

Full wwPDB X-ray Structure Validation Report (i)

Oct 29, 2024 – 09:00 AM EDT

PDB ID	:	3Q4J
Title	:	Structure of a small peptide ligand bound to E.coli DNA sliding clamp
Authors	:	Wolff, P.; Olieric, V.; Briand, J.P.; Chaloin, O.; Dejaegere, A.; Dumas, P.;
		Ennifar, E.; Guichard, G.; Wagner, J.; Burnouf, D.
Deposited on	:	2010-12-23
Resolution	:	2.30 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	1.20.1
EDS	:	3.0
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.003 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} {\rm Whole \ archive} \\ {\rm (\#Entries)} \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$		
R_{free}	164625	5963 (2.30-2.30)		
Clashscore	180529	6698 (2.30-2.30)		
Ramachandran outliers	177936	6640 (2.30-2.30)		
Sidechain outliers	177891	6640 (2.30-2.30)		
RSRZ outliers	164620	5963 (2.30-2.30)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	٨	266	3%		
	A	300	84%	16%	
1	Б	900	2% •		
I	В	300	85%	14%	•
	~		3%		
1	С	366	85%	15%	
			4%		
1	D	366	81%	19%	
			3%		
1	E	366	87%	12%	•

Mol	Chain	Length	Quality of chain	
1	F	366	^{2%} 85%	15%
2	Н	6	67%	33%
2	Ι	6	33%	17%
2	J	6	50%	33%
2	K	6	67%	33%
2	L	6	17%	50%

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 17322 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1		266	Total	С	Ν	0	\mathbf{S}	0	1	0
1	Л	500	2774	1747	479	530	18	0	I	0
1	В	364	Total	С	Ν	0	S	0	0	0
1	D	504	2792	1756	485	532	19	0	0	0
1	С	365	Total	С	Ν	0	S	0	0	0
1	U		2772	1748	472	533	19	0		
1	Л	365	Total	С	Ν	0	S	0	0	Ο
1	D	505	2779	1748	482	530	19	0	0	U
1	F	364	Total	С	Ν	0	S	0	0	0
1	Ľ	304	2777	1744	482	532	19	0		0
1	1 F	365	Total	С	Ν	Ο	S	0	0	0
		505	2800	1762	486	533	19	0 0	0	

• Molecule 1 is a protein called DNA polymerase III subunit beta.

• Molecule 2 is a protein called peptide ligand.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
2	Н	6	Total C N O 48 32 6 10	0	0	0
2	Ι	6	Total C N O 48 32 6 10	0	0	0
2	J	6	Total C N O 48 32 6 10	0	0	0
2	K	6	Total C N O 48 32 6 10	0	0	0
2	L	6	Total C N O 48 32 6 10	0	0	0

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	48	Total O 48 48	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	В	98	Total O 98 98	0	0
3	С	44	Total O 44 44	0	0
3	D	46	Total O 46 46	0	0
3	Е	75	Total O 75 75	0	0
3	F	72	Total O 72 72	0	0
3	Н	3	Total O 3 3	0	0
3	K	2	Total O 2 2	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: DNA polymerase III subunit beta

• Molecule 1: DNA polymerase III subunit beta

• Molecule 2: peptide ligand

	50%	
Chain J:	67%	33%
ACE69 q70 L71 L73 F74		
• Molecule 2: pep	otide ligand	
Chain K:	67%	33%
ACE69 173 F74		
• Molecule 2: pep	otide ligand	
Chain L:	50%	50%
ACE69 D72 E74		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	35.09Å 132.87Å 137.27Å	Deresiter
a, b, c, α , β , γ	62.73° 88.51° 89.77°	Depositor
$\mathbf{P}_{\text{oscolution}}(\hat{\mathbf{A}})$	29.52 - 2.30	Depositor
Resolution (A)	29.52 - 2.30	EDS
% Data completeness	(Not available) $(29.52-2.30)$	Depositor
(in resolution range)	98.6 (29.52-2.30)	EDS
R _{merge}	0.05	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$3.50 (at 2.31 \text{\AA})$	Xtriage
Refinement program	BUSTER-TNT BUSTER 2.8.0, BUSTER 2.8.0	Depositor
D D.	0.214 , 0.254	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.220 , 0.260	DCC
R_{free} test set	1959 reflections (2.03%)	wwPDB-VP
Wilson B-factor $(Å^2)$	42.4	Xtriage
Anisotropy	0.487	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.31 , 35.3	EDS
L-test for twinning ²	$< L > = 0.51, < L^2 > = 0.34$	Xtriage
	0.024 for h,-k,-l	
Estimated twinning fraction	0.000 for -h,k,k-l	Xtriage
	$0.000 { m ~for -h,-k,-k+l}$	
F_o, F_c correlation	0.95	EDS
Total number of atoms	17322	wwPDB-VP
Average B, all atoms $(Å^2)$	53.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 11.06% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ACE

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.46	0/2827	0.69	0/3841	
1	В	0.53	0/2840	0.70	0/3851	
1	С	0.49	0/2821	0.73	0/3829	
1	D	0.48	0/2826	0.70	0/3837	
1	Е	0.51	0/2825	0.70	1/3831~(0.0%)	
1	F	0.53	0/2847	0.72	0/3860	
2	Н	0.69	0/46	0.70	0/60	
2	Ι	0.58	0/46	0.67	0/60	
2	J	0.55	0/46	0.67	0/60	
2	Κ	0.57	0/46	0.65	0/60	
2	Ĺ	0.56	0/46	0.61	0/60	
All	All	0.50	0/17216	0.70	1/23349~(0.0%)	

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Ε	39	ASP	N-CA-C	5.75	126.51	111.00

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2774	0	2722	35	0
1	В	2792	0	2771	27	0
1	С	2772	0	2731	26	0
1	D	2779	0	2738	41	0
1	Е	2777	0	2726	27	0
1	F	2800	0	2789	27	0
2	Н	48	0	46	2	0
2	Ι	48	0	46	0	0
2	J	48	0	46	1	0
2	K	48	0	46	3	0
2	L	48	0	46	2	0
3	А	48	0	0	0	0
3	В	98	0	0	0	0
3	С	44	0	0	1	0
3	D	46	0	0	0	0
3	Е	75	0	0	0	0
3	F	72	0	0	0	0
3	Н	3	0	0	0	0
3	Κ	2	0	0	0	0
All	All	17322	0	16707	180	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (180) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:32:ASN:HB3	1:A:69:THR:HG22	1.28	1.13
1:D:280:GLY:HA2	1:D:364:MET:HE1	1.35	1.09
1:E:32:ASN:HB3	1:E:69:THR:HG22	1.33	1.05
1:D:280:GLY:CA	1:D:364:MET:HE1	1.98	0.91
1:D:1:MET:HB3	1:D:66:GLY:HA3	1.57	0.86
1:C:260:CYS:SG	3:C:415:HOH:O	2.42	0.77
1:A:127:GLU:HB2	1:C:65:PRO:HG3	1.70	0.73
1:A:32:ASN:CB	1:A:69:THR:HG22	2.14	0.73
1:D:280:GLY:HA2	1:D:364:MET:CE	2.15	0.73
1:A:98:LEU:HD23	1:A:100:ARG:HH12	1.50	0.72
1:E:249:PRO:HD2	1:E:348:GLN:HE21	1.54	0.71
1:F:2:LYS:HB2	1:F:64:GLU:HB2	1.73	0.70
1:A:249:PRO:HD2	1:A:348:GLN:HE21	1.56	0.70
1:B:249:PRO:HD2	1:B:348:GLN:HE21	1.57	0.69
1:B:16:GLN:HE21	1:B:53:MET:HE2	1.56	0.69

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:214:LEU:HD11	1:C:225:ALA:HB1	1.75	0.68	
1:C:249:PRO:HD2	1:C:348:GLN:HE21	1.58	0.67	
1:E:214:LEU:HD11	1:E:225:ALA:HB1	1.76	0.67	
1:E:1:MET:HE2	1:E:37:VAL:HG23	1.77	0.67	
1:E:32:ASN:CB	1:E:69:THR:HG22	2.19	0.66	
1:D:214:LEU:HD11	1:D:225:ALA:HB1	1.77	0.66	
1:D:98:LEU:HD23	1:D:100:ARG:HH12	1.59	0.66	
1:A:249:PRO:HB2	1:A:252:PRO:HG3	1.78	0.66	
1:F:139:ILE:HG21	1:F:204:MET:HG2	1.76	0.66	
1:A:214:LEU:HD11	1:A:225:ALA:HB1	1.78	0.65	
1:B:100:ARG:HG2	1:B:105:ARG:HG2	1.78	0.65	
1:D:1:MET:HB3	1:D:66:GLY:CA	2.26	0.65	
1:C:338:MET:HG2	1:C:349:ILE:HG12	1.79	0.65	
1:D:249:PRO:HD2	1:D:348:GLN:HE21	1.62	0.64	
1:F:214:LEU:HD11	1:F:225:ALA:HB1	1.80	0.63	
1:B:53:MET:HE3	1:B:230:PHE:HB3	1.81	0.62	
1:F:249:PRO:HD2	1:F:348:GLN:HE21	1.64	0.62	
1:B:53:MET:CE	1:B:230:PHE:HB3	2.30	0.62	
1:D:139:ILE:HG21	1:D:204:MET:HG2	1.82	0.61	
1:E:139:ILE:HG21	1:E:204:MET:HG2	1.83	0.60	
1:B:139:ILE:HG21	1:B:204:MET:HG2	1.84	0.60	
1:C:281:VAL:HG12	1:C:294:ALA:HB2	1.84	0.60	
1:B:214:LEU:HD11	1:B:225:ALA:HB1	1.82	0.59	
1:C:139:ILE:HG21	1:C:204:MET:HG2	1.84	0.59	
1:F:20:PRO:O	1:F:48:ASP:HB3	2.03	0.58	
1:F:70:VAL:HG11	1:F:97:MET:SD	2.44	0.58	
1:E:247:VAL:HG13	2:K:73:LEU:HD22	1.86	0.58	
1:D:128:PHE:HA	1:D:186:GLN:HE22	1.71	0.56	
1:F:68:THR:HG21	1:F:92:LEU:HD21	1.87	0.56	
1:A:139:ILE:HG21	1:A:204:MET:HG2	1.87	0.56	
1:F:6:GLU:OE2	1:F:8:GLU:HG2	2.06	0.55	
1:F:338:MET:HE3	1:F:347:VAL:HG21	1.89	0.55	
1:D:65:PRO:HD2	1:F:187:SER:O	2.07	0.55	
1:E:340:LEU:HG	1:E:347:VAL:HG23	1.89	0.55	
1:C:20:PRO:HG2	1:C:53:MET:HG2	1.90	0.54	
1:E:1:MET:CE	1:E:37:VAL:HG23	2.38	0.54	
1:A:284:TYR:CE1	1:A:316:GLU:HG3	2.43	0.54	
1:B:170:VAL:HG22	1:B:179:VAL:HG23	1.89	0.54	
1:F:247:VAL:HG13	2:L:73:LEU:HD22	1.90	0.54	
1:A:32:ASN:HB3	1:A:69:THR:CG2	2.20	0.53	
1:C:128:PHE:HB3	1:C:188:LEU:HD21	1.91	0.53	

		Interatomic	Clash	
Atom-1	Atom-2	distance $(Å)$	overlan (Å)	
1·E·338·MET·HG2	1·E·349·ILE·HG12	1.91	0.53	
1:E:39:ASP:CG	1:E:39:ASP:O	2.47	0.53	
1·E·1·MET·HE1	1:E:35:LEU:HB3	1.91	0.53	
1:D:249:PRO:HB2	1:D:252:PRO:HG3	1.91	0.52	
1:D:284:TYR:CE1	1:D:316:GLU:HG3	2.44	0.52	
1:D:340:LEU:HG	1:D:347:VAL:HG23	1.89	0.52	
1:F:340:LEU:HG	1:F:347:VAL:HG23	1.91	0.52	
1:A:340:LEU:HG	1:A:347:VAL:HG23	1.91	0.51	
1:B:150:ASP:OD2	1:B:152:ARG:HD3	2.11	0.51	
1:A:2:LYS:HB3	1:A:64:GLU:HB3	1.93	0.51	
1:D:39:ASP:OD2	1:D:39:ASP:CB	2.58	0.51	
1:E:249:PRO:HB2	1:E:252:PRO:HG3	1.93	0.51	
1:B:249:PRO:HB2	1:B:252:PRO:HG3	1.92	0.51	
1:C:340:LEU:HG	1:C:347:VAL:HG23	1.93	0.51	
1:E:170:VAL:HG22	1:E:179:VAL:HG23	1.92	0.51	
1:B:340:LEU:HG	1:B:347:VAL:HG23	1.92	0.51	
1:A:170:VAL:HG22	1:A:179:VAL:HG23	1.92	0.50	
1:C:2:LYS:HB3	1:C:64:GLU:HB3	1.92	0.50	
1:C:6:GLU:HB3	1:C:9:HIS:HD2	1.76	0.50	
1:D:52:GLU:HG2	1:D:119:LEU:HD22	1.93	0.50	
1:B:144:PHE:CD2	1:B:326:ASP:HB3	2.47	0.50	
1:B:13:PRO:HA	1:B:230:PHE:HE1	1.76	0.50	
1:D:13:PRO:HA	1:D:230:PHE:HE1	1.77	0.50	
1:D:280:GLY:CA	1:D:364:MET:CE	2.82	0.50	
1:D:33:LEU:HG	1:D:72:ALA:HB2	1.94	0.50	
1:D:338:MET:HG2	1:D:349:ILE:HG12	1.93	0.50	
1:E:360:VAL:HG12	2:K:73:LEU:HD21	1.94	0.50	
1:F:338:MET:HG2	1:F:349:ILE:HG12	1.94	0.50	
1:B:2:LYS:HB3	1:B:64:GLU:HB3	1.94	0.49	
1:F:184:ILE:HD11	1:F:188:LEU:HD11	1.95	0.49	
1:E:13:PRO:HA	1:E:230:PHE:HE1	1.77	0.49	
1:D:100:ARG:HG2	1:D:105:ARG:HG3	1.94	0.49	
1:E:2:LYS:HB3	1:E:64:GLU:HB2	1.94	0.49	
1:D:338:MET:HE3	1:D:347:VAL:HG21	1.95	0.49	
1:E:150:ASP:OD2	1:E:152:ARG:HD3	2.12	0.49	
1:A:150:ASP:OD1	1:A:152:ARG:HD3	2.12	0.49	
1:A:144:PHE:CD2	1:A:326:ASP:HB3	2.48	0.48	
1:C:338:MET:HE3	1:C:347:VAL:HG21	1.95	0.48	
1:B:247:VAL:HG13	2:H:73:LEU:HD22	1.95	0.48	
1:C:255:HIS:HD2	1:C:339:MET:HG2	1.78	0.48	
1:D:70:VAL:HG11	1:D:97:MET:SD	2.53	0.48	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:338:MET:HE3	1:B:347:VAL:HG21	1.96	0.48	
1:C:170:VAL:HG22	1:C:179:VAL:HG23	1.96	0.48	
1:A:53:MET:HB3	1:A:230:PHE:CZ	2.49	0.48	
1:F:156:ASN:O	1:F:197:ARG:HB2	2.14	0.48	
1:D:257:GLU:HG2	1:D:337:ARG:HG2	1.96	0.48	
1:A:127:GLU:CD	1:C:39:ASP:H	2.17	0.47	
1:D:170:VAL:HG22	1:D:179:VAL:HG23	1.95	0.47	
1:C:144:PHE:CD2	1:C:326:ASP:HB3	2.49	0.47	
1:F:150:ASP:OD2	1:F:152:ARG:HD3	2.15	0.47	
1:A:21:LEU:H	1:A:21:LEU:HD12	1.80	0.47	
1:A:338:MET:HE3	1:A:347:VAL:HG21	1.97	0.47	
1:F:33:LEU:HG	1:F:72:ALA:HB2	1.96	0.47	
1:F:147:ALA:HB2	1:F:173:ASP:HA	1.97	0.47	
1:C:70:VAL:HG11	1:C:97:MET:SD	2.55	0.47	
1:F:170:VAL:HG22	1:F:179:VAL:HG23	1.98	0.46	
1:B:360:VAL:HG12	2:H:73:LEU:HD21	1.96	0.46	
1:C:17:VAL:HG23	1:C:33:LEU:HD11	1.97	0.46	
1:A:127:GLU:HG3	1:A:217:GLN:HG2	1.98	0.46	
1:D:247:VAL:HG13	2:J:73:LEU:HD22	1.98	0.46	
1:A:146:MET:HE1	1:A:197:ARG:HA	1.98	0.46	
1:D:146:MET:HE1	1:D:197:ARG:HA	1.98	0.46	
1:F:2:LYS:HD2	1:F:91:GLN:HB2	1.97	0.46	
1:A:338:MET:HG2	1:A:349:ILE:HG12	1.97	0.46	
1:B:33:LEU:HG	1:B:72:ALA:HB2	1.98	0.46	
1:D:144:PHE:CD2	1:D:326:ASP:HB3	2.50	0.46	
1:A:147:ALA:HB1	1:A:150:ASP:HB2	1.98	0.46	
1:E:33:LEU:HG	1:E:72:ALA:HB2	1.98	0.45	
1:E:155:LEU:HD22	1:E:172:THR:HG23	1.97	0.45	
1:C:20:PRO:HG3	1:C:202:GLU:OE1	2.16	0.45	
1:D:281:VAL:HG12	1:D:294:ALA:HB2	1.98	0.45	
1:D:17:VAL:HG12	1:D:53:MET:HG3	1.97	0.45	
1:F:33:LEU:O	1:F:69:THR:HA	2.16	0.45	
1:E:144:PHE:CD2	1:E:326:ASP:HB3	2.51	0.45	
1:A:50:GLU:HA	1:A:235:LYS:HD2	1.99	0.44	
1:B:147:ALA:O	1:B:197:ARG:NH1	2.46	0.44	
1:C:150:ASP:OD2	1:C:152:ARG:HD3	2.18	0.44	
1:C:206:MET:HE2	1:C:227:VAL:HG12	1.99	0.44	
1:C:155:LEU:HD22	1:C:172:THR:HG23	1.99	0.44	
1:D:249:PRO:HD2	1:D:348:GLN:NE2	2.32	0.44	
1:E:147:ALA:HB2	1:E:173:ASP:HA	1.98	0.44	
1:E:174:GLY:HA2	2:K:74:PHE:CZ	2.52	0.44	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:147:ALA:HB2	1:B:173:ASP:HA	1.98	0.44	
1:A:33:LEU:HG	1:A:72:ALA:HB2	2.00	0.44	
1:F:174:GLY:HA2	2:L:74:PHE:CZ	2.53	0.43	
1:A:255[A]:HIS:NE2	1:A:339:MET:HG2	2.33	0.43	
1:D:2:LYS:HG2	1:D:91:GLN:CB	2.48	0.43	
1:B:16:GLN:HE21	1:B:53:MET:CE	2.29	0.43	
1:C:147:ALA:HB2	1:C:173:ASP:HA	2.00	0.43	
1:D:155:LEU:HD22	1:D:172:THR:HG23	2.01	0.43	
1:E:70:VAL:HG11	1:E:97:MET:SD	2.58	0.43	
1:E:147:ALA:HB1	1:E:150:ASP:HB2	2.01	0.43	
1:A:263:LEU:HD23	1:A:336:VAL:HG21	1.99	0.43	
1:F:346:SER:HA	1:F:363:PRO:HD3	2.01	0.43	
1:B:70:VAL:HG11	1:B:97:MET:SD	2.58	0.43	
1:B:147:ALA:HB1	1:B:150:ASP:HB2	2.00	0.43	
1:D:27:LEU:HB2	1:D:30:LEU:HG	2.01	0.43	
1:F:144:PHE:CD2	1:F:326:ASP:HB3	2.54	0.43	
1:A:331:LEU:HD13	1:A:336:VAL:HG12	2.00	0.42	
1:B:27:LEU:HB2	1:B:30:LEU:HG	2.01	0.42	
1:B:338:MET:HG2	1:B:349:ILE:HG12	2.01	0.42	
1:D:161:GLU:OE1	1:D:168:ARG:NH2	2.53	0.42	
1:D:33:LEU:O	1:D:69:THR:HA	2.19	0.42	
1:D:337:ARG:HG3	1:D:352:ALA:HA	2.02	0.42	
1:A:14:LEU:O	1:A:18:SER:HB3	2.20	0.42	
1:A:346:SER:HA	1:A:363:PRO:HD3	2.02	0.42	
1:B:15:GLN:HG3	1:B:76:PHE:CE1	2.55	0.41	
1:C:27:LEU:HB2	1:C:30:LEU:HG	2.01	0.41	
1:C:12:LYS:HB3	1:C:13:PRO:HD3	2.01	0.41	
1:A:27:LEU:HB2	1:A:30:LEU:HG	2.01	0.41	
1:A:159:LEU:O	1:A:169:THR:HA	2.21	0.41	
1:D:217:GLN:NE2	1:D:226:HIS:NE2	2.68	0.41	
1:A:295:ASN:HA	1:A:300:GLU:O	2.21	0.41	
1:D:156:ASN:O	1:D:197:ARG:HB2	2.21	0.41	
1:D:285:VAL:HG12	1:D:290:LEU:HD13	2.03	0.41	
1:A:283:LEU:O	1:A:316:GLU:HA	2.21	0.41	
1:F:27:LEU:HB2	1:F:30:LEU:HG	2.03	0.41	
1:E:159:LEU:O	1:E:169:THR:HA	2.22	0.40	
1:F:339:MET:CE	1:F:350:GLU:HG2	2.51	0.40	
1:E:249:PRO:HD2	1:E:348:GLN:NE2	2.30	0.40	
1:A:156:ASN:O	1:A:197:ARG:HB2	2.21	0.40	
1:B:50:GLU:HA	1:B:235:LYS:HD2	2.03	0.40	
1:D:128:PHE:HB3	1:D:188:LEU:HD21	2.04	0.40	

Continued from previous page...

Atom-1	Atom-2	$\begin{array}{c} \text{Interatomic} \\ \text{distance} \ (\text{\AA}) \end{array}$	Clash overlap (Å)	
1:F:295:ASN:HA	1:F:300:GLU:O	2.22	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	365/366~(100%)	353~(97%)	11 (3%)	1 (0%)	37	47
1	В	360/366~(98%)	350~(97%)	9 (2%)	1 (0%)	37	47
1	С	363/366~(99%)	351 (97%)	12 (3%)	0	100	100
1	D	363/366~(99%)	355~(98%)	8 (2%)	0	100	100
1	Е	360/366~(98%)	351 (98%)	8 (2%)	1 (0%)	37	47
1	F	363/366~(99%)	356~(98%)	7 (2%)	0	100	100
2	Н	4/6~(67%)	3 (75%)	1 (25%)	0	100	100
2	Ι	4/6~(67%)	4 (100%)	0	0	100	100
2	J	4/6~(67%)	4 (100%)	0	0	100	100
2	Κ	4/6~(67%)	4 (100%)	0	0	100	100
2	L	4/6 (67%)	4 (100%)	0	0	100	100
All	All	2194/2226~(99%)	2135 (97%)	56 (3%)	3 (0%)	48	60

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	Е	39	ASP
1	В	49	LEU
1	А	22	GLY

3Q4J

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Analysed Rotameric Outl		Perce	entiles
1	А	296/313~(95%)	291~(98%)	5(2%)	56	72
1	В	303/313~(97%)	292~(96%)	11 (4%)	30	44
1	С	297/313~(95%)	287~(97%)	10 (3%)	32	47
1	D	297/313~(95%)	288~(97%)	9(3%)	36	52
1	Ε	297/313~(95%)	291~(98%)	6(2%)	50	68
1	F	303/313~(97%)	294 (97%)	9(3%)	36	52
2	Н	5/5~(100%)	4 (80%)	1 (20%)	1	1
2	Ι	5/5~(100%)	4 (80%)	1 (20%)	1	1
2	J	5/5~(100%)	4 (80%)	1 (20%)	1	1
2	Κ	5/5~(100%)	5 (100%)	0	100	100
2	L	5/5~(100%)	4 (80%)	1 (20%)	1	1
All	All	1818/1903~(96%)	1764 (97%)	54 (3%)	36	52

All (54) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	129	THR
1	А	176	ARG
1	А	188	LEU
1	А	192	SER
1	А	212	ASN
1	В	26	THR
1	В	39	ASP
1	В	56	ARG
1	В	125	GLU
1	В	129	THR
1	В	176	ARG
1	В	184	ILE
1	В	191	HIS
1	В	212	ASN
1	В	253	ASP

Mol	Chain	Res	Type
1	В	295	ASN
1	С	21	LEU
1	С	39	ASP
1	С	87	GLU
1	С	129	THR
1	С	176	ARG
1	С	192	SER
1	С	212	ASN
1	С	253	ASP
1	С	285	VAL
1	С	355	GLN
1	D	56	ARG
1	D	93	GLU
1	D	121	ASP
1	D	123	GLN
1	D	129	THR
1	D	176	ARG
1	D	253	ASP
1	D	334	GLU
1	D	364	MET
1	Е	64	GLU
1	Е	129	THR
1	Е	176	ARG
1	Е	192	SER
1	Е	334	GLU
1	Е	355	GLN
1	F	11	LEU
1	F	27	LEU
1	F	62	PRO
1	F	84	GLU
1	F	129	THR
1	F	176	ARG
1	F	192	SER
1	F	251	ASN
1	F	285	VAL
2	Н	72	ASP
2	Ι	72	ASP
2	J	72	ASP
2	L	72	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (40) such sidechains are listed below:

Mol	Chain	Res	Type
1	A	9	HIS
1	А	61	GLN
1	А	191	HIS
1	А	217	GLN
1	А	335	ASN
1	А	348	GLN
1	В	16	GLN
1	В	61	GLN
1	В	143	GLN
1	В	217	GLN
1	В	265	GLN
1	В	335	ASN
1	В	348	GLN
1	С	9	HIS
1	С	91	GLN
1	С	191	HIS
1	С	255	HIS
1	С	265	GLN
1	С	335	ASN
1	С	348	GLN
1	D	16	GLN
1	D	186	GLN
1	D	191	HIS
1	D	217	GLN
1	D	265	GLN
1	D	335	ASN
1	D	348	GLN
1	E	191	HIS
1	E	217	GLN
1	E	265	GLN
1	E	335	ASN
1	E	348	GLN
1	F	9	HIS
1	F	191	HIS
1	F	217	GLN
1	F	265	GLN
1	F	335	ASN
1	F	348	GLN
2	Ι	70	GLN
2	J	70	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$<$ RSRZ $>$	#RSRZ>2	$\mathbf{OWAB}(\mathbf{A}^2)$	Q<0.9
1	А	366/366~(100%)	0.54	12 (3%) 49 51	27, 56, 85, 104	2~(0%)
1	В	364/366~(99%)	0.11	7 (1%) 66 67	23, 45, 72, 97	2 (0%)
1	С	365/366~(99%)	0.50	12 (3%) 49 51	31, 55, 80, 101	1 (0%)
1	D	365/366~(99%)	0.51	13 (3%) 46 48	32, 54, 83, 95	1 (0%)
1	Е	364/366~(99%)	0.39	10 (2%) 56 57	26, 51, 76, 107	0
1	F	365/366~(99%)	0.15	7 (1%) 66 67	29, 47, 75, 99	1 (0%)
2	Н	5/6~(83%)	0.37	0 100 100	44, 45, 58, 59	0
2	Ι	5/6~(83%)	1.71	2 (40%) 1 1	62, 67, 74, 78	0
2	J	5/6~(83%)	2.00	3 (60%) 0 0	78, 90, 100, 108	0
2	Κ	5/6~(83%)	0.53	0 100 100	54, 54, 65, 66	0
2	L	5/6~(83%)	1.41	1 (20%) 3 4	66, 72, 81, 86	0
All	All	2214/2226~(99%)	0.38	67 (3%) 52 54	23, 52, 81, 108	7 (0%)

All (67) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	Е	20	PRO	4.6
1	А	21	LEU	4.4
1	А	366	LEU	3.8
1	Е	21	LEU	3.7
1	В	20	PRO	3.6
1	D	315	MET	3.6
1	А	20	PRO	3.6
1	D	244	TYR	3.5
1	С	57	VAL	3.5
1	Е	23	GLY	3.4
1	В	21	LEU	3.3
2	L	74	PHE	3.2

Continued from previous page				
Mol	Chain	Res	Type	RSRZ

1 D 247 VAL 3.1 1 D 365 ARG 3.1 1 B 94 GLY 3.1 2 J 73 LEU 2.9 1 F 365 ARG 2.9 1 C 23 GLY 2.9 1 C 211 ASP 2.8 2 J 74 PHE 2.8 2 J 74 PHE 2.8 1 A 153 TYR 2.8 1 A 153 TYR 2.8 1 A 153 TYR 2.8 1 A 187 SER 2.7 1 E 187 SER 2.7 1 E 118 ASN 2.7 1 D 23 GLY 2.6 1 D 211 <					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	D	247	VAL	3.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	D	365	ARG	3.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	94	GLY	3.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	J	73	LEU	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	F	365	ARG	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	23	GLY	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	310	TYR	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	211	ASP	2.8
1 F 26 THR 2.8 1 A 153 TYR 2.8 1 C 244 TYR 2.8 1 A 187 SER 2.7 1 E 187 SER 2.7 1 E 118 ASN 2.7 1 E 118 ASN 2.7 1 E 118 ASN 2.7 1 D 23 GLY 2.6 1 D 23 GLY 2.6 1 D 211 ASP 2.6 1 D 211 ASP 2.6 1 D 211 ASP 2.6 1 D 251 ASN 2.5 1 C 22 GLY 2.5 1 C 255 HIS 2.5 1 D 20 PRO 2.4	2	J	74	PHE	2.8
1 A 153 TYR 2.8 1 C 244 TYR 2.8 1 A 187 SER 2.7 1 E 187 SER 2.7 1 E 118 ASN 2.7 1 E 118 ASN 2.7 1 D 23 GLY 2.6 1 C 26 THR 2.6 1 E 119 LEU 2.6 1 D 211 ASP 2.6 1 D 251 ASN 2.5 1 C 22 GLY 2.5 1 D 20 PRO 2.4 1 D 20 PRO 2.4 1 D 249 </td <td>1</td> <td>F</td> <td>26</td> <td>THR</td> <td>2.8</td>	1	F	26	THR	2.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	153	TYR	2.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	244	TYR	2.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	187	SER	2.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Е	187	SER	2.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Е	118	ASN	2.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	D	23	GLY	2.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	26	THR	2.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Е	119	LEU	2.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	D	211	ASP	2.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	366	LEU	2.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	D	251	ASN	2.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	22	GLY	2.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Е	94	GLY	2.5
1 B 187 SER 2.4 1 D 20 PRO 2.4 1 D 249 PRO 2.4 1 A 355 GLN 2.3 2 J 71 LEU 2.3 1 F 285 VAL 2.3 1 F 285 VAL 2.3 1 C 365 ARG 2.3 1 B 26 THR 2.3 1 B 26 THR 2.3 1 D 21 LEU 2.2 1 D 21 LEU 2.2 1 D 21 LEU 2.2 1 D 255 HIS 2.2 1 C 21 LEU 2.2 1 C 21 LEU 2.2 1 F 310 TYR 2.2 1 D 151 VAL 2.2 1 D 22	1	С	255	HIS	2.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	187	SER	2.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	D	20	PRO	2.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	D	249	PRO	2.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	355	GLN	2.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	J	71	LEU	2.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	F	285	VAL	2.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	365	ARG	2.3
1 E 230 PHE 2.3 1 D 21 LEU 2.2 1 B 238 ASP 2.2 1 D 255 HIS 2.2 1 D 255 HIS 2.2 2 I 74 PHE 2.2 1 C 21 LEU 2.2 1 F 310 TYR 2.2 1 D 151 VAL 2.2 1 D 22 GLY 2.2 1 E 27 LEU 2.2	1	В	26	THR	2.3
1 D 21 LEU 2.2 1 B 238 ASP 2.2 1 D 255 HIS 2.2 2 I 74 PHE 2.2 1 C 21 LEU 2.2 1 F 310 TYR 2.2 1 F 310 TYR 2.2 1 D 151 VAL 2.2 1 D 22 GLY 2.2 1 E 27 LEU 2.2	1	Е	230	PHE	2.3
1 B 238 ASP 2.2 1 D 255 HIS 2.2 2 I 74 PHE 2.2 1 C 21 LEU 2.2 1 F 310 TYR 2.2 1 D 151 VAL 2.2 1 D 22 GLY 2.2 1 E 27 LEU 2.2	1	D	21	LEU	2.2
1 D 255 HIS 2.2 2 I 74 PHE 2.2 1 C 21 LEU 2.2 1 F 310 TYR 2.2 1 D 151 VAL 2.2 1 D 22 GLY 2.2 1 E 27 LEU 2.2	1	В	238	ASP	2.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	D	255	HIS	2.2
1 C 21 LEU 2.2 1 F 310 TYR 2.2 1 D 151 VAL 2.2 1 D 22 GLY 2.2 1 E 27 LEU 2.2	2	Ι	74	PHE	2.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	21	LEU	2.2
1 D 151 VAL 2.2 1 D 22 GLY 2.2 1 E 27 LEU 2.2	1	F	310	TYR	2.2
1 D 22 GLY 2.2 1 E 27 LEU 2.2	1	D	151	VAL	2.2
1 E 27 LEU 2.2	1	D	22	GLY	2.2
	1	Е	27	LEU	2.2

Mol	Chain	Res	Type	RSRZ
1	Е	153	TYR	2.2
1	С	308	VAL	2.2
1	А	19	GLY	2.1
1	А	22	GLY	2.1
1	F	22	GLY	2.1
1	А	183	PRO	2.1
1	А	311	SER	2.1
1	С	250	LYS	2.1
2	Ι	73	LEU	2.1
1	F	164	GLY	2.0
1	А	302	ALA	2.0
1	А	126	VAL	2.0
1	F	23	GLY	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

