.5750
U	0.7710	0.5010
V	0.7410	0.4880
W	0.8710	0.5640
Х	0.8140	0.5200
Y	0.6550	0.4620
Z	0.7990	0.5180
a	0.5390	0.4140
С	0.2460	0.2710

