

Full wwPDB X-ray Structure Validation Report (i)

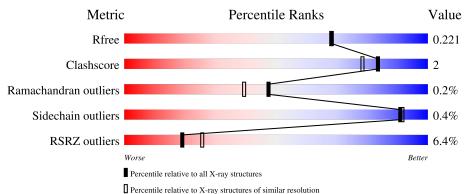
Feb 23, 2022 – 09:32 pm GMT

PDB ID	:	7PR5
Title	:	Cocrystal of an RSL-N23H and sulfonato-thiacalix[4]arene - zinc complex
Authors	:	Flood, R.J.; Ramberg, K.; Guagnini, F.; Crowley, P.B.
Deposited on		
Resolution	:	1.94 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.26
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0267
CCP4	:	7.1.010 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.26

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.94 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} \textbf{Whole archive} \\ (\#\textbf{Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	4310 (1.96-1.92)
Clashscore	141614	1023 (1.94-1.94)
Ramachandran outliers	138981	1007 (1.94-1.94)
Sidechain outliers	138945	1007 (1.94-1.94)
RSRZ outliers	127900	4250 (1.96-1.92)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
			3%	
1	A	90	96%	••
_	Ð		2%	_
1	В	90	94%	••
_	~		2%	_
1	С	90	92%	7% •
_			6%	
1	D	90	99%	•
_			2%	_
	Ε	90	92%	7% •

Mol	Chain	Length	Quality of chain	
1	F	90	2%	120/
	Г	90		13%
1	G	90	96%	•••
1	Н	90	<u> </u>	10%
			18%	
1	Ι	90	94%	6%
1	J	90	8%	•••
1	K	90	91%	9%
	11	50	8%	976
1	L	90	91%	7% •

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 9405 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	А	89	Total	С	Ν	0	S	3	0	0
	A	89	681	429	117	133	2	J	0	0
1	В	89	Total	С	Ν	0	S	5	0	0
	D	89	681	429	117	133	2	5	0	0
1	С	89	Total	С	Ν	0	S	6	1	0
	U	09	687	433	118	134	2	0	1	0
1	D	89	Total	С	Ν	Ο	S	5	0	0
	D	03	681	429	117	133	2	0	0	0
1	Е	89	Total	С	Ν	Ο	\mathbf{S}	8	0	0
	Ľ	03	681	429	117	133	2	0	0	0
1	F	90	Total	С	Ν	0	\mathbf{S}	7	1	0
	Ľ	30	693	435	119	137	2	1	1	0
1	G	89	Total	С	Ν	0	S	6	0	0
	G	03	681	429	117	133	2	0	0	0
1	Н	90	Total	С	Ν	Ο	S	9	0	0
1	11	50	690	433	119	136	2	5	0	0
1	Ι	90	Total	С	Ν	0	S	4	0	0
	L	30	690	433	119	136	2		0	0
1	J	89	Total	С	Ν	0	\mathbf{S}	8	0	0
	0	03	681	429	117	133	2	0	0	0
1	K	90	Total	С	Ν	0	S	8	0	0
	17	30	690	433	119	136	2		0	0
1	L	88	Total	С	Ν	0	S	10	0	0
		00	674	425	116	131	2	10	0	0

• Molecule 1 is a protein called Fucose-binding lectin protein.

There are 12 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	23	HIS	ASN	engineered mutation	UNP A0A0S4TLR1
В	23	HIS	ASN	engineered mutation	UNP A0A0S4TLR1
С	23	HIS	ASN	engineered mutation	UNP A0A0S4TLR1
D	23	HIS	ASN	engineered mutation	UNP A0A0S4TLR1
Е	23	HIS	ASN	engineered mutation	UNP A0A0S4TLR1

Chain	Residue	Modelled	Actual	Comment	Reference
F	23	HIS	ASN	engineered mutation	UNP A0A0S4TLR1
G	23	HIS	ASN	engineered mutation	UNP A0A0S4TLR1
Н	23	HIS	ASN	engineered mutation	UNP A0A0S4TLR1
Ι	23	HIS	ASN	engineered mutation	UNP A0A0S4TLR1
J	23	HIS	ASN	engineered mutation	UNP A0A0S4TLR1
K	23	HIS	ASN	engineered mutation	UNP A0A0S4TLR1
L	23	HIS	ASN	engineered mutation	UNP A0A0S4TLR1

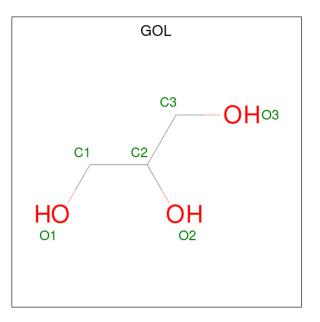
• Molecule 2 is beta-D-fructopy ranose (three-letter code: BDF) (formula: $C_6H_{12}O_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	Total C O 12 6 6	0	0
2	А	1	Total C O 12 6 6	0	0
2	В	1	Total C O 12 6 6	0	0
2	В	1	Total C O 12 6 6	0	0
2	С	1	Total C O 12 6 6	0	0
2	С	1	Total C O 12 6 6	0	0
2	D	1	Total C O 12 6 6	0	0
2	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 12 & 6 & 6 \end{array}$	0	0

Continued from previous page...

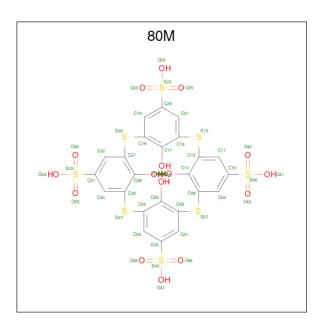
 Mol
 Chain
 Besidues
 Atoms

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	Е	1	Total C O	0	0
		1	12 6 6	0	0
2	Ε	1	Total C O	0	0
		Ĩ	12 6 6	0	0
2	F	1	Total C O	0	0
	1	1	12 6 6	0	0
2	F	1	Total C O	0	0
	1	1	12 6 6	0	0
2	G	1	Total C O	0	0
	9	1	12 6 6	0	0
2	G	1	Total C O	0	0
	9	1	12 6 6	0	0
2	Н	1	Total C O	0	0
		Ŧ	12 6 6	0	0
2	Ι	1	Total C O	0	0
	-	1	12 6 6	0	
2	Ι	1	Total C O	0	0
	1	1	12 6 6	0	
2	J	1	Total C O	0	0
	0	1	12 6 6	0	0
2	J	1	Total C O	0	0
	0	1	12 6 6	0	0
2	Κ	1	Total C O	0	0
		1	12 6 6	0	0
2	Κ	1	Total C O	0	0
		1	12 6 6	<u> </u>	
2	L	1	Total C O	0	0
	<u></u>	1	12 6 6	0	, ,
2	\mathbf{L}	1	Total C O	0	0
	Ы	1	12 6 6		


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total Zn 1 1	0	0
3	В	1	Total Zn 1 1	0	0
3	D	1	Total Zn 1 1	0	0
3	Н	1	Total Zn 1 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	Ι	1	Total Zn 1 1	0	0
3	J	1	Total Zn 1 1	0	0
3	К	1	Total Zn 1 1	0	0


• Molecule 4 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

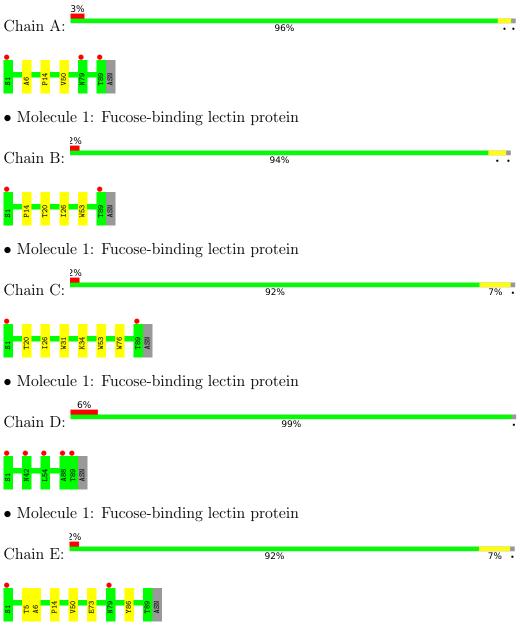
Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	
4	Н	1	Total 6	${ m C} { m 3}$	O 3	0	0

• Molecule 5 is sulfonato-thiacalix[4]arene (three-letter code: 80M) (formula: $C_{24}H_{16}O_{16}S_8$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
5	Κ	1	Total 48	C 24	0 16	S 8	0	0

• Molecule 6 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	82	Total O 82 82	0	0
6	В	96	Total O 96 96	0	0
6	С	70	Total O 70 70	0	0
6	D	77	Total O 77 77	0	0
6	Ε	79	Total O 79 79	0	0
6	F	67	$\begin{array}{cc} \text{Total} & \text{O} \\ 67 & 67 \end{array}$	0	0
6	G	73	Total O 73 73	0	0
6	Н	76	Total O 76 76	0	0
6	Ι	53	$\begin{array}{cc} \text{Total} & \text{O} \\ 53 & 53 \end{array}$	0	0
6	J	75	Total O 75 75	0	0
6	К	64	Total O 64 64	0	0


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	L	46	Total O 46 46	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Fucose-binding lectin protein

• Molecule 1: Fucose-binding lectin protein

Chain F:	87%	13%
81 120 120 120 120 120 120 120 120 120 12	6 1 0	
• Molecule 1: Fucose-bin	iding lectin protein	
Chain G:	96%	
81 82 85 463 468 488 488 ASN		
• Molecule 1: Fucose-bin	iding lectin protein	
Chain H:	90%	10%
81 82 82 112 112 112 112 112 112 112 112		
• Molecule 1: Fucose-bin	iding lectin protein	
Chain I:	94%	6%
81 82 13 143 144 144 144 144 144 144 154 154 155 155	H 76 N 79 C 88 N 81 N 90 N 90	
• Molecule 1: Fucose-bin	nding lectin protein	
Chain J:	97%	
81 112 112 112 113 113 113 113 113 113 11		
• Molecule 1: Fucose-bin	iding lectin protein	
Chain K:	91%	9%
81 82 82 83 82 83 11 112 112 113 113 113 113 815 815 815 815 815 815 815 815 815 815	A57 A58 159 N76 N76 N76 N76 N76 N76 N76 N76	
• Molecule 1: Fucose-bin	ding lectin protein	
Chain L:	91%	7% •
81 94 14 154 155 857 857 857 857 857 857 169 169 169 169 169 169 169 169	W76 N79 A83 A88 A88 A88 A88	

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	67.37Å 129.40Å 130.33Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Resolution (Å)	46.84 - 1.94	Depositor
Resolution (A)	46.84 - 1.94	EDS
% Data completeness	$99.4 \ (46.84 - 1.94)$	Depositor
(in resolution range)	99.4(46.84 - 1.94)	EDS
R _{merge}	0.13	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.50 (at 1.94 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.19.2_4158	Depositor
R, R_{free}	0.183 , 0.225	Depositor
II, II, <i>free</i>	0.179 , 0.221	DCC
R_{free} test set	4254 reflections $(5.00%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	33.1	Xtriage
Anisotropy	0.179	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	(Not available), (Not available)	EDS
L-test for twinning ²	$< L > = 0.50, < L^2 > = 0.33$	Xtriage
Estimated twinning fraction	0.004 for -h,l,k	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	9405	wwPDB-VP
Average B, all atoms $(Å^2)$	33.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 6.54% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: BDF, GOL, $80\mathrm{M},\,\mathrm{ZN}$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond	angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.45	0/703	0.63	0/966
1	В	0.49	0/703	0.62	0/966
1	С	0.42	0/712	0.57	0/978
1	D	0.43	0/703	0.61	0/966
1	Е	0.48	0/703	0.62	0/966
1	F	0.42	0/718	0.61	0/985
1	G	0.44	0/703	0.60	0/966
1	Н	0.40	0/712	0.58	0/977
1	Ι	0.40	0/712	0.58	0/977
1	J	0.39	0/703	0.61	0/966
1	Κ	0.37	0/712	0.57	0/977
1	L	0.38	0/696	0.57	0/956
All	All	0.42	0/8480	0.60	0/11646

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	681	0	631	2	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashe
1	В	681	0	630	3	0
1	С	687	0	639	4	0
1	D	681	0	631	0	0
1	Е	681	0	631	4	0
1	F	693	0	644	9	0
1	G	681	0	631	3	0
1	Н	690	0	637	7	0
1	Ι	690	0	637	4	0
1	J	681	0	631	2	0
1	K	690	0	637	6	0
1	L	674	0	624	6	0
2	А	24	0	24	1	0
2	В	24	0	24	0	0
2	С	24	0	24	2	0
2	D	24	0	24	1	0
2	Е	24	0	24	0	0
2	F	24	0	24	0	0
2	G	24	0	24	0	0
2	Н	12	0	12	0	0
2	Ι	24	0	24	0	0
2	J	24	0	24	0	0
2	K	24	0	24	2	0
2	L	24	0	24	2	0
3	А	1	0	0	0	0
3	В	1	0	0	0	0
3	D	1	0	0	0	0
3	Н	1	0	0	0	0
3	Ι	1	0	0	0	0
3	J	1	0	0	0	0
3	K	1	0	0	0	0
4	Н	6	0	8	0	0
5	K	48	0	0	0	0
6	А	82	0	0	0	0
6	В	96	0	0	0	0
6	С	70	0	0	1	0
6	D	77	0	0	0	0
6	Е	79	0	0	0	0
6	F	67	0	0	2	0
6	G	73	0	0	1	0
6	Н	76	0	0	1	0
6	Ι	53	0	0	0	0
6	J	75	0	0	0	0

W O R L D W I D E PROTEIN DATA BANK The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (39) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:F:90:ASN:ND2	6:F:202:HOH:O	2.23	0.70
1:K:14:PRO:HG3	1:L:53:TRP:CE2	2.28	0.68
1:F:22:ASN:OD1	1:F:23:HIS:ND1	2.29	0.60
1:K:14:PRO:HG3	1:L:53:TRP:CZ2	2.37	0.59
1:L:62:ARG:HE	2:L:101:BDF:H62	1.68	0.58
1:F:79:ASN:OD1	6:F:201:HOH:O	2.17	0.57
1:G:14:PRO:HG3	1:H:53:TRP:CE2	2.41	0.55
1:K:76:TRP:CE2	2:K:103:BDF:H61	2.45	0.52
1:K:10:TRP:CG	1:K:59:ILE:HD13	2.44	0.52
1:H:52:SER:HB2	1:H:59:ILE:HD11	1.92	0.51
1:H:3:VAL:HG12	1:H:22:ASN:HA	1.93	0.51
1:J:53:TRP:CE2	1:L:14:PRO:HG3	2.46	0.50
1:K:28:GLU:OE1	2:K:103:BDF:O4	2.29	0.50
1:F:26:ILE:HD13	1:F:48:VAL:HB	1.94	0.49
1:F:20:THR:O	1:F:26:ILE:HA	2.14	0.48
1:H:14:PRO:HG3	1:I:53:TRP:CE2	2.50	0.47
1:B:14:PRO:HG3	1:C:53:TRP:CZ2	2.51	0.46
1:E:14:PRO:HG3	1:F:53:TRP:CE2	2.51	0.46
1:G:14:PRO:HG3	1:H:53:TRP:CZ2	2.51	0.46
1:E:73:GLU:HB2	1:E:86:TYR:HB3	1.98	0.46
1:H:20:THR:O	1:H:26:ILE:HA	2.16	0.46
1:H:90:ASN:ND2	6:H:206:HOH:O	2.49	0.45
1:C:76:TRP:CZ2	2:C:202:BDF:H61	2.52	0.45
1:A:14:PRO:HG3	1:B:53:TRP:CE2	2.53	0.43
1:E:5:THR:H	1:F:47:ASN:HD21	1.67	0.43
1:G:53:TRP:CZ2	1:I:14:PRO:HG3	2.54	0.43
1:C:20:THR:O	1:C:26:ILE:HA	2.19	0.43
6:G:206:HOH:O	1:I:2:SER:HB3	2.18	0.43
1:A:6:ALA:HB1	1:A:50:VAL:HG12	2.01	0.42
1:B:20:THR:O	1:B:26:ILE:HA	2.19	0.42
2:C:201:BDF:H12	6:C:326:HOH:O	2.18	0.42

Chain Non-H H(model) H(added) Clashes Symm-Clashes Mol 6 Κ 64 0 0 0 0 6 L 46 0 0 0 0 All All 9405 0 39 0 7887

Continued from previous page...

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:K:15:SER:HA	1:K:31:TRP:O	2.20	0.42
1:J:47:ASN:HD21	1:L:4:GLN:HG2	1.84	0.42
2:D:102:BDF:H61	1:F:31:TRP:CZ2	2.55	0.41
1:I:55:VAL:HG23	1:I:55:VAL:O	2.19	0.41
1:L:76:TRP:CE2	2:L:102:BDF:H61	2.56	0.41
1:F:30:CYS:HB2	1:F:37:TYR:CZ	2.56	0.41
1:E:6:ALA:HB1	1:E:50:VAL:HG12	2.03	0.40
2:A:101:BDF:H61	1:C:31:TRP:CZ2	2.55	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	87/90~(97%)	84 (97%)	3~(3%)	0	100	100
1	В	87/90~(97%)	84 (97%)	3~(3%)	0	100	100
1	\mathbf{C}	88/90~(98%)	86~(98%)	2(2%)	0	100	100
1	D	87/90~(97%)	83~(95%)	4(5%)	0	100	100
1	Ε	87/90~(97%)	83~(95%)	4 (5%)	0	100	100
1	F	88/90~(98%)	85~(97%)	3(3%)	0	100	100
1	G	87/90~(97%)	86~(99%)	1 (1%)	0	100	100
1	Η	88/90~(98%)	87~(99%)	1 (1%)	0	100	100
1	Ι	88/90~(98%)	84 (96%)	3~(3%)	1 (1%)	14	5
1	J	87/90~(97%)	85~(98%)	2(2%)	0	100	100
1	Κ	88/90~(98%)	87~(99%)	1 (1%)	0	100	100
1	L	86/90~(96%)	82 (95%)	3 (4%)	1 (1%)	13	4
All	All	1048/1080~(97%)	1016 (97%)	30 (3%)	2(0%)	47	39

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	L	56	GLY
1	Ι	56	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
1	А	70/71~(99%)	70~(100%)	0	100	100
1	В	70/71~(99%)	70~(100%)	0	100	100
1	С	71/71~(100%)	70~(99%)	1 (1%)	67	58
1	D	70/71~(99%)	70 (100%)	0	100	100
1	Ε	70/71~(99%)	70 (100%)	0	100	100
1	F	72/71~(101%)	72 (100%)	0	100	100
1	G	70/71~(99%)	69~(99%)	1 (1%)	67	58
1	Н	71/71~(100%)	71 (100%)	0	100	100
1	Ι	71/71~(100%)	71 (100%)	0	100	100
1	J	70/71~(99%)	70~(100%)	0	100	100
1	Κ	71/71~(100%)	70~(99%)	1 (1%)	67	58
1	L	69/71~(97%)	69 (100%)	0	100	100
All	All	845/852~(99%)	842 (100%)	3~(0%)	91	91

All (3) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	С	34	LYS
1	G	2	SER
1	Κ	2	SER

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such side chains are listed below:

Mol	Chain	Res	Type	
1	F	47	ASN	

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 32 ligands modelled in this entry, 7 are monoatomic - leaving 25 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Turne	Chain	Dec	Link	Bo	ond leng	ths	В	ond ang	les
	Type	Chain	Res	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	BDF	D	101	-	12,12,12	0.27	0	18,18,18	0.56	0
2	BDF	L	102	-	12,12,12	0.17	0	18,18,18	0.44	0
5	80M	К	101	3	$52,\!52,\!52$	0.36	0	84,84,84	0.61	2 (2%)
2	BDF	F	102	-	12,12,12	0.22	0	18,18,18	0.49	0
2	BDF	J	102	-	12,12,12	0.27	0	18,18,18	0.49	0
2	BDF	D	102	-	12,12,12	0.19	0	18,18,18	0.49	0
2	BDF	L	101	-	12,12,12	0.20	0	18,18,18	0.54	0
2	BDF	А	102	-	12,12,12	0.34	0	18,18,18	0.45	0
2	BDF	G	102	-	12,12,12	0.18	0	18,18,18	0.33	0
2	BDF	K	102	-	12,12,12	0.18	0	18,18,18	0.25	0
2	BDF	Ι	202	-	12,12,12	0.24	0	18,18,18	0.51	0
2	BDF	С	201	-	12,12,12	0.27	0	18,18,18	0.60	0
2	BDF	С	202	-	12,12,12	0.28	0	$18,\!18,\!18$	0.57	0
2	BDF	Н	101	-	12,12,12	0.25	0	18,18,18	0.41	0

Mol	Turne	Chain	Res	Link	Bo	ond leng	\mathbf{ths}	В	ond ang	les
IVIOI	Type	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
2	BDF	J	101	-	12,12,12	0.24	0	18,18,18	0.41	0
2	BDF	А	101	-	12,12,12	0.31	0	18,18,18	0.51	0
2	BDF	Е	101	-	12,12,12	0.30	0	$18,\!18,\!18$	0.38	0
2	BDF	K	103	-	12,12,12	0.22	0	18,18,18	0.45	0
2	BDF	Е	102	-	$12,\!12,\!12$	0.21	0	$18,\!18,\!18$	0.50	0
2	BDF	Ι	201	-	$12,\!12,\!12$	0.15	0	$18,\!18,\!18$	0.36	0
2	BDF	G	101	-	12,12,12	0.18	0	18,18,18	0.82	1 (5%)
2	BDF	В	201	-	12,12,12	0.23	0	18,18,18	0.48	0
2	BDF	В	202	-	12,12,12	0.23	0	18,18,18	0.50	0
2	BDF	F	101	-	12,12,12	0.23	0	18,18,18	0.46	0
4	GOL	Н	102	-	$5,\!5,\!5$	0.91	0	$5,\!5,\!5$	1.12	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	BDF	D	101	-	-	0/3/23/23	0/1/1/1
2	BDF	L	102	-	-	0/3/23/23	0/1/1/1
5	80M	K	101	3	-	0/40/40/40	0/5/5/5
2	BDF	F	102	-	-	0/3/23/23	0/1/1/1
2	BDF	J	102	-	-	0/3/23/23	0/1/1/1
2	BDF	D	102	-	-	0/3/23/23	0/1/1/1
2	BDF	L	101	-	-	0/3/23/23	0/1/1/1
2	BDF	А	102	-	-	0/3/23/23	0/1/1/1
2	BDF	G	102	-	-	0/3/23/23	0/1/1/1
2	BDF	Κ	102	-	-	0/3/23/23	0/1/1/1
2	BDF	Ι	202	-	-	0/3/23/23	0/1/1/1
2	BDF	С	201	-	-	0/3/23/23	0/1/1/1
2	BDF	С	202	-	-	0/3/23/23	0/1/1/1
2	BDF	Н	101	-	-	0/3/23/23	0/1/1/1
2	BDF	J	101	-	-	0/3/23/23	0/1/1/1
2	BDF	А	101	-	-	0/3/23/23	0/1/1/1
2	BDF	Е	101	-	-	0/3/23/23	0/1/1/1
2	BDF	K	103	-	-	0/3/23/23	0/1/1/1
2	BDF	Е	102	-	-	0/3/23/23	0/1/1/1
2	BDF	Ι	201	-	-	0/3/23/23	0/1/1/1
2	BDF	G	101	-	-	0/3/23/23	0/1/1/1
2	BDF	В	201	-	-	0/3/23/23	0/1/1/1
2	BDF	В	202	-	-	0/3/23/23	0/1/1/1
2	BDF	F	101	-	-	0/3/23/23	0/1/1/1

Continued from previous page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	GOL	Н	102	-	-	2/4/4/4	-

There are no bond length outliers.

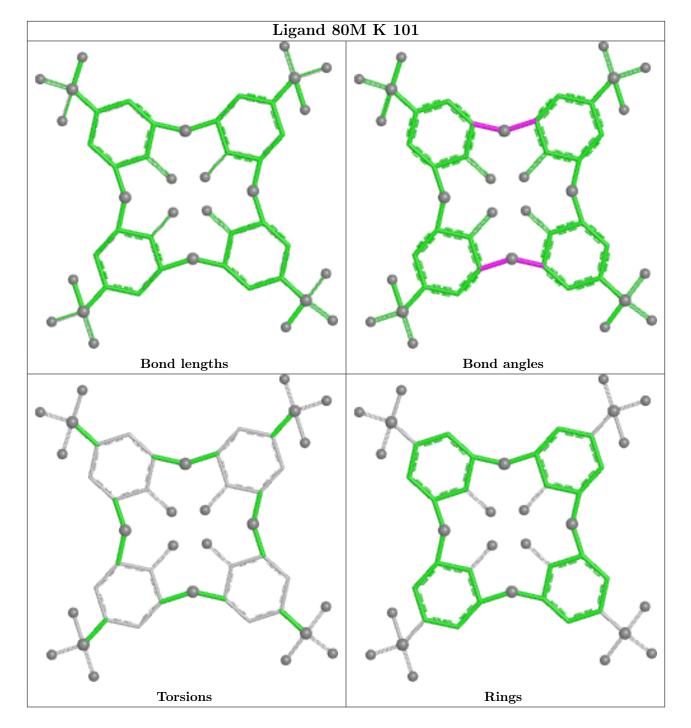
All (3) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	K	101	80M	C29-S37-C04	3.10	114.18	103.54
5	K	101	80M	C16-S15-C12	2.85	113.33	103.54
2	G	101	BDF	O4-C4-C5	2.40	114.58	109.99

There are no chirality outliers.

All (2) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	Н	102	GOL	C1-C2-C3-O3
4	Н	102	GOL	O2-C2-C3-O3


There are no ring outliers.

7 monomers are involved in 8 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	L	102	BDF	1	0
2	D	102	BDF	1	0
2	L	101	BDF	1	0
2	С	201	BDF	1	0
2	С	202	BDF	1	0
2	А	101	BDF	1	0
2	Κ	103	BDF	2	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient must be highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	89/90~(98%)	0.51	3 (3%) 45 53	21, 29, 38, 51	1 (1%)
1	В	89/90~(98%)	0.56	2 (2%) 62 69	21, 26, 35, 51	2(2%)
1	С	89/90~(98%)	0.49	2 (2%) 62 69	22, 29, 39, 44	2(2%)
1	D	89/90~(98%)	0.65	5 (5%) 24 31	21, 29, 45, 56	2(2%)
1	Е	89/90~(98%)	0.56	2 (2%) 62 69	20, 26, 38, 46	3 (3%)
1	F	90/90~(100%)	0.61	2 (2%) 62 69	21, 32, 45, 55	2 (2%)
1	G	89/90~(98%)	0.77	4 (4%) 33 40	22, 29, 42, 57	2 (2%)
1	Н	90/90~(100%)	0.75	5 (5%) 24 31	22, 32, 48, 54	4 (4%)
1	Ι	90/90~(100%)	1.16	16 (17%) 1 1	28, 39, 54, 62	2 (2%)
1	J	89/90~(98%)	0.78	7 (7%) 12 18	23, 32, 47, 51	2(2%)
1	К	90/90~(100%)	1.09	14 (15%) 2 2	27, 37, 59, 66	2 (2%)
1	L	88/90~(97%)	0.89	7 (7%) 12 17	25, 38, 52, 58	3 (3%)
All	All	1071/1080 (99%)	0.73	69 (6%) 19 26	20, 31, 50, 66	27 (2%)

All (69) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	Κ	12	THR	7.3
1	G	89	THR	6.7
1	А	89	THR	6.3
1	F	79	ASN	5.6
1	L	59	ILE	5.4
1	Ι	57	SER	4.6
1	Κ	57	SER	4.6
1	Κ	89	THR	4.5
1	Н	12	THR	4.2
1	А	1	SER	4.1
1	Ι	40	ALA	4.1

Mol	nued fron Chain	Res	Type	RSRZ
1	K	55	VAL	4.0
1	В	89	THR	3.9
1	J	12	THR	3.9
1	Ι	90	ASN	3.8
1	L	58	ALA	3.7
1	J	57	SER	3.7
1	K	10	TRP	3.6
1	Ι	89	THR	3.6
1	F	90	ASN	3.6
1	Н	1	SER	3.6
1	D	89	THR	3.4
1	К	79	ASN	3.4
1	С	89	THR	3.2
1	Ι	76	TRP	3.1
1	L	82	THR	3.1
1	Н	88	ALA	3.0
1	Ι	54	LEU	3.0
1	K	1	SER	3.0
1	Ι	81	TRP	3.0
1	J	13	VAL	2.9
1	K	59	ILE	2.9
1	G	2	SER	2.8
1	Н	89	THR	2.8
1	Н	90	ASN	2.8
1	K	80	GLY	2.7
1	K	90	ASN	2.7
1	L	69	THR	2.7
1	Ι	44	PRO	2.7
1	Ι	53	TRP	2.6
1	K	54	LEU	2.6
1	L	55	VAL	2.6
1	D	1	SER	2.5
1	I	14	PRO	2.5
1	K	3	VAL	2.5
1	L	57	SER	2.5
1	I	34	LYS	2.5
1	K	58	ALA	2.4
1	D	88	ALA	2.4
1	I	85	ALA	2.3
1	I	79	ASN	2.3
1	E	1	SER	2.3
1	Ι	13	VAL	2.3

Mol	Chain	Res	Type	RSRZ
1	J	1	SER	2.3
1	А	79	ASN	2.2
1	J	55	VAL	2.2
1	D	54	LEU	2.2
1	В	1	SER	2.2
1	G	88	ALA	2.2
1	J	89	THR	2.2
1	Κ	2	SER	2.1
1	Ι	3	VAL	2.1
1	G	1	SER	2.1
1	Ι	80	GLY	2.1
1	D	42	ASN	2.1
1	С	1	SER	2.1
1	Е	79	ASN	2.1
1	L	79	ASN	2.1
1	J	36	TRP	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

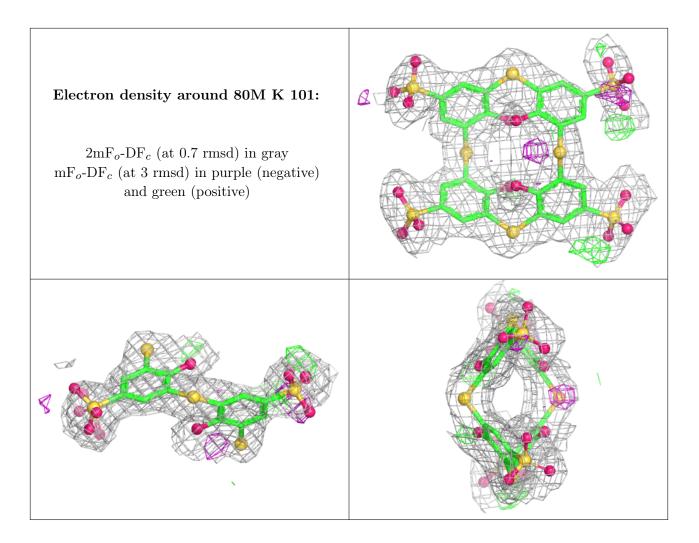
There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.


Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q < 0.9
2	BDF	Ι	202	12/12	0.67	0.30	45,49,55,56	0
2	BDF	F	102	12/12	0.71	0.32	34,42,49,52	0
2	BDF	А	102	12/12	0.71	0.25	29,36,43,45	0
2	BDF	L	101	12/12	0.72	0.23	43,47,59,60	0
2	BDF	С	202	12/12	0.76	0.26	32,37,44,49	0
2	BDF	K	102	12/12	0.76	0.23	36,43,50,51	0
2	BDF	Ι	201	12/12	0.76	0.27	39,45,49,52	0

	Continued from previous page								
Mol	Type	Chain	\mathbf{Res}	Atoms	RSCC	\mathbf{RSR}	$\mathbf{B} extsf{-}\mathbf{factors}(\mathbf{A}^2)$	$Q{<}0.9$	
2	BDF	С	201	12/12	0.77	0.30	$25,\!33,\!45,\!48$	0	
2	BDF	G	102	12/12	0.78	0.25	29,34,43,46	0	
2	BDF	А	101	12/12	0.79	0.25	26,32,44,47	0	
2	BDF	G	101	12/12	0.80	0.23	24,29,36,37	0	
2	BDF	J	102	12/12	0.80	0.23	32,35,41,44	0	
2	BDF	Е	101	12/12	0.81	0.18	28,32,36,40	0	
2	BDF	В	202	12/12	0.81	0.18	23,29,34,37	0	
2	BDF	D	101	12/12	0.81	0.17	29,31,38,41	0	
2	BDF	D	102	12/12	0.82	0.27	33,41,47,48	0	
2	BDF	K	103	12/12	0.83	0.17	42,46,51,55	0	
2	BDF	Е	102	12/12	0.84	0.22	25,30,43,45	0	
4	GOL	Н	102	6/6	0.84	0.20	34,36,39,42	0	
5	80M	Κ	101	48/48	0.84	0.21	37,54,70,76	0	
2	BDF	F	101	12/12	0.85	0.17	26,33,41,46	0	
2	BDF	L	102	12/12	0.86	0.20	36,43,48,49	0	
2	BDF	Н	101	12/12	0.87	0.16	26,31,38,38	0	
2	BDF	J	101	12/12	0.89	0.15	$26,\!31,\!35,\!37$	0	
2	BDF	В	201	12/12	0.90	0.17	25,30,42,50	0	
3	ZN	А	103	1/1	0.95	0.06	49,49,49,49	0	
3	ZN	Ι	203	1/1	0.96	0.05	45,45,45,45	0	
3	ZN	K	104	1/1	0.97	0.06	45,45,45,45	0	
3	ZN	D	103	1/1	0.98	0.06	35,35,35,35	0	
3	ZN	Н	103	1/1	0.98	0.05	47,47,47,47	0	
3	ZN	J	103	1/1	0.99	0.07	39,39,39,39	0	
3	ZN	В	203	1/1	0.99	0.05	46,46,46,46	0	

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

