Full wwPDB X-ray Structure Validation Report

Aug 9, 2020 – 11:38 PM BST

PDB ID : 1PPJ
Title : Bovine cytochrome bcl complex with stigmatellin and antimycin
Authors : Huang, L.S.; Cobessi, D.; Tung, E.Y.; Berry, E.A.
Deposited on : 2003-06-16
Resolution : 2.10 Å (reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

- MolProbity : 4.020-467
- Mogul : 1.8.5 (274361), CSD as541be (2020)
- Xtriage (Phenix) : 1.13
- EDS : 2.13.1
- buster-report : 1.1.7 (2018)
- Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)
- Refmac : 5.8.0158
- CCP4 : 7.0.044 (Gargrove)
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : 2.13.1
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

X-RAY DIFFRACTION

The reported resolution of this entry is 2.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_free</td>
<td>130704</td>
<td>5197 (2.10-2.10)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>141614</td>
<td>5710 (2.10-2.10)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>138981</td>
<td>5647 (2.10-2.10)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>138945</td>
<td>5648 (2.10-2.10)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>127900</td>
<td>5083 (2.10-2.10)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%. The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.
The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Chirality</th>
<th>Geometry</th>
<th>Clashes</th>
<th>Electron density</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>JZR</td>
<td>C</td>
<td>4002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>JZR</td>
<td>D</td>
<td>4003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>JZR</td>
<td>F</td>
<td>3011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>JZR</td>
<td>F</td>
<td>4001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>JZR</td>
<td>S</td>
<td>2011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>13</td>
<td>AZI</td>
<td>A</td>
<td>4011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>13</td>
<td>AZI</td>
<td>O</td>
<td>4010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>14</td>
<td>GOL</td>
<td>B</td>
<td>2009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>14</td>
<td>GOL</td>
<td>C</td>
<td>4006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>18</td>
<td>ANY</td>
<td>P</td>
<td>3002</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 22 unique types of molecules in this entry. The entry contains 33549 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Ubiquinol-cytochrome C reductase complex core protein I, mitochondrial.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>442</td>
<td>Total C N O S</td>
<td>3396 2117 601 658 20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>442</td>
<td>Total C N O S</td>
<td>3396 2117 601 658 20</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 2 is a protein called Ubiquinol-cytochrome C reductase complex core protein 2, mitochondrial.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>424</td>
<td>Total C N O S</td>
<td>3178 1997 562 612 7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>424</td>
<td>Total C N O S</td>
<td>3156 1984 558 607 7</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 3 is a protein called Cytochrome b.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>365</td>
<td>Total C N O S</td>
<td>2892 1940 450 485 17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>365</td>
<td>Total C N O S</td>
<td>2891 1940 449 485 17</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 4 is a protein called Cytochrome c1, heme protein, mitochondrial.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>D</td>
<td>241</td>
<td>Total C N O S</td>
<td>1919 1225 330 349 15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Q</td>
<td>241</td>
<td>Total C N O S</td>
<td>1919 1225 330 349 15</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 5 is a protein called Ubiquinol-cytochrome C reductase iron-sulfur subunit, mitochondrial.
- Molecule 6 is a protein called Ubiquinol-cytochrome C reductase complex 14 kDa protein.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>E</td>
<td>196</td>
<td>Total C N O S 1510 954 263 285 8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>R</td>
<td>196</td>
<td>Total C N O S 1517 956 263 290 8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 7 is a protein called Ubiquinol-cytochrome C reductase complex ubiquinone-binding protein QP-C.

<table>
<thead>
<tr>
<th>mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>F</td>
<td>99</td>
<td>Total C N O S 861 545 155 159 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>S</td>
<td>99</td>
<td>Total C N O S 861 545 155 159 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 8 is a protein called Ubiquinol-cytochrome C reductase complex 11 kDa protein.

<table>
<thead>
<tr>
<th>mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>G</td>
<td>75</td>
<td>Total C N O S 621 406 117 97 1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>T</td>
<td>76</td>
<td>Total C N O S 626 409 118 98 1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

- Molecule 9 is a protein called Ubiquinol-cytochrome C reductase iron-sulfur subunit, mitochondrial.

<table>
<thead>
<tr>
<th>mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>H</td>
<td>66</td>
<td>Total C N O S 539 327 98 109 5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>U</td>
<td>66</td>
<td>Total C N O S 539 327 98 109 5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 10 is a protein called Ubiquinol-cytochrome C reductase complex 7.2 kDa protein.
- Molecule 11 is hexyl beta-D-glucopyranoside (three-letter code: JZR) (formula: C_{12}H_{24}O_{6}).

- Molecule 12 is PHOSPHATE ION (three-letter code: PO4) (formula: O_{4}P).
Molecule 13 is AZIDE ION (three-letter code: AZI) (formula: N₃).
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>A</td>
<td>1</td>
<td>Total N</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>C</td>
<td>1</td>
<td>Total N</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>G</td>
<td>1</td>
<td>Total N</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>O</td>
<td>1</td>
<td>Total N</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>P</td>
<td>1</td>
<td>Total N</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 14 is GLYCEROL (three-letter code: GOL) (formula: C₃H₈O₃).

![GOL](image)

- Molecule 15 is PROTOPORPHYRIN IX CONTAINING FE (three-letter code: HEM) (for-
Molecule 16 is STIGMATELLIN A (three-letter code: SMA) (formula: $C_{30}H_{42}O_7$).
Molecule 17 is 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (three-letter code: PEE) (formula: C₄₁H₈₃NO₈P).

- Molecule 19 is HEME C (three-letter code: HEC) (formula: C\textsubscript{34}H\textsubscript{34}FeN\textsubscript{4}O\textsubscript{4}).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>C</td>
<td>1</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37 26 2 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>1</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37 26 2 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>1</td>
<td>Total C Fe N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43 34 1 4 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Q</td>
<td>1</td>
<td>Total C Fe N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43 34 1 4 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Molecule 20 is CARDIOLIPIN (three-letter code: CDL) (formula: \(\text{C}_{81}\text{H}_{156}\text{O}_{17}\text{P}_{2}\)).

```
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>D</td>
<td>1</td>
<td>Total</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>39</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>1</td>
<td>Total</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>1</td>
<td>Total</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>39</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>1</td>
<td>Total</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>49</td>
<td>30</td>
<td>17</td>
</tr>
</tbody>
</table>
```

• Molecule 21 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula: \(\text{Fe}_{2}\text{S}_{2}\)).
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>E</td>
<td>1</td>
<td>Total 4 Fe S 2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>R</td>
<td>1</td>
<td>Total 4 Fe S 2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 22 is water.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>A</td>
<td>219</td>
<td>Total 219 O 219</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>B</td>
<td>167</td>
<td>Total 167 O 167</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>C</td>
<td>123</td>
<td>Total 123 O 123</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>D</td>
<td>96</td>
<td>Total 96 O 96</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>E</td>
<td>50</td>
<td>Total 50 O 50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>F</td>
<td>63</td>
<td>Total 63 O 63</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>G</td>
<td>17</td>
<td>Total 17 O 17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>H</td>
<td>17</td>
<td>Total 17 O 17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>I</td>
<td>16</td>
<td>Total 16 O 16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>J</td>
<td>4</td>
<td>Total 4 O 4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>N</td>
<td>98</td>
<td>Total 98 O 98</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>O</td>
<td>127</td>
<td>Total 127 O 127</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>P</td>
<td>115</td>
<td>Total 115 O 115</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>Q</td>
<td>89</td>
<td>Total 89 O 89</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>R</td>
<td>63</td>
<td>Total 63 O 63</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>S</td>
<td>63</td>
<td>Total 63 O 63</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>T</td>
<td>20</td>
<td>Total 20 O 20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>U</td>
<td>6</td>
<td>Total 6 O 6</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>V</td>
<td>8</td>
<td>Total 8 O 8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>W</td>
<td>9</td>
<td>Total 9 O 9</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Ubiquinol-cytochrome C reductase complex core protein I, mitochondrial

Chain A:

- Molecule 1: Ubiquinol-cytochrome C reductase complex core protein I, mitochondrial

Chain N:

- Molecule 2: Ubiquinol-cytochrome C reductase complex core protein 2, mitochondrial

Chain B:
- Molecule 2: Ubiquinol-cytochrome C reductase complex core protein 2, mitochondrial

Chain O:

- Molecule 3: Cytochrome b

Chain C:

- Molecule 3: Cytochrome b

Chain P:

- Molecule 4: Cytochrome c1, heme protein, mitochondrial

Chain D:
• Molecule 4: Cytochrome c1, heme protein, mitochondrial

Chain Q:

• Molecule 5: Ubiquinol-cytochrome C reductase iron-sulfur subunit, mitochondrial

Chain E:

• Molecule 5: Ubiquinol-cytochrome C reductase iron-sulfur subunit, mitochondrial

Chain R:

• Molecule 6: Ubiquinol-cytochrome C reductase complex 14 kDa protein

Chain F:

• Molecule 6: Ubiquinol-cytochrome C reductase complex 14 kDa protein

Chain S:

• Molecule 7: Ubiquinol-cytochrome C reductase complex ubiquinone-binding protein QP-C

Chain G:
- **Molecule 7**: Ubiquinol-cytochrome C reductase complex ubiquinone-binding protein QP-C

Chain T:

- **Molecule 8**: Ubiquinol-cytochrome C reductase complex 11 kDa protein

Chain H:

- **Molecule 8**: Ubiquinol-cytochrome C reductase complex 11 kDa protein

Chain U:

- **Molecule 9**: Ubiquinol-cytochrome C reductase iron-sulfur subunit, mitochondrial

Chain I:

- **Molecule 9**: Ubiquinol-cytochrome C reductase iron-sulfur subunit, mitochondrial

Chain V:

- **Molecule 10**: Ubiquinol-cytochrome C reductase complex 7.2 kDa protein
Chain J:

| Val | Ala | Pro | Thr | Leu | Thr | Ala | Arg | Leu | Tyr | Ser | Leu | Leu | Phe | Arg | Arg | Thr | Ser | Thr | Phe | Ala | Leu | Thr | Ile | Val | Val | Gly | Ala | Leu |
|-----|
| 8% | 40% | 11% | 47% |

- Molecule 10: Ubiquinol-cytochrome C reductase complex 7.2 kDa protein

Chain W:

<table>
<thead>
<tr>
<th>Val</th>
<th>Ala</th>
<th>Pro</th>
<th>Thr</th>
<th>Leu</th>
<th>Thr</th>
<th>Ala</th>
<th>Arg</th>
<th>Leu</th>
<th>Tyr</th>
<th>Ser</th>
<th>Leu</th>
<th>Leu</th>
<th>Phe</th>
<th>Arg</th>
<th>Arg</th>
<th>Thr</th>
<th>Ser</th>
<th>Thr</th>
<th>Phe</th>
<th>Ala</th>
<th>Leu</th>
<th>Thr</th>
<th>Ile</th>
<th>Val</th>
<th>Val</th>
<th>Gly</th>
<th>Ala</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>35%</td>
<td>60%</td>
<td>35%</td>
<td>5%</td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 10: Ubiquinol-cytochrome C reductase complex 7.2 kDa protein
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 2 1 2 1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>128.53Å, 168.75Å, 231.53Å</td>
<td>Depositor</td>
</tr>
<tr>
<td>a, b, c, α, β, γ</td>
<td>90.00°, 90.00°, 90.00°</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>93.53 - 2.10</td>
<td>EDS</td>
</tr>
<tr>
<td>% Data completeness (in resolution range)</td>
<td>97.7 (93.53-2.10)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>merge</sub></td>
<td>0.15</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>sym</sub></td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td><I/σ(I)>¹</td>
<td>3.03 (at 2.10Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>CNS 1.1</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, R<sub>free</sub></td>
<td>0.224, 0.260</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>free</sub> test set</td>
<td>14181 reflections (4.97%)</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Wilson B-factor (Å<sup>2</sup>)</td>
<td>41.8</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.314</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent k<sub>sol</sub>(e/Å<sup>3</sup>), B<sub>sol</sub>(Å<sup>2</sup>)</td>
<td>0.37, 65.7</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning<sup>²</sup></td>
<td><L> = 0.51, <L<sup>2</sup>> = 0.35</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>No twinning to report</td>
<td>Xtriage</td>
</tr>
<tr>
<td>F<sub>o</sub>F<sub>c</sub> correlation</td>
<td>0.95</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>33549</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å<sup>2</sup>)</td>
<td>50.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.97% of the height of the origin peak. No significant pseudotranslation is detected.

¹Intensities estimated from amplitudes.
²Theoretical values of <L>, <L²> for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: AZI, GOL, CDL, PO4, JZR, FES, HEC, HEM, PEE, ANY, SMA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with \(|Z| > 5\) is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.33</td>
<td>0/3465</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>0.30</td>
<td>0/3465</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0.32</td>
<td>0/3236</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>0.31</td>
<td>0/3213</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0.34</td>
<td>0/2986</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>0.33</td>
<td>0/2985</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>0.30</td>
<td>0/1978</td>
</tr>
<tr>
<td>4</td>
<td>Q</td>
<td>0.29</td>
<td>0/1978</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>0.29</td>
<td>0/1544</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>0.30</td>
<td>0/1551</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>0.32</td>
<td>0/878</td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>0.30</td>
<td>0/878</td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>0.31</td>
<td>0/642</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>0.31</td>
<td>0/647</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>0.30</td>
<td>0/544</td>
</tr>
<tr>
<td>8</td>
<td>U</td>
<td>0.27</td>
<td>0/544</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>0.35</td>
<td>0/286</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>0.34</td>
<td>0/286</td>
</tr>
<tr>
<td>10</td>
<td>J</td>
<td>0.33</td>
<td>0/292</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>0.31</td>
<td>0/518</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.31</td>
<td>0/31916</td>
</tr>
</tbody>
</table>

There are no bond length outliers.

All (8) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>I</td>
<td>35</td>
<td>PRO</td>
<td>N-CA-CB</td>
<td>5.84</td>
<td>110.31</td>
<td>103.30</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>64</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.72</td>
<td>128.47</td>
<td>115.30</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>143</td>
<td>GLY</td>
<td>N-CA-C</td>
<td>5.70</td>
<td>127.35</td>
<td>113.10</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>365</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.68</td>
<td>128.36</td>
<td>115.30</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>E</td>
<td>143</td>
<td>GLY</td>
<td>N-CA-C</td>
<td>5.58</td>
<td>127.06</td>
<td>113.10</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>35</td>
<td>PRO</td>
<td>N-CA-CB</td>
<td>5.36</td>
<td>109.73</td>
<td>103.30</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>109</td>
<td>PHE</td>
<td>N-CA-C</td>
<td>-5.26</td>
<td>96.79</td>
<td>111.00</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>109</td>
<td>PHE</td>
<td>N-CA-C</td>
<td>-5.12</td>
<td>97.17</td>
<td>111.00</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>3396</td>
<td>0</td>
<td>3292</td>
<td>65</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>3396</td>
<td>0</td>
<td>3292</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>3178</td>
<td>0</td>
<td>3153</td>
<td>72</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>3156</td>
<td>0</td>
<td>3123</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>2892</td>
<td>0</td>
<td>2938</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>2891</td>
<td>0</td>
<td>2937</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>1919</td>
<td>0</td>
<td>1868</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Q</td>
<td>1919</td>
<td>0</td>
<td>1868</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>1510</td>
<td>0</td>
<td>1495</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>1517</td>
<td>0</td>
<td>1499</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>861</td>
<td>0</td>
<td>854</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>861</td>
<td>0</td>
<td>854</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>621</td>
<td>0</td>
<td>626</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>626</td>
<td>0</td>
<td>631</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>539</td>
<td>0</td>
<td>524</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>U</td>
<td>539</td>
<td>0</td>
<td>524</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>285</td>
<td>0</td>
<td>280</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>285</td>
<td>0</td>
<td>280</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>J</td>
<td>284</td>
<td>0</td>
<td>264</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>506</td>
<td>0</td>
<td>512</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>18</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>36</td>
<td>0</td>
<td>48</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
<td>18</td>
<td>0</td>
<td>24</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>36</td>
<td>0</td>
<td>48</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>P</td>
<td>18</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>R</td>
<td>18</td>
<td>0</td>
<td>24</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>S</td>
<td>18</td>
<td>0</td>
<td>24</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>P</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>S</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>A</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>C</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>G</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>O</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>P</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>B</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>12</td>
<td>0</td>
<td>16</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>O</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>P</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>R</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>86</td>
<td>0</td>
<td>60</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>86</td>
<td>0</td>
<td>60</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>37</td>
<td>0</td>
<td>42</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>P</td>
<td>37</td>
<td>0</td>
<td>42</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>49</td>
<td>0</td>
<td>72</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>26</td>
<td>0</td>
<td>26</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>49</td>
<td>0</td>
<td>72</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>51</td>
<td>0</td>
<td>82</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>37</td>
<td>0</td>
<td>28</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>37</td>
<td>0</td>
<td>29</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>43</td>
<td>0</td>
<td>30</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Q</td>
<td>43</td>
<td>0</td>
<td>30</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>39</td>
<td>0</td>
<td>39</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>44</td>
<td>0</td>
<td>32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>39</td>
<td>0</td>
<td>39</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>49</td>
<td>0</td>
<td>42</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>E</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>R</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>A</td>
<td>219</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>B</td>
<td>167</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>C</td>
<td>123</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>D</td>
<td>96</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>E</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>F</td>
<td>63</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>G</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 9.

All (551) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:B:95:LYS:HE2</td>
<td>9:I:32:ALA:HB3</td>
<td>1.47</td>
<td>0.94</td>
</tr>
<tr>
<td>2:B:200:THR:HG21</td>
<td>2:B:228:GLY:HA3</td>
<td>1.51</td>
<td>0.90</td>
</tr>
<tr>
<td>2:O:47:ILE:HG21</td>
<td>2:O:120:MET:HE1</td>
<td>1.56</td>
<td>0.88</td>
</tr>
<tr>
<td>8:H:25:GLU:HB2</td>
<td>8:H:34:ARG:HH22</td>
<td>1.38</td>
<td>0.88</td>
</tr>
<tr>
<td>2:B:95:LYS:HE2</td>
<td>9:I:32:ALA:CB</td>
<td>2.03</td>
<td>0.88</td>
</tr>
<tr>
<td>8:U:25:GLU:HB2</td>
<td>8:U:34:ARG:HH22</td>
<td>1.37</td>
<td>0.87</td>
</tr>
<tr>
<td>2:B:204:MET:HE1</td>
<td>2:B:224:LEU:HD22</td>
<td>1.58</td>
<td>0.83</td>
</tr>
<tr>
<td>2:B:47:ILE:HG21</td>
<td>2:B:120:MET:HE1</td>
<td>1.57</td>
<td>0.83</td>
</tr>
<tr>
<td>1:N:39:VAL:HG11</td>
<td>1:N:195:MET:HE3</td>
<td>1.60</td>
<td>0.81</td>
</tr>
<tr>
<td>Atom-1</td>
<td>Atom-2</td>
<td>Interatomic distance (Å)</td>
<td>Clash overlap (Å)</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>5:R:44:THR:HG1</td>
<td>10:W:24:ILE:HD13</td>
<td>1.65</td>
<td>0.78</td>
</tr>
<tr>
<td>6:F:95:LYS:HB2</td>
<td>6:F:95:LYS:NZ</td>
<td>2.02</td>
<td>0.74</td>
</tr>
<tr>
<td>5:R:34:GLY:CA</td>
<td>10:W:10:TYR:HB2</td>
<td>2.17</td>
<td>0.74</td>
</tr>
<tr>
<td>5:R:34:GLY:HA2</td>
<td>10:W:10:TYR:HB2</td>
<td>1.70</td>
<td>0.74</td>
</tr>
<tr>
<td>2:B:71:LEU:HD23</td>
<td>9:V:68:VAL:HG21</td>
<td>1.70</td>
<td>0.74</td>
</tr>
<tr>
<td>4:D:110:PRO:HG3</td>
<td>19:D:301:HEC:HMD3</td>
<td>1.71</td>
<td>0.73</td>
</tr>
<tr>
<td>6:S:95:LYS:HB2</td>
<td>6:S:95:LYS:NZ</td>
<td>2.04</td>
<td>0.72</td>
</tr>
<tr>
<td>7:T:63:THR:O</td>
<td>7:T:67:GLU:HG2</td>
<td>1.90</td>
<td>0.72</td>
</tr>
<tr>
<td>8:U:28:GLU:O</td>
<td>8:U:31:VAL:HG22</td>
<td>1.91</td>
<td>0.71</td>
</tr>
<tr>
<td>5:E:112:VAL:HG21</td>
<td>5:E:170:ARG:NH2</td>
<td>2.05</td>
<td>0.71</td>
</tr>
<tr>
<td>8:H:28:GLU:O</td>
<td>8:H:31:VAL:HG22</td>
<td>1.91</td>
<td>0.71</td>
</tr>
<tr>
<td>3:P:17:ALA:HA</td>
<td>3:P:201:HIS:HE1</td>
<td>1.55</td>
<td>0.70</td>
</tr>
<tr>
<td>3:C:129:MET:CE</td>
<td>3:C:181:PHE:HD2</td>
<td>2.05</td>
<td>0.70</td>
</tr>
<tr>
<td>7:G:63:THR:O</td>
<td>7:G:67:GLU:HG2</td>
<td>1.91</td>
<td>0.70</td>
</tr>
<tr>
<td>3:C:17:ALA:HA</td>
<td>3:C:201:HIS:HE1</td>
<td>1.57</td>
<td>0.69</td>
</tr>
<tr>
<td>3:P:129:MET:CE</td>
<td>3:P:181:PHE:HD2</td>
<td>2.05</td>
<td>0.69</td>
</tr>
<tr>
<td>1:N:209:LEU:O</td>
<td>1:N:213:GLN:HG3</td>
<td>1.93</td>
<td>0.69</td>
</tr>
<tr>
<td>5:R:104:LYS:O</td>
<td>5:R:108:GLN:HG3</td>
<td>1.91</td>
<td>0.69</td>
</tr>
<tr>
<td>2:B:204:MET:CE</td>
<td>2:B:224:LEU:HD22</td>
<td>2.23</td>
<td>0.68</td>
</tr>
<tr>
<td>5:E:104:LYS:O</td>
<td>5:E:108:GLN:HG3</td>
<td>1.92</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:293:PRO:O</td>
<td>1:A:297:ILE:HG12</td>
<td>1.93</td>
<td>0.68</td>
</tr>
<tr>
<td>2:B:200:THR:CG2</td>
<td>2:B:228:GLY:HA3</td>
<td>2.23</td>
<td>0.68</td>
</tr>
<tr>
<td>1:N:293:PRO:O</td>
<td>1:N:297:ILE:HG12</td>
<td>1.94</td>
<td>0.68</td>
</tr>
<tr>
<td>9:I:32:ALA:HA</td>
<td>9:I:71:ASN:HB3</td>
<td>1.76</td>
<td>0.68</td>
</tr>
<tr>
<td>2:B:26:HIS:HB2</td>
<td>2:B:22:GLN:HG2</td>
<td>1.74</td>
<td>0.67</td>
</tr>
<tr>
<td>8:U:25:GLU:CB</td>
<td>8:U:34:ARG:HH22</td>
<td>2.08</td>
<td>0.67</td>
</tr>
<tr>
<td>8:U:28:GLU:O</td>
<td>8:U:32:LYS:HG2</td>
<td>1.95</td>
<td>0.67</td>
</tr>
<tr>
<td>8:H:25:GLU:CB</td>
<td>8:H:34:ARG:HH22</td>
<td>2.07</td>
<td>0.67</td>
</tr>
<tr>
<td>2:B:95:LYS:HE2</td>
<td>9:I:32:ALA:N</td>
<td>2.10</td>
<td>0.67</td>
</tr>
<tr>
<td>7:G:34:ILE:HE2</td>
<td>7:G:35:PRO:HD3</td>
<td>1.77</td>
<td>0.66</td>
</tr>
<tr>
<td>8:H:28:GLU:O</td>
<td>8:H:32:LYS:HG2</td>
<td>1.95</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:C:129:MET:HE1</td>
<td>3:C:181:PHE:HD2</td>
<td>1.61</td>
<td>0.66</td>
</tr>
<tr>
<td>8:H:21:ARG:O</td>
<td>8:H:25:GLU:HG2</td>
<td>1.96</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:316:ASP:OD1</td>
<td>1:A:316:ASP:N</td>
<td>2.26</td>
<td>0.66</td>
</tr>
<tr>
<td>3:P:129:MET:HE1</td>
<td>3:P:181:PHE:HD2</td>
<td>1.60</td>
<td>0.65</td>
</tr>
<tr>
<td>10:W:33:ARG:O</td>
<td>10:W:37:GLN:HG3</td>
<td>1.96</td>
<td>0.65</td>
</tr>
<tr>
<td>5:R:189:SER:O</td>
<td>5:R:190:ASP:C</td>
<td>2.33</td>
<td>0.65</td>
</tr>
<tr>
<td>3:C:16:ASN:HD22</td>
<td>3:C:16:ASN:N</td>
<td>1.93</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:136:GLN:O</td>
<td>1:A:140:GLU:HG3</td>
<td>1.97</td>
<td>0.65</td>
</tr>
<tr>
<td>7:T:34:ILE:HB</td>
<td>7:T:35:PRO:HD3</td>
<td>1.79</td>
<td>0.65</td>
</tr>
<tr>
<td>9:I:32:ALA:N</td>
<td>9:I:72:VAL:HG23</td>
<td>2.13</td>
<td>0.64</td>
</tr>
<tr>
<td>4:Q:144:ARG:HH11</td>
<td>4:Q:144:ARG:HG2</td>
<td>1.62</td>
<td>0.64</td>
</tr>
<tr>
<td>3:C:379:TRP:CE3</td>
<td>6:F:33:ARG:HD3</td>
<td>2.32</td>
<td>0.64</td>
</tr>
<tr>
<td>1:N:113:LEU:O</td>
<td>1:N:117:VAL:HG12</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>2:O:306:PRO:HA</td>
<td>9:V:52:ARG:HG3</td>
<td>1.80</td>
<td>0.64</td>
</tr>
<tr>
<td>9:I:36:ALA:HB2</td>
<td>9:I:73:PRO:HD2</td>
<td>1.79</td>
<td>0.64</td>
</tr>
<tr>
<td>9:V:72:VAL:HG13</td>
<td>9:V:73:PRO:HD2</td>
<td>1.78</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:172:GLU:OE2</td>
<td>1:A:176:LYS:HE3</td>
<td>1.98</td>
<td>0.64</td>
</tr>
<tr>
<td>5:E:112:VAL:HG21</td>
<td>5:E:170:ARG:HH22</td>
<td>1.61</td>
<td>0.64</td>
</tr>
<tr>
<td>4:D:144:ARG:HG2</td>
<td>4:D:144:ARG:HH11</td>
<td>1.64</td>
<td>0.63</td>
</tr>
<tr>
<td>4:D:71:GLN:HA</td>
<td>4:D:82:MET:HE2</td>
<td>1.81</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:305:GLN:HA</td>
<td>1:A:305:GLN:HE21</td>
<td>1.62</td>
<td>0.63</td>
</tr>
<tr>
<td>8:U:21:ARG:O</td>
<td>8:U:25:GLU:HG2</td>
<td>1.98</td>
<td>0.62</td>
</tr>
<tr>
<td>2:B:29:VAL:HG12</td>
<td>2:B:303:VAL:CG1</td>
<td>2.30</td>
<td>0.62</td>
</tr>
<tr>
<td>1:N:136:GLN:O</td>
<td>1:N:140:GLU:HG3</td>
<td>2.00</td>
<td>0.62</td>
</tr>
<tr>
<td>2:B:95:LYS:CE</td>
<td>9:I:32:ALA:HB3</td>
<td>2.25</td>
<td>0.61</td>
</tr>
<tr>
<td>1:N:316:ASP:N</td>
<td>1:N:316:ASP:OD1</td>
<td>2.33</td>
<td>0.61</td>
</tr>
<tr>
<td>15:P:501:HEM:HMC1</td>
<td>15:P:501:HEM:HBC2</td>
<td>1.83</td>
<td>0.61</td>
</tr>
<tr>
<td>1:N:224:ASP:OD1</td>
<td>1:N:227:ALA:HB3</td>
<td>1.99</td>
<td>0.61</td>
</tr>
<tr>
<td>5:R:44:THR:CG2</td>
<td>10:W:24:ILE:HG21</td>
<td>2.30</td>
<td>0.61</td>
</tr>
<tr>
<td>2:O:202:ALA:HB3</td>
<td>2:O:229:GLY:O</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>9:I:32:ALA:N</td>
<td>9:I:71:ASN:HB2</td>
<td>2.16</td>
<td>0.61</td>
</tr>
<tr>
<td>1:N:172:GLU:OE2</td>
<td>1:N:176:LYS:HE3</td>
<td>2.00</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Continued on next page...
Interatomic distance (Å)

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:O:250:ASP:HB3</td>
<td>22:O:4111:HOH:O</td>
<td>1.99</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:288:ALA:HB2</td>
<td>1:A:306:THR:HG22</td>
<td>1.84</td>
<td>0.60</td>
</tr>
<tr>
<td>22:A:4157:HOH:O</td>
<td>9:I:41:PRO:HB3</td>
<td>2.00</td>
<td>0.60</td>
</tr>
<tr>
<td>15:C:501:HEM:HBC2</td>
<td>15:C:501:HEM:HMC1</td>
<td>1.82</td>
<td>0.60</td>
</tr>
<tr>
<td>5:E:71:MET:O</td>
<td>5:E:72:SER:HB3</td>
<td>2.01</td>
<td>0.60</td>
</tr>
<tr>
<td>6:S:95:LYS:HB2</td>
<td>6:S:95:LYS:HZ2</td>
<td>1.66</td>
<td>0.60</td>
</tr>
<tr>
<td>5:E:94:LYS:HE3</td>
<td>3:P:168:PHE:O</td>
<td>2.01</td>
<td>0.59</td>
</tr>
<tr>
<td>1:N:193:PRO:HD3</td>
<td>1:N:221:GLY:HA2</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>9:I:32:ALA:HA</td>
<td>9:I:71:ASN:HB2</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>9:V:36:ALA:CB</td>
<td>9:V:73:PRO:HD2</td>
<td>2.32</td>
<td>0.59</td>
</tr>
<tr>
<td>1:N:288:ALA:HB2</td>
<td>1:N:306:THR:HG22</td>
<td>1.85</td>
<td>0.59</td>
</tr>
<tr>
<td>2:B:33:LEU:HD12</td>
<td>2:B:204:MET:HE2</td>
<td>1.85</td>
<td>0.58</td>
</tr>
<tr>
<td>5:R:39:VAL:HG13</td>
<td>22:R:4057:HOH:O</td>
<td>2.02</td>
<td>0.58</td>
</tr>
<tr>
<td>4:Q:218:LEU:HD22</td>
<td>22:R:4057:HOH:O</td>
<td>2.01</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:305:GLN:HB3</td>
<td>9:I:41:PRO:HA</td>
<td>1.85</td>
<td>0.58</td>
</tr>
<tr>
<td>5:R:131:GLU:HG2</td>
<td>5:R:132:TRP:CD1</td>
<td>2.38</td>
<td>0.58</td>
</tr>
<tr>
<td>1:P:15:ASN:OD1</td>
<td>3:P:19:ILE:HB</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>2:B:276:GLN:HG2</td>
<td>2:B:281:ALA:HB2</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>2:B:12:GLU:HG2</td>
<td>2:B:17:VAL:N</td>
<td>2.19</td>
<td>0.57</td>
</tr>
<tr>
<td>3:C:129:MET:HE1</td>
<td>3:C:181:PHE:CD2</td>
<td>2.40</td>
<td>0.57</td>
</tr>
<tr>
<td>4:D:145:GLU:HA</td>
<td>11:D:4003:JZR:H2</td>
<td>1.87</td>
<td>0.57</td>
</tr>
<tr>
<td>3:C:251:GLY:HA2</td>
<td>14:C:2008:GOL:H11</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>4:Q:165:TYR:HA</td>
<td>4:Q:179:MET:HE2</td>
<td>1.86</td>
<td>0.56</td>
</tr>
<tr>
<td>10:W:13:LEU:O</td>
<td>10:W:19:THR:HG23</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>2:B:299:VAL:O</td>
<td>2:B:303:VAL:HG12</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>2:B:354:ASN:HB2</td>
<td>2:B:355:PRO:HD3</td>
<td>1.85</td>
<td>0.56</td>
</tr>
<tr>
<td>7:T:71:ARG:HG22</td>
<td>8:U:60:ASP:CG</td>
<td>2.08</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:118:GLN:HG2</td>
<td>1:A:219:LEU:HD13</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:188:ARG:NH1</td>
<td>1:A:229:PRO:HD3</td>
<td>2.20</td>
<td>0.56</td>
</tr>
<tr>
<td>2:B:299:VAL:HG12</td>
<td>2:B:303:VAL:HG12</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>7:N:93:THR:OG1</td>
<td>1:N:6:GLN:HG3</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>7:G:42:ARG:HG3</td>
<td>7:G:42:ARG:HH11</td>
<td>1.71</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:J:56:LYS:HG2</td>
<td>10:J:60:GLU:CD</td>
<td>2.26</td>
<td>0.56</td>
</tr>
<tr>
<td>2:O:276:GLN:HG2</td>
<td>2:O:281:ALA:HB2</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>4:Q:44:ASP:OD1</td>
<td>4:Q:93:LYS:HE2</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:N:228:VAL:HG13</td>
<td>1:N:228:VAL:O</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:191:LYS:HE2</td>
<td>1:A:223:TYR:CB</td>
<td>2.36</td>
<td>0.56</td>
</tr>
<tr>
<td>17:Q:3006:PEE:H18</td>
<td>5:R:54:VAL:HG22</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>5:R:128:LYS:HE3</td>
<td>5:R:185:TYR:O</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>11:F:3011:JZR:HI</td>
<td>1:N:289:HIS:NE2</td>
<td>2.21</td>
<td>0.55</td>
</tr>
<tr>
<td>2:B:305:GLN:HB3</td>
<td>2:B:329:GLN:OE1</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>2:B:212:SER:O</td>
<td>2:B:215:VAL:HG22</td>
<td>2.07</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:193:PRO:HD3</td>
<td>1:A:221:GLY:HA2</td>
<td>1.88</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:267:ASN:O</td>
<td>1:A:271:GLN:HG2</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>4:D:44:ASP:OD1</td>
<td>4:D:93:LYS:HE2</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:228:VAL:O</td>
<td>1:A:228:VAL:HG13</td>
<td>2.06</td>
<td>0.54</td>
</tr>
<tr>
<td>3:P:100:ARG:C</td>
<td>3:P:100:ARG:HD2</td>
<td>2.27</td>
<td>0.54</td>
</tr>
<tr>
<td>5:R:44:THR:CG2</td>
<td>10:W:24:ILE:HD13</td>
<td>2.37</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:136:GLN:NE2</td>
<td>9:I:51:CY5:CB</td>
<td>2.70</td>
<td>0.54</td>
</tr>
<tr>
<td>3:P:18:PHE:O</td>
<td>3:P:21:LEU:HB2</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>3:P:314:SER:O</td>
<td>3:P:318:ARG:HD3</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>10:W:10:TYR:OH</td>
<td>10:W:15:ARG:NH1</td>
<td>2.41</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:296:SER:O</td>
<td>1:A:300:THR:HG23</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:N:78:GLU:OE2</td>
<td>1:N:108:LYS:HD3</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>9:V:36:ALA:HB3</td>
<td>9:V:73:PRO:HG2</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:78:GLU:OE2</td>
<td>1:A:108:LYS:HD3</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>3:C:17:ALA:HA</td>
<td>3:C:201:HIS:CE1</td>
<td>2.42</td>
<td>0.53</td>
</tr>
<tr>
<td>4:D:144:ARG:NH1</td>
<td>4:D:144:ARG:HG2</td>
<td>2.23</td>
<td>0.53</td>
</tr>
<tr>
<td>4:D:165:TYR:HA</td>
<td>4:D:179:MET:HE2</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>9:I:32:ALA:CA</td>
<td>9:I:71:ASN:HB3</td>
<td>2.38</td>
<td>0.53</td>
</tr>
<tr>
<td>1:N:373:THR:HB</td>
<td>1:N:374:PRO:HD3</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>6:S:106:GLU:HG2</td>
<td>22:S:3048:HOH:O</td>
<td>2.06</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Continued on next page...
Interatomic distance (Å) and Clash overlap (Å)

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:J:33:ARG:O</td>
<td>10:J:37:GLN:HG3</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>7:T:71:ARG:NH2</td>
<td>8:U:60:ASP:OD1</td>
<td>2.42</td>
<td>0.53</td>
</tr>
<tr>
<td>3:C:158:THR:O</td>
<td>3:C:162:GLU:HG3</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>3:C:18:PHE:O</td>
<td>3:C:21:LEU:HB2</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>5:E:95:PRO:HG2</td>
<td>5:E:145:VAL:HG22</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>2:O:279:LEU:HB3</td>
<td>2:O:295:LEU:HG</td>
<td>1.89</td>
<td>0.53</td>
</tr>
<tr>
<td>4:Q:144:ARG:NH1</td>
<td>4:Q:144:ARG:HG2</td>
<td>2.21</td>
<td>0.53</td>
</tr>
<tr>
<td>2:B:26:HIS:HB2</td>
<td>2:B:22:GLN:CG</td>
<td>2.39</td>
<td>0.53</td>
</tr>
<tr>
<td>2:O:305:GLN:N</td>
<td>2:O:306:PRO:HD3</td>
<td>2.23</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:366:VAL:HG21</td>
<td>2:B:44:ALA:HB2</td>
<td>1.89</td>
<td>0.52</td>
</tr>
<tr>
<td>1:N:146:ARG:NH2</td>
<td>1:N:308:GLN:HE22</td>
<td>2.06</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:169:ARG:HG3</td>
<td>2:B:240:HIS:HB2</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>10:W:4:THR:O</td>
<td>10:W:8:ARG:HG2</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:N:267:ASN:O</td>
<td>1:N:271:GLN:HG2</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:N:365:LEU:HD11</td>
<td>1:N:399:ILE:HD11</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>2:O:212:SER:O</td>
<td>2:O:215:VAL:HG22</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>9:I:32:ALA:CA</td>
<td>9:I:71:ASN:HB2</td>
<td>2.40</td>
<td>0.52</td>
</tr>
<tr>
<td>7:T:41:THR:O</td>
<td>7:T:45:ILE:HG12</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:4:TYR:HB2</td>
<td>22:B:2124:HOH:O</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>7:G:41:THR:O</td>
<td>7:G:45:ILE:HG12</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>4:Q:164:ILE:O</td>
<td>4:Q:179:MET:HE2</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>4:D:148:TYR:OH</td>
<td>11:D:4003:JZR:H6</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>9:I:36:ALA:HB3</td>
<td>9:I:73:PRO:HG2</td>
<td>1.90</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:86:THR:HG23</td>
<td>9:I:70:LEU:HD11</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:N:158:PHE:O</td>
<td>1:N:164:ALA:HB2</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>10:W:52:TRP:O</td>
<td>10:W:56:LYS:HB2</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:187:THR:OG1</td>
<td>2:B:190:GLU:HG3</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>3:P:206:ASN:HB3</td>
<td>15:P:502:HEM:O2D</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>5:R:94:LYS:HE3</td>
<td>14:R:4005:GOL:O3</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>8:U:19:THR:O</td>
<td>8:U:23:GLN:HG3</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:364:ALA:HB2</td>
<td>9:I:33:ALA:HB1</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>6:F:19:TRP:CD1</td>
<td>11:F:4001:JZR:H1</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>4:Q:71:GLN:HA</td>
<td>4:Q:82:MET:HE2</td>
<td>1.90</td>
<td>0.51</td>
</tr>
<tr>
<td>7:G:50:PRO:HB2</td>
<td>7:G:51:PRO:HD3</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>3:P:158:THR:O</td>
<td>3:P:162:GLU:HG3</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>3:P:80:ARG:C</td>
<td>3:P:80:ARG:HD3</td>
<td>2.31</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:191:LYS:HZ3</td>
<td>1:A:223:TYR:HA</td>
<td>1.75</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:E:99:ARG:HB3</td>
<td>5:E:133:VAL:CG1</td>
<td>2.41</td>
<td>0.51</td>
</tr>
<tr>
<td>2:B:208:GLY:HA3</td>
<td>2:B:216:LEU:HD11</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>1:N:296:SER:O</td>
<td>1:N:300:THR:HG23</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>3:P:17:ALA:HA</td>
<td>3:P:201:HIS:CE1</td>
<td>2.42</td>
<td>0.51</td>
</tr>
<tr>
<td>7:T:32:LYS:C</td>
<td>7:T:35:PRO:HD2</td>
<td>2.31</td>
<td>0.51</td>
</tr>
<tr>
<td>5:E:114:VAL:O</td>
<td>5:E:114:VAL:HG12</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>7:G:48:VAL:O</td>
<td>7:G:51:PRO:HD2</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>2:B:397:THR:O</td>
<td>2:B:401:GLN:HG3</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>3:C:16:ASN:ND2</td>
<td>3:C:16:ASN:N</td>
<td>2.59</td>
<td>0.51</td>
</tr>
<tr>
<td>3:C:206:ASN:HB3</td>
<td>15:C:502:HEM:O2D</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>4:D:2:ASP:OD1</td>
<td>7:G:70:LYS:HE3</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>2:O:202:ALA:HB3</td>
<td>2:O:229:GLY:C</td>
<td>2.30</td>
<td>0.51</td>
</tr>
<tr>
<td>9:I:36:ALA:CB</td>
<td>9:I:73:PRO:HD2</td>
<td>2.41</td>
<td>0.50</td>
</tr>
<tr>
<td>7:T:50:PRO:HB2</td>
<td>7:T:51:PRO:HD3</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>2:B:94:GLY:O</td>
<td>9:I:32:ALA:CB</td>
<td>2.59</td>
<td>0.50</td>
</tr>
<tr>
<td>6:S:12:TRP:N</td>
<td>6:S:13:LEU:HD23</td>
<td>2.27</td>
<td>0.50</td>
</tr>
<tr>
<td>6:S:95:LYS:CB</td>
<td>6:S:95:LYS:NZ</td>
<td>2.72</td>
<td>0.50</td>
</tr>
<tr>
<td>2:B:95:LYS:NZ</td>
<td>9:I:34:VAL:HG22</td>
<td>2.27</td>
<td>0.50</td>
</tr>
<tr>
<td>7:T:48:VAL:O</td>
<td>7:T:51:PRO:HD2</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>10:J:52:TRP:O</td>
<td>10:J:56:LYS:HB2</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:N:366:VAL:HG21</td>
<td>2:O:44:ALA:HB2</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>2:B:279:LEU:HB3</td>
<td>2:B:295:LEU:HG</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>8:H:19:THR:O</td>
<td>8:H:23:GLN:HG3</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>7:G:71:ARG:HH22</td>
<td>8:H:60:ASP:CG</td>
<td>2.15</td>
<td>0.49</td>
</tr>
<tr>
<td>3:C:15:ASN:C</td>
<td>3:C:17:ALA:H</td>
<td>2.15</td>
<td>0.49</td>
</tr>
<tr>
<td>2:O:95:LYS:NZ</td>
<td>9:V:34:VAL:HG22</td>
<td>2.26</td>
<td>0.49</td>
</tr>
<tr>
<td>5:R:45:VAL:HG13</td>
<td>10:W:28:ALA:HA</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:158:phe:O</td>
<td>1:A:164:ALA:HB2</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>3:C:129:MET:HE2</td>
<td>3:C:181:PHE:HD2</td>
<td>1.78</td>
<td>0.49</td>
</tr>
<tr>
<td>5:R:90:LYS:HE3</td>
<td>5:R:93:GLY:O</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:N:433:ASP:OD2</td>
<td>1:N:435:ASN:HB2</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>3:C:80:ARG:C</td>
<td>3:C:86:ARG:HD3</td>
<td>2.33</td>
<td>0.49</td>
</tr>
<tr>
<td>5:E:71:MET:O</td>
<td>5:E:72:SER:CB</td>
<td>2.60</td>
<td>0.49</td>
</tr>
<tr>
<td>3:P:378:LYS:HE3</td>
<td>6:S:17:ARG:HD3</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>2:B:246:GLU:O</td>
<td>2:B:427:SER:HA</td>
<td>2.13</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:G:56:TYR:O</td>
<td>7:G:60:THR:HG23</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>4:D:12:42:LYS:HE2</td>
<td>5:E:10:PHE:CE1</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>7:G:32:LYS:C</td>
<td>7:G:35:PRO:HD2</td>
<td>2.32</td>
<td>0.49</td>
</tr>
<tr>
<td>5:E:102:THR:O</td>
<td>5:E:106:ILE:HG13</td>
<td>2.12</td>
<td>0.48</td>
</tr>
<tr>
<td>2:O:39:GLU:OE2</td>
<td>2:O:41:TYR:N</td>
<td>2.44</td>
<td>0.48</td>
</tr>
<tr>
<td>4:D:165:TYR:HA</td>
<td>4:D:179:MET:CE</td>
<td>2.44</td>
<td>0.48</td>
</tr>
<tr>
<td>2:B:297:GLN:O</td>
<td>2:B:301:LYS:HG3</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:N:76:GLU:HG2</td>
<td>1:N:80:GLU:OE2</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:76:GLU:HG2</td>
<td>1:A:80:GLU:OE2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:191:ALA:HA</td>
<td>3:C:19:4:MET:CE</td>
<td>2.43</td>
<td>0.47</td>
</tr>
<tr>
<td>4:D:124:GLU:OE2</td>
<td>4:D:179:MET:CE</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>1:N:366:VAL:HG23</td>
<td>1:N:36:7:SER:N</td>
<td>2.28</td>
<td>0.47</td>
</tr>
<tr>
<td>5:R:99:ARG:HB3</td>
<td>5:R:133:VAL:CG1</td>
<td>2.44</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:27:ILE:HD12</td>
<td>18:C:2002:ANY:H3</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>2:B:95:LYS:HE2</td>
<td>9:I:32:ALA:CA</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:126:LEU:O</td>
<td>3:C:124:MET:HG3</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>7:T:39:ARG:HH1</td>
<td>7:T:39:ARG:HG2</td>
<td>1.79</td>
<td>0.47</td>
</tr>
<tr>
<td>7:G:39:ARG:HG2</td>
<td>7:G:39:ARG:HH1</td>
<td>1.78</td>
<td>0.47</td>
</tr>
<tr>
<td>5:R:77:LYS:HA</td>
<td>5:R:192:MET:HG2</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>2:O:95:LYS:NZ</td>
<td>9:V:34:VAL:CG2</td>
<td>2.78</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:102:LEU:CD2</td>
<td>2:B:369:LEU:HD12</td>
<td>2.45</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:T:56:TYR:O</td>
<td>7:T:60:THR:HG23</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:314:SER:O</td>
<td>3:C:318:ARG:HD3</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>3:P:156:ILE:HA</td>
<td>3:P:159:ASN:HD22</td>
<td>1.80</td>
<td>0.47</td>
</tr>
<tr>
<td>1:N:250:LEU:HD13</td>
<td>1:N:305:GLN:HG3</td>
<td>1.98</td>
<td>0.47</td>
</tr>
<tr>
<td>5:E:112:VAL:CG2</td>
<td>5:E:170:ARG:HH22</td>
<td>2.28</td>
<td>0.46</td>
</tr>
<tr>
<td>4:Q:165:TYR:HA</td>
<td>4:Q:179:MET:CE</td>
<td>2.44</td>
<td>0.46</td>
</tr>
<tr>
<td>6:S:72:GLN:OE1</td>
<td>6:S:72:GLN:HA</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>3:P:237:LEU:HD13</td>
<td>4:Q:212:MET:HG3</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:306:PRO:HA</td>
<td>9:I:52:ARG:HG3</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:95:LYS:CE1</td>
<td>9:I:32:ALA:N</td>
<td>2.76</td>
<td>0.46</td>
</tr>
<tr>
<td>1:N:189:HIS:ND1</td>
<td>1:N:194:ARG:NH2</td>
<td>2.64</td>
<td>0.46</td>
</tr>
<tr>
<td>1:N:206:ARG:HH11</td>
<td>1:N:206:ARG:HG3</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>1:N:29:GLN:O</td>
<td>2:O:18:PRO:HG3</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>5:E:160:CYS:HB3</td>
<td>16:P:3001:SMA:H4</td>
<td>1.95</td>
<td>0.46</td>
</tr>
<tr>
<td>2:O:305:GLN:N</td>
<td>2:O:305:GLN:C</td>
<td>2.68</td>
<td>0.46</td>
</tr>
<tr>
<td>6:S:16:ILE:HG13</td>
<td>6:S:17:ARG:N</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>4:D:138:PRO:HG2</td>
<td>4:D:141:VAL:CG2</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>3:P:191:ALA:HA</td>
<td>3:P:194:MET:CE</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>1:N:224:ASP:OD2</td>
<td>1:N:227:ALA:N</td>
<td>2.49</td>
<td>0.46</td>
</tr>
<tr>
<td>16:C:2001:SMA:H4</td>
<td>5:R:160:CYS:HB3</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>3:P:120:LEU:O</td>
<td>3:P:124:MET:HG3</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>3:P:348:ILE:O</td>
<td>3:P:352:GLN:HG3</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>7:T:28:HIS:CG</td>
<td>7:T:32:LYS:HE2</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:189:HIS:ND1</td>
<td>1:A:194:ARG:NH2</td>
<td>2.63</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:373:THR:HB</td>
<td>1:A:374:PRO:HD3</td>
<td>1.96</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:379:TRP:C3</td>
<td>6:F:33:ARG:HD3</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:366:VAL:HG23</td>
<td>1:A:367:SER:O</td>
<td>2.31</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:43:LEU:HD11</td>
<td>3:C:82:MET:HE2</td>
<td>1.97</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:C:97:HIS:CD2</td>
<td>15:C:502:HEM:NC</td>
<td>2.83</td>
<td>0.45</td>
</tr>
<tr>
<td>10:W:8:ARG:O</td>
<td>10:W:12:LEU:HB2</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:345:HIS:NE2</td>
<td>11:C:4002:JZR:H3</td>
<td>2.32</td>
<td>0.45</td>
</tr>
<tr>
<td>4:Q:240:PRO:O</td>
<td>4:Q:241:LYS:HB2</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:29:GLN:HB3</td>
<td>2:B:12:GLU:O</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:102:LEU:HD21</td>
<td>2:B:369:LEU:HD12</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>4:D:207:LYS:HZ2</td>
<td>17:D:2006:PEE:H11</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>4:Q:204:MET:HE3</td>
<td>17:Q:3006:PEE:C10</td>
<td>2.46</td>
<td>0.45</td>
</tr>
<tr>
<td>7:G:28:HIS:CG</td>
<td>7:G:32:LYS:HE2</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:206:ARG:HG3</td>
<td>1:A:206:ARG:HH11</td>
<td>1.80</td>
<td>0.45</td>
</tr>
<tr>
<td>5:R:52:LYS:HE3</td>
<td>10:W:32:GLU:OE2</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>9:V:64:LEU:HB3</td>
<td>9:V:78:TYR:OXT</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>9:132:ALA:N</td>
<td>9:I:71:ASN:CB</td>
<td>2.79</td>
<td>0.45</td>
</tr>
<tr>
<td>2:B:240:HIS:CE1</td>
<td>2:O:435:PHE:CD1</td>
<td>3.05</td>
<td>0.45</td>
</tr>
<tr>
<td>5:R:102:THR:O</td>
<td>5:R:106:ILE:HG13</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:191:ALA:HA</td>
<td>3:C:194:MET:HE2</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:145:VAL:HG21</td>
<td>16:C:2001:SMA:H6</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:206:ARG:NH1</td>
<td>1:A:206:ARG:HG3</td>
<td>2.31</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:241:GLY:HA2</td>
<td>2:B:423:SER:OG</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:141:TRP:CH2</td>
<td>5:R:145:VAL:HG23</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:281:LEU:HD23</td>
<td>3:C:281:LEU:C</td>
<td>2.37</td>
<td>0.44</td>
</tr>
<tr>
<td>1:N:206:ARG:NH1</td>
<td>1:N:206:ARG:HG3</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>3:P:327:ALA:HA</td>
<td>7:T:51:PRO:HB3</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:160:ILE:HG22</td>
<td>22:B:2146:HOH:O</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>2:O:354:ASN:HB3</td>
<td>2:O:356:PRO:HD3</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>2:O:181:TYR:CE1</td>
<td>2:O:182:ARG:HG2</td>
<td>2.53</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:C:237:LEU:HD13</td>
<td>4:D:212:MET:HG3</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>5:E:145:VAL:HG23</td>
<td>3:P:141:TRP:CH2</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>3:P:197:LEU:CD1</td>
<td>18:P:3002:ANY:H12</td>
<td>2.48</td>
<td>0.44</td>
</tr>
<tr>
<td>4:Q:43:MET:CE</td>
<td>4:Q:91:PHE:HE2</td>
<td>2.31</td>
<td>0.44</td>
</tr>
<tr>
<td>7:G:71:ARG:NH2</td>
<td>8:H:60:ASP:OD1</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:N:103:SER:HB3</td>
<td>1:N:202:GLY:O</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>2:O:397:THR:O</td>
<td>2:O:401:GLN:HG3</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:15:GLN:NE2</td>
<td>2:B:12:GLU:HB2</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:218:GLN:O</td>
<td>2:B:222:GLN:HG3</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:100:ARG:C</td>
<td>3:C:100:ARG:HD2</td>
<td>2.37</td>
<td>0.43</td>
</tr>
<tr>
<td>5:E:77:LYS:HA</td>
<td>5:E:192:MET:HG2</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:437:ASP:OD2</td>
<td>2:O:240:HIS:CD2</td>
<td>2.71</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:223:TYR:O</td>
<td>1:A:224:ASP:CB</td>
<td>2.66</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:279:LEU:HA</td>
<td>2:B:294:SER:HB3</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:N:82:MET:CE</td>
<td>1:N:108:LYS:HG2</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>1:N:213:GLN:O</td>
<td>1:N:217:SER:OG</td>
<td>2.29</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:222:THR:O</td>
<td>1:A:223:TYR:CB</td>
<td>2.66</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:356:ARG:NH1</td>
<td>22:A:4058:HOH:O</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>4:D:49:ARG:NH2</td>
<td>5:E:67:ASP:HB3</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:N:8:LEU:HD22</td>
<td>1:N:392:LEU:HB3</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>3:P:21:LEU:HD13</td>
<td>22:P:3100:HOH:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>5:R:69:LEU:O</td>
<td>5:R:71:MET:HG3</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:299:VAL:HG12</td>
<td>2:B:303:VAL:HG11</td>
<td>1.98</td>
<td>0.43</td>
</tr>
<tr>
<td>5:E:90:LYS:HE2</td>
<td>5:E:93:GLY:HA2</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:12:GLU:CG</td>
<td>2:B:17:VAL:N</td>
<td>2.82</td>
<td>0.43</td>
</tr>
<tr>
<td>2:O:305:GLN:N</td>
<td>2:O:306:PRO:CD</td>
<td>2.82</td>
<td>0.43</td>
</tr>
<tr>
<td>5:R:16:PRO:HA</td>
<td>5:R:19:LEU:HD12</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>22:B:2146:HOH:O</td>
<td>9:I:64:LEU:CG</td>
<td>2.66</td>
<td>0.43</td>
</tr>
<tr>
<td>9:I:64:LEU:HB3</td>
<td>9:I:78:TYR:OXT</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:N:288:ALA:CB</td>
<td>1:N:300:THR:HG22</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:281:ASP:HA</td>
<td>1:A:305:GLN:O</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:92:ILE:O</td>
<td>3:C:96:MET:HG2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:145:GLU:HG2</td>
<td>11:D:4003:JZR:O3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>6:S:95:LYS:HB2</td>
<td>6:S:95:LYS:HZ3</td>
<td>1.82</td>
<td>0.42</td>
</tr>
<tr>
<td>Atom-1</td>
<td>Atom-2</td>
<td>Interatomic distance (Å)</td>
<td>Clash overlap (Å)</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>9:V:34:VAL:O</td>
<td>9:V:34:VAL:HG23</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:187:SER:O</td>
<td>1:A:191:LYS:HD3</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:232:LEU:HB3</td>
<td>2:B:235:ALA:CB</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:288:ALA:CB</td>
<td>1:A:306:THR:HG22</td>
<td>2.48</td>
<td>0.42</td>
</tr>
<tr>
<td>5:E:122:HIS:HB3</td>
<td>5:E:125:GLU:HG3</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>10:W:1:VAL:O</td>
<td>10:W:2:ALA:HB2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:286:GLY:HA3</td>
<td>1:A:290:LEU:HD21</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:305:GLN:NE2</td>
<td>2:B:305:GLN:HA</td>
<td>2.35</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:211:MET:HE1</td>
<td>10:J:31:PHE:CZ</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>7:G:39:ARG:HG2</td>
<td>7:G:39:ARG:NH1</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>8:H:31:VAL:HG23</td>
<td>8:H:32:LYS:N</td>
<td>2.33</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:175:THR:HG23</td>
<td>8:H:78:LYS:HE3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>3:P:217:LYS:HG3</td>
<td>7:T:7:LEU:HD13</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:43:MET:HE1</td>
<td>4:D:189:PHE:HZ</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:156:THR:HA</td>
<td>5:E:7:VAL:HG21</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:N:156:THR:HA</td>
<td>5:R:7:VAL:HG21</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:N:264:HIS:HA</td>
<td>1:N:265:PRO:HD3</td>
<td>1.81</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:42:ASP:O</td>
<td>1:A:194:ARG:CZ</td>
<td>2.68</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:203:ARG:HD2</td>
<td>17:D:206:PEE:N</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>7:G:33:GLY:O</td>
<td>7:G:37:VAL:HG23</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>2:O:202:ALA:HB3</td>
<td>2:O:230:LEU:HA</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>8:U:31:VAL:HG23</td>
<td>8:U:32:LYS:N</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:57:TYR:HD1</td>
<td>2:B:233:SER:HA</td>
<td>1.85</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:303:VAL:O</td>
<td>2:B:303:VAL:HG13</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:193:ALA:O</td>
<td>3:C:196:HIS:HB3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:207:LYS:NZ</td>
<td>17:D:206:PEE:H11</td>
<td>2.35</td>
<td>0.42</td>
</tr>
<tr>
<td>5:E:99:ARG:HB3</td>
<td>5:E:133:VAL:HG12</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>3:P:147:THR:HG22</td>
<td>3:P:161:VAL:HG13</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>4:Q:43:MET:HE1</td>
<td>4:Q:189:PHE:HZ</td>
<td>1.83</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:230:LEU:N</td>
<td>2:B:230:LEU:HD12</td>
<td>2.35</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:345:HIS:CD2</td>
<td>11:C:4002:JZR:H3</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>10:W:8:ARG:HG2</td>
<td>10:W:8:ARG:HH11</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>5:E:77:LYS:HD3</td>
<td>5:E:80:ASP:OD1</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>2:O:17:VAL:HA</td>
<td>2:O:18:PRO:HD3</td>
<td>1.78</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Interatomic distances and clash overlaps

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:B:243:GLU:HA</td>
<td>2:B:424:MET:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:369:ALA:O</td>
<td>3:C:373:GLU:HG3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>5:E:77:LYS:HB2</td>
<td>5:E:192:MET:HE3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>8:U:26:GLN:HA</td>
<td>8:U:26:GLN:OE1</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>9:V:72:VAL:CG1</td>
<td>9:V:73:PRO:HD2</td>
<td>2.48</td>
<td>0.41</td>
</tr>
<tr>
<td>8:H:25:GLU:HB2</td>
<td>8:H:34:ARG:NH2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:264:HIS:HA</td>
<td>1:A:265:PRO:HD3</td>
<td>1.83</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:200:THR:O</td>
<td>2:B:204:MET:HG3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:371:SER:O</td>
<td>2:B:377:GLY:HA3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>4:Q:218:LEU:HB3</td>
<td>22:R:4057:HOH:O</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:229:GLY:C</td>
<td>2:B:230:LEU:HD12</td>
<td>2.41</td>
<td>0.41</td>
</tr>
<tr>
<td>5:E:87:MET:CG</td>
<td>5:E:89:PHE:CZ</td>
<td>3.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:N:117:VAL:HG11</td>
<td>1:N:216:PHE:CE2</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:N:187:SER:O</td>
<td>1:N:191:LYS:HD3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>5:R:122:HIS:HB3</td>
<td>5:R:125:GLU:HG3</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>6:S:77:LYS:HA</td>
<td>6:S:80:TRP:CE2</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>5:R:34:GLY:HA3</td>
<td>10:W:10:TYR:HB2</td>
<td>1.97</td>
<td>0.41</td>
</tr>
<tr>
<td>9:R:62:ARG:CE</td>
<td>9:R:63:PRO:HD2</td>
<td>2.49</td>
<td>0.41</td>
</tr>
<tr>
<td>3:P:28:SER:HB2</td>
<td>20:T:3004:CDL:HA21</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:N:12:PRO:HG3</td>
<td>2:O:18:PRO:HA</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>4:Q:58:GLU:O</td>
<td>4:Q:62:LYS:HG3</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>5:E:87:MET:HG2</td>
<td>5:E:89:PHE:CZ</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>4:Q:43:MET:CE</td>
<td>4:Q:189:PHE:HZ</td>
<td>2.34</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:43:MET:HE1</td>
<td>4:D:91:PHE:HE2</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>9:R:36:ALA:HB3</td>
<td>9:R:73:PRO:CG</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:354:ASN:N</td>
<td>3</td>
<td>2:O:407:ASP:OD2</td>
<td>2.54</td>
</tr>
<tr>
<td>1:N:73:ASN:N</td>
<td>1:N:77:LYS:HG3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>5:R:86:ASP:O</td>
<td>5:R:82:PRO:HD3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:250:LEU:HD13</td>
<td>1:A:305:GLN:HG3</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>2:O:129:ALA:N</td>
<td>2:O:130:PRO:CD</td>
<td>2.84</td>
<td>0.41</td>
</tr>
<tr>
<td>3:P:379:TRP:CE3</td>
<td>6:S:33:ARG:HD3</td>
<td>2.55</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:C:348:ILE:O</td>
<td>3:C:352:GLN:HG3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:164:ILE:O</td>
<td>4:D:179:MET:HE2</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:314:ALA:HA</td>
<td>9:I:63:PRO:HD3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:N:264:HIS:ND1</td>
<td>1:N:265:PRO:HD2</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>4:Q:232:SER:O</td>
<td>5:R:10:PHE:HE1</td>
<td>2.04</td>
<td>0.41</td>
</tr>
<tr>
<td>4:Q:71:GLN:HG3</td>
<td>4:Q:82:MET:CE</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>5:E:128:LYS:HE3</td>
<td>5:E:185:TYR:O</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>7:T:39:ARG:HG2</td>
<td>7:T:39:ARG:NH1</td>
<td>2.35</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:15:GLN:HE21</td>
<td>2:B:12:GLU:HB2</td>
<td>1.86</td>
<td>0.40</td>
</tr>
<tr>
<td>2:B:170:ASN:HD22</td>
<td>2:B:232:LEU:HD23</td>
<td>1.86</td>
<td>0.40</td>
</tr>
<tr>
<td>4:D:91:GLU:HA</td>
<td>4:D:92:PRO:HD3</td>
<td>1.97</td>
<td>0.40</td>
</tr>
<tr>
<td>3:P:159:ASN:ND2</td>
<td>22:P:3127:HOH:O</td>
<td>2.54</td>
<td>0.40</td>
</tr>
<tr>
<td>17:P:3007:PEP:HD2</td>
<td>20:T:3004:CDL:OB3</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>2:B:109:VAL:HB</td>
<td>2:B:119:LEU:HD12</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>2:B:242:GLY:O</td>
<td>2:B:423:SER:HA</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>2:B:365:LYS:HB3</td>
<td>2:B:399:LEU:HD22</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:N:121:SER:O</td>
<td>1:N:122:LEU:HB2</td>
<td>2.22</td>
<td>0.40</td>
</tr>
<tr>
<td>1:N:307:PHE:CD1</td>
<td>1:N:307:PHE:C</td>
<td>2.94</td>
<td>0.40</td>
</tr>
<tr>
<td>4:Q:49:ARG:NH2</td>
<td>5:R:67:ASP:HB3</td>
<td>2.36</td>
<td>0.40</td>
</tr>
<tr>
<td>5:R:77:LYS:HB2</td>
<td>5:R:192:MET:HE3</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>2:B:120:MET:HA</td>
<td>2:B:120:MET:HE2</td>
<td>2.04</td>
<td>0.40</td>
</tr>
<tr>
<td>2:B:232:LEU:HB3</td>
<td>2:B:235:ALA:HB3</td>
<td>2.04</td>
<td>0.40</td>
</tr>
<tr>
<td>2:B:307:PHE:CD1</td>
<td>2:B:307:PHE:C</td>
<td>2.94</td>
<td>0.40</td>
</tr>
<tr>
<td>5:E:112:VAL:O</td>
<td>5:E:114:VAL:N</td>
<td>2.54</td>
<td>0.40</td>
</tr>
<tr>
<td>2:B:95:LYS:HB2</td>
<td>9:I:32:ALA:HB2</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>3:P:27:ILE:HD12</td>
<td>18:P:3002:ANY:H3</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>3:P:75:TYR:CE2</td>
<td>11:R:4007:JZR:H6</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>4:Q:234:LYS:HD2</td>
<td>5:R:8:PRO:HB2</td>
<td>2.04</td>
<td>0.40</td>
</tr>
<tr>
<td>7:T:54:ALA:O</td>
<td>7:T:58:VAL:HG23</td>
<td>2.22</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.
5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>440/446 (99%)</td>
<td>425 (97%)</td>
<td>11 (2%)</td>
<td>4 (1%)</td>
<td>17 12</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>440/446 (99%)</td>
<td>425 (97%)</td>
<td>11 (2%)</td>
<td>4 (1%)</td>
<td>17 12</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>418/439 (95%)</td>
<td>405 (97%)</td>
<td>10 (2%)</td>
<td>3 (1%)</td>
<td>22 18</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>419/439 (95%)</td>
<td>404 (96%)</td>
<td>13 (3%)</td>
<td>2 (0%)</td>
<td>29 26</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>363/379 (96%)</td>
<td>352 (97%)</td>
<td>9 (2%)</td>
<td>2 (1%)</td>
<td>25 21</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>363/379 (96%)</td>
<td>352 (97%)</td>
<td>10 (3%)</td>
<td>1 (0%)</td>
<td>41 41</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>239/241 (99%)</td>
<td>233 (98%)</td>
<td>6 (2%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>4</td>
<td>Q</td>
<td>239/241 (99%)</td>
<td>232 (97%)</td>
<td>7 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>194/196 (99%)</td>
<td>181 (93%)</td>
<td>10 (5%)</td>
<td>3 (2%)</td>
<td>10 5</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>194/196 (99%)</td>
<td>183 (94%)</td>
<td>8 (4%)</td>
<td>3 (2%)</td>
<td>10 5</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>97/110 (88%)</td>
<td>96 (99%)</td>
<td>1 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>97/110 (88%)</td>
<td>94 (97%)</td>
<td>1 (1%)</td>
<td>2 (2%)</td>
<td>7 3</td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>73/81 (90%)</td>
<td>70 (96%)</td>
<td>3 (4%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>74/81 (91%)</td>
<td>69 (93%)</td>
<td>5 (7%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>64/78 (82%)</td>
<td>63 (98%)</td>
<td>1 (2%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>8</td>
<td>U</td>
<td>64/78 (82%)</td>
<td>64 (100%)</td>
<td>0</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>39/78 (50%)</td>
<td>37 (95%)</td>
<td>1 (3%)</td>
<td>1 (3%)</td>
<td>5 2</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>39/78 (50%)</td>
<td>36 (92%)</td>
<td>2 (5%)</td>
<td>1 (3%)</td>
<td>5 2</td>
</tr>
<tr>
<td>10</td>
<td>J</td>
<td>30/62 (48%)</td>
<td>28 (93%)</td>
<td>2 (7%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>59/62 (95%)</td>
<td>54 (92%)</td>
<td>4 (7%)</td>
<td>1 (2%)</td>
<td>9 4</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3945/4220 (94%)</td>
<td>3803 (96%)</td>
<td>115 (3%)</td>
<td>27 (1%)</td>
<td>22 18</td>
</tr>
</tbody>
</table>

All (27) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>224</td>
<td>ASP</td>
</tr>
</tbody>
</table>

Continued on next page...
5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>363/370 (98%)</td>
<td>355 (98%)</td>
<td>8 (2%)</td>
<td>52</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>363/370 (98%)</td>
<td>357 (98%)</td>
<td>6 (2%)</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>332/343 (97%)</td>
<td>332 (100%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>328/343 (96%)</td>
<td>328 (100%)</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>312/327 (95%)</td>
<td>304 (97%)</td>
<td>8 (3%)</td>
<td>46 50</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>311/327 (95%)</td>
<td>303 (97%)</td>
<td>8 (3%)</td>
<td>46 50</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>206/206 (100%)</td>
<td>206 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>4</td>
<td>Q</td>
<td>206/206 (100%)</td>
<td>204 (99%)</td>
<td>2 (1%)</td>
<td>76 82</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>165/168 (98%)</td>
<td>164 (99%)</td>
<td>1 (1%)</td>
<td>86 90</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>167/168 (99%)</td>
<td>164 (98%)</td>
<td>3 (2%)</td>
<td>59 65</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>90/98 (92%)</td>
<td>90 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>90/98 (92%)</td>
<td>87 (97%)</td>
<td>3 (3%)</td>
<td>38 40</td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>66/71 (93%)</td>
<td>66 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>66/71 (93%)</td>
<td>66 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>63/74 (85%)</td>
<td>63 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>8</td>
<td>U</td>
<td>63/74 (85%)</td>
<td>61 (97%)</td>
<td>2 (3%)</td>
<td>39 41</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>27/60 (45%)</td>
<td>26 (96%)</td>
<td>1 (4%)</td>
<td>34 35</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>27/60 (45%)</td>
<td>26 (96%)</td>
<td>1 (4%)</td>
<td>34 35</td>
</tr>
<tr>
<td>10</td>
<td>J</td>
<td>27/52 (52%)</td>
<td>25 (93%)</td>
<td>2 (7%)</td>
<td>13 10</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>51/52 (98%)</td>
<td>49 (96%)</td>
<td>2 (4%)</td>
<td>32 33</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3323/3538 (94%)</td>
<td>3276 (99%)</td>
<td>47 (1%)</td>
<td>67 73</td>
</tr>
</tbody>
</table>

All (47) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>58</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>203</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>210</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>245</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>281</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>305</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>316</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>348</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>16</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>21</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>80</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>90</td>
<td>PHE</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>128</td>
<td>PHE</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>222</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>346</td>
<td>PRO</td>
</tr>
</tbody>
</table>

Continued on next page...
Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (37) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>15</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>136</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>165</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>213</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>271</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>289</td>
<td>HIS</td>
</tr>
</tbody>
</table>

Continued on next page...
5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.
5.5 Carbohydrates

There are no monosaccharides in this entry.

5.6 Ligand geometry

45 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>12</td>
<td>PO4</td>
<td>A</td>
<td>2013</td>
<td>-</td>
<td>4,4,4</td>
<td>1.36</td>
</tr>
<tr>
<td>16</td>
<td>SMA</td>
<td>P</td>
<td>3001</td>
<td>-</td>
<td>35,38,38</td>
<td>1.62</td>
</tr>
<tr>
<td>20</td>
<td>CDL</td>
<td>T</td>
<td>3004</td>
<td>-</td>
<td>48,48,99</td>
<td>1.13</td>
</tr>
<tr>
<td>13</td>
<td>AZI</td>
<td>C</td>
<td>2005</td>
<td>-</td>
<td>0,2,2</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>PO4</td>
<td>F</td>
<td>2012</td>
<td>-</td>
<td>4,4,4</td>
<td>1.28</td>
</tr>
<tr>
<td>14</td>
<td>GOL</td>
<td>R</td>
<td>4005</td>
<td>-</td>
<td>5,5,5</td>
<td>1.26</td>
</tr>
<tr>
<td>11</td>
<td>JZR</td>
<td>F</td>
<td>3011</td>
<td>-</td>
<td>18,18,18</td>
<td>1.79</td>
</tr>
<tr>
<td>19</td>
<td>HEC</td>
<td>Q</td>
<td>501</td>
<td>4</td>
<td>26,50,50</td>
<td>1.99</td>
</tr>
<tr>
<td>20</td>
<td>CDL</td>
<td>G</td>
<td>2004</td>
<td>-</td>
<td>43,43,99</td>
<td>1.11</td>
</tr>
<tr>
<td>18</td>
<td>ANY</td>
<td>P</td>
<td>3002</td>
<td>-</td>
<td>38,38,41</td>
<td>1.84</td>
</tr>
<tr>
<td>19</td>
<td>HEC</td>
<td>D</td>
<td>501</td>
<td>4</td>
<td>26,50,50</td>
<td>1.84</td>
</tr>
<tr>
<td>17</td>
<td>PEE</td>
<td>Q</td>
<td>3006</td>
<td>-</td>
<td>50,50,50</td>
<td>1.23</td>
</tr>
<tr>
<td>12</td>
<td>PO4</td>
<td>S</td>
<td>3012</td>
<td>-</td>
<td>4,4,4</td>
<td>1.33</td>
</tr>
<tr>
<td>13</td>
<td>AZI</td>
<td>A</td>
<td>4011</td>
<td>-</td>
<td>0,2,2</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>AZI</td>
<td>P</td>
<td>3005</td>
<td>-</td>
<td>0,2,2</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>AZI</td>
<td>O</td>
<td>4010</td>
<td>-</td>
<td>0,2,2</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>AZI</td>
<td>G</td>
<td>4009</td>
<td>-</td>
<td>0,2,2</td>
<td>0.00</td>
</tr>
<tr>
<td>14</td>
<td>GOL</td>
<td>C</td>
<td>2008</td>
<td>-</td>
<td>5,5,5</td>
<td>1.40</td>
</tr>
<tr>
<td>16</td>
<td>SMA</td>
<td>C</td>
<td>2001</td>
<td>-</td>
<td>35,38,38</td>
<td>1.67</td>
</tr>
<tr>
<td>20</td>
<td>CDL</td>
<td>D</td>
<td>2003</td>
<td>-</td>
<td>38,38,99</td>
<td>1.05</td>
</tr>
<tr>
<td>15</td>
<td>HEM</td>
<td>P</td>
<td>501</td>
<td>3</td>
<td>27,50,50</td>
<td>1.94</td>
</tr>
<tr>
<td>15</td>
<td>HEM</td>
<td>C</td>
<td>501</td>
<td>3</td>
<td>27,50,50</td>
<td>1.89</td>
</tr>
<tr>
<td>21</td>
<td>FES</td>
<td>R</td>
<td>501</td>
<td>5</td>
<td>0.4,4</td>
<td>0.00</td>
</tr>
<tr>
<td>14</td>
<td>GOL</td>
<td>O</td>
<td>3009</td>
<td>-</td>
<td>5,5,5</td>
<td>1.12</td>
</tr>
<tr>
<td>Mol</td>
<td>Type</td>
<td>Chain</td>
<td>Res</td>
<td>Link</td>
<td>Chirals</td>
<td>Torsions</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>SMA</td>
<td>P</td>
<td>3001</td>
<td>-</td>
<td>-</td>
<td>0/33/34/34</td>
</tr>
<tr>
<td>20</td>
<td>CDL</td>
<td>T</td>
<td>3004</td>
<td>-</td>
<td>-</td>
<td>28/57/57/110</td>
</tr>
<tr>
<td>15</td>
<td>HEM</td>
<td>P</td>
<td>501</td>
<td>3</td>
<td>-</td>
<td>0/6/54/54</td>
</tr>
<tr>
<td>14</td>
<td>GOL</td>
<td>R</td>
<td>4005</td>
<td>-</td>
<td>-</td>
<td>2/4/4/4</td>
</tr>
<tr>
<td>11</td>
<td>JZR</td>
<td>F</td>
<td>3011</td>
<td>-</td>
<td>-</td>
<td>3/9/29/29</td>
</tr>
<tr>
<td>19</td>
<td>HEC</td>
<td>Q</td>
<td>501</td>
<td>4</td>
<td>-</td>
<td>0/6/54/54</td>
</tr>
<tr>
<td>20</td>
<td>CDL</td>
<td>G</td>
<td>2004</td>
<td>-</td>
<td>-</td>
<td>36/52/52/110</td>
</tr>
<tr>
<td>18</td>
<td>ANY</td>
<td>P</td>
<td>3002</td>
<td>1/1</td>
<td>10/13</td>
<td>3/37/52/56</td>
</tr>
<tr>
<td>19</td>
<td>HEC</td>
<td>D</td>
<td>501</td>
<td>4</td>
<td>-</td>
<td>0/6/54/54</td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>PEE</td>
<td>Q</td>
<td>3006</td>
<td>-</td>
<td>-</td>
<td>26/54/54/54</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>GOL</td>
<td>C</td>
<td>2008</td>
<td>-</td>
<td>-</td>
<td>4/4/4/4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>SMA</td>
<td>C</td>
<td>2001</td>
<td>-</td>
<td>-</td>
<td>2/33/34/34</td>
<td>0/2/2/2</td>
</tr>
<tr>
<td>20</td>
<td>CDL</td>
<td>D</td>
<td>2003</td>
<td>-</td>
<td>-</td>
<td>19/43/43/110</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>ANY</td>
<td>C</td>
<td>2002</td>
<td>-</td>
<td>-</td>
<td>2/37/52/56</td>
<td>0/1/2/2</td>
</tr>
<tr>
<td>15</td>
<td>HEM</td>
<td>C</td>
<td>501</td>
<td>3</td>
<td>-</td>
<td>0/6/54/54</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>FES</td>
<td>R</td>
<td>501</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>14</td>
<td>GOL</td>
<td>O</td>
<td>3009</td>
<td>-</td>
<td>-</td>
<td>4/4/4/4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>HEM</td>
<td>C</td>
<td>502</td>
<td>3</td>
<td>-</td>
<td>0/6/54/54</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>CDL</td>
<td>P</td>
<td>3003</td>
<td>-</td>
<td>-</td>
<td>26/43/43/110</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>PEE</td>
<td>D</td>
<td>2006</td>
<td>-</td>
<td>-</td>
<td>19/29/29/54</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>JZR</td>
<td>A</td>
<td>4004</td>
<td>-</td>
<td>-</td>
<td>0/9/29/29</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>11</td>
<td>JZR</td>
<td>P</td>
<td>3010</td>
<td>-</td>
<td>-</td>
<td>4/9/29/29</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>11</td>
<td>JZR</td>
<td>S</td>
<td>2011</td>
<td>-</td>
<td>-</td>
<td>5/9/29/29</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>11</td>
<td>JZR</td>
<td>D</td>
<td>4003</td>
<td>-</td>
<td>-</td>
<td>4/9/29/29</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>14</td>
<td>GOL</td>
<td>B</td>
<td>2009</td>
<td>-</td>
<td>-</td>
<td>2/4/4/4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>GOL</td>
<td>P</td>
<td>3008</td>
<td>-</td>
<td>-</td>
<td>2/4/4/4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>JZR</td>
<td>C</td>
<td>2010</td>
<td>-</td>
<td>-</td>
<td>4/9/29/29</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>11</td>
<td>JZR</td>
<td>R</td>
<td>4007</td>
<td>-</td>
<td>-</td>
<td>2/9/29/29</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>15</td>
<td>HEM</td>
<td>P</td>
<td>502</td>
<td>3</td>
<td>-</td>
<td>0/6/54/54</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>JZR</td>
<td>F</td>
<td>4001</td>
<td>-</td>
<td>-</td>
<td>2/9/29/29</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>14</td>
<td>GOL</td>
<td>C</td>
<td>4006</td>
<td>-</td>
<td>-</td>
<td>3/4/4/4</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>PEE</td>
<td>P</td>
<td>3007</td>
<td>-</td>
<td>-</td>
<td>17/52/52/54</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>FES</td>
<td>E</td>
<td>501</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>11</td>
<td>JZR</td>
<td>C</td>
<td>4002</td>
<td>-</td>
<td>-</td>
<td>3/9/29/29</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>17</td>
<td>PEE</td>
<td>C</td>
<td>2007</td>
<td>-</td>
<td>-</td>
<td>18/52/52/54</td>
<td></td>
</tr>
</tbody>
</table>

All (150) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Q</td>
<td>501</td>
<td>HEC</td>
<td>C3C-C2C</td>
<td>-6.52</td>
<td>1.33</td>
<td>1.40</td>
</tr>
<tr>
<td>19</td>
<td>Q</td>
<td>501</td>
<td>HEC</td>
<td>C3B-C2B</td>
<td>-5.66</td>
<td>1.34</td>
<td>1.40</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>C8-N1</td>
<td>4.94</td>
<td>1.40</td>
<td>1.34</td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>501</td>
<td>HEC</td>
<td>C3C-C2C</td>
<td>-4.90</td>
<td>1.35</td>
<td>1.40</td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>501</td>
<td>HEC</td>
<td>C3B-C2B</td>
<td>-4.84</td>
<td>1.35</td>
<td>1.40</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>4002</td>
<td>JZR</td>
<td>O1-C1</td>
<td>4.81</td>
<td>1.48</td>
<td>1.40</td>
</tr>
<tr>
<td>11</td>
<td>S</td>
<td>2011</td>
<td>JZR</td>
<td>O1-C1</td>
<td>4.80</td>
<td>1.48</td>
<td>1.40</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>502</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>-4.78</td>
<td>1.38</td>
<td>1.47</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>D</td>
<td>4003</td>
<td>JZR</td>
<td>O1-C1</td>
<td>4.76</td>
<td>1.48</td>
<td>1.40</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>4001</td>
<td>JZR</td>
<td>O1-C1</td>
<td>4.70</td>
<td>1.48</td>
<td>1.40</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>2010</td>
<td>JZR</td>
<td>O1-C1</td>
<td>4.66</td>
<td>1.48</td>
<td>1.40</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>4007</td>
<td>JZR</td>
<td>O1-C1</td>
<td>4.66</td>
<td>1.48</td>
<td>1.40</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>2002</td>
<td>ANY</td>
<td>C2-C1</td>
<td>4.54</td>
<td>1.47</td>
<td>1.40</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>3011</td>
<td>JZR</td>
<td>O1-C1</td>
<td>4.53</td>
<td>1.47</td>
<td>1.40</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>2002</td>
<td>ANY</td>
<td>C8-N1</td>
<td>4.27</td>
<td>1.40</td>
<td>1.34</td>
</tr>
<tr>
<td>11</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>C2-C1</td>
<td>4.24</td>
<td>1.46</td>
<td>1.40</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>502</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>-4.18</td>
<td>1.39</td>
<td>1.47</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>501</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>-4.16</td>
<td>1.39</td>
<td>1.47</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>502</td>
<td>HEM</td>
<td>CBB-CAB</td>
<td>4.13</td>
<td>1.56</td>
<td>1.29</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>501</td>
<td>HEM</td>
<td>CBB-CAB</td>
<td>4.09</td>
<td>1.56</td>
<td>1.29</td>
</tr>
<tr>
<td>16</td>
<td>P</td>
<td>3001</td>
<td>SMA</td>
<td>O1-C2</td>
<td>4.07</td>
<td>1.41</td>
<td>1.35</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>CBC-CAC</td>
<td>4.02</td>
<td>1.56</td>
<td>1.29</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>2001</td>
<td>SMA</td>
<td>O1-C2</td>
<td>4.00</td>
<td>1.40</td>
<td>1.35</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>-3.91</td>
<td>1.39</td>
<td>1.47</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>501</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>-3.90</td>
<td>1.39</td>
<td>1.47</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>501</td>
<td>HEM</td>
<td>CBC-CAC</td>
<td>3.78</td>
<td>1.54</td>
<td>1.29</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>502</td>
<td>HEM</td>
<td>CBC-CAC</td>
<td>3.78</td>
<td>1.54</td>
<td>1.29</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>502</td>
<td>HEM</td>
<td>CBC-CAC</td>
<td>3.75</td>
<td>1.54</td>
<td>1.29</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>502</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>-3.71</td>
<td>1.40</td>
<td>1.47</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>-3.41</td>
<td>1.40</td>
<td>1.47</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>2001</td>
<td>SMA</td>
<td>C4A-C8A</td>
<td>3.49</td>
<td>1.46</td>
<td>1.41</td>
</tr>
<tr>
<td>15</td>
<td>D</td>
<td>501</td>
<td>HEC</td>
<td>C3C-C4C</td>
<td>3.49</td>
<td>1.49</td>
<td>1.43</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>C3-C2</td>
<td>3.56</td>
<td>1.45</td>
<td>1.39</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>C12-C11</td>
<td>3.51</td>
<td>1.60</td>
<td>1.52</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>2001</td>
<td>SMA</td>
<td>C4A-C8A</td>
<td>3.49</td>
<td>1.46</td>
<td>1.41</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>CBB-CAB</td>
<td>3.45</td>
<td>1.52</td>
<td>1.29</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>502</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>-3.41</td>
<td>1.40</td>
<td>1.47</td>
</tr>
<tr>
<td>11</td>
<td>S</td>
<td>2011</td>
<td>JZR</td>
<td>O5-C1</td>
<td>3.41</td>
<td>1.50</td>
<td>1.41</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>3011</td>
<td>JZR</td>
<td>O5-C1</td>
<td>3.40</td>
<td>1.50</td>
<td>1.41</td>
</tr>
<tr>
<td>16</td>
<td>P</td>
<td>3001</td>
<td>SMA</td>
<td>C4-C3</td>
<td>3.40</td>
<td>1.51</td>
<td>1.41</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>501</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-3.38</td>
<td>1.35</td>
<td>1.40</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>2001</td>
<td>SMA</td>
<td>C7-C8</td>
<td>3.34</td>
<td>1.44</td>
<td>1.40</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>4007</td>
<td>JZR</td>
<td>O5-C1</td>
<td>3.34</td>
<td>1.50</td>
<td>1.41</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
<td>4003</td>
<td>JZR</td>
<td>O5-C1</td>
<td>3.32</td>
<td>1.50</td>
<td>1.41</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>4004</td>
<td>JZR</td>
<td>O1-C1</td>
<td>3.31</td>
<td>1.45</td>
<td>1.40</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>4002</td>
<td>JZR</td>
<td>O5-C1</td>
<td>3.26</td>
<td>1.50</td>
<td>1.41</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>4001</td>
<td>JZR</td>
<td>O5-C1</td>
<td>3.26</td>
<td>1.50</td>
<td>1.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>P</td>
<td>3001</td>
<td>SMA</td>
<td>C7-C8</td>
<td>3.25</td>
<td>1.44</td>
<td>1.40</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>2010</td>
<td>JZR</td>
<td>C5-C1</td>
<td>3.22</td>
<td>1.50</td>
<td>1.41</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>O3-C30</td>
<td>3.16</td>
<td>1.42</td>
<td>1.33</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>4004</td>
<td>JZR</td>
<td>O5-C1</td>
<td>3.09</td>
<td>1.49</td>
<td>1.41</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>C13-C12</td>
<td>3.09</td>
<td>1.59</td>
<td>1.53</td>
</tr>
<tr>
<td>11</td>
<td>P</td>
<td>3010</td>
<td>JZR</td>
<td>O5-C1</td>
<td>3.09</td>
<td>1.49</td>
<td>1.41</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>2001</td>
<td>SMA</td>
<td>C4-C3</td>
<td>3.07</td>
<td>1.50</td>
<td>1.41</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C19-C18</td>
<td>-3.07</td>
<td>1.34</td>
<td>1.51</td>
</tr>
<tr>
<td>19</td>
<td>Q</td>
<td>501</td>
<td>HEC</td>
<td>C3-C4</td>
<td>3.07</td>
<td>1.48</td>
<td>1.43</td>
</tr>
<tr>
<td>16</td>
<td>P</td>
<td>3001</td>
<td>SMA</td>
<td>C6-C7</td>
<td>3.05</td>
<td>1.44</td>
<td>1.38</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>2001</td>
<td>SMA</td>
<td>C6-C7</td>
<td>3.05</td>
<td>1.44</td>
<td>1.38</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>O3-C30</td>
<td>3.03</td>
<td>1.42</td>
<td>1.33</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>C19-C18</td>
<td>-3.02</td>
<td>1.34</td>
<td>1.51</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C22-C21</td>
<td>-2.99</td>
<td>1.34</td>
<td>1.51</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>O3-C30</td>
<td>2.98</td>
<td>1.42</td>
<td>1.33</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>P-O1P</td>
<td>2.97</td>
<td>1.61</td>
<td>1.50</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>C22-C21</td>
<td>-2.97</td>
<td>1.34</td>
<td>1.51</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>C19-C18</td>
<td>-2.96</td>
<td>1.35</td>
<td>1.51</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>2002</td>
<td>ANY</td>
<td>C10-C9</td>
<td>2.96</td>
<td>1.60</td>
<td>1.53</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>C22-C21</td>
<td>-2.95</td>
<td>1.35</td>
<td>1.51</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>P-O1P</td>
<td>2.95</td>
<td>1.61</td>
<td>1.50</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>P-O1P</td>
<td>2.94</td>
<td>1.61</td>
<td>1.50</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>O2-C10</td>
<td>2.91</td>
<td>1.42</td>
<td>1.34</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>502</td>
<td>HEM</td>
<td>C1A-NA</td>
<td>2.90</td>
<td>1.42</td>
<td>1.36</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>O2-C10</td>
<td>2.90</td>
<td>1.42</td>
<td>1.34</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>O2-C10</td>
<td>2.83</td>
<td>1.42</td>
<td>1.34</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>2002</td>
<td>ANY</td>
<td>C13-C12</td>
<td>2.74</td>
<td>1.58</td>
<td>1.53</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>C7-N2</td>
<td>2.74</td>
<td>1.40</td>
<td>1.34</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>4004</td>
<td>JZR</td>
<td>C4-C5</td>
<td>2.73</td>
<td>1.58</td>
<td>1.53</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>2001</td>
<td>SMA</td>
<td>C20-C19</td>
<td>2.72</td>
<td>1.35</td>
<td>1.33</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>O2-C10</td>
<td>2.71</td>
<td>1.42</td>
<td>1.34</td>
</tr>
<tr>
<td>16</td>
<td>P</td>
<td>3001</td>
<td>SMA</td>
<td>O1-C8A</td>
<td>2.70</td>
<td>1.40</td>
<td>1.36</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>O3-C30</td>
<td>2.67</td>
<td>1.41</td>
<td>1.33</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>4002</td>
<td>JZR</td>
<td>C4-C5</td>
<td>2.64</td>
<td>1.58</td>
<td>1.53</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>2002</td>
<td>ANY</td>
<td>O8-C21</td>
<td>2.62</td>
<td>1.40</td>
<td>1.34</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>2002</td>
<td>ANY</td>
<td>O5-C14</td>
<td>2.61</td>
<td>1.40</td>
<td>1.34</td>
</tr>
<tr>
<td>11</td>
<td>P</td>
<td>3010</td>
<td>JZR</td>
<td>C4-C5</td>
<td>2.60</td>
<td>1.58</td>
<td>1.53</td>
</tr>
<tr>
<td>16</td>
<td>P</td>
<td>3001</td>
<td>SMA</td>
<td>C4A-C8A</td>
<td>2.58</td>
<td>1.44</td>
<td>1.41</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>4007</td>
<td>JZR</td>
<td>C4-C5</td>
<td>2.57</td>
<td>1.58</td>
<td>1.53</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>502</td>
<td>HEM</td>
<td>C3-C2</td>
<td>-2.54</td>
<td>1.36</td>
<td>1.40</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>P-O1P</td>
<td>2.47</td>
<td>1.59</td>
<td>1.50</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>4001</td>
<td>JZR</td>
<td>C4-C5</td>
<td>2.47</td>
<td>1.58</td>
<td>1.53</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed (Å)</th>
<th>Ideal (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>C</td>
<td>502</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-2.44</td>
<td>1.37</td>
<td>1.40</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>4008</td>
<td>PO4</td>
<td>P-O1</td>
<td>2.44</td>
<td>1.56</td>
<td>1.50</td>
</tr>
<tr>
<td>16</td>
<td>P</td>
<td>3001</td>
<td>SMA</td>
<td>C20-C19</td>
<td>2.44</td>
<td>1.35</td>
<td>1.33</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>2001</td>
<td>SMA</td>
<td>O1-C8A</td>
<td>2.43</td>
<td>1.40</td>
<td>1.36</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>C4D-C3D</td>
<td>2.42</td>
<td>1.48</td>
<td>1.42</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>3011</td>
<td>JZR</td>
<td>C4-C5</td>
<td>2.40</td>
<td>1.58</td>
<td>1.53</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>501</td>
<td>HEM</td>
<td>C4A-NA</td>
<td>2.40</td>
<td>1.41</td>
<td>1.36</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
<td>4003</td>
<td>JZR</td>
<td>C4-C5</td>
<td>2.39</td>
<td>1.58</td>
<td>1.53</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>2002</td>
<td>ANY</td>
<td>C5-C6</td>
<td>2.39</td>
<td>1.43</td>
<td>1.39</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>O1-C1</td>
<td>2.38</td>
<td>1.50</td>
<td>1.43</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>O8-CB6</td>
<td>-2.36</td>
<td>1.39</td>
<td>1.45</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>501</td>
<td>HEM</td>
<td>C4D-C3D</td>
<td>2.35</td>
<td>1.47</td>
<td>1.42</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>O1-C1</td>
<td>2.35</td>
<td>1.50</td>
<td>1.43</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>O5-C14</td>
<td>2.34</td>
<td>1.39</td>
<td>1.34</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>O8-C21</td>
<td>2.33</td>
<td>1.39</td>
<td>1.34</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td>2013</td>
<td>PO4</td>
<td>P-O1</td>
<td>2.33</td>
<td>1.56</td>
<td>1.50</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>4002</td>
<td>JZR</td>
<td>O5-C5</td>
<td>2.32</td>
<td>1.50</td>
<td>1.44</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>C3-C2</td>
<td>2.32</td>
<td>1.57</td>
<td>1.50</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>C5-C6</td>
<td>2.32</td>
<td>1.43</td>
<td>1.39</td>
</tr>
<tr>
<td>11</td>
<td>S</td>
<td>2011</td>
<td>JZR</td>
<td>O5-C5</td>
<td>2.32</td>
<td>1.50</td>
<td>1.44</td>
</tr>
<tr>
<td>12</td>
<td>S</td>
<td>3012</td>
<td>PO4</td>
<td>P-O1</td>
<td>2.31</td>
<td>1.56</td>
<td>1.50</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>4007</td>
<td>JZR</td>
<td>O5-C5</td>
<td>2.31</td>
<td>1.49</td>
<td>1.44</td>
</tr>
<tr>
<td>12</td>
<td>P</td>
<td>3013</td>
<td>PO4</td>
<td>P-O1</td>
<td>2.30</td>
<td>1.56</td>
<td>1.50</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>C10-C9</td>
<td>2.28</td>
<td>1.58</td>
<td>1.53</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
<td>4003</td>
<td>JZR</td>
<td>O5-C5</td>
<td>2.28</td>
<td>1.49</td>
<td>1.44</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>2002</td>
<td>ANY</td>
<td>C7-N2</td>
<td>2.27</td>
<td>1.39</td>
<td>1.34</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>O1-C1</td>
<td>2.24</td>
<td>1.50</td>
<td>1.43</td>
</tr>
<tr>
<td>16</td>
<td>P</td>
<td>3001</td>
<td>SMA</td>
<td>C6-C5</td>
<td>2.24</td>
<td>1.44</td>
<td>1.37</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>2012</td>
<td>PO4</td>
<td>P-O1</td>
<td>2.22</td>
<td>1.56</td>
<td>1.50</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>4001</td>
<td>JZR</td>
<td>O5-C5</td>
<td>2.21</td>
<td>1.49</td>
<td>1.44</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>OA8-CA6</td>
<td>-2.19</td>
<td>1.40</td>
<td>1.45</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>502</td>
<td>HEM</td>
<td>C1D-ND</td>
<td>2.19</td>
<td>1.40</td>
<td>1.36</td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>501</td>
<td>HEC</td>
<td>C3B-C4B</td>
<td>2.19</td>
<td>1.47</td>
<td>1.43</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>502</td>
<td>HEM</td>
<td>C1B-C2B</td>
<td>2.18</td>
<td>1.47</td>
<td>1.42</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>2010</td>
<td>JZR</td>
<td>C4-C5</td>
<td>2.18</td>
<td>1.57</td>
<td>1.53</td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>501</td>
<td>HEC</td>
<td>C4A-C3A</td>
<td>2.15</td>
<td>1.47</td>
<td>1.42</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>3011</td>
<td>JZR</td>
<td>O5-C5</td>
<td>2.14</td>
<td>1.49</td>
<td>1.44</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>C6-C1</td>
<td>2.14</td>
<td>1.45</td>
<td>1.41</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>O1-C1</td>
<td>2.14</td>
<td>1.49</td>
<td>1.43</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>2010</td>
<td>JZR</td>
<td>O5-C5</td>
<td>2.14</td>
<td>1.49</td>
<td>1.44</td>
</tr>
<tr>
<td>11</td>
<td>P</td>
<td>3010</td>
<td>JZR</td>
<td>C1-C2</td>
<td>2.12</td>
<td>1.58</td>
<td>1.52</td>
</tr>
<tr>
<td>11</td>
<td>P</td>
<td>3010</td>
<td>JZR</td>
<td>O5-C5</td>
<td>2.10</td>
<td>1.49</td>
<td>1.44</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>P</td>
<td>502</td>
<td>HEM</td>
<td>C4D-C3D</td>
<td>2.10</td>
<td>1.47</td>
<td>1.42</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>C1-C2</td>
<td>2.10</td>
<td>1.57</td>
<td>1.50</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>OA8-CA6</td>
<td>-2.09</td>
<td>1.40</td>
<td>1.45</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>502</td>
<td>HEM</td>
<td>CAD-C3D</td>
<td>2.08</td>
<td>1.55</td>
<td>1.52</td>
</tr>
<tr>
<td>16</td>
<td>P</td>
<td>3001</td>
<td>SMA</td>
<td>O5-C5</td>
<td>2.07</td>
<td>1.40</td>
<td>1.36</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>OB8-CB6</td>
<td>-2.07</td>
<td>1.40</td>
<td>1.45</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>3011</td>
<td>JZR</td>
<td>C1-C2</td>
<td>2.07</td>
<td>1.58</td>
<td>1.52</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>C31-C30</td>
<td>2.07</td>
<td>1.56</td>
<td>1.50</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>4001</td>
<td>JZR</td>
<td>C1-C2</td>
<td>2.05</td>
<td>1.58</td>
<td>1.52</td>
</tr>
<tr>
<td>11</td>
<td>P</td>
<td>3010</td>
<td>JZR</td>
<td>C4-C3</td>
<td>2.04</td>
<td>1.57</td>
<td>1.52</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>2010</td>
<td>JZR</td>
<td>C1-C2</td>
<td>2.03</td>
<td>1.58</td>
<td>1.52</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>2002</td>
<td>ANY</td>
<td>C6-C1</td>
<td>2.03</td>
<td>1.44</td>
<td>1.41</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>4007</td>
<td>JZR</td>
<td>C1-C2</td>
<td>2.02</td>
<td>1.58</td>
<td>1.52</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>CB3-CB4</td>
<td>2.02</td>
<td>1.56</td>
<td>1.50</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>502</td>
<td>HEM</td>
<td>C1A-NA</td>
<td>2.01</td>
<td>1.40</td>
<td>1.36</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
<td>4003</td>
<td>JZR</td>
<td>C1-C2</td>
<td>2.00</td>
<td>1.58</td>
<td>1.52</td>
</tr>
</tbody>
</table>

All (64) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(º)</th>
<th>Ideal(º)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>C</td>
<td>2001</td>
<td>SMA</td>
<td>C3-C4-C4A</td>
<td>-5.76</td>
<td>114.79</td>
<td>120.58</td>
</tr>
<tr>
<td>16</td>
<td>P</td>
<td>3001</td>
<td>SMA</td>
<td>C9-C2-C3</td>
<td>5.56</td>
<td>128.27</td>
<td>120.39</td>
</tr>
<tr>
<td>16</td>
<td>P</td>
<td>3001</td>
<td>SMA</td>
<td>C3-C4-C4A</td>
<td>-5.30</td>
<td>115.25</td>
<td>120.58</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>2002</td>
<td>ANY</td>
<td>C25-C22-C23</td>
<td>5.11</td>
<td>133.03</td>
<td>111.69</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>2001</td>
<td>SMA</td>
<td>C9-C2-C3</td>
<td>5.04</td>
<td>127.53</td>
<td>120.39</td>
</tr>
<tr>
<td>16</td>
<td>P</td>
<td>3001</td>
<td>SMA</td>
<td>C9-C10-C11</td>
<td>-4.50</td>
<td>108.65</td>
<td>114.72</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>CB4-OB6-CB5</td>
<td>-4.33</td>
<td>109.82</td>
<td>117.90</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>2001</td>
<td>SMA</td>
<td>C4-C3-C2</td>
<td>4.16</td>
<td>121.19</td>
<td>116.63</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>2001</td>
<td>SMA</td>
<td>C9-C10-C11</td>
<td>-4.07</td>
<td>109.23</td>
<td>114.72</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>C23-C22-C21</td>
<td>3.97</td>
<td>123.05</td>
<td>111.02</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>CB4-OB6-CB5</td>
<td>-3.82</td>
<td>110.77</td>
<td>117.90</td>
</tr>
<tr>
<td>16</td>
<td>P</td>
<td>3001</td>
<td>SMA</td>
<td>C4-C3-C2</td>
<td>3.72</td>
<td>120.71</td>
<td>116.63</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>2002</td>
<td>ANY</td>
<td>O5-C14-O6</td>
<td>-3.58</td>
<td>119.58</td>
<td>124.08</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>O5-C14-O6</td>
<td>-3.49</td>
<td>119.69</td>
<td>124.08</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>2002</td>
<td>ANY</td>
<td>O2-C8-N1</td>
<td>-3.12</td>
<td>121.82</td>
<td>125.80</td>
</tr>
<tr>
<td>16</td>
<td>P</td>
<td>3001</td>
<td>SMA</td>
<td>O1-C2-C9</td>
<td>-3.00</td>
<td>108.35</td>
<td>111.91</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>CA4-OA6-CA5</td>
<td>-3.00</td>
<td>110.42</td>
<td>117.79</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>O2-C8-N1</td>
<td>-2.98</td>
<td>121.99</td>
<td>125.80</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C20-C19-C18</td>
<td>2.77</td>
<td>128.49</td>
<td>114.42</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>2002</td>
<td>ANY</td>
<td>C25-C22-C21</td>
<td>2.76</td>
<td>119.39</td>
<td>111.02</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>CA4-OA6-CA5</td>
<td>-2.74</td>
<td>111.06</td>
<td>117.79</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>C25-C22-C23</td>
<td>2.72</td>
<td>123.05</td>
<td>111.69</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>C19-C18-C17</td>
<td>2.67</td>
<td>127.97</td>
<td>114.42</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>502</td>
<td>HEM</td>
<td>CMD-C2D-C1D</td>
<td>-2.66</td>
<td>124.38</td>
<td>128.46</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>CA6-CA4-CA3</td>
<td>-2.66</td>
<td>105.50</td>
<td>111.79</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>C4A-C3A-C2A</td>
<td>-2.65</td>
<td>105.15</td>
<td>107.00</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>C19-C18-C17</td>
<td>2.65</td>
<td>127.86</td>
<td>114.42</td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>501</td>
<td>HEC</td>
<td>CMB-C2B-C3B</td>
<td>-2.64</td>
<td>122.72</td>
<td>125.82</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>C20-C19-C18</td>
<td>2.63</td>
<td>127.78</td>
<td>114.42</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>C23-C22-C21</td>
<td>2.62</td>
<td>127.74</td>
<td>114.42</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>C20-C19-C18</td>
<td>2.62</td>
<td>127.72</td>
<td>114.42</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>C23-C22-C21</td>
<td>2.61</td>
<td>127.67</td>
<td>114.42</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>501</td>
<td>HEM</td>
<td>C4A-C3A-C2A</td>
<td>-2.60</td>
<td>105.19</td>
<td>107.00</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>CB6-CB4-CB3</td>
<td>-2.58</td>
<td>105.68</td>
<td>111.79</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>CB4-OB6-CB5</td>
<td>-2.58</td>
<td>111.44</td>
<td>117.79</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C22-C21-C20</td>
<td>2.54</td>
<td>127.32</td>
<td>114.42</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>CB6-CB4-CB3</td>
<td>-2.49</td>
<td>105.89</td>
<td>111.79</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C19-C18-C17</td>
<td>2.49</td>
<td>127.07</td>
<td>114.42</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>2001</td>
<td>SMA</td>
<td>O1-C2-C9</td>
<td>-2.44</td>
<td>109.01</td>
<td>111.91</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>CB4-OB6-CB5</td>
<td>-2.39</td>
<td>111.90</td>
<td>117.79</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>O4-C20-O7</td>
<td>-2.37</td>
<td>121.09</td>
<td>124.08</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>C22-C21-C20</td>
<td>2.37</td>
<td>126.44</td>
<td>114.42</td>
</tr>
<tr>
<td>16</td>
<td>P</td>
<td>3001</td>
<td>SMA</td>
<td>C10-C9-C2</td>
<td>2.35</td>
<td>118.64</td>
<td>113.59</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>C22-C21-C20</td>
<td>2.34</td>
<td>126.32</td>
<td>114.42</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>2002</td>
<td>ANY</td>
<td>O8-C21-O9</td>
<td>-2.29</td>
<td>119.67</td>
<td>123.94</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>OA4-PA1-OA2</td>
<td>2.28</td>
<td>112.81</td>
<td>106.73</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>O8-C21-O9</td>
<td>-2.26</td>
<td>119.72</td>
<td>123.94</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>4002</td>
<td>JZR</td>
<td>C1'-O1-C1</td>
<td>2.26</td>
<td>117.58</td>
<td>113.84</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>CB6-CB4-CB3</td>
<td>-2.25</td>
<td>106.47</td>
<td>111.79</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C23-C22-C21</td>
<td>2.23</td>
<td>125.74</td>
<td>114.42</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>502</td>
<td>HEM</td>
<td>C3B-C4B-NB</td>
<td>2.22</td>
<td>112.09</td>
<td>109.21</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>502</td>
<td>HEM</td>
<td>C3B-C4B-NB</td>
<td>2.22</td>
<td>112.08</td>
<td>109.21</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>502</td>
<td>HEM</td>
<td>CBD-CAD-C3D</td>
<td>-2.21</td>
<td>108.42</td>
<td>112.48</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>CB6-OB8-CB7</td>
<td>-2.20</td>
<td>111.57</td>
<td>117.10</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>2002</td>
<td>ANY</td>
<td>C23-C22-C21</td>
<td>-2.17</td>
<td>104.43</td>
<td>111.02</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>501</td>
<td>HEM</td>
<td>CMB-C2B-C3B</td>
<td>2.17</td>
<td>128.73</td>
<td>124.68</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>501</td>
<td>HEM</td>
<td>C3B-C4B-NB</td>
<td>2.13</td>
<td>111.96</td>
<td>109.21</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>CB6-OB8-CB7</td>
<td>-2.13</td>
<td>111.76</td>
<td>117.10</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>502</td>
<td>HEM</td>
<td>CMB-C2B-C3B</td>
<td>2.13</td>
<td>128.65</td>
<td>124.68</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>502</td>
<td>HEM</td>
<td>CBD-CAD-C3D</td>
<td>-2.11</td>
<td>108.60</td>
<td>112.48</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>OA4-PA1-OA2</td>
<td>2.09</td>
<td>112.30</td>
<td>106.73</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>O7-C20-C9</td>
<td>2.04</td>
<td>130.37</td>
<td>124.72</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>502</td>
<td>HEM</td>
<td>CMB-C2B-C3B</td>
<td>2.02</td>
<td>128.46</td>
<td>124.68</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>2001</td>
<td>SMA</td>
<td>O8-C8-C8A</td>
<td>2.00</td>
<td>123.29</td>
<td>119.62</td>
</tr>
</tbody>
</table>
All (1) chirality outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>C22</td>
</tr>
</tbody>
</table>

All (240) torsion outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>O1-C1-CA2-OA2</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>O1-C1-CB2-OB2</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>CB2-OB2-PB2-OB3</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>CB2-OB2-PB2-OB5</td>
</tr>
<tr>
<td>14</td>
<td>R</td>
<td>4005</td>
<td>GOL</td>
<td>O1-C1-C’2-C3</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>O1-C1-CB2-OB2</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>CA2-C1-CB2-OB2</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>CA2-OA2-PA1-OA3</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>CA2-OA2-PA1-OA4</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>CA2-OA2-PA1-OA5</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>C11-CA5-OA6-CA4</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>C51-CB5-OB6-CB4</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>O4P-C4-C5-N</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C4-O4P-P-O1P</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C4-O4P-P-O2P</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C4-O4P-P-O3P</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>2008</td>
<td>GOL</td>
<td>C1-C2-C3-O3</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>CA2-OA2-PA1-OA4</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>CA2-OA2-PA1-OA5</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>CB2-OB2-PB2-OB3</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>CB2-OB2-PB2-OB4</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>OB5-CB3-CB4-OB6</td>
</tr>
<tr>
<td>14</td>
<td>O</td>
<td>3009</td>
<td>GOL</td>
<td>O1-C1-C2-C3</td>
</tr>
<tr>
<td>14</td>
<td>O</td>
<td>3009</td>
<td>GOL</td>
<td>C1-C2-C3-O3</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>CA2-C1-CB2-OB2</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>CA2-OA2-PA1-OA3</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>CA2-OA2-PA1-OA5</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>OB6-CB4-CB6-OB8</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>C2-C1-O3P-P</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>C4-O4P-P-O1P</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>C4-O4P-P-O2P</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>C4-O4P-P-O3P</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>C4-O4P-P-O1P</td>
</tr>
<tr>
<td>14</td>
<td>P</td>
<td>3008</td>
<td>GOL</td>
<td>O1-C1-C2-C3</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>C4-O4P-P-O1P</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>C51-CB5-OB6-CB4</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>C71-CB7-OB8-CB6</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>OB7-CB5-OB6-CB4</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>OA7-CA5-OA6-CA4</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>OA9-CA7-OA8-CA6</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>OB7-CB5-OB6-CB4</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>OB9-CB7-OB8-CB6</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>O5-C30-O3-C3</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>O1-C1-CB2-OB2</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>C31-CA7-OA8-CA6</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>C31-C30-O3-C3</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>C71-CB7-OB8-CB6</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>C31-CA7-OA8-CA6</td>
</tr>
<tr>
<td>11</td>
<td>S</td>
<td>2011</td>
<td>JZR</td>
<td>C4-C5-C6-O6</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>C21-C22-C23-C24</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>C21-C22-C23-C24</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>CA7-C31-C32-C33</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>C11-CA5-OA6-CA4</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>C16-C11-C12-C13</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>C16-C11-C12-C13</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>OB9-CB7-OB8-CB6</td>
</tr>
<tr>
<td>14</td>
<td>O</td>
<td>3009</td>
<td>GOL</td>
<td>O1-C1-C2-O2</td>
</tr>
<tr>
<td>14</td>
<td>O</td>
<td>3009</td>
<td>GOL</td>
<td>O2-C2-C3-O3</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>CA5-C11-C12-C13</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C16-C11-C12-C13</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C30-C31-C32-C33</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>3011</td>
<td>JZR</td>
<td>O1-CT'-C2'-C3'</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
<td>4003</td>
<td>JZR</td>
<td>O5-C5-C6-O6</td>
</tr>
<tr>
<td>11</td>
<td>P</td>
<td>3010</td>
<td>JZR</td>
<td>O1-CT'-C2'-C3'</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>OA9-CA7-OA8-CA6</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
<td>4003</td>
<td>JZR</td>
<td>O1-CT'-C2'-C3'</td>
</tr>
<tr>
<td>11</td>
<td>S</td>
<td>2011</td>
<td>JZR</td>
<td>O5-C5-C6-O6</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>CB2-OB2-PB2-OB5</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>CB2-OB2-PB2-OB5</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>CB2-C1-CA2-OA2</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>CA2-C1-CB2-OB2</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>OA7-CA5-OA6-CA4</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>C37-C38-C39-C40</td>
</tr>
<tr>
<td>11</td>
<td>P</td>
<td>3010</td>
<td>JZR</td>
<td>O5-C5-C6-O6</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>C11-C12-C13-C14</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C35-C36-C37-C38</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C38-C39-C40-C41</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>C12-C13-C14-C15</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>C19-C20-C21-C22</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>C37-C38-C39-C40</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>C12-C13-C14-C15</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>C19-C20-C21-C22</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
<td>4003</td>
<td>JZR</td>
<td>C2'-C3'-C4'-C5'</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>C78-C79-C80-C81</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>C41-C42-C43-C44</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>C13-C14-C15-C16</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C43-C44-C45-C46</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>C41-C42-C43-C44</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>C32-C33-C34-C35</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>C77-C78-C79-C80</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>C18-C19-C20-C21</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>C18-C19-C20-C21</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C18-C19-C20-C21</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>2008</td>
<td>GOL</td>
<td>O1-C1-C2-C3</td>
</tr>
<tr>
<td>14</td>
<td>B</td>
<td>2009</td>
<td>GOL</td>
<td>O1-C2-C3-O3</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>4006</td>
<td>GOL</td>
<td>C1-C2-C3-O3</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>4006</td>
<td>GOL</td>
<td>C1-C2-C3-O3</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>C51-CB5-OB6-CB4</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>C20-C21-C22-C23</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C15-C16-C17-C18</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C42-C43-C44-C45</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>C73-C74-C75-C76</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>4002</td>
<td>JZR</td>
<td>C2'-C3'-C4'-C5'</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>C20-C21-C22-C23</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C17-C18-C19-C20</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C40-C41-C42-C43</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>C31-C32-C33-C34</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>CB3-CB4-CB6-OB8</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C13-C14-C15-C16</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>C33-C34-C35-C36</td>
</tr>
<tr>
<td>14</td>
<td>R</td>
<td>4005</td>
<td>GOL</td>
<td>O1-C1-C2-O2</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>2008</td>
<td>GOL</td>
<td>O1-C1-C2-O2</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>2008</td>
<td>GOL</td>
<td>O2-C2-C3-O3</td>
</tr>
<tr>
<td>14</td>
<td>B</td>
<td>2009</td>
<td>GOL</td>
<td>O2-C2-C3-O3</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>4006</td>
<td>GOL</td>
<td>O2-C2-C3-O3</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C22-C23-C24-C25</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>C73-C74-C75-C76</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>OB7-CB5-OB6-CB4</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>C34-C35-C36-C37</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C34-C35-C36-C37</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>C72-C73-C74-C75</td>
</tr>
</tbody>
</table>

Continued on next page...
Mol Chain Res Type Atoms

17	P	3007	PEE	C33-C34-C35-C36
17	Q	3006	PEE	C37-C38-C39-C40
17	P	3007	PEE	C22-C23-C24-C25
17	C	2007	PEE	C22-C23-C24-C25
20	P	3003	CDL	CB5-C51-C52-C53
20	P	3003	CDL	CB7-C71-C72-C73
20	P	3003	CDL	C78-C79-C80-C81
17	Q	3006	PEE	C23-C24-C25-C26
17	D	2003	CDL	CB7-C71-C72-C73
17	D	4003	JZR	C1'-C2'-C3'-C4'
17	C	2010	JZR	C1'-C2'-C3'-C4'
17	R	4007	JZR	C1'-C2'-C3'-C4'
17	P	3007	PEE	C13-C14-C15-C16
17	D	2006	PEE	C11-C10-O2-C2
17	C	2007	PEE	C13-C14-C15-C16
17	D	2006	PEE	O4-C10-O2-C2
11	C	4002	JZR	O5-C5-C6-C7
17	C	2007	PEE	C35-C36-C37-C38
11	F	4001	JZR	C1'-C2'-C3'-C4'
20	G	2004	CDL	CA3-OA5-PA1-OA2
11	P	3010	JZR	C1'-C2'-C3'-C4'
20	G	2004	CDL	OA5-CA3-CA4-CA6
20	G	2004	CDL	OB5-CB3-CB4-CB6
20	P	3003	CDL	OB5-CB3-CB4-CB6
11	S	2011	JZR	C1'-C2'-C3'-C4'
17	Q	3006	PEE	C20-C21-C22-C23
17	P	3007	PEE	C35-C36-C37-C38
20	P	3003	CDL	CB3-CB4-CB6-OB8
14	P	3008	GOL	O1-C1-C2-O2
11	C	4002	JZR	C3'-C4'-C5'-C6'
20	P	3003	CDL	C51-C52-C53-C54
20	D	2003	CDL	CA2-OA2-PA1-OA3
17	D	2006	PEE	C33-C34-C35-C36
20	D	2003	CDL	C72-C73-C74-C75
11	P	3010	JZR	C2'-C3'-C4'-C5'
17	P	3007	PEE	C23-C24-C25-C26
20	D	2003	CDL	OB5-CB3-CB4-CB6
17	C	2007	PEE	C22-C23-C24-C25
17	Q	3006	PEE	C39-C40-C41-C42
20	G	2004	CDL	C35-C36-C37-C38
20	G	2004	CDL	C34-C35-C36-C37
20	T	3004	CDL	CA3-CA4-CA6-OA8
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>C32-C33-C34-C35</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>OB5-CB3-CB4-OB6</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>OB5-CB3-CB4-OB6</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>C16-C17-C18-C19</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>C76-C77-C78-C79</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>2010</td>
<td>JZR</td>
<td>C4-C5-C6-O6</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>OA6-CA4-CA6-OA8</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>C15-C16-C17-C18</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C44-C45-C46-C47</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>CA3-CA4-CA6-OA8</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>OA5-CA3-CA4-OA6</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>OB5-CB3-CB4-OB6</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>O3P-C1-C2-O2</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>C10-C11-C12-C13</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>OB7-CB5-OB6-CB4</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>3011</td>
<td>JZR</td>
<td>C1'-C2'-C3'-C4'</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>C1-O3P-P-O4P</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>CA2-OA2-PA1-OA3</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>CA3-OA5-PA1-OA3</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>CB2-OB2-PB2-OB3</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>CB3-OB5-PB2-OB3</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>C1-O3P-P-O2P</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>OB5-CB3-CB4-CB6</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>O3P-C1-C2-C3</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>C51-CB5-OB6-CB4</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>C33-C34-C35-C36</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>O3P-C1-C2-O2</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>OA6-CA4-CA6-OA8</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>OB6-CB4-CB6-OB8</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>CA4-CA3-OA5-PA1</td>
</tr>
<tr>
<td>11</td>
<td>S</td>
<td>2011</td>
<td>JZR</td>
<td>O1-C1'-C2'-C3'</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>C75-C76-C77-C78</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>C3-C2-O2-C10</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>3011</td>
<td>JZR</td>
<td>C3'-C4'-C5'-C6'</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>CB2-OB2-PB2-OB5</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>CB3-OB5-PB2-OB2</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>C4-O4P-P-O3P</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>CB5-C51-C52-C53</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>C12-C11-CA5-OA6</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>O3P-C1-C2-C3</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>2003</td>
<td>CDL</td>
<td>C71-C72-C73-C74</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>2010</td>
<td>JZR</td>
<td>O5-C5-C6-O6</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>C42-C43-C44-C45</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>2001</td>
<td>SMA</td>
<td>C9-C10-C11-C22</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>O1-C1-CA2-OA2</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>4001</td>
<td>JZR</td>
<td>C2'-C3'-C4'-C5'</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>C42-C43-C44-C45</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>C12-C11-CA5-OA7</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>C30-C31-C32-C33</td>
</tr>
<tr>
<td>11</td>
<td>S</td>
<td>2011</td>
<td>JZR</td>
<td>C2'-C3'-C4'-C5'</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>2010</td>
<td>JZR</td>
<td>C2'-C3'-C4'-C5'</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>4007</td>
<td>JZR</td>
<td>C3'-C4'-C5'-C6'</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>CA2-OA2-PA1-OA4</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>C32-C31-CA7-OA8</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>O3-C30-C31-C32</td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>C9-C10-O5-C14</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>2002</td>
<td>ANY</td>
<td>C9-C10-O5-C14</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>C32-C31-CA7-OA8</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>C72-C71-CB7-OB8</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>O3-C30-C31-C32</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C16-C17-C18-C19</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>2002</td>
<td>ANY</td>
<td>C16-C17-C18-C19</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>C12-C13-C14-C15</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>C71-C72-C73-C74</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>C32-C31-CA7-OA9</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>C31-C32-C33-C34</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>CA3-OA5-PA1-OA4</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td>2004</td>
<td>CDL</td>
<td>CB2-OB2-PB2-OB4</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>CB2-OB2-PB2-OB3</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>CB3-OB5-PB2-OB3</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>C1-O3P-P-O1P</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2007</td>
<td>PEE</td>
<td>O5-C30-C31-C32</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>2001</td>
<td>SMA</td>
<td>C16-C17-C18-C19</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>C5-C4-O4P-P</td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>O5-C30-C31-C32</td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>C72-C71-CB7-OB9</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>C32-C31-CA7-OA9</td>
</tr>
</tbody>
</table>

There are no ring outliers.

23 monomers are involved in 40 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>P</td>
<td>3001</td>
<td>SMA</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>T</td>
<td>3004</td>
<td>CDL</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>R</td>
<td>4005</td>
<td>GOL</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>3011</td>
<td>JZR</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Q</td>
<td>501</td>
<td>HEC</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>P</td>
<td>3002</td>
<td>ANY</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>501</td>
<td>HEC</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>3006</td>
<td>PEE</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>2008</td>
<td>GOL</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>2001</td>
<td>SMA</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>501</td>
<td>HEM</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>501</td>
<td>HEM</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>502</td>
<td>HEM</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>P</td>
<td>3003</td>
<td>CDL</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>2002</td>
<td>ANY</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>2006</td>
<td>PEE</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>S</td>
<td>2011</td>
<td>JZR</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>D</td>
<td>4003</td>
<td>JZR</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>4007</td>
<td>JZR</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>502</td>
<td>HEM</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>4001</td>
<td>JZR</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>P</td>
<td>3007</td>
<td>PEE</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>4002</td>
<td>JZR</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.
Ligand SMA P 3001

Bond lengths

Bond angles

Torsions

Rings

Ligand CDL T 3004

Bond lengths

Bond angles

Torsions

Rings
5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ> 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q< 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ>2</th>
<th>OWAB(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>442/446 (99%)</td>
<td>0.28</td>
<td>9 (2%)</td>
<td>65</td>
<td>69</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>441/446 (98%)</td>
<td>0.41</td>
<td>23 (5%)</td>
<td>27</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>424/439 (96%)</td>
<td>0.20</td>
<td>9 (2%)</td>
<td>63</td>
<td>68</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>424/439 (96%)</td>
<td>0.26</td>
<td>13 (3%)</td>
<td>49</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>365/379 (96%)</td>
<td>0.00</td>
<td>3 (0%)</td>
<td>86</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>365/379 (96%)</td>
<td>0.02</td>
<td>4 (1%)</td>
<td>80</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>241/241 (100%)</td>
<td>0.02</td>
<td>1 (0%)</td>
<td>92</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>Q</td>
<td>241/241 (100%)</td>
<td>0.11</td>
<td>3 (1%)</td>
<td>79</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>196/196 (100%)</td>
<td>1.04</td>
<td>40 (20%)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>196/196 (100%)</td>
<td>0.37</td>
<td>9 (4%)</td>
<td>32</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>99/110 (90%)</td>
<td>0.04</td>
<td>1 (1%)</td>
<td>82</td>
<td>85</td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>99/110 (90%)</td>
<td>0.24</td>
<td>4 (4%)</td>
<td>38</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>75/81 (92%)</td>
<td>0.54</td>
<td>5 (6%)</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>76/81 (93%)</td>
<td>0.80</td>
<td>12 (15%)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>66/78 (84%)</td>
<td>0.32</td>
<td>2 (3%)</td>
<td>50</td>
<td>56</td>
</tr>
<tr>
<td>8</td>
<td>U</td>
<td>66/78 (84%)</td>
<td>0.95</td>
<td>9 (13%)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>43/78 (55%)</td>
<td>1.60</td>
<td>15 (34%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>43/78 (55%)</td>
<td>2.22</td>
<td>20 (46%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>J</td>
<td>33/62 (53%)</td>
<td>1.03</td>
<td>5 (15%)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>62/62 (100%)</td>
<td>1.70</td>
<td>22 (35%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3997/4220 (94%)</td>
<td>0.33</td>
<td>209 (5%)</td>
<td>27</td>
<td>32</td>
</tr>
</tbody>
</table>

All (209) RSRZ outliers are listed below:
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>227</td>
<td>ALA</td>
<td>18.5</td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>75</td>
<td>ALA</td>
<td>11.6</td>
</tr>
<tr>
<td>10</td>
<td>J</td>
<td>62</td>
<td>LYS</td>
<td>10.2</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>2</td>
<td>ALA</td>
<td>9.8</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>1</td>
<td>VAL</td>
<td>9.4</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>226</td>
<td>ASP</td>
<td>7.9</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>12</td>
<td>GLU</td>
<td>7.8</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>232</td>
<td>LEU</td>
<td>7.6</td>
</tr>
<tr>
<td>10</td>
<td>J</td>
<td>31</td>
<td>PHE</td>
<td>7.5</td>
</tr>
<tr>
<td>10</td>
<td>J</td>
<td>32</td>
<td>GLU</td>
<td>7.3</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>12</td>
<td>LEU</td>
<td>7.2</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>41</td>
<td>PRO</td>
<td>6.7</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>229</td>
<td>PRO</td>
<td>6.7</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>17</td>
<td>VAL</td>
<td>6.6</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>233</td>
<td>SER</td>
<td>6.2</td>
</tr>
<tr>
<td>10</td>
<td>J</td>
<td>30</td>
<td>PHE</td>
<td>5.8</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>187</td>
<td>PHE</td>
<td>5.8</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>2</td>
<td>ALA</td>
<td>5.7</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>76</td>
<td>ALA</td>
<td>5.7</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>5</td>
<td>LEU</td>
<td>5.6</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>36</td>
<td>ALA</td>
<td>5.6</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>83</td>
<td>GLU</td>
<td>5.5</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>104</td>
<td>LYS</td>
<td>5.5</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>25</td>
<td>VAL</td>
<td>5.5</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>12</td>
<td>GLU</td>
<td>5.4</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>2</td>
<td>ALA</td>
<td>5.4</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>33</td>
<td>ALA</td>
<td>5.3</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>78</td>
<td>TYR</td>
<td>5.3</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>78</td>
<td>TYR</td>
<td>5.3</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>222</td>
<td>THR</td>
<td>5.2</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>1</td>
<td>GLY</td>
<td>5.2</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>19</td>
<td>PRO</td>
<td>5.2</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>21</td>
<td>PRO</td>
<td>5.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>16</td>
<td>ASN</td>
<td>5.1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>230</td>
<td>LEU</td>
<td>5.1</td>
</tr>
<tr>
<td>4</td>
<td>Q</td>
<td>241</td>
<td>LYS</td>
<td>5.1</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>112</td>
<td>VAL</td>
<td>4.9</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>225</td>
<td>GLU</td>
<td>4.9</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>62</td>
<td>LYS</td>
<td>4.9</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>3</td>
<td>PRO</td>
<td>4.9</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>76</td>
<td>ILE</td>
<td>4.8</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>132</td>
<td>TRP</td>
<td>4.7</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>78</td>
<td>LEU</td>
<td>4.7</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>R</td>
<td>27</td>
<td>GLU</td>
<td>4.7</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>225</td>
<td>GLU</td>
<td>4.6</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>38</td>
<td>SER</td>
<td>4.6</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>228</td>
<td>VAL</td>
<td>4.6</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>192</td>
<td>MET</td>
<td>4.4</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>19</td>
<td>THR</td>
<td>4.4</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>365</td>
<td>LEU</td>
<td>4.4</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>107</td>
<td>ASP</td>
<td>4.4</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>30</td>
<td>PHE</td>
<td>4.4</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>50</td>
<td>LEU</td>
<td>4.4</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>194</td>
<td>ILE</td>
<td>4.4</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>231</td>
<td>GLY</td>
<td>4.3</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>21</td>
<td>ALA</td>
<td>4.3</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>167</td>
<td>ALA</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>227</td>
<td>ALA</td>
<td>4.2</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>29</td>
<td>TYR</td>
<td>4.2</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>31</td>
<td>SER</td>
<td>4.2</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>80</td>
<td>ASP</td>
<td>4.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>17</td>
<td>ALA</td>
<td>4.2</td>
</tr>
<tr>
<td>8</td>
<td>U</td>
<td>51</td>
<td>GLU</td>
<td>4.1</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>195</td>
<td>VAL</td>
<td>4.0</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>84</td>
<td>GLY</td>
<td>4.0</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>63</td>
<td>PRO</td>
<td>4.0</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>13</td>
<td>LEU</td>
<td>4.0</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>63</td>
<td>PRO</td>
<td>3.9</td>
</tr>
<tr>
<td>4</td>
<td>Q</td>
<td>1</td>
<td>SER</td>
<td>3.9</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>127</td>
<td>VAL</td>
<td>3.9</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>226</td>
<td>ASP</td>
<td>3.9</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>9</td>
<td>LEU</td>
<td>3.8</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>103</td>
<td>LYS</td>
<td>3.8</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>223</td>
<td>TYR</td>
<td>3.8</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>14</td>
<td>PHE</td>
<td>3.8</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>20</td>
<td>HIS</td>
<td>3.8</td>
</tr>
<tr>
<td>8</td>
<td>U</td>
<td>49</td>
<td>GLN</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>222</td>
<td>THR</td>
<td>3.7</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>71</td>
<td>MET</td>
<td>3.7</td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>12</td>
<td>TRP</td>
<td>3.7</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>108</td>
<td>GLN</td>
<td>3.7</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>42</td>
<td>VAL</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>20</td>
<td>ASP</td>
<td>3.6</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>70</td>
<td>ALA</td>
<td>3.6</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>101</td>
<td>ARG</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>U</td>
<td>47</td>
<td>ARG</td>
<td>3.6</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>50</td>
<td>LEU</td>
<td>3.5</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>48</td>
<td>SER</td>
<td>3.5</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>16</td>
<td>ARG</td>
<td>3.5</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>81</td>
<td>ILE</td>
<td>3.4</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>111</td>
<td>ALA</td>
<td>3.4</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>37</td>
<td>THR</td>
<td>3.3</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>79</td>
<td>SER</td>
<td>3.3</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>17</td>
<td>THR</td>
<td>3.3</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>49</td>
<td>VAL</td>
<td>3.3</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>233</td>
<td>SER</td>
<td>3.2</td>
</tr>
<tr>
<td>10</td>
<td>J</td>
<td>61</td>
<td>ASN</td>
<td>3.2</td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>30</td>
<td>PHE</td>
<td>3.2</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>54</td>
<td>SER</td>
<td>3.2</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>77</td>
<td>LYS</td>
<td>3.2</td>
</tr>
<tr>
<td>8</td>
<td>U</td>
<td>34</td>
<td>ARG</td>
<td>3.2</td>
</tr>
<tr>
<td>8</td>
<td>U</td>
<td>48</td>
<td>SER</td>
<td>3.2</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>114</td>
<td>VAL</td>
<td>3.2</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>20</td>
<td>PHE</td>
<td>3.2</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>16</td>
<td>PRO</td>
<td>3.1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>20</td>
<td>HIS</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>443</td>
<td>TRP</td>
<td>3.1</td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>29</td>
<td>TYR</td>
<td>3.1</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>70</td>
<td>LEU</td>
<td>3.1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>18</td>
<td>PRO</td>
<td>3.1</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>42</td>
<td>VAL</td>
<td>3.1</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>186</td>
<td>GLU</td>
<td>3.0</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>62</td>
<td>ARG</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>230</td>
<td>LEU</td>
<td>3.0</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>188</td>
<td>THR</td>
<td>2.9</td>
</tr>
<tr>
<td>8</td>
<td>U</td>
<td>71</td>
<td>HIS</td>
<td>2.9</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>37</td>
<td>THR</td>
<td>2.9</td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>16</td>
<td>ILE</td>
<td>2.9</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>29</td>
<td>SER</td>
<td>2.9</td>
</tr>
<tr>
<td>8</td>
<td>U</td>
<td>44</td>
<td>VAL</td>
<td>2.9</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>110</td>
<td>ALA</td>
<td>2.9</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>25</td>
<td>SER</td>
<td>2.9</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>155</td>
<td>TYR</td>
<td>2.8</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>18</td>
<td>PRO</td>
<td>2.8</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>72</td>
<td>VAL</td>
<td>2.8</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>32</td>
<td>ALA</td>
<td>2.8</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>43</td>
<td>ALA</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>P</td>
<td>168</td>
<td>PHE</td>
<td>2.8</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>131</td>
<td>GLU</td>
<td>2.7</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>43</td>
<td>LEU</td>
<td>2.7</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>193</td>
<td>VAL</td>
<td>2.7</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>35</td>
<td>PRO</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>Q</td>
<td>144</td>
<td>ARG</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>192</td>
<td>ALA</td>
<td>2.6</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>60</td>
<td>ALA</td>
<td>2.6</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>32</td>
<td>LYS</td>
<td>2.6</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>6</td>
<td>THR</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>206</td>
<td>ARG</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>215</td>
<td>VAL</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>16</td>
<td>ASN</td>
<td>2.6</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>100</td>
<td>HIS</td>
<td>2.6</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>32</td>
<td>ALA</td>
<td>2.6</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>28</td>
<td>ALA</td>
<td>2.6</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>61</td>
<td>GLY</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>224</td>
<td>ASP</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>230</td>
<td>THR</td>
<td>2.5</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>8</td>
<td>ARG</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>17</td>
<td>ALA</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>133</td>
<td>VAL</td>
<td>2.5</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>7</td>
<td>ALA</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>49</td>
<td>TYR</td>
<td>2.5</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>57</td>
<td>GLY</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>3</td>
<td>LEU</td>
<td>2.4</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>33</td>
<td>GLY</td>
<td>2.4</td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>14</td>
<td>GLU</td>
<td>2.4</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>106</td>
<td>ILE</td>
<td>2.4</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>116</td>
<td>GLN</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>17</td>
<td>VAL</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>330</td>
<td>ALA</td>
<td>2.4</td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>43</td>
<td>ALA</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>213</td>
<td>GLN</td>
<td>2.4</td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>1</td>
<td>GLY</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>219</td>
<td>LEU</td>
<td>2.3</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>73</td>
<td>ASN</td>
<td>2.3</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>62</td>
<td>ARG</td>
<td>2.3</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>75</td>
<td>GLU</td>
<td>2.3</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>28</td>
<td>HIS</td>
<td>2.3</td>
</tr>
<tr>
<td>8</td>
<td>U</td>
<td>67</td>
<td>HIS</td>
<td>2.3</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>51</td>
<td>CYS</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>66</td>
<td>GLY</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>262</td>
<td>TRP</td>
<td>2.3</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>33</td>
<td>LYS</td>
<td>2.2</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>51</td>
<td>GLU</td>
<td>2.2</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>48</td>
<td>SER</td>
<td>2.2</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>191</td>
<td>ASP</td>
<td>2.2</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>38</td>
<td>LEU</td>
<td>2.2</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>13</td>
<td>LEU</td>
<td>2.2</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>10</td>
<td>TYR</td>
<td>2.2</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>124</td>
<td>LEU</td>
<td>2.2</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>23</td>
<td>LYS</td>
<td>2.2</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>71</td>
<td>ASN</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>231</td>
<td>LEU</td>
<td>2.1</td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>13</td>
<td>LEU</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>193</td>
<td>PRO</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>209</td>
<td>LEU</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>232</td>
<td>LEU</td>
<td>2.1</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>26</td>
<td>VAL</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>187</td>
<td>SER</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>81</td>
<td>SER</td>
<td>2.1</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>15</td>
<td>ARG</td>
<td>2.1</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>38</td>
<td>LEU</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>391</td>
<td>SER</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>229</td>
<td>PRO</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>267</td>
<td>ALA</td>
<td>2.1</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>61</td>
<td>GLY</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>102</td>
<td>LEU</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>347</td>
<td>ILE</td>
<td>2.0</td>
</tr>
<tr>
<td>8</td>
<td>U</td>
<td>13</td>
<td>LEU</td>
<td>2.0</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>34</td>
<td>VAL</td>
<td>2.0</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>74</td>
<td>PRO</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>134</td>
<td>ILE</td>
<td>2.0</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>34</td>
<td>VAL</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>249</td>
<td>GLY</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>35</td>
<td>PHE</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>15</td>
<td>GLN</td>
<td>2.0</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>73</td>
<td>PRO</td>
<td>2.0</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>34</td>
<td>ARG</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>154</td>
<td>GLY</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>155</td>
<td>GLY</td>
<td>2.0</td>
</tr>
</tbody>
</table>
6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates

There are no monosaccharides in this entry.

6.4 Ligands

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q<0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>JZR F 4001 18/18 0.14 0.72 146,154,157,158 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZI A 4011 3/3 0.20 0.46 61,61,66,69 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JZR D 4003 18/18 0.28 0.70 160,169,171,171 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOL B 2009 6/6 0.36 0.59 84,85,86,86 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JZR S 2011 18/18 0.42 0.46 61,89,94,98 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JZR C 4002 18/18 0.55 0.51 114,122,125,125 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOL O 3009 6/6 0.56 0.65 82,84,85,85 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JZR F 3011 18/18 0.58 0.42 108,113,116,116 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZI O 4010 3/3 0.60 0.65 102,102,104,104 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOL C 4006 6/6 0.62 0.52 96,98,99,100 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JZR P 3010 18/18 0.63 0.37 103,107,112,112 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JZR C 2010 18/18 0.63 0.38 94,103,108,108 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JZR R 4007 18/18 0.65 0.34 85,95,98,99 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEE D 2006 26/51 0.67 0.30 85,98,108,109 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZI C 2005 3/3 0.67 0.20 54,54,56,58 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZI G 4009 3/3 0.69 0.22 66,66,67,68 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO4 A 2013 5/5 0.71 0.16 119,120,121,122 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO4 C 4008 5/5 0.76 0.17 153,153,153,153 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZI P 3005 3/3 0.78 0.12 51,51,54,56 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDL D 2003 39/100 0.79 0.18 53,78,93,94 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOL R 4005 6/6 0.81 0.20 81,83,84,85 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOL P 3008 6/6 0.82 0.15 67,69,71,71 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDL P 3003 39/100 0.84 0.19 61,89,111,111 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEE Q 3006 51/51 0.86 0.29 65,75,98,100 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDL G 2004 44/100 0.88 0.21 73,87,99,102 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOL C 2008 6/6 0.89 0.31 61,65,68,75 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO4 P 3013 5/5 0.91 0.10 104,105,106,106 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>B-factors (Å²)</th>
<th>Q < 0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>CDL</td>
<td>T</td>
<td>3004</td>
<td>49/100</td>
<td>0.91</td>
<td>0.23</td>
<td>74,89,107,107</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>PO4</td>
<td>S</td>
<td>3012</td>
<td>5/5</td>
<td>0.93</td>
<td>0.15</td>
<td>97,97,99,100</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>PEE</td>
<td>P</td>
<td>3007</td>
<td>49/51</td>
<td>0.94</td>
<td>0.20</td>
<td>41,57,81,81</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>PO4</td>
<td>F</td>
<td>2012</td>
<td>5/5</td>
<td>0.95</td>
<td>0.12</td>
<td>81,82,83,84</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>ANY</td>
<td>C</td>
<td>2002</td>
<td>37/40</td>
<td>0.95</td>
<td>0.14</td>
<td>31,39,65,70</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>SMA</td>
<td>P</td>
<td>3001</td>
<td>37/37</td>
<td>0.95</td>
<td>0.13</td>
<td>27,40,44,46</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>ANY</td>
<td>P</td>
<td>3002</td>
<td>37/40</td>
<td>0.95</td>
<td>0.16</td>
<td>33,39,67,71</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>PEE</td>
<td>C</td>
<td>2007</td>
<td>49/51</td>
<td>0.95</td>
<td>0.18</td>
<td>35,55,81,83</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>SMA</td>
<td>C</td>
<td>2001</td>
<td>37/37</td>
<td>0.96</td>
<td>0.13</td>
<td>31,39,44,48</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>JZR</td>
<td>A</td>
<td>4004</td>
<td>18/18</td>
<td>0.96</td>
<td>0.13</td>
<td>28,34,40,42</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>FES</td>
<td>E</td>
<td>501</td>
<td>4/4</td>
<td>0.97</td>
<td>0.10</td>
<td>41,41,43,43</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>HEM</td>
<td>P</td>
<td>502</td>
<td>43/43</td>
<td>0.97</td>
<td>0.13</td>
<td>27,31,36,40</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>HEM</td>
<td>C</td>
<td>501</td>
<td>43/43</td>
<td>0.97</td>
<td>0.12</td>
<td>20,31,38,47</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>HEC</td>
<td>Q</td>
<td>501</td>
<td>43/43</td>
<td>0.97</td>
<td>0.12</td>
<td>38,45,48,51</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>HEM</td>
<td>C</td>
<td>502</td>
<td>43/43</td>
<td>0.98</td>
<td>0.13</td>
<td>22,28,34,37</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>FES</td>
<td>R</td>
<td>501</td>
<td>4/4</td>
<td>0.98</td>
<td>0.14</td>
<td>35,35,37,37</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>HEM</td>
<td>P</td>
<td>501</td>
<td>43/43</td>
<td>0.98</td>
<td>0.12</td>
<td>30,34,42,46</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>HEC</td>
<td>D</td>
<td>501</td>
<td>43/43</td>
<td>0.98</td>
<td>0.12</td>
<td>35,41,44,45</td>
<td>0</td>
</tr>
</tbody>
</table>
Electron density around JZR F 4001:

$2mF_o - DF_c$ (at 0.7 rmsd) in gray

$mF_o - DF_c$ (at 3 rmsd) in purple (negative)
and green (positive)

Electron density around JZR D 4003:

$2mF_o - DF_c$ (at 0.7 rmsd) in gray

$mF_o - DF_c$ (at 3 rmsd) in purple (negative)
and green (positive)
Electron density around JZR S 2011:

$2mF_o - DF_c$ (at 0.7 rmsd) in gray
$mF_o - DF_c$ (at 3 rmsd) in purple (negative) and green (positive)

Electron density around JZR C 4002:

$2mF_o - DF_c$ (at 0.7 rmsd) in gray
$mF_o - DF_c$ (at 3 rmsd) in purple (negative) and green (positive)
Electron density around JZR F 3011:

$2mF_o - DF_c$ (at 0.7 rmsd) in gray
$mF_o - DF_c$ (at 3 rmsd) in purple (negative) and green (positive)

Electron density around JZR P 3010:

$2mF_o - DF_c$ (at 0.7 rmsd) in gray
$mF_o - DF_c$ (at 3 rmsd) in purple (negative) and green (positive)
Electron density around JZR C 2010:

$2mF_o - DF_c$ (at 0.7 rmsd) in gray
$mF_o - DF_c$ (at 3 rmsd) in purple (negative) and green (positive)

Electron density around JZR R 4007:

$2mF_o - DF_c$ (at 0.7 rmsd) in gray
$mF_o - DF_c$ (at 3 rmsd) in purple (negative) and green (positive)
Electron density around PEE D 2006:

\[2mF_o-DF_c\] (at 0.7 rmsd) in gray
\[mF_o-DF_c\] (at 3 rmsd) in purple (negative)
and green (positive)

Electron density around CDL D 2003:

\[2mF_o-DF_c\] (at 0.7 rmsd) in gray
\[mF_o-DF_c\] (at 3 rmsd) in purple (negative)
and green (positive)
Electron density around CDL P 3003:

\[2mF_o - DF_c\] (at 0.7 rmsd) in gray
\[mF_o - DF_c\] (at 3 rmsd) in purple (negative) and green (positive)

Electron density around PEE Q 3006:

\[2mF_o - DF_c\] (at 0.7 rmsd) in gray
\[mF_o - DF_c\] (at 3 rmsd) in purple (negative) and green (positive)
Electron density around CDL G 2004:

\[2mF_o - DF_c\] (at 0.7 rmsd) in gray

\[mF_o - DF_c\] (at 3 rmsd) in purple (negative) and green (positive)

Electron density around CDL T 3004:

\[2mF_o - DF_c\] (at 0.7 rmsd) in gray

\[mF_o - DF_c\] (at 3 rmsd) in purple (negative) and green (positive)
Electron density around PEE P 3007:

$2mF_o - DF_c$ (at 0.7 rmsd) in gray
$mF_o - DF_c$ (at 3 rmsd) in purple (negative) and green (positive)

Electron density around ANY C 2002:

$2mF_o - DF_c$ (at 0.7 rmsd) in gray
$mF_o - DF_c$ (at 3 rmsd) in purple (negative) and green (positive)
Electron density around SMA P 3001:

$2mF_{o} - DF_{c}$ (at 0.7 rmsd) in gray
$mF_{o} - DF_{c}$ (at 3 rmsd) in purple (negative) and green (positive)
Electron density around ANY P 3002:

\[2mF_o - DF_c \text{ (at 0.7 rmsd) in gray} \]
\[mF_o - DF_c \text{ (at 3 rmsd) in purple (negative) and green (positive)} \]

Electron density around PEE C 2007:

\[2mF_o - DF_c \text{ (at 0.7 rmsd) in gray} \]
\[mF_o - DF_c \text{ (at 3 rmsd) in purple (negative) and green (positive)} \]
Electron density around SMA C 2001:

\[2mF_o - DF_c \text{ (at 0.7 rmsd) in gray} \]
\[mF_o - DF_c \text{ (at 3 rmsd) in purple (negative) and green (positive)} \]

Electron density around JZRA 4004:

\[2mF_o - DF_c \text{ (at 0.7 rmsd) in gray} \]
\[mF_o - DF_c \text{ (at 3 rmsd) in purple (negative) and green (positive)} \]
Electron density around HEM P 502:

$2mF_o - DF_c$ (at 0.7 rmsd) in gray
$mF_o - DF_c$ (at 3 rmsd) in purple (negative)
and green (positive)
Electron density around HEM C 501:

$2mF_o - DF_c$ (at 0.7 rmsd) in gray
$mF_o - DF_c$ (at 3 rmsd) in purple (negative) and green (positive)
Electron density around HEC Q 501:

$2mF_o - DF_c$ (at 0.7 rmsd) in gray

$mF_o - DF_c$ (at 3 rmsd) in purple (negative)
and green (positive)
Electron density around HEM C 502:

$2mF_o - DF_c$ (at 0.7 rmsd) in gray
$mF_o - DF_c$ (at 3 rmsd) in purple (negative) and green (positive)
Electron density around HEM P 501:

$2mF_o - DF_c$ (at 0.7 rmsd) in gray
$mF_o - DF_c$ (at 3 rmsd) in purple (negative)
and green (positive)
Electron density around HEC D 501:

- $2mF_o - DF_c$ (at 0.7 rmsd) in gray
- $mF_o - DF_c$ (at 3 rmsd) in purple (negative) and green (positive)

6.5 Other polymers

There are no such residues in this entry.