

Nov 9, 2024 – 02:50 PM EST

PDB ID	:	6Q05
EMDB ID	:	EMD-20543
Title	:	MERS-CoV S structure in complex with sialyl-lewisX
Authors	:	Park, Y.J.; Walls, A.C.; Wang, Z.; Sauer, M.; Li, W.; Tortorici, M.A.; Bosch,
		B.J.; DiMaio, F.D.; Veesler, D.; Seattle Structural Genomics Center for Infec-
		tious Disease (SSGCID)
Deposited on	:	2019-08-01
Resolution	:	2.80 Å(reported)
Based on initial model	:	6BN3

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 113
Mogul	:	2022.3.0, CSD as543be (2022)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	EM structures
Metric	$(\# { m Entries})$	$(\# { m Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
1	А	1359	• 77%	7%	•	15%
1	В	1359		7%	•	15%
1	С	1359	77%	7%	•	15%
2	D	4	50%			
2	Н	4	75%			
2	0	4	50% 100%			
2	S	4	75%			
2	Z	4	50% 100%			

Continued from previous page... Chain | Length Quality of chain Mol 75% 2 \mathbf{d} 4 100% 50% Е 3 2100% 50% 3 Ι 2100% 100% J 23 100% 50% $\mathbf{2}$ 100% 3 М 50% Р 23 100% 50% Т $\mathbf{2}$ 3 100% 100% 3 U 2100% 50% 2Х 3 100% 50% 23 \mathbf{a} 100% 50% 23 е 100% 100% 2f 3 100% 50% 3 i $\mathbf{2}$ 100% 43% 7F 4 43% 57% 43% Q 74 43% 57% 43% 74 \mathbf{b} 43% 57% 67% \mathbf{G} 3 5100% 67% 5R 3 100% 67% 53 с 100% 40% Κ 65100% 60% 56 L 20% 80% 40% V 6 5100% 60% 6W 580% 20% 40% 6 5g 100% 60% 6 h 520% 80%

Mol	Chain	Length	Quality of chain	
			75%	1
7	Ν	4	75%	25%
			75%	
7	Y	4	75%	25%
			75%	
7	j	4	100%	

2 Entry composition (i)

There are 10 unique types of molecules in this entry. The entry contains 28977 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	А	1159	Total	С	Ν	0	S	0	0
-		1100	8952	5694	1476	1733	49	Ŭ	Ŭ
1	D	1150	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	1159	8952	5694	1476	1733	49	0	0	
1	1	1159 Total 8952	Total	С	Ν	Ο	\mathbf{S}	0	0
	U		8952	5694	1476	1733	49	U	U

• Molecule 1 is a protein called Spike glycoprotein.

There are 26	1 discrepanci	es between	the mod	elled and	reference	sequences:
I HOLO ALC 20	r unserepanei		i une mou	chica ana	renerence	sequences.

Chain	Residue	Modelled	Actual	Comment	Reference
А	-13	MET	-	initiating methionine	UNP K0BRG7
А	-12	GLY	-	expression tag	UNP K0BRG7
А	-11	ILE	-	expression tag	UNP K0BRG7
А	-10	LEU	-	expression tag	UNP K0BRG7
А	-9	PRO	-	expression tag	UNP K0BRG7
А	-8	SER	-	expression tag	UNP K0BRG7
А	-7	PRO	-	expression tag	UNP K0BRG7
А	-6	GLY	-	expression tag	UNP K0BRG7
А	-5	MET	-	expression tag	UNP K0BRG7
А	-4	PRO	-	expression tag	UNP K0BRG7
А	-3	ALA	-	expression tag	UNP K0BRG7
А	-2	LEU	-	expression tag	UNP K0BRG7
А	-1	LEU	-	expression tag	UNP K0BRG7
А	0	SER	-	expression tag	UNP K0BRG7
А	1	LEU	-	expression tag	UNP K0BRG7
А	2	VAL	-	expression tag	UNP K0BRG7
A	3	SER	-	expression tag	UNP K0BRG7
А	4	LEU	-	expression tag	UNP K0BRG7
A	5	LEU	-	expression tag	UNP K0BRG7
А	6	SER	-	expression tag	UNP K0BRG7
A	7	VAL	-	expression tag	UNP K0BRG7
A	8	LEU	-	expression tag	UNP K0BRG7
A	9	LEU	-	expression tag	UNP K0BRG7
A	10	MET	_	expression tag	UNP K0BRG7

Chain	Residue	Modelled	Actual	Comment	Reference
А	11	GLY	_	expression tag	UNP K0BRG7
А	12	CYS	-	expression tag	UNP K0BRG7
А	13	VAL	-	expression tag	UNP K0BRG7
А	14	ALA	-	expression tag	UNP K0BRG7
А	15	GLU	-	expression tag	UNP K0BRG7
А	16	THR	-	expression tag	UNP K0BRG7
А	17	GLY	-	expression tag	UNP K0BRG7
А	18	THR	-	expression tag	UNP K0BRG7
А	748	ALA	ARG	engineered mutation	UNP K0BRG7
А	751	GLY	ARG	engineered mutation	UNP K0BRG7
А	1060	PRO	VAL	engineered mutation	UNP K0BRG7
А	1061	PRO	LEU	engineered mutation	UNP K0BRG7
А	1295	GLY	-	expression tag	UNP K0BRG7
А	1296	SER	-	expression tag	UNP K0BRG7
А	1297	GLY	-	expression tag	UNP K0BRG7
А	1298	ARG	-	expression tag	UNP K0BRG7
А	1299	GLU	-	expression tag	UNP K0BRG7
А	1300	ASN	-	expression tag	UNP K0BRG7
А	1301	LEU	-	expression tag	UNP K0BRG7
А	1302	TYR	-	expression tag	UNP K0BRG7
А	1303	PHE	-	expression tag	UNP K0BRG7
А	1304	GLN	-	expression tag	UNP K0BRG7
А	1305	GLY	-	expression tag	UNP K0BRG7
А	1306	GLY	-	expression tag	UNP K0BRG7
А	1307	GLY	-	expression tag	UNP K0BRG7
А	1308	GLY	-	expression tag	UNP K0BRG7
А	1309	SER	-	expression tag	UNP K0BRG7
А	1310	GLY	-	expression tag	UNP K0BRG7
А	1311	TYR	-	expression tag	UNP K0BRG7
А	1312	ILE	-	expression tag	UNP K0BRG7
А	1313	PRO	-	expression tag	UNP K0BRG7
А	1314	GLU	-	expression tag	UNP K0BRG7
А	1315	ALA	-	expression tag	UNP K0BRG7
А	1316	PRO	-	expression tag	UNP K0BRG7
А	1317	ARG	-	expression tag	UNP K0BRG7
А	1318	ASP	-	expression tag	UNP K0BRG7
А	1319	GLY	-	expression tag	UNP K0BRG7
A	1320	GLN	-	expression tag	UNP K0BRG7
A	1321	ALA	-	expression tag	UNP K0BRG7
A	1322	TYR	-	expression tag	UNP K0BRG7
A	1323	VAL	-	expression tag	UNP K0BRG7
A	1324	ARG	-	expression tag	UNP K0BRG7

Chain	Residue	Modelled	Actual	Comment	Reference
А	1325	LYS	-	expression tag	UNP K0BRG7
А	1326	ASP	-	expression tag	UNP K0BRG7
А	1327	GLY	-	expression tag	UNP K0BRG7
А	1328	GLU	-	expression tag	UNP K0BRG7
А	1329	TRP	-	expression tag	UNP K0BRG7
А	1330	VAL	-	expression tag	UNP K0BRG7
А	1331	LEU	-	expression tag	UNP K0BRG7
А	1332	LEU	-	expression tag	UNP K0BRG7
А	1333	SER	-	expression tag	UNP K0BRG7
А	1334	THR	-	expression tag	UNP K0BRG7
А	1335	PHE	-	expression tag	UNP K0BRG7
А	1336	LEU	-	expression tag	UNP K0BRG7
А	1337	GLY	-	expression tag	UNP K0BRG7
А	1338	HIS	-	expression tag	UNP K0BRG7
А	1339	HIS	-	expression tag	UNP K0BRG7
А	1340	HIS	-	expression tag	UNP K0BRG7
А	1341	HIS	-	expression tag	UNP K0BRG7
А	1342	HIS	-	expression tag	UNP K0BRG7
А	1343	HIS	-	expression tag	UNP K0BRG7
А	1344	HIS	-	expression tag	UNP K0BRG7
А	1345	HIS	-	expression tag	UNP K0BRG7
В	-13	MET	-	initiating methionine	UNP K0BRG7
В	-12	GLY	-	expression tag	UNP K0BRG7
В	-11	ILE	-	expression tag	UNP K0BRG7
В	-10	LEU	-	expression tag	UNP K0BRG7
В	-9	PRO	-	expression tag	UNP K0BRG7
В	-8	SER	-	expression tag	UNP K0BRG7
В	-7	PRO	-	expression tag	UNP K0BRG7
В	-6	GLY	-	expression tag	UNP K0BRG7
В	-5	MET	-	expression tag	UNP K0BRG7
В	-4	PRO	-	expression tag	UNP K0BRG7
В	-3	ALA	-	expression tag	UNP K0BRG7
В	-2	LEU	-	expression tag	UNP K0BRG7
В	-1	LEU	-	expression tag	UNP K0BRG7
В	0	SER	-	expression tag	UNP K0BRG7
В	1	LEU	-	expression tag	UNP K0BRG7
В	2	VAL	-	expression tag	UNP K0BRG7
В	3	SER	-	expression tag	UNP K0BRG7
B	4	LEU	-	expression tag	UNP K0BRG7
В	5	LEU	-	expression tag	UNP K0BRG7
В	6	SER	-	expression tag	UNP K0BRG7
В	7	VAL	-	expression tag	UNP K0BRG7

Chain	Residue	Modelled	Actual	Comment	Reference
В	8	LEU	-	expression tag	UNP K0BRG7
В	9	LEU	-	expression tag	UNP K0BRG7
В	10	MET	-	expression tag	UNP K0BRG7
В	11	GLY	-	expression tag	UNP K0BRG7
В	12	CYS	-	expression tag	UNP K0BRG7
В	13	VAL	-	expression tag	UNP K0BRG7
В	14	ALA	-	expression tag	UNP K0BRG7
В	15	GLU	-	expression tag	UNP K0BRG7
В	16	THR	-	expression tag	UNP K0BRG7
В	17	GLY	-	expression tag	UNP K0BRG7
В	18	THR	-	expression tag	UNP K0BRG7
В	748	ALA	ARG	engineered mutation	UNP K0BRG7
В	751	GLY	ARG	engineered mutation	UNP K0BRG7
В	1060	PRO	VAL	engineered mutation	UNP K0BRG7
В	1061	PRO	LEU	engineered mutation	UNP K0BRG7
В	1295	GLY	-	expression tag	UNP K0BRG7
В	1296	SER	-	expression tag	UNP K0BRG7
В	1297	GLY	-	expression tag	UNP K0BRG7
В	1298	ARG	-	expression tag	UNP K0BRG7
В	1299	GLU	-	expression tag	UNP K0BRG7
В	1300	ASN	-	expression tag	UNP K0BRG7
В	1301	LEU	-	expression tag	UNP K0BRG7
В	1302	TYR	-	expression tag	UNP K0BRG7
В	1303	PHE	-	expression tag	UNP K0BRG7
В	1304	GLN	-	expression tag	UNP K0BRG7
В	1305	GLY	-	expression tag	UNP K0BRG7
В	1306	GLY	_	expression tag	UNP K0BRG7
В	1307	GLY	-	expression tag	UNP K0BRG7
В	1308	GLY	-	expression tag	UNP K0BRG7
В	1309	SER	-	expression tag	UNP K0BRG7
В	1310	GLY	-	expression tag	UNP K0BRG7
В	1311	TYR	-	expression tag	UNP K0BRG7
В	1312	ILE	_	expression tag	UNP K0BRG7
В	1313	PRO	_	expression tag	UNP K0BRG7
В	1314	GLU	_	expression tag	UNP K0BRG7
В	1315	ALA	_	expression tag	UNP K0BRG7
В	1316	PRO	-	expression tag	UNP K0BRG7
В	1317	ARG	-	expression tag	UNP K0BRG7
В	1318	ASP	-	expression tag	UNP K0BRG7
В	1319	GLY	-	expression tag	UNP K0BRG7
В	1320	GLN	-	expression tag	UNP K0BRG7
В	1321	ALA	-	expression tag	UNP K0BRG7

Chain	Residue	Modelled	Actual	Comment	Reference
В	1322	TYR	-	expression tag	UNP K0BRG7
В	1323	VAL	-	expression tag	UNP K0BRG7
В	1324	ARG	-	expression tag	UNP K0BRG7
В	1325	LYS	-	expression tag	UNP K0BRG7
В	1326	ASP	-	expression tag	UNP K0BRG7
В	1327	GLY	-	expression tag	UNP K0BRG7
В	1328	GLU	-	expression tag	UNP K0BRG7
В	1329	TRP	-	expression tag	UNP K0BRG7
В	1330	VAL	-	expression tag	UNP K0BRG7
В	1331	LEU	-	expression tag	UNP K0BRG7
В	1332	LEU	-	expression tag	UNP K0BRG7
В	1333	SER	-	expression tag	UNP K0BRG7
В	1334	THR	-	expression tag	UNP K0BRG7
В	1335	PHE	-	expression tag	UNP K0BRG7
В	1336	LEU	-	expression tag	UNP K0BRG7
В	1337	GLY	-	expression tag	UNP K0BRG7
В	1338	HIS	-	expression tag	UNP K0BRG7
В	1339	HIS	-	expression tag	UNP K0BRG7
В	1340	HIS	-	expression tag	UNP K0BRG7
В	1341	HIS	-	expression tag	UNP K0BRG7
В	1342	HIS	-	expression tag	UNP K0BRG7
В	1343	HIS	-	expression tag	UNP K0BRG7
В	1344	HIS	-	expression tag	UNP K0BRG7
В	1345	HIS	-	expression tag	UNP K0BRG7
С	-13	MET	-	initiating methionine	UNP K0BRG7
С	-12	GLY	-	expression tag	UNP K0BRG7
С	-11	ILE	-	expression tag	UNP K0BRG7
С	-10	LEU	-	expression tag	UNP K0BRG7
С	-9	PRO	-	expression tag	UNP K0BRG7
С	-8	SER	-	expression tag	UNP K0BRG7
С	-7	PRO	-	expression tag	UNP K0BRG7
С	-6	GLY	-	expression tag	UNP K0BRG7
С	-5	MET	-	expression tag	UNP K0BRG7
С	-4	PRO	-	expression tag	UNP K0BRG7
С	-3	ALA	-	expression tag	UNP K0BRG7
С	-2	LEU	-	expression tag	UNP K0BRG7
С	-1	LEU	-	expression tag	UNP K0BRG7
С	0	SER	-	expression tag	UNP K0BRG7
С	1	LEU	-	expression tag	UNP K0BRG7
С	2	VAL	-	expression tag	UNP K0BRG7
С	3	SER	-	expression tag	UNP K0BRG7
С	4	LEU	-	expression tag	UNP K0BRG7

Chain	Residue	Modelled	Actual	Comment	Reference
С	5	LEU	-	expression tag	UNP K0BRG7
С	6	SER	_	expression tag	UNP K0BRG7
С	7	VAL	_	expression tag	UNP K0BRG7
С	8	LEU	-	expression tag	UNP K0BRG7
С	9	LEU	_	expression tag	UNP K0BRG7
С	10	MET	_	expression tag	UNP K0BRG7
С	11	GLY	-	expression tag	UNP K0BRG7
С	12	CYS	-	expression tag	UNP K0BRG7
С	13	VAL	-	expression tag	UNP K0BRG7
С	14	ALA	-	expression tag	UNP K0BRG7
С	15	GLU	-	expression tag	UNP K0BRG7
С	16	THR	-	expression tag	UNP K0BRG7
С	17	GLY	-	expression tag	UNP K0BRG7
С	18	THR	-	expression tag	UNP K0BRG7
С	748	ALA	ARG	engineered mutation	UNP K0BRG7
С	751	GLY	ARG	engineered mutation	UNP K0BRG7
С	1060	PRO	VAL	engineered mutation	UNP K0BRG7
С	1061	PRO	LEU	engineered mutation	UNP K0BRG7
С	1295	GLY	-	expression tag	UNP K0BRG7
С	1296	SER	-	expression tag	UNP K0BRG7
С	1297	GLY	-	expression tag	UNP K0BRG7
С	1298	ARG	-	expression tag	UNP K0BRG7
С	1299	GLU	-	expression tag	UNP K0BRG7
С	1300	ASN	-	expression tag	UNP K0BRG7
С	1301	LEU	-	expression tag	UNP K0BRG7
С	1302	TYR	-	expression tag	UNP K0BRG7
С	1303	PHE	-	expression tag	UNP K0BRG7
С	1304	GLN	-	expression tag	UNP K0BRG7
С	1305	GLY	-	expression tag	UNP K0BRG7
С	1306	GLY	-	expression tag	UNP K0BRG7
С	1307	GLY	-	expression tag	UNP K0BRG7
С	1308	GLY	-	expression tag	UNP K0BRG7
С	1309	SER	-	expression tag	UNP K0BRG7
С	1310	GLY	-	expression tag	UNP K0BRG7
С	1311	TYR	-	expression tag	UNP K0BRG7
С	1312	ILE	-	expression tag	UNP K0BRG7
С	1313	PRO	-	expression tag	UNP K0BRG7
C	1314	GLU	-	expression tag	UNP K0BRG7
С	1315	ALA	-	expression tag	UNP K0BRG7
С	1316	PRO	-	expression tag	UNP K0BRG7
C	1317	ARG	-	expression tag	UNP K0BRG7
С	1318	ASP	-	expression tag	UNP K0BRG7

Chain	Residue	Modelled	Actual	Comment	Reference
С	1319	GLY	-	expression tag	UNP K0BRG7
С	1320	GLN	-	expression tag	UNP K0BRG7
С	1321	ALA	-	expression tag	UNP K0BRG7
С	1322	TYR	-	expression tag	UNP K0BRG7
С	1323	VAL	-	expression tag	UNP K0BRG7
С	1324	ARG	-	expression tag	UNP K0BRG7
С	1325	LYS	-	expression tag	UNP K0BRG7
C	1326	ASP	-	expression tag	UNP K0BRG7
С	1327	GLY	-	expression tag	UNP K0BRG7
С	1328	GLU	-	expression tag	UNP K0BRG7
С	1329	TRP	-	expression tag	UNP K0BRG7
С	1330	VAL	-	expression tag	UNP K0BRG7
С	1331	LEU	-	expression tag	UNP K0BRG7
С	1332	LEU	-	expression tag	UNP K0BRG7
С	1333	SER	-	expression tag	UNP K0BRG7
С	1334	THR	-	expression tag	UNP K0BRG7
С	1335	PHE	-	expression tag	UNP K0BRG7
С	1336	LEU	-	expression tag	UNP K0BRG7
С	1337	GLY	-	expression tag	UNP K0BRG7
С	1338	HIS	-	expression tag	UNP K0BRG7
С	1339	HIS	-	expression tag	UNP K0BRG7
С	1340	HIS	-	expression tag	UNP K0BRG7
С	1341	HIS	-	expression tag	UNP K0BRG7
С	1342	HIS	-	expression tag	UNP K0BRG7
С	1343	HIS	-	expression tag	UNP K0BRG7
С	1344	HIS	-	expression tag	UNP K0BRG7
С	1345	HIS	-	expression tag	UNP K0BRG7

Continued from previous page...

• Molecule 2 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-beta-D-mannopyranos e-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluco pyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace	
2	D	4	Total C N O	0	0	
		-	50 28 2 20	Ŭ	Ŭ	
2	н	4	Total C N O	0	Ο	
2	11	Ŧ	50 28 2 20	0	0	

Mol	Chain	Residues	Atoms	AltConf	Trace
2 O	0	4	Total C N O	0	0
	4	50 28 2 20	0	0	
9	2 5	4	Total C N O	0	0
2 5	4	50 28 2 20	0	0	
9	7	4	Total C N O	0	0
	4	50 28 2 20	0	0	
2 d	d	4	Total C N O	0	0
	u		50 28 2 20		U

Continued from previous page...

• Molecule 3 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				AltConf	Trace
2	F	9	Total	С	Ν	0	0	0
J	Ľ	2	28	16	2	10	0	0
3	T	9	Total	С	Ν	0	0	0
5	1	2	28	16	2	10	0	0
3	Т	2	Total	С	Ν	Ο	0	0
5	5		28	16	2	10	0	0
3	М	2	Total	С	Ν	Ο	0	0
0	101		28	16	2	10	0	0
3	Р	2	Total	С	Ν	Ο	0	0
0	1		28	16	2	10	0	
3	Т	2	Total	С	Ν	Ο	0	0
0	1		28	16	2	10	0	
3	IJ	2	Total	С	Ν	Ο	0	0
	0		28	16	2	10	0	0
3	x	2	Total	С	Ν	Ο	0	0
		_	28	16	2	10		
3	a	2	Total	С	Ν	Ο	0	0
	a	_	28	16	2	10		
3	e	2	Total	С	Ν	Ο	0	0
		-	28	16	2	10		
3	f	2	Total	С	Ν	0	0	0
	-	_	28	16	2	10		
3	i	2	Total	С	Ν	0	0	0
	-	_	28	16	2	10	<u> </u>	U

• Molecule 4 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran

ose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
4	F	7	Total C N O 83 46 2 35	0	0
4	Q	7	Total C N O 83 46 2 35	0	0
4	b	7	Total C N O 83 46 2 35	0	0

• Molecule 5 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
5	G	3	Total C N O 39 22 2 15	0	0
5	R	3	Total C N O 39 22 2 15	0	0
5	С	3	Total C N O 39 22 2 15	0	0

• Molecule 6 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyran ose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms			AltConf	Trace	
6	K	5	Total 61	C 34	N 2	O 25	0	0
6	L	5	Total 61	С 34	N 2	O 25	0	0

Mol	Chain	Residues	At	tom	\mathbf{s}	AltConf	Trace	
6	V	Б	Total	С	Ν	0	0	0
0 v	5	61 3	34	2	25	0	0	
6	W	5	Total	С	Ν	0	0	0
0 VV	vv		61 3	34	2	25		
6	ď	5	Total	С	Ν	0	0	0
0 g	g		61 3	34	2	25	0	
6 h	E.	Total	С	Ν	0	0	Ο	
	11	0	61 3	34	2	25	0	0

Continued from previous page...

• Molecule 7 is an oligosaccharide called N-acetyl-alpha-neuraminic acid-(2-3)-beta-D-galacto pyranose-(1-4)-[alpha-L-fucopyranose-(1-3)]2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
7	7 N	4	Total C N O	0	0
•		Т	56 31 2 23	0	Ū
7	v	4	Total C N O	0	0
1	1 1	4	56 31 2 23	0	0
7	;	4	Total C N O	0	0
1	J	4	56 31 2 23		

• Molecule 8 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	A		AltConf		
8	Δ	1	Total	С	Ν	0	0
0	A	1	14	8	1	5	0
8	Δ	1	Total	С	Ν	0	0
0	Л	1	14	8	1	5	0
8	А	1	Total	С	Ν	Ο	0
		1	14	8	1	5	Ŭ
8	А	1	Total	С	Ν	0	0
		_	14	8	1	5	
8	А	1	Total	C	N	Ö	0
			14	8	1 	$\frac{5}{2}$	
8	А	1	Total	C	N 1	U F	0
			14 Tetal	$\frac{8}{C}$	1 	0	
8	А	1		° °	1N	5	0
			14 Total	$\frac{\circ}{C}$	I N	$\frac{0}{0}$	
8	В	1	10tai 14	8	1N 1	5	0
			Total	$\frac{\circ}{C}$	I N	0	
8	В	1	10tai 14	8	1	5	0
			Total	$\frac{0}{C}$	N	$\frac{0}{0}$	
8	В	1	100a1	8	1	5	0
			Total	$\frac{0}{C}$	N	0	
8	В	1	14	8	1	5	0
			Total	C	N	0	
8	В	1	14	8	1	$\tilde{5}$	0
	D		Total	С	Ν	0	
8	В	1	14	8	1	5	0
0	р	1	Total	С	Ν	0	0
8	В	1	14	8	1	5	0
0	C	1	Total	С	Ν	0	0
0	C	1	14	8	1	5	0
0	С	1	Total	С	Ν	0	0
0	C	1	14	8	1	5	0
Q	С	1	Total	С	Ν	0	0
0	U	1	14	8	1	5	U
8	С	1	Total	C	N	0	0
		T	14	8	1	5	U
8	С	1	Total	С	Ν	Ο	0
		1	14	8	1	5	
8	\mathbf{C}	1	Total	С	Ν	Ο	0
		-	14	8	1	5	
8	С	1	Total	С	Ν	O	0
	Ŭ	*	14	8	1	5	Ĭ

 \bullet Molecule 9 is FOLIC ACID (three-letter code: FOL) (formula: $\rm C_{19}H_{19}N_7O_6)$ (labeled as

"Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
9	А	1	Total C N O 32 19 7 6	0
9	В	1	Total C N O 32 19 7 6	0
9	С	1	Total C N O 32 19 7 6	0

• Molecule 10 is water.

Mol	Chain	Residues	Atoms	AltConf
10	А	65	$\begin{array}{cc} \text{Total} & \text{O} \\ 65 & 65 \end{array}$	0
10	В	65	Total O 65 65	0
10	С	65	Total O 65 65	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Spike glycoprotein

7%

15%

50%

 $\bullet \ Molecule \ 2: \ alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ eta-D-glucopyranose \ (1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \ (1-4)-2-acetamido-2-deoxy-beta-D-glucopyra$

Chain D:

100%

 \bullet Molecule 2: alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

			75%	
Cł	nai	n H	: 100%	
-	•	•		
AG1	MA3	IAN4		
2 ×	Ц	2		

 $\bullet \ Molecule \ 2: \ alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ eta-D-glucopyranose \ (1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \ (1-4)-2-acetamido-2-deoxy-beta-D-glucopyra$

50% Chain O: 100%

 $\bullet \ Molecule \ 2: \ alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose$

	75%	
Chain S:	100%	
IAG1 IAG2 MA3 IAN4		
• Molecul	e 2. alpha-D-mannopyranose-(1-3)-beta-D-mannopyran	ose-(1-4)-2-acetamido-2-deoxy-b
eta-D-glu	copyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyra	nose

50% Chain Z: 100%

 $\bullet \ Molecule \ 2: \ alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ eta-D-glucopyranose \ (1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \ (1-4)-2-acetamido-2-deoxy-beta-D-glucopyra$

	75%	
Chain d:	100%	
NAG NAG BMA3 MAN4		

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	50%
Chain E:	100%
•	
IAG <mark>1</mark> IAG2	

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

	50%		
Chain I:		100%	
•			

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	100%	
Chain J:	100%	
MAG2		
• Molecule 3: 2-aceta opyranose	amido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deo	xy-beta-D-gluc

	50%	
Chain M:	10	0%
•		
VAG1		
N. N.		

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	50%	_	
Chain P:		100%	
1AG1			
• Molecule 3 opyranose	: 2-acetamido-2-deoxy-beta	a-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
	50%		
Chain T:		100%	
NAG1 NAG2			
• Molecule 3 opyranose	: 2-acetamido-2-deoxy-beta	a-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain II:		100%	l
Ollain 0.		100%	
NAG1			
• Molecule 3 opyranose	: 2-acetamido-2-deoxy-beta	a-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
	50%	_	I
Chain A:		100%	
NAG1 NAG2			
• Molecule 3 opyranose	: 2-acetamido-2-deoxy-beta	a-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
	50%		
Chain a:		100%	
NAG1 NAG2			
• Molecule 3 opyranose	: 2-acetamido-2-deoxy-beta	a-D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
	50%		

Chain e:	50%	0%
NAG1 NAG2		

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-glucopyranose-(1-4)-2-acetamido-2-glucopyranose-(1-4)-2-acetamido-2-glucopyranose-(1-4)-2-acetamido-2-glucopyranose-(1-4)-2-acetamido-2-glucopyranose-(1-4)-2-acetamido-2-glucopyranose-(1-4)-2-acetamido-2-glucopyranose-(1-4)-2-acetamido-2-glucopyranose-(1-4)-2-acetamido-2-glucopyranose-(1-4)-2-acetamido-2-glucopyranose-(1-4)-2-acetamido-2-glucopyranose-(1-4)-2-acetamido-2-glucopyranose-(1-4)-2-acetamido-2-glucopyranose-(1-4)-2-$

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b$

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ \end{array}$

• Molecule 5: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	67%	
Chain G:	100%	
NAG1 NAG2 BMA3		
• Molecul etamido-2	e 5: beta-D-mannopyranose-(1-4)-2-acetam -deoxy-beta-D-glucopyranose	ido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a

	67%	
Chain R:	100%	
* *		
NAG1 NAG2 BMA3		

• Molecule 5: beta-D-mannopyranose-(1-4)-2-acetamido-2-de
oxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-de
oxy-beta-D-glucopyranose

	67%	
Chain c:	100%	
NAG NAG BMA		

 \bullet Molecule 6: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

40% Chain K: 100%

 \bullet Molecule 6: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

		60%		
Chain L:	20%		80%	

AG1 AG2 MA3 AN4 AN5 AN5				

 • Molecule 6: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyrano
 se-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

40% Chain V: 100%

 • Molecule 6: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyrano
 se-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

		60%
Chain W:	20%	80%

G1 G2 N4 N5		
NA BM MA MA		

 \bullet Molecule 6: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

 \bullet Molecule 6: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

						60	1%					
Ch	ai	n	h:	20)%				80%	6 0		
	•	•	•									
AG1 AG2	MA3	AN4	AN5									
NN	B	M	M									

 $\bullet \ Molecule \ 7: \ N-acetyl-alpha-neuraminic \ acid-(2-3)-beta-D-galactopyranose-(1-4)-[alpha-L-fucopyranose-(1-3)] 2-acetamido-2-deoxy-beta-D-glucopyranose$

	75%	
Chain N:	75%	25%
** *		
NAG1 GAL2 SIA3 FUC4		

 $\bullet \ Molecule \ 7: \ N-acetyl-alpha-neuraminic \ acid-(2-3)-beta-D-galactopyranose-(1-4)-[alpha-L-fucopy ranose-(1-3)] 2-acetamido-2-deoxy-beta-D-glucopyranose$

 \bullet Molecule 7: N-acetyl-alpha-neuraminic acid-(2-3)-beta-D-galactopyranose-(1-4)-[alpha-L-fucopy ranose-(1-3)]2-acetamido-2-deoxy-beta-D-glucopyranose

75% Chain j: 100%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	28425	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	70	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	7.420	Depositor
Minimum map value	-5.156	Depositor
Average map value	0.003	Depositor
Map value standard deviation	0.116	Depositor
Recommended contour level	0.9	Depositor
Map size (Å)	419.99997, 419.99997, 419.99997	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles ($^{\circ}$)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.05, 1.05, 1.05	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FOL, FUC, MAN, NAG, SIA, GAL, BMA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	B	ond lengths	E	Bond angles
1VIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	1.29	40/9163~(0.4%)	1.03	49/12471~(0.4%)
1	В	1.29	41/9163~(0.4%)	1.03	49/12471~(0.4%)
1	С	1.29	41/9163~(0.4%)	1.03	47/12471~(0.4%)
All	All	1.29	122/27489~(0.4%)	1.03	145/37413~(0.4%)

Mol	Chain	Res	Type	Atoms		Observed(A)	Ideal(A)
1	С	383	CYS	C-O	-19.11	0.87	1.23
1	В	383	CYS	C-O	-19.10	0.87	1.23
1	А	383	CYS	C-O	-19.08	0.87	1.23
1	В	383	CYS	N-CA	10.29	1.67	1.46
1	С	383	CYS	N-CA	10.29	1.67	1.46
1	А	383	CYS	N-CA	10.28	1.67	1.46
1	С	383	CYS	C-N	9.65	1.56	1.34
1	В	383	CYS	C-N	9.64	1.56	1.34
1	А	383	CYS	C-N	9.62	1.56	1.34
1	А	870	ASN	C-O	9.27	1.41	1.23
1	В	870	ASN	C-O	9.26	1.41	1.23
1	С	870	ASN	C-O	9.26	1.41	1.23
1	С	292	TYR	CB-CG	-7.59	1.40	1.51
1	В	292	TYR	CB-CG	-7.59	1.40	1.51
1	А	292	TYR	CB-CG	-7.57	1.40	1.51
1	С	1127	VAL	CB-CG2	-7.16	1.37	1.52
1	В	1127	VAL	CB-CG2	-7.16	1.37	1.52
1	А	1127	VAL	CB-CG2	-7.14	1.37	1.52
1	В	774	ASN	C-O	6.92	1.36	1.23
1	А	774	ASN	C-O	6.90	1.36	1.23
1	С	774	ASN	C-O	6.89	1.36	1.23
1	В	101	PHE	CB-CG	-6.82	1.39	1.51
1	A	58	TYR	CB-CG	-6.81	1.41	1.51

All (122) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
1	А	101	PHE	CB-CG	-6.80	1.39	1.51
1	В	58	TYR	CB-CG	-6.79	1.41	1.51
1	С	58	TYR	CB-CG	-6.79	1.41	1.51
1	С	293	TYR	CD1-CE1	-6.78	1.29	1.39
1	С	101	PHE	CB-CG	-6.78	1.39	1.51
1	А	293	TYR	CD1-CE1	-6.78	1.29	1.39
1	В	293	TYR	CD1-CE1	-6.76	1.29	1.39
1	А	777	TYR	CB-CG	-6.75	1.41	1.51
1	В	777	TYR	CB-CG	-6.74	1.41	1.51
1	С	777	TYR	CB-CG	-6.74	1.41	1.51
1	В	681	HIS	CB-CG	-6.71	1.38	1.50
1	А	681	HIS	CB-CG	-6.70	1.38	1.50
1	С	681	HIS	CB-CG	-6.68	1.38	1.50
1	В	655	VAL	CB-CG1	6.58	1.66	1.52
1	С	166	ASN	C-O	-6.55	1.10	1.23
1	А	655	VAL	CB-CG1	6.55	1.66	1.52
1	В	166	ASN	C-O	-6.54	1.10	1.23
1	А	166	ASN	C-O	-6.53	1.10	1.23
1	С	655	VAL	CB-CG1	6.51	1.66	1.52
1	А	1106	CYS	C-O	-6.40	1.11	1.23
1	В	1106	CYS	C-O	-6.40	1.11	1.23
1	С	1106	CYS	C-O	-6.39	1.11	1.23
1	А	1192	TYR	CB-CG	-6.20	1.42	1.51
1	С	1192	TYR	CB-CG	-6.20	1.42	1.51
1	А	383	CYS	CA-CB	6.19	1.67	1.53
1	В	293	TYR	CG-CD1	-6.18	1.31	1.39
1	В	376	GLU	CD-OE2	-6.18	1.18	1.25
1	В	1192	TYR	CB-CG	-6.18	1.42	1.51
1	A	293	TYR	CG-CD1	-6.17	1.31	1.39
1	В	383	CYS	CA-CB	6.16	1.67	1.53
1	С	383	CYS	CA-CB	6.16	1.67	1.53
1	С	293	TYR	CG-CD1	-6.16	1.31	1.39
1	A	376	GLU	CD-OE2	-6.12	1.19	1.25
1	С	376	GLU	CD-OE2	-6.11	1.19	1.25
1	В	1019	PHE	CB-CG	-6.06	1.41	1.51
1	С	1191	PHE	CB-CG	-6.05	1.41	1.51
1	A	1019	PHE	CB-CG	-6.04	1.41	1.51
1	C	1019	PHE	CB-CG	-6.03	1.41	1.51
1	A	1191	PHE	CB-CG	-6.03	1.41	1.51
1	В	1106	CYS	N-CA	-6.02	1.34	1.46
1	A	1106	CYS	N-CA	-6.01	1.34	1.46
1	В	1191	PHE	CB-CG	-6.01	1.41	1.51

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	С	1106	CYS	N-CA	-5.99	1.34	1.46
1	С	713	CYS	CB-SG	-5.89	1.72	1.81
1	В	713	CYS	CB-SG	-5.88	1.72	1.81
1	А	661	VAL	CB-CG2	-5.86	1.40	1.52
1	А	713	CYS	CB-SG	-5.86	1.72	1.81
1	В	661	VAL	CB-CG2	-5.86	1.40	1.52
1	С	661	VAL	CB-CG2	-5.86	1.40	1.52
1	В	185	CYS	CB-SG	-5.81	1.72	1.81
1	А	185	CYS	CB-SG	-5.80	1.72	1.81
1	А	655	VAL	CB-CG2	-5.75	1.40	1.52
1	В	655	VAL	CB-CG2	-5.75	1.40	1.52
1	С	185	CYS	CB-SG	-5.74	1.72	1.81
1	С	655	VAL	CB-CG2	-5.73	1.40	1.52
1	С	823	GLU	CD-OE1	-5.59	1.19	1.25
1	А	823	GLU	CD-OE1	-5.58	1.19	1.25
1	В	823	GLU	CD-OE1	-5.56	1.19	1.25
1	В	1137	MET	CB-CG	-5.48	1.33	1.51
1	А	1137	MET	CB-CG	-5.46	1.33	1.51
1	С	1137	MET	CB-CG	-5.45	1.33	1.51
1	А	367	GLU	CD-OE2	-5.37	1.19	1.25
1	С	1086	LEU	CB-CG	5.37	1.68	1.52
1	А	1086	LEU	CB-CG	5.36	1.68	1.52
1	В	1086	LEU	CB-CG	5.36	1.68	1.52
1	С	367	GLU	CD-OE2	-5.35	1.19	1.25
1	А	736	CYS	CB-SG	-5.34	1.73	1.81
1	С	736	CYS	CB-SG	-5.34	1.73	1.81
1	В	367	GLU	CD-OE2	-5.33	1.19	1.25
1	В	736	CYS	CB-SG	-5.33	1.73	1.81
1	А	1148	GLU	CD-OE1	-5.32	1.19	1.25
1	С	559	SER	CB-OG	-5.30	1.35	1.42
1	В	1148	GLU	CD-OE1	-5.29	1.19	1.25
1	С	1148	GLU	CD-OE1	-5.29	1.19	1.25
1	А	559	SER	CB-OG	-5.28	1.35	1.42
1	В	559	SER	CB-OG	-5.26	1.35	1.42
1	А	50	VAL	CB-CG1	-5.22	1.41	1.52
1	В	58	TYR	CD2-CE2	-5.21	1.31	1.39
1	А	870	ASN	C-N	-5.21	1.22	1.34
1	A	818	GLU	CD-OE1	-5.21	1.20	1.25
1	С	50	VAL	CB-CG1	-5.21	1.42	1.52
1	В	50	VAL	CB-CG1	-5.21	1.42	1.52
1	В	266	PHE	CB-CG	-5.21	1.42	1.51
1	С	870	ASN	C-N	-5.21	1.22	1.34

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	А	266	PHE	CB-CG	-5.20	1.42	1.51
1	В	818	GLU	CD-OE1	-5.20	1.20	1.25
1	В	870	ASN	C-N	-5.20	1.22	1.34
1	С	266	PHE	CB-CG	-5.19	1.42	1.51
1	А	58	TYR	CD2-CE2	-5.19	1.31	1.39
1	А	641	TYR	CB-CG	-5.18	1.43	1.51
1	С	641	TYR	CB-CG	-5.18	1.43	1.51
1	В	641	TYR	CB-CG	-5.18	1.43	1.51
1	С	818	GLU	CD-OE1	-5.16	1.20	1.25
1	С	58	TYR	CD2-CE2	-5.16	1.31	1.39
1	В	891	GLU	CB-CG	-5.07	1.42	1.52
1	С	891	GLU	CB-CG	-5.06	1.42	1.52
1	А	891	GLU	CB-CG	-5.06	1.42	1.52
1	В	85	TYR	CB-CG	-5.03	1.44	1.51
1	C	85	TYR	CB-CG	-5.01	1.44	1.51

All (145) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	199	ASN	N-CA-C	14.31	149.65	111.00
1	А	199	ASN	N-CA-C	14.31	149.63	111.00
1	С	199	ASN	N-CA-C	14.29	149.59	111.00
1	В	655	VAL	CG1-CB-CG2	12.20	130.42	110.90
1	С	655	VAL	CG1-CB-CG2	12.19	130.40	110.90
1	А	655	VAL	CG1-CB-CG2	12.18	130.39	110.90
1	С	383	CYS	CA-C-O	10.58	142.33	120.10
1	В	383	CYS	CA-C-O	10.57	142.30	120.10
1	А	383	CYS	CA-C-O	10.56	142.27	120.10
1	С	383	CYS	CA-C-N	-10.33	94.47	117.20
1	А	383	CYS	CA-C-N	-10.33	94.48	117.20
1	В	383	CYS	CA-C-N	-10.32	94.49	117.20
1	С	200	SER	N-CA-CB	-10.25	95.13	110.50
1	А	200	SER	N-CA-CB	-10.25	95.13	110.50
1	В	200	SER	N-CA-CB	-10.23	95.15	110.50
1	А	673	LEU	CB-CG-CD2	9.88	127.80	111.00
1	В	673	LEU	CB-CG-CD2	9.88	127.80	111.00
1	С	673	LEU	CB-CG-CD2	9.87	127.79	111.00
1	А	344	LEU	CB-CG-CD2	8.98	126.27	111.00
1	В	344	LEU	CB-CG-CD2	8.98	126.26	111.00
1	С	344	LEU	CB-CG-CD2	8.97	126.24	111.00
1	В	1086	LEU	CB-CG-CD2	8.65	125.70	111.00
1	С	1086	LEU	CB-CG-CD2	8.64	125.69	111.00

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	1086	LEU	CB-CG-CD2	8.64	125.68	111.00
1	В	383	CYS	N-CA-CB	-8.42	95.44	110.60
1	А	383	CYS	N-CA-CB	-8.41	95.46	110.60
1	С	383	CYS	N-CA-CB	-8.40	95.47	110.60
1	В	1074	ARG	NE-CZ-NH2	-8.31	116.15	120.30
1	А	1074	ARG	NE-CZ-NH2	-8.30	116.15	120.30
1	С	1074	ARG	NE-CZ-NH2	-8.26	116.17	120.30
1	В	655	VAL	CA-CB-CG1	-7.73	99.31	110.90
1	А	655	VAL	CA-CB-CG1	-7.72	99.31	110.90
1	С	655	VAL	CA-CB-CG1	-7.72	99.33	110.90
1	С	382	GLU	C-N-CA	-7.51	102.91	121.70
1	В	382	GLU	C-N-CA	-7.51	102.92	121.70
1	А	382	GLU	C-N-CA	-7.51	102.92	121.70
1	С	577	TYR	CB-CG-CD2	-7.40	116.56	121.00
1	С	1222	LEU	CD1-CG-CD2	7.39	132.66	110.50
1	А	577	TYR	CB-CG-CD2	-7.38	116.57	121.00
1	В	577	TYR	CB-CG-CD2	-7.38	116.57	121.00
1	А	1222	LEU	CD1-CG-CD2	7.38	132.64	110.50
1	В	1222	LEU	CD1-CG-CD2	7.38	132.63	110.50
1	А	1135	TYR	CB-CG-CD1	-7.36	116.58	121.00
1	С	1135	TYR	CB-CG-CD1	-7.32	116.61	121.00
1	В	1135	TYR	CB-CG-CD1	-7.31	116.61	121.00
1	В	481	LEU	CB-CG-CD1	-7.12	98.89	111.00
1	С	481	LEU	CB-CG-CD1	-7.12	98.89	111.00
1	А	481	LEU	CB-CG-CD1	-7.12	98.90	111.00
1	В	1218	LEU	CD1-CG-CD2	6.90	131.19	110.50
1	А	1218	LEU	CD1-CG-CD2	6.89	131.17	110.50
1	С	1218	LEU	CD1-CG-CD2	6.88	131.14	110.50
1	С	401	ARG	NE-CZ-NH1	6.87	123.74	120.30
1	С	715	LEU	CD1-CG-CD2	6.83	131.00	110.50
1	А	401	ARG	NE-CZ-NH1	6.83	123.71	120.30
1	А	715	LEU	CD1-CG-CD2	6.83	130.98	110.50
1	В	1218	LEU	CB-CG-CD1	-6.83	99.40	111.00
1	А	1218	LEU	CB-CG-CD1	-6.82	99.40	111.00
1	C	1218	LEU	CB-CG-CD1	-6.82	99.40	111.00
1	А	1106	CYS	CA-C-O	6.82	134.42	120.10
1	С	1106	CYS	CA-C-O	6.82	134.41	120.10
1	В	1106	CYS	CA-C-O	6.81	134.41	120.10
1	В	715	LEU	CD1-CG-CD2	6.81	130.93	110.50
1	В	401	ARG	NE-CZ-NH1	6.80	123.70	120.30
1	С	1036	LEU	CD1-CG-CD2	6.73	130.69	110.50
1	А	1036	LEU	CD1-CG-CD2	6.72	130.66	110.50

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	1036	LEU	CD1-CG-CD2	6.71	130.63	110.50
1	С	307	ARG	NE-CZ-NH2	-6.64	116.98	120.30
1	В	307	ARG	NE-CZ-NH2	-6.63	116.98	120.30
1	А	307	ARG	NE-CZ-NH2	-6.62	116.99	120.30
1	В	199	ASN	CB-CA-C	-6.48	97.45	110.40
1	А	199	ASN	CB-CA-C	-6.46	97.49	110.40
1	С	199	ASN	CB-CA-C	-6.44	97.52	110.40
1	А	234	LEU	CD1-CG-CD2	6.32	129.44	110.50
1	В	234	LEU	CD1-CG-CD2	6.31	129.44	110.50
1	А	46	ARG	NE-CZ-NH2	-6.31	117.15	120.30
1	С	234	LEU	CD1-CG-CD2	6.30	129.41	110.50
1	В	46	ARG	NE-CZ-NH2	-6.30	117.15	120.30
1	А	119	ARG	NE-CZ-NH1	6.29	123.44	120.30
1	С	383	CYS	N-CA-C	-6.28	94.04	111.00
1	С	46	ARG	NE-CZ-NH2	-6.28	117.16	120.30
1	В	383	CYS	N-CA-C	-6.28	94.06	111.00
1	А	383	CYS	N-CA-C	-6.27	94.06	111.00
1	С	119	ARG	NE-CZ-NH1	6.26	123.43	120.30
1	В	119	ARG	NE-CZ-NH1	6.22	123.41	120.30
1	С	511	ARG	NE-CZ-NH2	-6.22	117.19	120.30
1	С	887	ARG	NE-CZ-NH2	-6.21	117.19	120.30
1	В	511	ARG	NE-CZ-NH2	-6.19	117.20	120.30
1	А	511	ARG	NE-CZ-NH2	-6.18	117.21	120.30
1	А	887	ARG	NE-CZ-NH2	-6.18	117.21	120.30
1	С	780	LEU	CD1-CG-CD2	6.15	128.95	110.50
1	А	780	LEU	CD1-CG-CD2	6.14	128.93	110.50
1	В	780	LEU	CD1-CG-CD2	6.13	128.90	110.50
1	В	887	ARG	NE-CZ-NH2	-6.13	117.24	120.30
1	С	910	ASP	CB-CG-OD1	-6.04	112.87	118.30
1	В	481	LEU	CD1-CG-CD2	6.03	128.58	110.50
1	С	481	LEU	CD1-CG-CD2	6.03	128.58	110.50
1	А	481	LEU	CD1-CG-CD2	6.02	128.57	110.50
1	В	910	ASP	CB-CG-OD1	-6.02	112.88	118.30
1	A	910	ASP	CB-CG-OD1	-6.00	112.90	118.30
1	А	58	TYR	CB-CG-CD2	-5.84	117.50	121.00
1	С	58	TYR	CB-CG-CD2	-5.83	117.50	121.00
1	В	928	TYR	CB-CG-CD2	-5.81	117.52	121.00
1	В	58	TYR	CB-CG-CD2	-5.80	117.52	121.00
1	А	928	TYR	CB-CG-CD2	-5.79	117.53	121.00
1	С	928	TYR	CB-CG-CD2	-5.77	117.54	121.00
1	А	383	CYS	CB-CA-C	-5.65	99.11	110.40
1	С	540	TYR	CB-CG-CD1	-5.64	117.61	121.00

α \cdot \cdot \cdot	C		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	383	CYS	CB-CA-C	-5.64	99.13	110.40
1	С	383	CYS	CB-CA-C	-5.63	99.13	110.40
1	В	540	TYR	CB-CG-CD1	-5.62	117.63	121.00
1	А	540	TYR	CB-CG-CD1	-5.62	117.63	121.00
1	С	1088	ARG	NE-CZ-NH1	5.62	123.11	120.30
1	С	323	PHE	CB-CG-CD1	5.57	124.70	120.80
1	С	351	TYR	CB-CG-CD1	-5.54	117.67	121.00
1	А	1088	ARG	NE-CZ-NH1	5.53	123.07	120.30
1	В	351	TYR	CB-CG-CD1	-5.53	117.68	121.00
1	А	323	PHE	CB-CG-CD1	5.50	124.65	120.80
1	С	1106	CYS	CA-C-N	-5.49	105.12	117.20
1	А	351	TYR	CB-CG-CD1	-5.49	117.71	121.00
1	А	1106	CYS	CA-C-N	-5.48	105.14	117.20
1	В	1106	CYS	CA-C-N	-5.47	105.16	117.20
1	В	323	PHE	CB-CG-CD1	5.47	124.63	120.80
1	В	1088	ARG	NE-CZ-NH1	5.47	123.03	120.30
1	С	293	TYR	CD1-CE1-CZ	5.45	124.71	119.80
1	В	293	TYR	CD1-CE1-CZ	5.45	124.71	119.80
1	А	293	TYR	CD1-CE1-CZ	5.45	124.70	119.80
1	В	423	PHE	CB-CG-CD2	5.39	124.57	120.80
1	А	423	PHE	CB-CG-CD2	5.39	124.57	120.80
1	А	910	ASP	CB-CG-OD2	5.36	123.12	118.30
1	С	423	PHE	CB-CG-CD2	5.36	124.55	120.80
1	С	910	ASP	CB-CG-OD2	5.35	123.11	118.30
1	В	910	ASP	CB-CG-OD2	5.32	123.09	118.30
1	С	323	PHE	CB-CG-CD2	-5.24	117.13	120.80
1	А	323	PHE	CB-CG-CD2	-5.22	117.14	120.80
1	В	323	PHE	CB-CG-CD2	-5.15	117.19	120.80
1	А	316	TYR	CB-CG-CD1	-5.15	117.91	121.00
1	С	316	TYR	CB-CG-CD1	-5.09	117.94	121.00
1	В	316	TYR	CB-CG-CD1	-5.08	117.95	121.00
1	В	509	ASP	CB-CG-OD1	-5.06	113.74	118.30
1	В	448	TYR	CB-CG-CD1	-5.04	117.97	121.00
1	В	438	TYR	CB-CG-CD2	-5.02	117.99	121.00
1	А	509	ASP	CB-CG-OD1	-5.01	113.79	118.30
1	А	654	CYS	N-CA-C	-5.00	97.49	111.00
1	С	438	TYR	CB-CG-CD2	-5.00	118.00	121.00
1	A	438	TYR	CB-CG-CD2	-5.00	118.00	121.00

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	8952	0	8631	37	0
1	В	8952	0	8631	39	0
1	С	8952	0	8631	39	0
2	D	50	0	43	0	0
2	Н	50	0	43	0	0
2	0	50	0	43	0	0
2	S	50	0	43	0	0
2	Ζ	50	0	43	0	0
2	d	50	0	43	0	0
3	Е	28	0	25	0	0
3	Ι	28	0	25	0	0
3	J	28	0	25	0	0
3	М	28	0	25	0	0
3	Р	28	0	25	0	0
3	Т	28	0	25	0	0
3	U	28	0	25	0	0
3	Х	28	0	25	0	0
3	a	28	0	25	0	0
3	е	28	0	25	0	0
3	f	28	0	25	0	0
3	i	28	0	25	0	0
4	F	83	0	70	0	0
4	Q	83	0	70	0	0
4	b	83	0	70	0	0
5	G	39	0	34	0	0
5	R	39	0	34	0	0
5	с	39	0	34	0	0
6	K	61	0	52	0	0
6	L	61	0	52	0	0
6	V	61	0	52	0	0
6	W	61	0	52	0	0
6	g	61	0	52	0	0
6	h	61	0	52	0	0
7	N	56	0	49	1	0
7	Y	56	0	49	1	0
7	j	56	0	49	0	0
8	A	98	0	91	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
8	В	98	0	91	0	0
8	С	98	0	91	0	0
9	А	32	0	17	1	0
9	В	32	0	17	1	0
9	С	32	0	17	1	0
10	А	65	0	0	0	0
10	В	65	0	0	0	0
10	С	65	0	0	0	0
All	All	28977	0	27546	106	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (106) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:673:LEU:HD13	1:C:714:VAL:HG22	1.57	0.87
1:B:673:LEU:HD13	1:B:714:VAL:HG22	1.57	0.86
1:A:673:LEU:HD13	1:A:714:VAL:HG22	1.57	0.85
1:B:107:GLN:HE21	1:B:160:LYS:HB3	1.42	0.84
1:B:673:LEU:HD21	1:B:711:VAL:HG23	1.59	0.83
1:A:673:LEU:HD21	1:A:711:VAL:HG23	1.59	0.83
1:C:673:LEU:HD21	1:C:711:VAL:HG23	1.59	0.82
1:A:107:GLN:HE21	1:A:160:LYS:HB3	1.42	0.81
1:C:107:GLN:HE21	1:C:160:LYS:HB3	1.42	0.81
1:C:773:LEU:HD21	1:C:779:LYS:HE2	1.68	0.75
1:B:773:LEU:HD21	1:B:779:LYS:HE2	1.68	0.74
1:A:773:LEU:HD21	1:A:779:LYS:HE2	1.68	0.74
1:B:673:LEU:HD13	1:B:714:VAL:CG2	2.21	0.71
1:C:673:LEU:HD13	1:C:714:VAL:CG2	2.21	0.71
1:A:107:GLN:NE2	1:A:160:LYS:HB3	2.06	0.71
1:A:673:LEU:HD13	1:A:714:VAL:CG2	2.21	0.70
1:C:107:GLN:NE2	1:C:160:LYS:HB3	2.06	0.70
1:B:107:GLN:NE2	1:B:160:LYS:HB3	2.06	0.69
1:B:673:LEU:HD21	1:B:711:VAL:CG2	2.28	0.64
1:C:673:LEU:HD21	1:C:711:VAL:CG2	2.28	0.63
1:A:673:LEU:HD21	1:A:711:VAL:CG2	2.28	0.63
1:A:386:SER:OG	1:A:387:PRO:HD3	2.00	0.61
1:C:386:SER:OG	1:C:387:PRO:HD3	2.00	0.61
1:B:386:SER:OG	1:B:387:PRO:HD3	2.00	0.60
1:A:107:GLN:NE2	1:A:160:LYS:HD3	2.17	0.60

	A L	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:B:107:GLN:NE2	1:B:160:LYS:HD3	2.17	0.60	
1:C:107:GLN:NE2	1:C:160:LYS:HD3	2.17	0.59	
1:B:36:GLN:NE2	7:Y:3:SIA:H111	2.17	0.59	
1:A:36:GLN:NE2	7:N:3:SIA:H111	2.17	0.58	
1:A:107:GLN:HE22	1:A:160:LYS:HD3	1.68	0.58	
1:C:107:GLN:HE22	1:C:160:LYS:HD3	1.68	0.58	
1:C:343:ASP:N	1:C:343:ASP:OD1	2.35	0.57	
1:C:773:LEU:CD2	1:C:779:LYS:HE2	2.35	0.57	
1:A:773:LEU:CD2	1:A:779:LYS:HE2	2.35	0.57	
1:B:107:GLN:HE22	1:B:160:LYS:HD3	1.68	0.57	
1:A:343:ASP:OD1	1:A:343:ASP:N	2.35	0.56	
1:A:830:LYS:HD2	1:C:1035:LYS:HE3	1.88	0.56	
1:A:1035:LYS:HE3	1:B:830:LYS:HD2	1.87	0.56	
1:B:773:LEU:CD2	1:B:779:LYS:HE2	2.35	0.56	
1:B:343:ASP:N	1:B:343:ASP:OD1	2.35	0.56	
1:B:1035:LYS:HE3	1:C:830:LYS:HD2	1.87	0.56	
1:A:798:THR:HA	1:A:842:GLN:OE1	2.07	0.54	
1:B:798:THR:HA	1:B:842:GLN:OE1	2.07	0.53	
1:B:470:LYS:CE	1:B:473:PHE:CZ	2.92	0.53	
1:C:798:THR:HA	1:C:842:GLN:OE1	2.07	0.53	
1:A:129:THR:H	9:A:1444:FOL:HN1	1.58	0.52	
1:B:129:THR:H	9:B:1444:FOL:HN1	1.58	0.52	
1:C:129:THR:H	9:C:1444:FOL:HN1	1.58	0.52	
1:A:470:LYS:CE	1:A:473:PHE:CZ	2.92	0.52	
1:C:470:LYS:CE	1:C:473:PHE:CZ	2.92	0.52	
1:A:470:LYS:HE2	1:A:473:PHE:CZ	2.45	0.52	
1:B:470:LYS:HE2	1:B:473:PHE:CZ	2.45	0.51	
1:C:470:LYS:HE2	1:C:473:PHE:CZ	2.45	0.51	
1:A:1035:LYS:HE3	1:B:830:LYS:CD	2.41	0.51	
1:A:830:LYS:CD	1:C:1035:LYS:HE3	2.41	0.51	
1:B:1035:LYS:HE3	1:C:830:LYS:CD	2.41	0.51	
1:A:107:GLN:HG2	1:A:161:MET:O	2.11	0.50	
1:C:771:ASP:O	1:C:779:LYS:HD2	2.11	0.50	
1:A:771:ASP:O	1:A:779:LYS:HD2	2.11	0.50	
1:B:107:GLN:HG2	1:B:161:MET:O	2.11	0.50	
1:B:771:ASP:O	1:B:779:LYS:HD2	2.11	0.50	
1:C:107:GLN:HG2	1:C:161:MET:O	2.11	0.49	
1:C:386:SER:HG	1:C:387:PRO:HD3	1.78	0.49	
1:A:592:ASN:OD1	1:A:592:ASN:N	2.45	0.48	
1:B:592:ASN:OD1	1:B:592:ASN:N	2.45	0.48	
1:B:961:THR:OG1	1:B:962:ALA:N	2.46	0.48	

		Interatomic	Clash		
Atom-1	Atom-2	distance $(Å)$	overlap (Å)		
1:B:780:LEU:HG	1:B:782:ILE:HB	1.95	0.48		
1:A:780:LEU:HG	1:A:782:ILE:HB	1.95	0.48		
1:C:592:ASN:OD1	1:C:592:ASN:N	2.45	0.47		
1:A:88:SER:OG	1:A:89:ALA:N	2.48	0.47		
1:C:780:LEU:HG	1:C:782:ILE:HB	1.95	0.47		
1:A:961:THR:OG1	1:A:962:ALA:N	2.46	0.47		
1:C:975:SER:OG	1:C:979:ARG:NH1	2.48	0.47		
1:C:88:SER:OG	1:C:89:ALA:N	2.48	0.46		
1:B:975:SER:OG	1:B:979:ARG:NH1	2.48	0.46		
1:B:88:SER:OG	1:B:89:ALA:N	2.48	0.46		
1:C:673:LEU:HD12	1:C:674:PHE:N	2.31	0.46		
1:A:673:LEU:HD12	1:A:674:PHE:N	2.31	0.46		
1:B:673:LEU:HD12	1:B:674:PHE:N	2.31	0.46		
1:A:770:VAL:HG12	1:B:969:ALA:HB2	1.98	0.46		
1:B:770:VAL:HG12	1:C:969:ALA:HB2	1.98	0.45		
1:A:975:SER:OG	1:A:979:ARG:NH1	2.48	0.45		
1:A:969:ALA:HB2	1:C:770:VAL:HG12	1.98	0.45		
1:B:152:SER:OG	1:B:165:PHE:HB2	2.18	0.44		
1:C:961:THR:OG1	1:C:962:ALA:N	2.46	0.44		
1:A:152:SER:OG	1:A:165:PHE:HB2	2.18	0.44		
1:A:1084:GLN:HE21	1:A:1088:ARG:HD2	1.83	0.44		
1:C:152:SER:OG	1:C:165:PHE:HB2	2.18	0.44		
1:B:773:LEU:HD21	1:B:779:LYS:CE	2.45	0.44		
1:C:1084:GLN:HE21	1:C:1088:ARG:HD2	1.83	0.43		
1:A:782:ILE:HA	1:A:783:PRO:HD3	1.91	0.43		
1:B:1084:GLN:HE21	1:B:1088:ARG:HD2	1.83	0.43		
1:B:717:LEU:HD23	1:B:757:MET:HB2	2.01	0.43		
1:A:470:LYS:HE2	1:A:473:PHE:CE1	2.55	0.42		
1:C:609:TYR:OH	1:C:644:ASP:OD2	2.38	0.42		
1:B:609:TYR:OH	1:B:644:ASP:OD2	2.38	0.42		
1:C:717:LEU:HD23	1:C:757:MET:HB2	2.01	0.42		
1:B:470:LYS:HE2	1:B:473:PHE:CE1	2.55	0.41		
1:C:530:VAL:HA	1:C:531:PRO:HD3	1.90	0.41		
1:B:1013:THR:OG1	1:B:1014:THR:N	2.51	0.41		
1:C:470:LYS:HE2	1:C:473:PHE:CE1	2.55	0.41		
1:A:717:LEU:HD23	1:A:757:MET:HB2	2.01	0.41		
1:C:172:LEU:HA	1:C:173:PRO:HD2	1.95	0.41		
1:C:1013:THR:OG1	1:C:1014:THR:N	2.51	0.41		
1:A:609:TYR:OH	1:A:644:ASP:OD2	2.38	0.41		
1:B:593:ASP:N	1:B:593:ASP:OD1	2.51	0.40		

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	lysed Favoured Allowed		Outliers	Percentiles		
1	А	1149/1359~(84%)	1129 (98%)	19 (2%)	1 (0%)	48	77	
1	В	1149/1359~(84%)	1129 (98%)	19 (2%)	1 (0%)	48	77	
1	С	1149/1359~(84%)	1129 (98%)	19 (2%)	1 (0%)	48	77	
All	All	3447/4077 (84%)	3387 (98%)	57 (2%)	3 (0%)	50	77	

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	578	GLY
1	В	578	GLY
1	С	578	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Percentiles			
1	А	992/1167~(85%)	981~(99%)	11 (1%)	70	90	
1	В	992/1167~(85%)	981 (99%)	11 (1%)	70	90	
1	С	992/1167~(85%)	981~(99%)	11 (1%)	70	90	
All	All	2976/3501~(85%)	2943~(99%)	33 (1%)	69	90	

All (33) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	52	LYS
1	А	179	LEU
1	А	234	LEU
1	А	455	ASP
1	А	592	ASN
1	А	655	VAL
1	А	673	LEU
1	А	715	LEU
1	А	1036	LEU
1	А	1218	LEU
1	А	1222	LEU
1	В	52	LYS
1	В	179	LEU
1	В	234	LEU
1	В	455	ASP
1	В	592	ASN
1	В	655	VAL
1	В	673	LEU
1	В	715	LEU
1	В	1036	LEU
1	В	1218	LEU
1	В	1222	LEU
1	С	52	LYS
1	С	179	LEU
1	С	234	LEU
1	С	455	ASP
1	С	592	ASN
1	С	655	VAL
1	С	673	LEU
1	С	715	LEU
1	С	1036	LEU
1	С	1218	LEU
1	С	1222	LEU

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (9) such side chains are listed below:

Mol	Chain	Res	Type
1	А	107	GLN
1	А	280	GLN
1	А	1208	GLN
1	В	107	GLN
1	В	280	GLN
1	В	1208	GLN

Continued from previous page...

Mol	Chain	Res	Type
1	С	107	GLN
1	С	280	GLN
1	С	1208	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

120 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bos	Link	Bo	ond leng	ths	B	ond ang	gles
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	NAG	D	1	2,1	14,14,15	1.42	4 (28%)	17,19,21	1.87	6 (35%)
2	NAG	D	2	2	14,14,15	1.25	2 (14%)	17,19,21	1.65	3 (17%)
2	BMA	D	3	2	11,11,12	1.50	2 (18%)	15,15,17	1.63	1 (6%)
2	MAN	D	4	2	11,11,12	1.12	1 (9%)	15,15,17	1.13	3 (20%)
3	NAG	Е	1	3,1	14,14,15	1.53	3 (21%)	17,19,21	1.79	5 (29%)
3	NAG	Е	2	3	14,14,15	1.16	1 (7%)	17,19,21	0.87	1 (5%)
4	NAG	F	1	4,1	14,14,15	1.34	1 (7%)	17,19,21	0.83	0
4	NAG	F	2	4	14,14,15	1.40	2 (14%)	17,19,21	0.76	0
4	BMA	F	3	4	11,11,12	1.03	0	15,15,17	0.61	0
4	MAN	F	4	4	11,11,12	0.69	0	15,15,17	0.61	0
4	MAN	F	5	4	11,11,12	1.41	3 (27%)	15,15,17	0.60	0
4	MAN	F	6	4	11,11,12	0.64	0	15,15,17	0.60	0
4	MAN	F	7	4	11,11,12	1.41	2 (18%)	15,15,17	0.57	0

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	ths	B	ond ang	les
WIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
5	NAG	G	1	5,1	14,14,15	1.56	5 (35%)	17,19,21	1.75	3 (17%)
5	NAG	G	2	5	14,14,15	1.56	3 (21%)	17,19,21	1.25	1 (5%)
5	BMA	G	3	5	11,11,12	0.73	1 (9%)	15,15,17	0.81	0
2	NAG	Н	1	2,1	14,14,15	1.78	4 (28%)	17,19,21	2.16	4 (23%)
2	NAG	Н	2	2	14,14,15	1.67	3 (21%)	17,19,21	1.91	3 (17%)
2	BMA	Н	3	2	11,11,12	1.43	2 (18%)	15,15,17	1.85	1 (6%)
2	MAN	Н	4	2	11,11,12	1.16	2 (18%)	15,15,17	1.14	2 (13%)
3	NAG	Ι	1	3,1	14,14,15	1.53	4 (28%)	17,19,21	1.84	3 (17%)
3	NAG	Ι	2	3	14,14,15	1.16	1 (7%)	17,19,21	0.68	0
3	NAG	J	1	3,1	14,14,15	1.77	5 (35%)	17,19,21	1.74	2 (11%)
3	NAG	J	2	3	14,14,15	1.27	1 (7%)	17,19,21	0.77	0
6	NAG	K	1	6,1	14,14,15	1.46	4 (28%)	17,19,21	1.84	2 (11%)
6	NAG	K	2	6	14,14,15	1.41	2 (14%)	17,19,21	1.30	1(5%)
6	BMA	K	3	6	11,11,12	2.08	3 (27%)	15,15,17	1.66	3 (20%)
6	MAN	K	4	6	11,11,12	1.07	1 (9%)	15,15,17	1.18	2 (13%)
6	MAN	K	5	6	11,11,12	1.06	1 (9%)	15,15,17	1.14	1 (6%)
6	NAG	L	1	6,1	14,14,15	0.83	1 (7%)	17,19,21	1.12	1 (5%)
6	NAG	L	2	6	14,14,15	0.78	1 (7%)	17,19,21	1.33	3 (17%)
6	BMA	L	3	6	11,11,12	0.67	0	15,15,17	0.94	1 (6%)
6	MAN	L	4	6	11,11,12	0.70	0	15,15,17	0.75	1 (6%)
6	MAN	L	5	6	11,11,12	0.70	0	15,15,17	0.72	0
3	NAG	М	1	3,1	14,14,15	1.60	5 (35%)	17,19,21	1.65	2 (11%)
3	NAG	М	2	3	14,14,15	1.23	1 (7%)	17,19,21	0.77	1 (5%)
7	NAG	Ν	1	7	15,15,15	1.29	2 (13%)	21,21,21	1.19	2 (9%)
7	GAL	Ν	2	7	11,11,12	1.22	2 (18%)	$15,\!15,\!17$	1.83	3 (20%)
7	SIA	Ν	3	7	20,20,21	1.70	3 (15%)	21,28,31	1.26	3 (14%)
7	FUC	N	4	7	10,10,11	1.67	4 (40%)	14,14,16	2.15	4 (28%)
2	NAG	0	1	2,1	14,14,15	1.42	4 (28%)	17,19,21	1.86	6(35%)
2	NAG	Ο	2	2	14,14,15	1.25	2 (14%)	17,19,21	1.65	3 (17%)
2	BMA	Ο	3	2	11,11,12	1.51	2 (18%)	15,15,17	1.64	1 (6%)
2	MAN	Ο	4	2	11,11,12	1.11	1 (9%)	15,15,17	1.13	3 (20%)
3	NAG	Р	1	3,1	14,14,15	1.52	3 (21%)	17,19,21	1.79	5 (29%)
3	NAG	Р	2	3	14,14,15	1.17	1 (7%)	17,19,21	0.86	1 (5%)
4	NAG	Q	1	4,1	14,14,15	1.35	1 (7%)	17,19,21	0.83	0
4	NAG	Q	2	4	14,14,15	1.40	2 (14%)	17,19,21	0.75	0

Mal	Tune	Chain	Dec	Tink	Bo	ond leng	ths	B	ond ang	les
WIOI	туре	Unain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
4	BMA	Q	3	4	11,11,12	1.03	0	$15,\!15,\!17$	0.61	0
4	MAN	Q	4	4	11,11,12	0.69	0	15,15,17	0.61	0
4	MAN	Q	5	4	11,11,12	1.41	3 (27%)	15,15,17	0.60	0
4	MAN	Q	6	4	11,11,12	0.63	0	$15,\!15,\!17$	0.60	0
4	MAN	Q	7	4	11,11,12	1.42	2 (18%)	$15,\!15,\!17$	0.57	0
5	NAG	R	1	5,1	14,14,15	1.55	5 (35%)	17,19,21	1.76	3 (17%)
5	NAG	R	2	5	14,14,15	1.56	3 (21%)	17,19,21	1.25	1 (5%)
5	BMA	R	3	5	11,11,12	0.73	1 (9%)	$15,\!15,\!17$	0.81	0
2	NAG	S	1	2,1	14,14,15	1.78	4 (28%)	17,19,21	2.16	4 (23%)
2	NAG	S	2	2	14,14,15	1.67	3 (21%)	$17,\!19,\!21$	1.91	3 (17%)
2	BMA	S	3	2	11,11,12	1.43	2 (18%)	$15,\!15,\!17$	1.85	2 (13%)
2	MAN	S	4	2	11,11,12	1.16	2 (18%)	$15,\!15,\!17$	1.14	2 (13%)
3	NAG	Т	1	3,1	14,14,15	1.53	4 (28%)	17,19,21	1.84	3 (17%)
3	NAG	Т	2	3	14,14,15	1.16	1 (7%)	17,19,21	0.68	0
3	NAG	U	1	3,1	14,14,15	1.76	5 (35%)	17,19,21	1.74	2 (11%)
3	NAG	U	2	3	14,14,15	1.28	1 (7%)	17,19,21	0.77	0
6	NAG	V	1	6,1	14,14,15	1.46	4 (28%)	17,19,21	1.84	2 (11%)
6	NAG	V	2	6	14,14,15	1.41	2 (14%)	17,19,21	1.30	1 (5%)
6	BMA	V	3	6	11,11,12	2.08	3 (27%)	$15,\!15,\!17$	1.66	3 (20%)
6	MAN	V	4	6	11,11,12	1.07	1 (9%)	$15,\!15,\!17$	1.17	2 (13%)
6	MAN	V	5	6	11,11,12	1.06	1 (9%)	$15,\!15,\!17$	1.15	1 (6%)
6	NAG	W	1	6,1	14,14,15	0.84	1 (7%)	17,19,21	1.12	1 (5%)
6	NAG	W	2	6	14,14,15	0.76	1 (7%)	17,19,21	1.33	3 (17%)
6	BMA	W	3	6	11,11,12	0.67	0	$15,\!15,\!17$	0.94	1 (6%)
6	MAN	W	4	6	11,11,12	0.69	0	15,15,17	0.74	1 (6%)
6	MAN	W	5	6	11,11,12	0.71	0	15,15,17	0.72	0
3	NAG	Х	1	3,1	14,14,15	1.59	5 (35%)	17,19,21	1.65	2 (11%)
3	NAG	Х	2	3	14,14,15	1.24	1 (7%)	17,19,21	0.77	1 (5%)
7	NAG	Y	1	7	15,15,15	1.28	2 (13%)	21,21,21	1.19	2 (9%)
7	GAL	Y	2	7	11,11,12	1.22	2 (18%)	$15,\!15,\!17$	1.83	3 (20%)
7	SIA	Y	3	7	20,20,21	1.71	4 (20%)	21,28,31	1.26	3 (14%)
7	FUC	Y	4	7	10,10,11	1.67	4 (40%)	14,14,16	2.16	4 (28%)
2	NAG	Z	1	2,1	14,14,15	1.43	4 (28%)	17,19,21	1.87	6 (35%)
2	NAG	Z	2	2	14,14,15	1.25	2 (14%)	17,19,21	1.65	3 (17%)
2	BMA	Z	3	2	11,11,12	1.50	2 (18%)	$15,\!15,\!17$	1.62	1 (6%)

Mal	Trune	Chain	Dec	Tinle	Bo	ond leng	ths	B	ond ang	les
WIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	MAN	Z	4	2	11,11,12	1.12	1 (9%)	$15,\!15,\!17$	1.14	3 (20%)
3	NAG	a	1	3,1	14,14,15	1.52	3 (21%)	17,19,21	1.79	5 (29%)
3	NAG	a	2	3	14,14,15	1.17	1 (7%)	17,19,21	0.86	1 (5%)
4	NAG	b	1	4,1	14,14,15	1.34	1 (7%)	17,19,21	0.83	0
4	NAG	b	2	4	14,14,15	1.40	2 (14%)	17,19,21	0.76	0
4	BMA	b	3	4	11,11,12	1.02	0	15,15,17	0.60	0
4	MAN	b	4	4	11,11,12	0.70	0	15,15,17	0.61	0
4	MAN	b	5	4	11,11,12	1.40	2 (18%)	$15,\!15,\!17$	0.60	0
4	MAN	b	6	4	11,11,12	0.64	0	15,15,17	0.60	0
4	MAN	b	7	4	11,11,12	1.41	2 (18%)	$15,\!15,\!17$	0.57	0
5	NAG	С	1	5,1	14,14,15	1.55	5 (35%)	17,19,21	1.75	3 (17%)
5	NAG	с	2	5	14,14,15	1.55	3 (21%)	17,19,21	1.25	1 (5%)
5	BMA	с	3	5	11,11,12	0.73	1 (9%)	15,15,17	0.81	0
2	NAG	d	1	2,1	14,14,15	1.79	4 (28%)	17,19,21	2.16	4 (23%)
2	NAG	d	2	2	14,14,15	1.66	3 (21%)	17,19,21	1.90	3 (17%)
2	BMA	d	3	2	11,11,12	1.44	2 (18%)	15,15,17	1.84	1 (6%)
2	MAN	d	4	2	11,11,12	1.16	2 (18%)	15,15,17	1.14	2 (13%)
3	NAG	е	1	3,1	14,14,15	1.52	4 (28%)	17,19,21	1.84	3 (17%)
3	NAG	е	2	3	14,14,15	1.16	1 (7%)	17,19,21	0.68	0
3	NAG	f	1	3,1	14,14,15	1.77	5 (35%)	17,19,21	1.74	2 (11%)
3	NAG	f	2	3	14,14,15	1.28	1 (7%)	17,19,21	0.77	0
6	NAG	g	1	6,1	14,14,15	1.46	4 (28%)	17,19,21	1.85	2 (11%)
6	NAG	g	2	6	14,14,15	1.41	2 (14%)	17,19,21	1.29	1 (5%)
6	BMA	g	3	6	11,11,12	2.08	3 (27%)	15,15,17	1.66	3 (20%)
6	MAN	g	4	6	11,11,12	1.07	1 (9%)	15,15,17	1.18	2 (13%)
6	MAN	g	5	6	11,11,12	1.06	1 (9%)	15,15,17	1.15	1 (6%)
6	NAG	h	1	6,1	14,14,15	0.83	1 (7%)	17,19,21	1.13	1 (5%)
6	NAG	h	2	6	14,14,15	0.78	1 (7%)	17,19,21	1.34	3 (17%)
6	BMA	h	3	6	11,11,12	0.67	0	15,15,17	0.94	1 (6%)
6	MAN	h	4	6	11,11,12	0.70	0	15,15,17	0.75	1 (6%)
6	MAN	h	5	6	11,11,12	0.70	0	15,15,17	0.73	0
3	NAG	i	1	3,1	14,14,15	1.60	5 (35%)	17,19,21	1.65	2 (11%)
3	NAG	i	2	3	14,14,15	1.24	1 (7%)	17,19,21	0.77	1 (5%)
7	NAG	j	1	7	15,15,15	1.29	2 (13%)	21,21,21	1.19	2 (9%)
7	GAL	j	2	7	11,11,12	1.22	2 (18%)	15,15,17	1.83	3 (20%)

Mol	Turne	Chain I	Res	Link	Bo	Bond lengths			Bond angles		
	туре				Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
7	SIA	j	3	7	20,20,21	1.70	3 (15%)	21,28,31	1.26	3 (14%)	
7	FUC	j	4	7	10,10,11	1.68	4 (40%)	14,14,16	2.15	4 (28%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	NAG	D	1	2,1	-	2/6/23/26	0/1/1/1
2	NAG	D	2	2	-	0/6/23/26	0/1/1/1
2	BMA	D	3	2	-	1/2/19/22	0/1/1/1
2	MAN	D	4	2	-	1/2/19/22	0/1/1/1
3	NAG	Е	1	3,1	-	2/6/23/26	0/1/1/1
3	NAG	Е	2	3	-	1/6/23/26	0/1/1/1
4	NAG	F	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	F	2	4	-	0/6/23/26	0/1/1/1
4	BMA	F	3	4	-	2/2/19/22	0/1/1/1
4	MAN	F	4	4	-	1/2/19/22	0/1/1/1
4	MAN	F	5	4	-	0/2/19/22	0/1/1/1
4	MAN	F	6	4	-	1/2/19/22	0/1/1/1
4	MAN	F	7	4	-	0/2/19/22	0/1/1/1
5	NAG	G	1	5,1	-	1/6/23/26	0/1/1/1
5	NAG	G	2	5	-	2/6/23/26	0/1/1/1
5	BMA	G	3	5	-	1/2/19/22	0/1/1/1
2	NAG	Н	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	Н	2	2	-	1/6/23/26	0/1/1/1
2	BMA	Н	3	2	-	1/2/19/22	0/1/1/1
2	MAN	Н	4	2	-	2/2/19/22	0/1/1/1
3	NAG	Ι	1	3,1	-	2/6/23/26	0/1/1/1
3	NAG	Ι	2	3	-	1/6/23/26	0/1/1/1
3	NAG	J	1	3,1	-	0/6/23/26	0/1/1/1
3	NAG	J	2	3	-	1/6/23/26	0/1/1/1
6	NAG	Κ	1	6,1	-	2/6/23/26	0/1/1/1
6	NAG	К	2	6	-	1/6/23/26	0/1/1/1
6	BMA	K	3	6	-	2/2/19/22	0/1/1/1
6	MAN	K	4	6	-	0/2/19/22	0/1/1/1
6	MAN	K	5	6	-	0/2/19/22	0/1/1/1
6	NAG	L	1	6,1	-	0/6/23/26	0/1/1/1
6	NAG	L	2	6	_	2/6/23/26	0/1/1/1

			is puye				.
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	BMA	L	3	6	-	1/2/19/22	0/1/1/1
6	MAN		4	6	-	1/2/19/22	0/1/1/1
6	MAN		5	6	-	1/2/19/22	0/1/1/1
3	NAG	M	1	3,1	-	$\frac{0/6}{23/26}$	0/1/1/1
3	NAG	M	2	3	-	1/6/23/26	0/1/1/1
7	NAG	N	1	7	-	2/6/26/26	0/1/1/1
7	GAL	N	2	7	-	0/2/19/22	0/1/1/1
7	SIA	N	3	7	-	2/18/34/38	0/1/1/1
7	FUC	N	4	7	-	-	0/1/1/1
2	NAG	Ο	1	2,1	-	2/6/23/26	0/1/1/1
2	NAG	0	2	2	-	0/6/23/26	0/1/1/1
2	BMA	0	3	2	-	1/2/19/22	0/1/1/1
2	MAN	0	4	2	-	1/2/19/22	0/1/1/1
3	NAG	Р	1	3,1	-	2/6/23/26	0/1/1/1
3	NAG	Р	2	3	-	1/6/23/26	0/1/1/1
4	NAG	Q	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	Q	2	4	-	0/6/23/26	0/1/1/1
4	BMA	Q	3	4	-	2/2/19/22	0/1/1/1
4	MAN	Q	4	4	-	1/2/19/22	0/1/1/1
4	MAN	Q	5	4	-	0/2/19/22	0/1/1/1
4	MAN	Q	6	4	-	1/2/19/22	0/1/1/1
4	MAN	Q	7	4	-	0/2/19/22	0/1/1/1
5	NAG	R	1	5,1	-	1/6/23/26	0/1/1/1
5	NAG	R	2	5	-	2/6/23/26	0/1/1/1
5	BMA	R	3	5	-	1/2/19/22	0/1/1/1
2	NAG	S	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	S	2	2	-	1/6/23/26	0/1/1/1
2	BMA	S	3	2	-	1/2/19/22	0/1/1/1
2	MAN	S	4	2	-	2/2/19/22	0/1/1/1
3	NAG	Т	1	3,1	-	2/6/23/26	0/1/1/1
3	NAG	Т	2	3	-	1/6/23/26	0/1/1/1
3	NAG	U	1	3,1	-	0/6/23/26	0/1/1/1
3	NAG	U	2	3	-	1/6/23/26	0/1/1/1
6	NAG	V	1	6,1	-	$\frac{2}{6}/\frac{23}{26}$	0/1/1/1
6	NAG	V	2	6	-	1/6/23/26	0/1/1/1
6	BMA	V	3	6	_	$\frac{2}{2}/\frac{19}{22}$	0/1/1/1
6	MAN	V	4	6	_	0/2/19/22	0/1/1/1
6	MAN	V	5	6	_	0/2/19/22	0/1/1/1
6	NAG	Ŵ	1	6.1	-	0/6/23/26	0/1/1/1
6	NAG	W	2	6	_	$\frac{2}{6}/\frac{23}{26}$	0/1/1/1
1	1	1	1		1		1 / / /

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	BMA	W	3	6	-	1/2/19/22	0/1/1/1
6	MAN	W	4	6	-	1/2/19/22	0/1/1/1
6	MAN	W	5	6	-	1/2/19/22	0/1/1/1
3	NAG	Х	1	3,1	-	0/6/23/26	0/1/1/1
3	NAG	Х	2	3	-	1/6/23/26	0/1/1/1
7	NAG	Y	1	7	-	2/6/26/26	0/1/1/1
7	GAL	Y	2	7	-	0/2/19/22	0/1/1/1
7	SIA	Y	3	7	-	2/18/34/38	0/1/1/1
7	FUC	Y	4	7	-	-	0/1/1/1
2	NAG	Z	1	2,1	-	2/6/23/26	0/1/1/1
2	NAG	Z	2	2	-	0/6/23/26	0/1/1/1
2	BMA	Z	3	2	-	1/2/19/22	0/1/1/1
2	MAN	Z	4	2	-	1/2/19/22	0/1/1/1
3	NAG	a	1	3,1	-	2/6/23/26	0/1/1/1
3	NAG	a	2	3	-	1/6/23/26	0/1/1/1
4	NAG	b	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	b	2	4	-	0/6/23/26	0/1/1/1
4	BMA	b	3	4	-	2/2/19/22	0/1/1/1
4	MAN	b	4	4	-	1/2/19/22	0/1/1/1
4	MAN	b	5	4	-	0/2/19/22	0/1/1/1
4	MAN	b	6	4	-	1/2/19/22	0/1/1/1
4	MAN	b	7	4	-	0/2/19/22	0/1/1/1
5	NAG	с	1	5,1	-	1/6/23/26	0/1/1/1
5	NAG	с	2	5	-	2/6/23/26	0/1/1/1
5	BMA	с	3	5	-	1/2/19/22	0/1/1/1
2	NAG	d	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	d	2	2	-	1/6/23/26	0/1/1/1
2	BMA	d	3	2	-	1/2/19/22	0/1/1/1
2	MAN	d	4	2	-	2/2/19/22	0/1/1/1
3	NAG	e	1	3,1	-	2/6/23/26	0/1/1/1
3	NAG	е	2	3	-	1/6/23/26	0/1/1/1
3	NAG	f	1	3,1	-	0/6/23/26	0/1/1/1
3	NAG	f	2	3	-	1/6/23/26	0/1/1/1
6	NAG	g	1	6,1	-	2/6/23/26	0/1/1/1
6	NAG	g	2	6	-	1/6/23/26	0/1/1/1
6	BMA	g	3	6	-	2/2/19/22	0/1/1/1
6	MAN	g	4	6	-	0/2/19/22	0/1/1/1
6	MAN	g	5	6	-	0/2/19/22	0/1/1/1
6	NAG	h	1	6,1	-	0/6/23/26	0/1/1/1
6	NAG	h	2	6	-	2/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	BMA	h	3	6	-	1/2/19/22	0/1/1/1
6	MAN	h	4	6	-	1/2/19/22	0/1/1/1
6	MAN	h	5	6	-	1/2/19/22	0/1/1/1
3	NAG	i	1	3,1	-	0/6/23/26	0/1/1/1
3	NAG	i	2	3	-	1/6/23/26	0/1/1/1
7	NAG	j	1	7	-	2/6/26/26	0/1/1/1
7	GAL	j	2	7	-	0/2/19/22	0/1/1/1
7	SIA	j	3	7	-	2/18/34/38	0/1/1/1
7	FUC	j	4	7	-	_	0/1/1/1

All (246) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
7	Y	3	SIA	C6-C5	5.38	1.61	1.53
7	Ν	3	SIA	C6-C5	5.38	1.61	1.53
7	j	3	SIA	C6-C5	5.35	1.61	1.53
3	U	2	NAG	C1-C2	4.65	1.58	1.52
3	f	2	NAG	C1-C2	4.64	1.58	1.52
3	J	2	NAG	C1-C2	4.62	1.58	1.52
3	Х	2	NAG	C1-C2	4.50	1.58	1.52
3	i	2	NAG	C1-C2	4.49	1.58	1.52
3	М	2	NAG	C1-C2	4.46	1.58	1.52
6	Κ	3	BMA	O3-C3	-4.35	1.32	1.43
6	V	3	BMA	O3-C3	-4.35	1.32	1.43
6	g	3	BMA	O3-C3	-4.34	1.32	1.43
2	Н	2	NAG	C1-C2	4.21	1.58	1.52
2	S	2	NAG	C1-C2	4.19	1.58	1.52
2	d	2	NAG	C1-C2	4.18	1.58	1.52
3	a	2	NAG	C1-C2	4.15	1.58	1.52
3	Р	2	NAG	C1-C2	4.14	1.58	1.52
3	Е	2	NAG	C1-C2	4.14	1.58	1.52
3	е	2	NAG	C1-C2	4.09	1.57	1.52
3	Ι	2	NAG	C1-C2	4.08	1.57	1.52
3	Т	2	NAG	C1-C2	4.07	1.57	1.52
5	с	2	NAG	C1-C2	4.06	1.57	1.52
5	R	2	NAG	C1-C2	4.06	1.57	1.52
5	G	2	NAG	C1-C2	4.05	1.57	1.52
4	Q	1	NAG	C1-C2	3.91	1.57	1.52
4	b	1	NAG	C1-C2	3.90	1.57	1.52
4	F	1	NAG	C1-C2	3.89	1.57	1.52
2	d	1	NAG	C1-C2	3.87	1.57	1.52
2	S	1	NAG	C1-C2	3.86	1.57	1.52

Conti	пиеа јгон	i previ	ous page				
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	Н	1	NAG	C1-C2	3.83	1.57	1.52
3	f	1	NAG	C1-C2	3.79	1.57	1.52
3	J	1	NAG	C1-C2	3.77	1.57	1.52
3	Е	1	NAG	C1-C2	3.74	1.57	1.52
3	U	1	NAG	C1-C2	3.73	1.57	1.52
4	F	2	NAG	C1-C2	3.73	1.57	1.52
4	Q	2	NAG	C1-C2	3.70	1.57	1.52
3	a	1	NAG	C1-C2	3.69	1.57	1.52
4	b	2	NAG	C1-C2	3.69	1.57	1.52
3	Р	1	NAG	C1-C2	3.68	1.57	1.52
6	V	2	NAG	C1-C2	3.59	1.57	1.52
6	g	2	NAG	C1-C2	3.59	1.57	1.52
6	K	2	NAG	C1-C2	3.56	1.57	1.52
7	Y	3	SIA	C3-C2	3.34	1.57	1.52
7	j	1	NAG	C1-C2	3.33	1.56	1.52
7	Ν	1	NAG	C1-C2	3.32	1.56	1.52
7	j	3	SIA	C3-C2	3.30	1.57	1.52
7	Ν	3	SIA	C3-C2	3.29	1.57	1.52
7	Y	1	NAG	C1-C2	3.27	1.56	1.52
7	j	4	FUC	C4-C5	3.23	1.60	1.52
7	Ν	4	FUC	C4-C5	3.22	1.59	1.52
7	Y	4	FUC	C4-C5	3.19	1.59	1.52
3	i	1	NAG	C1-C2	3.16	1.56	1.52
3	Х	1	NAG	C1-C2	3.14	1.56	1.52
2	0	3	BMA	C1-C2	3.14	1.59	1.52
2	Ζ	3	BMA	C1-C2	3.14	1.59	1.52
2	D	3	BMA	C1-C2	3.13	1.59	1.52
3	М	1	NAG	C1-C2	3.13	1.56	1.52
2	d	1	NAG	O5-C5	2.94	1.49	1.43
2	S	1	NAG	O5-C5	2.93	1.49	1.43
2	Н	1	NAG	O5-C5	2.93	1.49	1.43
3	J	1	NAG	C3-C2	2.90	1.58	1.52
3	U	1	NAG	C3-C2	2.89	1.58	1.52
3	f	1	NAG	C3-C2	2.88	1.58	1.52
6	K	3	BMA	O6-C6	-2.86	1.30	1.42
6	g	3	BMA	O6-C6	-2.85	1.30	1.42
6	V	3	BMA	O6-C6	-2.85	1.30	1.42
3	I	1	NAG	C1-C2	2.83	1.56	1.52
3	e	1	NAG	C1-C2	2.83	1.56	1.52
3	Т	1	NAG	C1-C2	2.82	1.56	1.52
2	S	4	MAN	C1-C2	2.82	1.58	1.52
5	G G	1	NAG	C1-C2	2.81	1.56	1.52

Conti	nued fron	ı previ	ous page	•••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	d	4	MAN	C1-C2	2.81	1.58	1.52
6	V	4	MAN	C1-C2	2.81	1.58	1.52
2	Н	4	MAN	C1-C2	2.80	1.58	1.52
6	Κ	4	MAN	C1-C2	2.80	1.58	1.52
6	g	4	MAN	C1-C2	2.80	1.58	1.52
5	с	1	NAG	C1-C2	2.79	1.56	1.52
5	R	1	NAG	O4-C4	-2.79	1.36	1.43
3	a	1	NAG	O5-C5	2.78	1.48	1.43
3	Р	1	NAG	O5-C5	2.78	1.48	1.43
5	R	1	NAG	C1-C2	2.78	1.56	1.52
3	Е	1	NAG	O5-C5	2.78	1.48	1.43
5	G	1	NAG	O4-C4	-2.78	1.36	1.43
2	d	3	BMA	C1-C2	2.77	1.58	1.52
5	с	1	NAG	O4-C4	-2.76	1.36	1.43
2	Н	3	BMA	C1-C2	2.74	1.58	1.52
2	S	3	BMA	C1-C2	2.74	1.58	1.52
2	D	1	NAG	C1-C2	2.73	1.56	1.52
2	Ζ	1	NAG	C1-C2	2.73	1.56	1.52
2	0	1	NAG	C1-C2	2.73	1.56	1.52
3	f	1	NAG	O5-C5	2.73	1.48	1.43
3	J	1	NAG	O5-C5	2.71	1.48	1.43
3	U	1	NAG	O5-C5	2.70	1.48	1.43
2	D	4	MAN	C1-C2	2.68	1.58	1.52
2	0	4	MAN	C1-C2	2.67	1.58	1.52
2	Ζ	4	MAN	C1-C2	2.67	1.58	1.52
2	Ζ	2	NAG	O4-C4	-2.67	1.36	1.43
2	D	2	NAG	O4-C4	-2.67	1.36	1.43
2	0	2	NAG	O4-C4	-2.66	1.36	1.43
4	Q	5	MAN	O5-C5	2.66	1.48	1.43
4	F	5	MAN	O5-C5	2.65	1.48	1.43
6	Κ	5	MAN	C1-C2	2.65	1.58	1.52
4	b	5	MAN	O5-C5	2.65	1.48	1.43
2	Ζ	2	NAG	C1-C2	2.64	1.55	1.52
6	V	5	MAN	C1-C2	2.64	1.58	1.52
7	Ν	1	NAG	O1-C1	2.63	1.47	1.39
7	Y	1	NAG	01-C1	2.63	1.47	1.39
6	g	5	MAN	C1-C2	2.63	1.58	1.52
7	j	1	NAG	01-C1	2.63	1.47	1.39
7	N	2	GAL	O5-C1	-2.63	1.39	1.43
7	Y	2	GAL	O5-C1	-2.62	1.39	1.43
7	j	2	GAL	O5-C1	-2.61	1.39	1.43
2	D	2	NAG	C1-C2	2.60	1.55	1.52

 α ntin 1 L

Continuea from previous page									
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)		
2	Ζ	1	NAG	O4-C4	-2.59	1.36	1.43		
2	0	2	NAG	C1-C2	2.59	1.55	1.52		
6	g	1	NAG	O4-C4	-2.59	1.36	1.43		
6	V	1	NAG	O4-C4	-2.59	1.36	1.43		
6	V	1	NAG	C1-C2	2.58	1.55	1.52		
6	Κ	1	NAG	O4-C4	-2.58	1.36	1.43		
2	0	1	NAG	O4-C4	-2.58	1.36	1.43		
6	g	1	NAG	C1-C2	2.57	1.55	1.52		
2	D	1	NAG	O4-C4	-2.57	1.36	1.43		
5	G	2	NAG	C4-C5	2.57	1.58	1.53		
5	R	2	NAG	C4-C5	2.56	1.58	1.53		
6	K	1	NAG	C1-C2	2.56	1.55	1.52		
5	с	2	NAG	C4-C5	2.55	1.58	1.53		
3	i	1	NAG	O4-C4	-2.53	1.36	1.43		
3	Х	1	NAG	O4-C4	-2.53	1.36	1.43		
3	М	1	NAG	O4-C4	-2.53	1.36	1.43		
2	d	1	NAG	C3-C2	2.53	1.57	1.52		
2	Н	1	NAG	C3-C2	2.52	1.57	1.52		
4	F	7	MAN	O5-C5	2.52	1.48	1.43		
4	b	7	MAN	O5-C5	2.51	1.48	1.43		
6	g	1	NAG	O5-C5	2.51	1.48	1.43		
4	Q	7	MAN	O5-C5	2.51	1.48	1.43		
2	d	1	NAG	O4-C4	-2.50	1.36	1.43		
6	Κ	1	NAG	O5-C5	2.50	1.48	1.43		
2	S	1	NAG	C3-C2	2.50	1.57	1.52		
2	S	2	NAG	O4-C4	-2.49	1.36	1.43		
2	Н	1	NAG	O4-C4	-2.49	1.36	1.43		
6	V	1	NAG	O5-C5	2.49	1.48	1.43		
2	Н	2	NAG	O4-C4	-2.49	1.36	1.43		
2	S	1	NAG	O4-C4	-2.48	1.36	1.43		
2	d	2	NAG	O4-C4	-2.48	1.36	1.43		
3	М	1	NAG	C3-C2	2.46	1.57	1.52		
7	Ν	2	GAL	C2-C3	-2.46	1.48	1.52		
3	i	1	NAG	C3-C2	2.46	1.57	1.52		
7	j	2	GAL	C2-C3	-2.46	1.48	1.52		
3	е	1	NAG	O5-C5	2.46	1.48	1.43		
3	Х	1	NAG	C3-C2	2.45	1.57	1.52		
7	Y	2	GAL	C2-C3	-2.45	1.48	1.52		
3	Ι	1	NAG	O5-C5	$2.4\overline{5}$	1.48	1.43		
3	Т	1	NAG	O5-C5	2.45	1.48	1.43		
6	K	2	NAG	O4-C4	-2.42	1.37	1.43		
6	V	2	NAG	04-C4	-2.41	1.37	1.43		

Cntin d fa

Continued from previous page									
Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$		
6	g	2	NAG	O4-C4	-2.41	1.37	1.43		
6	g	3	BMA	C1-C2	2.40	1.57	1.52		
6	Κ	3	BMA	C1-C2	2.39	1.57	1.52		
6	V	3	BMA	C1-C2	2.39	1.57	1.52		
3	Т	1	NAG	O4-C4	-2.38	1.37	1.43		
3	Ι	1	NAG	O4-C4	-2.37	1.37	1.43		
3	е	1	NAG	O4-C4	-2.37	1.37	1.43		
4	Q	7	MAN	C1-C2	2.33	1.57	1.52		
4	F	7	MAN	C1-C2	2.33	1.57	1.52		
6	L	2	NAG	C1-C2	2.32	1.55	1.52		
4	b	7	MAN	C1-C2	2.32	1.57	1.52		
3	Ι	1	NAG	C3-C2	2.31	1.57	1.52		
6	h	2	NAG	C1-C2	2.31	1.55	1.52		
3	Т	1	NAG	C3-C2	2.31	1.57	1.52		
3	е	1	NAG	C3-C2	2.30	1.57	1.52		
5	R	2	NAG	O4-C4	-2.30	1.37	1.43		
5	R	1	NAG	O5-C5	2.30	1.47	1.43		
2	D	1	NAG	C4-C5	2.29	1.57	1.53		
5	G	1	NAG	O5-C5	2.29	1.47	1.43		
2	0	1	NAG	C4-C5	2.29	1.57	1.53		
2	Ζ	1	NAG	C4-C5	2.29	1.57	1.53		
5	с	1	NAG	O5-C5	2.29	1.47	1.43		
5	G	2	NAG	O4-C4	-2.29	1.37	1.43		
5	с	2	NAG	O4-C4	-2.29	1.37	1.43		
3	Х	1	NAG	O5-C5	2.28	1.47	1.43		
3	М	1	NAG	O5-C5	2.27	1.47	1.43		
6	V	1	NAG	C3-C2	2.26	1.57	1.52		
5	с	1	NAG	C3-C2	2.26	1.57	1.52		
5	R	1	NAG	C3-C2	2.26	1.57	1.52		
5	G	1	NAG	C3-C2	2.25	1.57	1.52		
6	W	2	NAG	C1-C2	2.25	1.55	1.52		
3	i	1	NAG	O5-C5	2.25	1.47	1.43		
6	K	1	NAG	C3-C2	2.23	1.57	1.52		
2	d	2	NAG	C4-C5	2.22	1.57	1.53		
2	d	3	BMA	O3-C3	-2.22	1.37	1.43		
2	Н	2	NAG	C4-C5	2.21	1.57	1.53		
7	j	3	SIA	O1A-C1	2.21	1.28	1.22		
7	Ň	3	SIA	O1A-C1	2.21	1.28	1.22		
7	Y	3	SIA	O1A-C1	2.21	1.28	1.22		
2	S	3	BMA	O3-C3	-2.21	1.37	1.43		
2	S	2	NAG	C4-C5	2.21	1.57	1.53		
6	g	1	NAG	C3-C2	2.20	1.57	1.52		

Cntin d fa .

Contr	nuea jron	ı previ	ous page.	•••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	Н	3	BMA	O3-C3	-2.20	1.37	1.43
5	R	3	BMA	C1-C2	2.19	1.57	1.52
2	Ζ	3	BMA	O3-C3	-2.19	1.37	1.43
5	G	3	BMA	C1-C2	2.19	1.57	1.52
2	D	3	BMA	O3-C3	-2.18	1.37	1.43
2	0	3	BMA	O3-C3	-2.17	1.37	1.43
3	a	1	NAG	O4-C4	-2.17	1.37	1.43
2	Ζ	1	NAG	O5-C5	2.17	1.47	1.43
5	с	3	BMA	C1-C2	2.17	1.57	1.52
3	Е	1	NAG	O4-C4	-2.17	1.37	1.43
3	f	1	NAG	O4-C4	-2.17	1.37	1.43
2	0	1	NAG	O5-C5	2.17	1.47	1.43
3	Р	1	NAG	O4-C4	-2.16	1.37	1.43
3	J	1	NAG	O4-C4	-2.15	1.37	1.43
3	U	1	NAG	O4-C4	-2.15	1.37	1.43
2	D	1	NAG	O5-C5	2.13	1.47	1.43
7	Y	4	FUC	O5-C5	2.13	1.47	1.43
7	j	4	FUC	O5-C5	2.13	1.47	1.43
7	N	4	FUC	O5-C5	2.12	1.47	1.43
4	b	5	MAN	C1-C2	2.11	1.57	1.52
3	f	1	NAG	C4-C5	2.11	1.57	1.53
4	F	5	MAN	C1-C2	2.10	1.57	1.52
4	Q	5	MAN	C1-C2	2.10	1.57	1.52
3	U	1	NAG	C4-C5	2.09	1.57	1.53
3	J	1	NAG	C4-C5	2.09	1.57	1.53
2	d	4	MAN	O5-C5	2.08	1.47	1.43
7	Y	4	FUC	C1-C2	2.08	1.57	1.52
7	j	4	FUC	C1-C2	2.07	1.57	1.52
7	Ν	4	FUC	C1-C2	2.07	1.57	1.52
2	S	4	MAN	O5-C5	2.06	1.47	1.43
2	Н	4	MAN	O5-C5	2.06	1.47	1.43
7	j	4	FUC	C2-C3	2.05	1.55	1.52
6	W	1	NAG	C1-C2	2.05	1.55	1.52
6	L	1	NAG	C1-C2	2.04	1.55	1.52
3	М	1	NAG	C4-C3	2.04	1.57	1.52
7	Ν	4	FUC	C2-C3	2.03	1.55	1.52
6	h	1	NAG	C1-C2	2.03	1.55	1.52
3	i	1	NAG	C4-C3	2.03	1.57	1.52
7	Y	4	FUC	C2-C3	2.03	1.55	1.52
4	b	2	NAG	O5-C5	2.03	1.47	1.43
4	F	5	MAN	C2-C3	2.03	1.55	1.52
3	Х	1	NAG	C4-C3	2.02	1.57	1.52

 α ntin d fa

001000	e ontontaca front procesa pagem											
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)					
5	с	1	NAG	C4-C3	2.02	1.57	1.52					
4	Q	2	NAG	O5-C5	2.02	1.47	1.43					
5	G	1	NAG	C4-C3	2.02	1.57	1.52					
5	R	1	NAG	C4-C3	2.01	1.57	1.52					
4	Q	5	MAN	C2-C3	2.01	1.55	1.52					
7	Y	3	SIA	C7-C6	2.01	1.55	1.52					
4	F	2	NAG	O5-C5	2.00	1.47	1.43					

All (205) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	d	1	NAG	C3-C4-C5	-6.41	98.60	110.23
2	Н	1	NAG	C3-C4-C5	-6.39	98.64	110.23
2	S	3	BMA	C2-C3-C4	-6.39	99.63	110.86
2	Н	3	BMA	C2-C3-C4	-6.38	99.64	110.86
2	S	1	NAG	C3-C4-C5	-6.37	98.68	110.23
2	d	3	BMA	C2-C3-C4	-6.37	99.66	110.86
3	f	1	NAG	C3-C4-C5	-6.12	99.14	110.23
3	U	1	NAG	C3-C4-C5	-6.12	99.14	110.23
3	J	1	NAG	C3-C4-C5	-6.11	99.15	110.23
2	0	3	BMA	C2-C3-C4	-5.84	100.59	110.86
2	D	3	BMA	C2-C3-C4	-5.83	100.60	110.86
2	Ζ	3	BMA	C2-C3-C4	-5.80	100.66	110.86
6	g	1	NAG	C3-C4-C5	-5.74	99.82	110.23
6	K	1	NAG	C3-C4-C5	-5.72	99.85	110.23
6	V	1	NAG	C3-C4-C5	-5.72	99.85	110.23
2	S	2	NAG	C3-C4-C5	-5.57	100.13	110.23
2	Н	2	NAG	C3-C4-C5	-5.55	100.17	110.23
2	d	2	NAG	C3-C4-C5	-5.54	100.19	110.23
2	Ζ	1	NAG	C3-C4-C5	-5.46	100.34	110.23
2	D	1	NAG	C3-C4-C5	-5.45	100.35	110.23
2	0	1	NAG	C3-C4-C5	-5.43	100.39	110.23
3	i	1	NAG	C3-C4-C5	-5.30	100.63	110.23
3	М	1	NAG	C3-C4-C5	-5.29	100.65	110.23
3	Х	1	NAG	C3-C4-C5	-5.28	100.65	110.23
5	R	1	NAG	C3-C4-C5	-5.26	100.70	110.23
7	Y	4	FUC	C6-C5-C4	-5.25	103.48	113.08
7	N	4	FUC	C6-C5-C4	-5.25	103.48	113.08
7	j	4	FUC	C6-C5-C4	-5.24	103.49	113.08
5	G	1	NAG	C3-C4-C5	-5.24	100.72	110.23
5	с	1	NAG	C3-C4-C5	-5.23	100.75	110.23
2	0	2	NAG	C3-C4-C5	-5.19	100.82	110.23

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Z	2	NAG	C3-C4-C5	-5.19	100.83	110.23
2	D	2	NAG	C3-C4-C5	-5.18	100.83	110.23
3	Ι	1	NAG	C3-C4-C5	-4.85	101.45	110.23
3	е	1	NAG	C3-C4-C5	-4.84	101.45	110.23
3	Т	1	NAG	C3-C4-C5	-4.84	101.46	110.23
7	Y	2	GAL	C2-C3-C4	-4.28	103.33	110.86
7	N	2	GAL	C2-C3-C4	-4.27	103.35	110.86
7	j	2	GAL	C2-C3-C4	-4.27	103.36	110.86
5	G	2	NAG	C3-C4-C5	-4.15	102.71	110.23
5	R	2	NAG	C3-C4-C5	-4.14	102.72	110.23
5	с	2	NAG	C3-C4-C5	-4.13	102.74	110.23
7	j	1	NAG	O4-C4-C3	-4.10	100.72	110.38
7	Y	1	NAG	O4-C4-C3	-4.09	100.73	110.38
7	Ν	1	NAG	O4-C4-C3	-4.08	100.75	110.38
6	h	2	NAG	C3-C4-C5	-3.90	103.16	110.23
7	Y	4	FUC	C3-C4-C5	3.89	115.73	109.81
6	W	2	NAG	C3-C4-C5	-3.88	103.19	110.23
7	j	4	FUC	C3-C4-C5	3.88	115.70	109.81
6	L	2	NAG	C3-C4-C5	-3.88	103.20	110.23
7	Ν	4	FUC	C3-C4-C5	3.87	115.70	109.81
6	V	2	NAG	C3-C4-C5	-3.85	103.26	110.23
6	К	2	NAG	C3-C4-C5	-3.84	103.27	110.23
6	V	3	BMA	O6-C6-C5	-3.83	98.29	111.33
7	N	2	GAL	C3-C4-C5	-3.83	103.29	110.23
6	K	3	BMA	O6-C6-C5	-3.83	98.31	111.33
6	g	3	BMA	O6-C6-C5	-3.82	98.32	111.33
7	Y	2	GAL	C3-C4-C5	-3.82	103.30	110.23
6	g	2	NAG	C3-C4-C5	-3.82	103.31	110.23
7	j	2	GAL	C3-C4-C5	-3.81	103.32	110.23
3	Е	1	NAG	O4-C4-C5	3.74	118.54	109.32
3	Р	1	NAG	O4-C4-C5	3.74	118.53	109.32
3	a	1	NAG	O4-C4-C5	3.73	118.51	109.32
3	a	1	NAG	O4-C4-C3	3.64	118.95	110.38
3	Е	1	NAG	O4-C4-C3	3.62	118.91	110.38
3	Ι	1	NAG	C1-O5-C5	3.60	117.02	112.19
3	Р	1	NAG	O4-C4-C3	3.60	118.85	110.38
3	Т	1	NAG	C1-O5-C5	3.59	117.00	112.19
3	е	1	NAG	C1-O5-C5	3.59	117.00	112.19
3	е	1	NAG	05-C1-C2	-3.59	105.74	111.29
3	Ι	1	NAG	O5-C1-C2	-3.56	105.78	111.29
3	Т	1	NAG	O5-C1-C2	-3.56	105.78	111.29
2	S	1	NAG	C4-C3-C2	3.55	116.22	111.02

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
2	d	1	NAG	C4-C3-C2	3.54	116.21	111.02
2	Н	1	NAG	C4-C3-C2	3.53	116.19	111.02
6	h	1	NAG	C3-C4-C5	-3.50	103.88	110.23
6	W	1	NAG	C3-C4-C5	-3.49	103.90	110.23
6	L	1	NAG	C3-C4-C5	-3.49	103.91	110.23
6	g	3	BMA	C2-C3-C4	-3.42	104.84	110.86
6	Κ	3	BMA	C2-C3-C4	-3.42	104.84	110.86
6	V	3	BMA	C2-C3-C4	-3.40	104.88	110.86
2	S	2	NAG	O5-C5-C4	3.14	118.46	110.83
2	Н	2	NAG	O5-C5-C4	3.13	118.44	110.83
2	d	2	NAG	O5-C5-C4	3.11	118.39	110.83
3	Е	1	NAG	C1-O5-C5	3.09	116.32	112.19
3	a	1	NAG	C1-O5-C5	3.08	116.31	112.19
3	Р	1	NAG	C1-O5-C5	3.08	116.31	112.19
3	Е	1	NAG	O5-C1-C2	-3.05	106.57	111.29
3	a	1	NAG	O5-C1-C2	-3.04	106.58	111.29
3	Р	1	NAG	O5-C1-C2	-3.04	106.59	111.29
2	d	1	NAG	O4-C4-C3	-2.96	103.40	110.38
2	Н	1	NAG	O4-C4-C3	-2.96	103.40	110.38
2	S	1	NAG	O4-C4-C3	-2.95	103.42	110.38
6	g	4	MAN	C1-O5-C5	2.73	115.84	112.19
6	V	5	MAN	C1-O5-C5	2.71	115.82	112.19
6	V	4	MAN	C1-O5-C5	2.71	115.81	112.19
6	K	4	MAN	C1-O5-C5	2.70	115.81	112.19
6	g	5	MAN	C1-O5-C5	2.70	115.81	112.19
7	Y	3	SIA	O1B-C1-C2	2.69	119.71	112.71
6	K	5	MAN	C1-O5-C5	2.69	115.79	112.19
7	j	3	SIA	O1B-C1-C2	2.68	119.68	112.71
7	Ν	3	SIA	O1B-C1-C2	2.67	119.66	112.71
3	Ε	2	NAG	C4-C3-C2	-2.67	107.11	111.02
3	a	2	NAG	C4-C3-C2	-2.64	107.15	111.02
3	Р	2	NAG	C4-C3-C2	-2.63	107.16	111.02
7	Y	4	FUC	C1-O5-C5	2.62	119.14	112.97
7	Ν	4	FUC	C1-O5-C5	2.61	119.11	112.97
7	j	4	FUC	C1-O5-C5	2.60	119.09	112.97
2	0	1	NAG	O5-C1-C2	-2.59	107.28	111.29
2	Z	1	NAG	O5-C1-C2	-2.57	107.31	111.29
2	D	1	NAG	O5-C1-C2	-2.57	107.31	111.29
5	R	1	NAG	O5-C1-C2	-2.49	107.43	111.29
2	Н	4	MAN	C2-C3-C4	-2.49	106.48	110.86
2	S	4	MAN	C2-C3-C4	-2.48	106.49	110.86
2	d	4	MAN	C2-C3-C4	-2.48	106.50	110.86

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
5	G	1	NAG	O5-C1-C2	-2.46	107.48	111.29
7	j	1	NAG	C1-C2-C3	-2.44	107.22	110.54
5	С	1	NAG	O5-C1-C2	-2.44	107.52	111.29
2	Ζ	2	NAG	C4-C3-C2	2.43	114.58	111.02
7	N	1	NAG	C1-C2-C3	-2.42	107.24	110.54
7	Y	1	NAG	C1-C2-C3	-2.42	107.24	110.54
7	j	4	FUC	C1-C2-C3	-2.42	106.12	109.64
7	Y	4	FUC	C1-C2-C3	-2.41	106.13	109.64
6	g	1	NAG	O5-C1-C2	-2.41	107.57	111.29
2	D	2	NAG	C4-C3-C2	2.40	114.54	111.02
2	0	2	NAG	C4-C3-C2	2.40	114.54	111.02
7	Ν	4	FUC	C1-C2-C3	-2.40	106.15	109.64
6	K	1	NAG	O5-C1-C2	-2.39	107.60	111.29
6	V	1	NAG	O5-C1-C2	-2.38	107.61	111.29
3	Х	1	NAG	O5-C1-C2	-2.38	107.61	111.29
2	0	1	NAG	O4-C4-C5	-2.37	103.48	109.32
2	D	1	NAG	O4-C4-C5	-2.37	103.48	109.32
2	Ζ	1	NAG	O4-C4-C5	-2.37	103.49	109.32
3	i	1	NAG	O5-C1-C2	-2.37	107.63	111.29
3	М	1	NAG	O5-C1-C2	-2.37	107.63	111.29
6	h	3	BMA	C2-C3-C4	-2.31	106.79	110.86
6	W	3	BMA	C2-C3-C4	-2.31	106.80	110.86
5	с	1	NAG	O4-C4-C3	-2.31	104.93	110.38
7	N	3	SIA	C11-C10-N5	2.30	119.94	116.12
2	Ζ	4	MAN	C2-C3-C4	-2.30	106.82	110.86
6	L	3	BMA	C2-C3-C4	-2.30	106.82	110.86
5	G	1	NAG	O4-C4-C3	-2.29	104.97	110.38
2	D	4	MAN	C2-C3-C4	-2.29	106.83	110.86
7	j	3	SIA	C11-C10-N5	2.29	119.91	116.12
7	Y	3	SIA	C11-C10-N5	2.28	119.90	116.12
2	0	4	MAN	C2-C3-C4	-2.28	106.85	110.86
5	R	1	NAG	O4-C4-C3	-2.28	105.00	110.38
2	d	1	NAG	O5-C5-C4	2.26	116.32	110.83
3	J	1	NAG	O5-C1-C2	-2.25	107.80	111.29
2	Н	1	NAG	O5-C5-C4	2.25	116.30	110.83
2	S	1	NAG	<u>O5-C5-C4</u>	2.25	116.29	110.83
7	j	3	SIA	C4-C5-N5	-2.25	106.01	110.44
3	f	1	NAG	O5-C1-C2	-2.24	107.82	111.29
3	U	1	NAG	O5-C1-C2	-2.23	107.83	111.29
7	N	3	SIA	C4-C5-N5	-2.23	106.03	110.44
7	Y	3	SIA	C4-C5-N5	-2.23	106.04	110.44
2	D	1	NAG	O5-C5-C6	-2.22	103.34	107.66

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
2	Ζ	1	NAG	O5-C5-C6	-2.22	103.35	107.66
2	0	1	NAG	O5-C5-C6	-2.20	103.38	107.66
2	D	1	NAG	O5-C5-C4	2.18	116.13	110.83
2	Ζ	1	NAG	O5-C5-C4	2.17	116.12	110.83
6	h	4	MAN	C2-C3-C4	-2.16	107.06	110.86
2	0	1	NAG	O5-C5-C4	2.16	116.08	110.83
2	D	2	NAG	C1-C2-N2	-2.15	107.04	110.43
6	L	2	NAG	O4-C4-C3	-2.15	105.30	110.38
6	W	2	NAG	O4-C4-C3	-2.15	105.31	110.38
6	L	4	MAN	C2-C3-C4	-2.15	107.08	110.86
2	0	2	NAG	C1-C2-N2	-2.15	107.05	110.43
2	Ζ	2	NAG	C1-C2-N2	-2.14	107.05	110.43
3	a	1	NAG	C3-C4-C5	-2.14	106.36	110.23
7	j	2	GAL	O3-C3-C4	2.14	115.41	110.38
6	h	2	NAG	O4-C4-C3	-2.13	105.35	110.38
2	Z	1	NAG	C4-C3-C2	2.13	114.14	111.02
3	Е	1	NAG	C3-C4-C5	-2.13	106.37	110.23
7	Y	2	GAL	O3-C3-C4	2.13	115.40	110.38
7	N	2	GAL	O3-C3-C4	2.12	115.38	110.38
2	d	4	MAN	C1-O5-C5	2.12	115.03	112.19
2	D	1	NAG	C4-C3-C2	2.11	114.11	111.02
3	Р	1	NAG	C3-C4-C5	-2.11	106.41	110.23
6	W	4	MAN	C2-C3-C4	-2.11	107.15	110.86
2	Н	4	MAN	C1-O5-C5	2.11	115.01	112.19
2	S	4	MAN	C1-O5-C5	2.10	115.01	112.19
2	0	1	NAG	C4-C3-C2	2.10	114.09	111.02
2	Ζ	4	MAN	C1-O5-C5	2.08	114.97	112.19
2	S	2	NAG	C6-C5-C4	-2.07	107.93	113.02
2	D	4	MAN	C1-O5-C5	2.06	114.95	112.19
2	Н	2	NAG	C6-C5-C4	-2.06	107.95	113.02
6	g	4	MAN	C1-C2-C3	2.06	112.64	109.64
3	i	2	NAG	C4-C3-C2	-2.06	108.00	111.02
2	Ζ	4	MAN	O5-C1-C2	-2.05	105.89	110.79
2	0	4	MAN	C1-O5-C5	2.05	114.94	112.19
2	d	2	NAG	C6-C5-C4	-2.05	107.98	113.02
6	K	4	MAN	C1-C2-C3	2.05	112.63	109.64
3	М	2	NAG	C4-C3-C2	-2.05	108.01	111.02
2	0	4	MAN	O5-C1-C2	-2.05	105.90	110.79
6	K	3	BMA	O3-C3-C2	-2.05	105.88	110.05
6	h	2	NAG	C4-C3-C2	2.04	114.02	111.02
6	V	3	BMA	O3-C3-C2	-2.04	105.88	110.05
6	g	3	BMA	O3-C3-C2	-2.04	105.89	110.05

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	D	4	MAN	O5-C1-C2	-2.04	105.92	110.79
6	V	4	MAN	C1-C2-C3	2.03	112.60	109.64
6	L	2	NAG	C4-C3-C2	2.02	113.98	111.02
2	S	3	BMA	C1-C2-C3	2.01	112.58	109.64
6	W	2	NAG	C4-C3-C2	2.01	113.97	111.02
3	Х	2	NAG	C4-C3-C2	-2.01	108.08	111.02

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
4	F	3	BMA	C4-C5-C6-O6
4	Q	3	BMA	C4-C5-C6-O6
4	b	3	BMA	C4-C5-C6-O6
6	K	3	BMA	O5-C5-C6-O6
6	V	3	BMA	O5-C5-C6-O6
6	g	3	BMA	O5-C5-C6-O6
5	G	2	NAG	O5-C5-C6-O6
5	R	2	NAG	O5-C5-C6-O6
5	с	2	NAG	O5-C5-C6-O6
6	L	2	NAG	O5-C5-C6-O6
6	W	2	NAG	O5-C5-C6-O6
6	h	2	NAG	O5-C5-C6-O6
2	D	1	NAG	C4-C5-C6-O6
2	0	1	NAG	C4-C5-C6-O6
2	Ζ	1	NAG	C4-C5-C6-O6
4	F	3	BMA	O5-C5-C6-O6
4	Q	3	BMA	O5-C5-C6-O6
4	b	3	BMA	O5-C5-C6-O6
6	K	3	BMA	C4-C5-C6-O6
6	V	3	BMA	C4-C5-C6-O6
6	g	3	BMA	C4-C5-C6-O6
5	G	2	NAG	C4-C5-C6-O6
5	R	2	NAG	C4-C5-C6-O6
5	с	2	NAG	C4-C5-C6-O6
2	Н	4	MAN	O5-C5-C6-O6
2	S	4	MAN	O5-C5-C6-O6
2	d	4	MAN	O5-C5-C6-O6
6	K	1	NAG	O5-C5-C6-O6
6	V	1	NAG	O5-C5-C6-O6
6	g	1	NAG	O5-C5-C6-O6
2	D	1	NAG	O5-C5-C6-O6

All (114) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	0	1	NAG	O5-C5-C6-O6
2	Ζ	1	NAG	O5-C5-C6-O6
6	L	2	NAG	C4-C5-C6-O6
6	W	2	NAG	C4-C5-C6-O6
6	h	2	NAG	C4-C5-C6-O6
3	Е	1	NAG	O5-C5-C6-O6
3	Р	1	NAG	O5-C5-C6-O6
3	a	1	NAG	O5-C5-C6-O6
3	Е	1	NAG	C4-C5-C6-O6
3	Р	1	NAG	C4-C5-C6-O6
3	a	1	NAG	C4-C5-C6-O6
7	N	1	NAG	C4-C5-C6-O6
7	Y	1	NAG	C4-C5-C6-O6
7	j	1	NAG	C4-C5-C6-O6
7	Ň	3	SIA	O8-C8-C9-O9
7	Y	3	SIA	O8-C8-C9-O9
7	j	3	SIA	O8-C8-C9-O9
4	F	4	MAN	O5-C5-C6-O6
4	Q	4	MAN	O5-C5-C6-O6
4	b	4	MAN	O5-C5-C6-O6
3	Е	2	NAG	O5-C5-C6-O6
3	Р	2	NAG	O5-C5-C6-O6
3	a	2	NAG	O5-C5-C6-O6
3	J	2	NAG	O5-C5-C6-O6
3	U	2	NAG	O5-C5-C6-O6
3	f	2	NAG	O5-C5-C6-O6
2	D	4	MAN	O5-C5-C6-O6
2	0	4	MAN	O5-C5-C6-O6
2	Ζ	4	MAN	O5-C5-C6-O6
4	F	6	MAN	O5-C5-C6-O6
4	Q	6	MAN	O5-C5-C6-O6
4	b	6	MAN	O5-C5-C6-O6
5	G	3	BMA	O5-C5-C6-O6
5	R	3	BMA	O5-C5-C6-O6
5	с	3	BMA	O5-C5-C6-O6
6	L	4	MAN	O5-C5-C6-O6
6	W	4	MAN	O5-C5-C6-O6
6	h	4	MAN	O5-C5-C6-O6
7	N	1	NAG	O5-C5-C6-O6
7	Y	1	NAG	O5-C5-C6-O6
7	j	1	NAG	O5-C5-C6-O6
2	D	3	BMA	O5-C5-C6-O6

Continued from previous page...

Mol	Chain	Res	Type	Atoms
2	0	3	BMA	O5-C5-C6-O6
2	Ζ	3	BMA	O5-C5-C6-O6
3	Ι	2	NAG	O5-C5-C6-O6
3	М	2	NAG	O5-C5-C6-O6
3	Т	2	NAG	O5-C5-C6-O6
3	Х	2	NAG	O5-C5-C6-O6
3	е	2	NAG	O5-C5-C6-O6
3	i	2	NAG	O5-C5-C6-O6
6	L	5	MAN	O5-C5-C6-O6
6	W	5	MAN	O5-C5-C6-O6
6	h	5	MAN	O5-C5-C6-O6
2	Н	3	BMA	O5-C5-C6-O6
2	S	3	BMA	O5-C5-C6-O6
2	d	3	BMA	O5-C5-C6-O6
6	L	3	BMA	O5-C5-C6-O6
6	W	3	BMA	O5-C5-C6-O6
6	h	3	BMA	O5-C5-C6-O6
3	Ι	1	NAG	C4-C5-C6-O6
3	Т	1	NAG	C4-C5-C6-O6
3	е	1	NAG	C4-C5-C6-O6
5	с	1	NAG	O5-C5-C6-O6
5	G	1	NAG	O5-C5-C6-O6
5	R	1	NAG	O5-C5-C6-O6
6	K	1	NAG	C4-C5-C6-O6
6	g	1	NAG	C4-C5-C6-O6
6	V	1	NAG	C4-C5-C6-O6
7	N	3	SIA	C7-C8-C9-O9
7	Y	3	SIA	C7-C8-C9-O9
7	j	3	SIA	C7-C8-C9-O9
2	H	2	NAG	O5-C5-C6-O6
2	S	2	NAG	O5-C5-C6-O6
2	d	2	NAG	O5-C5-C6-O6
3	е	1	NAG	O5-C5-C6-O6
3	Ι	1	NAG	O5-C5-C6-O6
3	Т	1	NAG	O5-C5-C6-O6
2	S	4	MAN	C4-C5-C6-O6
2	Н	4	MAN	C4-C5-C6-O6
2	d	4	MAN	C4-C5-C6-O6
6	V	2	NAG	C4-C5-C6-O6
6	g	2	NAG	C4-C5-C6-O6
6	K	2	NAG	C4-C5-C6-O6

Continued from previous page...

There are no ring outliers.

2 monomers are involved in 2 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
7	Y	3	SIA	1	0
7	N	3	SIA	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

24 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type Chair	Chain	Dog	Link	Bond lengths			Bond angles			
	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
9	FOL	А	1444	-	34,34,34	1.31	3 (8%)	$43,\!47,\!47$	2.11	8 (18%)

Mol	Tuno	Chain	Dog	Link	Bo	ond leng	ths	Bond angles		
NIOI	туре	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
8	NAG	В	1436	1	$14,\!14,\!15$	1.65	5 (35%)	17,19,21	1.92	4 (23%)
8	NAG	В	1419	1	14,14,15	1.15	1 (7%)	17,19,21	1.24	2 (11%)
8	NAG	А	1416	1	14,14,15	1.65	3 (21%)	17,19,21	1.77	5 (29%)
8	NAG	В	1417	1	14,14,15	1.06	1 (7%)	17,19,21	1.07	2 (11%)
8	NAG	С	1415	1	14,14,15	1.26	1 (7%)	17,19,21	1.12	2 (11%)
8	NAG	С	1416	1	14,14,15	1.65	4 (28%)	17,19,21	1.77	5 (29%)
9	FOL	В	1444	-	34,34,34	1.31	3 (8%)	43,47,47	2.10	8 (18%)
8	NAG	А	1415	1	14,14,15	1.25	1 (7%)	17,19,21	1.12	2 (11%)
8	NAG	А	1419	1	14,14,15	1.15	1 (7%)	17,19,21	1.25	2 (11%)
8	NAG	А	1414	1	14,14,15	1.20	1 (7%)	17,19,21	0.99	1 (5%)
8	NAG	В	1414	1	14,14,15	1.20	1 (7%)	17,19,21	1.00	1 (5%)
8	NAG	А	1418	1	14,14,15	1.09	1 (7%)	17,19,21	1.14	1 (5%)
8	NAG	С	1436	1	14,14,15	1.65	5 (35%)	17,19,21	1.92	4 (23%)
8	NAG	С	1418	1	14,14,15	1.09	1 (7%)	17,19,21	1.13	1 (5%)
8	NAG	С	1417	1	14,14,15	1.06	1 (7%)	17,19,21	1.08	2 (11%)
8	NAG	С	1419	1	14,14,15	1.15	1 (7%)	17,19,21	1.25	2 (11%)
9	FOL	С	1444	-	34,34,34	1.32	3 (8%)	43,47,47	2.11	8 (18%)
8	NAG	В	1416	1	14,14,15	1.65	3 (21%)	17,19,21	1.77	5 (29%)
8	NAG	В	1418	1	14,14,15	1.09	1 (7%)	17,19,21	1.13	1 (5%)
8	NAG	А	1436	1	14,14,15	1.65	5 (35%)	17,19,21	1.93	4 (23%)
8	NAG	С	1414	1	14,14,15	1.19	1 (7%)	17,19,21	1.00	1 (5%)
8	NAG	В	1415	1	14,14,15	1.26	1 (7%)	17,19,21	1.12	2 (11%)
8	NAG	А	1417	1	14,14,15	1.06	1 (7%)	17,19,21	1.08	2 (11%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	FOL	А	1444	-	-	2/22/22/22	0/3/3/3
8	NAG	В	1436	1	-	2/6/23/26	0/1/1/1
8	NAG	В	1419	1	-	2/6/23/26	0/1/1/1
8	NAG	А	1416	1	-	2/6/23/26	0/1/1/1
8	NAG	В	1417	1	-	2/6/23/26	0/1/1/1
8	NAG	С	1415	1	-	2/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	NAG	С	1416	1	-	2/6/23/26	0/1/1/1
9	FOL	В	1444	-	-	2/22/22/22	0/3/3/3
8	NAG	А	1415	1	-	2/6/23/26	0/1/1/1
8	NAG	А	1419	1	-	2/6/23/26	0/1/1/1
8	NAG	А	1414	1	-	1/6/23/26	0/1/1/1
8	NAG	В	1414	1	-	1/6/23/26	0/1/1/1
8	NAG	А	1418	1	-	1/6/23/26	0/1/1/1
8	NAG	С	1436	1	-	2/6/23/26	0/1/1/1
8	NAG	С	1418	1	-	1/6/23/26	0/1/1/1
8	NAG	С	1417	1	-	2/6/23/26	0/1/1/1
8	NAG	С	1419	1	-	2/6/23/26	0/1/1/1
9	FOL	С	1444	-	-	2/22/22/22	0/3/3/3
8	NAG	В	1416	1	-	2/6/23/26	0/1/1/1
8	NAG	В	1418	1	-	1/6/23/26	0/1/1/1
8	NAG	А	1436	1	-	2/6/23/26	0/1/1/1
8	NAG	С	1414	1	-	1/6/23/26	0/1/1/1
8	NAG	В	1415	1	-	2/6/23/26	0/1/1/1
8	NAG	А	1417	1	-	2/6/23/26	0/1/1/1

Continued from previous page...

All (49) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
9	В	1444	FOL	C4A-C8A	4.13	1.48	1.40
9	С	1444	FOL	C4A-C8A	4.11	1.48	1.40
9	А	1444	FOL	C4A-C8A	4.10	1.48	1.40
8	С	1415	NAG	C1-C2	4.09	1.57	1.52
9	С	1444	FOL	C4A-C4	4.07	1.48	1.41
9	А	1444	FOL	C4A-C4	4.06	1.48	1.41
8	А	1415	NAG	C1-C2	4.05	1.57	1.52
8	В	1415	NAG	C1-C2	4.05	1.57	1.52
9	В	1444	FOL	C4A-C4	3.99	1.48	1.41
8	В	1416	NAG	C1-C2	3.98	1.57	1.52
8	А	1416	NAG	C1-C2	3.98	1.57	1.52
8	С	1416	NAG	C1-C2	3.95	1.57	1.52
8	В	1414	NAG	C1-C2	3.55	1.57	1.52
8	А	1414	NAG	C1-C2	3.54	1.57	1.52
8	С	1414	NAG	C1-C2	3.52	1.57	1.52
8	С	1419	NAG	C1-C2	3.49	1.57	1.52
8	А	1419	NAG	C1-C2	3.48	1.57	1.52
8	В	1419	NAG	C1-C2	3.48	1.57	1.52

EMD-20543,	6Q05
------------	------

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
8	А	1418	NAG	C1-C2	3.41	1.57	1.52
8	С	1418	NAG	C1-C2	3.40	1.57	1.52
8	В	1418	NAG	C1-C2	3.40	1.57	1.52
8	С	1416	NAG	O5-C5	3.15	1.49	1.43
8	А	1416	NAG	O5-C5	3.13	1.49	1.43
8	В	1416	NAG	O5-C5	3.13	1.49	1.43
8	А	1417	NAG	C1-C2	3.11	1.56	1.52
8	А	1436	NAG	C1-C2	3.10	1.56	1.52
8	В	1436	NAG	C1-C2	3.10	1.56	1.52
8	В	1417	NAG	C1-C2	3.09	1.56	1.52
8	С	1417	NAG	C1-C2	3.09	1.56	1.52
8	С	1436	NAG	C1-C2	3.09	1.56	1.52
8	В	1436	NAG	O5-C5	2.53	1.48	1.43
8	А	1436	NAG	O5-C5	2.51	1.48	1.43
8	С	1436	NAG	O5-C5	2.51	1.48	1.43
8	С	1436	NAG	C3-C2	2.47	1.57	1.52
8	А	1436	NAG	C3-C2	2.46	1.57	1.52
8	В	1436	NAG	C3-C2	2.46	1.57	1.52
8	С	1436	NAG	O4-C4	-2.45	1.36	1.43
8	В	1436	NAG	O4-C4	-2.44	1.36	1.43
8	А	1436	NAG	O4-C4	-2.44	1.36	1.43
8	А	1436	NAG	C4-C3	2.21	1.58	1.52
8	В	1436	NAG	C4-C3	2.21	1.58	1.52
8	С	1436	NAG	C4-C3	2.20	1.58	1.52
8	С	1416	NAG	C3-C2	2.13	1.57	1.52
8	А	1416	NAG	C3-C2	2.11	1.56	1.52
8	В	1416	NAG	C3-C2	2.10	1.56	1.52
9	А	1444	FOL	C6-N5	2.07	1.35	1.32
9	С	1444	FOL	C6-N5	2.07	1.35	1.32
9	В	1444	FOL	C6-N5	2.04	1.35	1.32
8	С	1416	NAG	O4-C4	-2.00	1.38	1.43

Continued from previous page...

All (75) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	С	1444	FOL	C2-N1-C8A	5.84	121.78	115.48
9	А	1444	FOL	C2-N1-C8A	5.84	121.78	115.48
9	В	1444	FOL	C2-N1-C8A	5.82	121.76	115.48
9	С	1444	FOL	N8-C8A-N1	5.47	121.73	115.77
9	А	1444	FOL	N8-C8A-N1	5.44	121.69	115.77
9	В	1444	FOL	N8-C8A-N1	5.43	121.69	115.77
9	В	1444	FOL	C8A-C4A-C4	-5.16	116.77	119.96

α \cdot \cdot \cdot	C		
Continued	from	previous	page
	5	1	1 0

Mol	Chain	\mathbf{Res}	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
9	А	1444	FOL	C8A-C4A-C4	-5.16	116.77	119.96
9	С	1444	FOL	C8A-C4A-C4	-5.12	116.79	119.96
8	А	1436	NAG	C3-C4-C5	-5.07	101.04	110.23
8	В	1436	NAG	C3-C4-C5	-5.06	101.06	110.23
8	С	1436	NAG	C3-C4-C5	-5.04	101.09	110.23
9	С	1444	FOL	C2-N3-C4	4.49	122.20	115.96
9	А	1444	FOL	C2-N3-C4	4.48	122.19	115.96
9	В	1444	FOL	C2-N3-C4	4.44	122.14	115.96
8	С	1416	NAG	O4-C4-C5	4.36	120.05	109.32
8	В	1416	NAG	O4-C4-C5	4.34	120.02	109.32
8	А	1416	NAG	O4-C4-C5	4.34	120.01	109.32
9	С	1444	FOL	C4A-C4-N3	-4.31	117.66	123.42
9	А	1444	FOL	C4A-C4-N3	-4.29	117.69	123.42
9	В	1444	FOL	C4A-C4-N3	-4.25	117.74	123.42
9	А	1444	FOL	N1-C2-N3	-3.75	122.45	127.21
9	С	1444	FOL	N1-C2-N3	-3.75	122.45	127.21
9	В	1444	FOL	N1-C2-N3	-3.74	122.46	127.21
8	С	1436	NAG	C1-O5-C5	3.56	116.95	112.19
8	А	1436	NAG	C1-O5-C5	3.54	116.93	112.19
8	В	1436	NAG	C1-O5-C5	3.52	116.90	112.19
8	С	1436	NAG	O5-C1-C2	-3.47	105.92	111.29
8	А	1436	NAG	O5-C1-C2	-3.46	105.93	111.29
8	В	1436	NAG	O5-C1-C2	-3.45	105.95	111.29
8	С	1415	NAG	C4-C3-C2	-3.38	106.07	111.02
8	А	1415	NAG	C4-C3-C2	-3.38	106.07	111.02
8	В	1415	NAG	C4-C3-C2	-3.37	106.08	111.02
8	А	1418	NAG	C4-C3-C2	-3.32	106.15	111.02
8	В	1418	NAG	C4-C3-C2	-3.31	106.16	111.02
8	С	1418	NAG	C4-C3-C2	-3.31	106.17	111.02
8	А	1419	NAG	C4-C3-C2	-3.11	106.47	111.02
8	В	1419	NAG	C4-C3-C2	-3.10	106.47	111.02
8	С	1419	NAG	C4-C3-C2	-3.10	106.48	111.02
8	А	1419	NAG	O5-C1-C2	-2.91	106.79	111.29
8	С	1419	NAG	O5-C1-C2	-2.90	106.80	111.29
8	В	1419	NAG	O5-C1-C2	-2.89	106.81	111.29
8	А	1416	NAG	O5-C1-C2	-2.88	106.83	111.29
8	С	1416	NAG	O5-C1-C2	-2.87	106.85	111.29
8	В	1416	NAG	O5-C1-C2	-2.86	106.87	111.29
8	В	1416	NAG	O4-C4-C3	2.78	116.93	110.38
8	A	1416	NAG	O4-C4-C3	2.78	116.93	110.38
8	C	1416	NAG	O4-C4-C3	2.78	116.92	110.38
8	В	1414	NAG	O5-C1-C2	-2.54	107.37	111.29

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
8	С	1414	NAG	O5-C1-C2	-2.53	107.37	111.29
8	А	1414	NAG	O5-C1-C2	-2.53	107.37	111.29
8	А	1416	NAG	C1-O5-C5	2.51	115.55	112.19
8	С	1415	NAG	O5-C1-C2	-2.50	107.42	111.29
8	А	1415	NAG	O5-C1-C2	-2.50	107.43	111.29
8	В	1416	NAG	C1-O5-C5	2.50	115.53	112.19
8	В	1415	NAG	O5-C1-C2	-2.49	107.44	111.29
8	С	1416	NAG	C1-O5-C5	2.49	115.53	112.19
9	В	1444	FOL	C8A-C4A-N5	-2.47	119.66	122.30
9	А	1444	FOL	C8A-C4A-N5	-2.45	119.69	122.30
9	С	1444	FOL	C8A-C4A-N5	-2.44	119.69	122.30
8	С	1416	NAG	C3-C4-C5	-2.43	105.82	110.23
8	С	1417	NAG	O5-C1-C2	-2.43	107.53	111.29
8	А	1416	NAG	C3-C4-C5	-2.43	105.83	110.23
8	В	1416	NAG	C3-C4-C5	-2.43	105.83	110.23
8	В	1417	NAG	O5-C1-C2	-2.42	107.54	111.29
8	А	1417	NAG	O5-C1-C2	-2.42	107.55	111.29
8	С	1417	NAG	C4-C3-C2	-2.41	107.49	111.02
8	А	1417	NAG	C4-C3-C2	-2.39	107.51	111.02
8	В	1417	NAG	C4-C3-C2	-2.38	107.53	111.02
8	В	1436	NAG	O5-C5-C6	-2.37	103.04	107.66
8	А	1436	NAG	O5-C5-C6	-2.37	103.06	107.66
8	С	1436	NAG	O5-C5-C6	-2.35	103.09	107.66
9	С	1444	FOL	C11-C-N	2.26	121.23	117.04
9	В	1444	FOL	C11-C-N	2.25	121.21	117.04
9	A	1444	FOL	C11-C-N	2.25	121.21	117.04

Continued from previous page...

There are no chirality outliers.

All (42) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
8	А	1436	NAG	O5-C5-C6-O6
8	В	1436	NAG	O5-C5-C6-O6
8	С	1436	NAG	O5-C5-C6-O6
8	А	1416	NAG	O5-C5-C6-O6
8	В	1416	NAG	O5-C5-C6-O6
8	С	1416	NAG	O5-C5-C6-O6
8	А	1419	NAG	O5-C5-C6-O6
8	С	1419	NAG	O5-C5-C6-O6
8	В	1419	NAG	O5-C5-C6-O6
8	А	1436	NAG	C4-C5-C6-O6
8	В	1436	NAG	C4-C5-C6-O6

EMD-20543,	6Q05
------------	------

Mal	Mol Choire Dec Trees								
	Unain	nes	Lype	Atoms					
8	C	1436	NAG	C4-C5-C6-O6					
8	A	1416	NAG	C4-C5-C6-O6					
8	В	1416	NAG	C4-C5-C6-O6					
8	С	1416	NAG	C4-C5-C6-O6					
8	А	1417	NAG	O5-C5-C6-O6					
8	В	1417	NAG	O5-C5-C6-O6					
8	С	1417	NAG	O5-C5-C6-O6					
8	А	1415	NAG	O5-C5-C6-O6					
8	В	1415	NAG	O5-C5-C6-O6					
8	С	1415	NAG	O5-C5-C6-O6					
8	А	1417	NAG	C4-C5-C6-O6					
8	В	1417	NAG	C4-C5-C6-O6					
8	С	1417	NAG	C4-C5-C6-O6					
8	А	1414	NAG	O5-C5-C6-O6					
8	В	1414	NAG	O5-C5-C6-O6					
8	С	1414	NAG	O5-C5-C6-O6					
8	С	1419	NAG	C4-C5-C6-O6					
8	А	1418	NAG	O5-C5-C6-O6					
8	С	1418	NAG	O5-C5-C6-O6					
8	А	1419	NAG	C4-C5-C6-O6					
8	В	1419	NAG	C4-C5-C6-O6					
8	В	1418	NAG	O5-C5-C6-O6					
8	А	1415	NAG	C4-C5-C6-O6					
8	В	1415	NAG	C4-C5-C6-O6					
8	С	1415	NAG	C4-C5-C6-O6					
9	А	1444	FOL	OE1-CD-CG-CB					
9	В	1444	FOL	OE1-CD-CG-CB					
9	С	1444	FOL	OE1-CD-CG-CB					
9	С	1444	FOL	OE2-CD-CG-CB					
9	А	1444	FOL	OE2-CD-CG-CB					
9	В	1444	FOL	OE2-CD-CG-CB					

Continued from previous page...

There are no ring outliers.

3 monomers are involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
9	А	1444	FOL	1	0
9	В	1444	FOL	1	0
9	С	1444	FOL	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In

addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-20543. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 200

Y Index: 200

Z Index: 200
The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 213

Y Index: 193

Z Index: 223

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.9. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 152 nm^3 ; this corresponds to an approximate mass of 137 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.357 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-20543 and PDB model 6Q05. Per-residue inclusion information can be found in section 3 on page 17.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.9 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.9).

9.4 Atom inclusion (i)

At the recommended contour level, 87% of all backbone atoms, 82% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.9) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.8160	0.5790
А	0.8450	0.5910
В	0.8450	0.5900
С	0.8470	0.5910
D	0.4600	0.4380
E	0.2140	0.2400
F	0.4940	0.4220
G	0.2050	0.2820
Н	0.2400	0.2540
Ι	0.2860	0.3780
J	0.2140	0.3410
K	0.5080	0.4390
L	0.3610	0.3800
М	0.3210	0.2850
N	0.2500	0.4040
0	0.4800	0.4470
Р	0.2140	0.2310
Q	0.4820	0.4220
R	0.2050	0.2680
S	0.2400	0.2470
Т	0.2860	0.3870
U	0.2140	0.3440
V	0.4920	0.4230
W	0.3440	0.3830
X	0.2860	0.2810
Y	0.2140	0.3880
Z	0.4800	0.4410
a	0.2140	0.2380
b	0.4940	0.4220
С	0.2050	0.2590
d	0.2400	0.2620
e	0.2500	0.3780
f	0.2140	0.3540
g	0.4920	0.4280
h h	0.3610	0.3800

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
i	0.2860	0.2910
j	0.2500	0.3870

