

Full wwPDB X-ray Structure Validation Report (i)

Dec 5, 2022 - 02:22 pm GMT

PDB ID	:	7QDP
Title	:	Crystal structure of FLT3 T343I in complex with the canonical ligand FL
Authors	:	Pannecoucke, E.; Savvides, S.N.
Deposited on	:	2021-11-27
Resolution	:	3.69 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.31.3
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0267
CCP4	:	7.1.010 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.69 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution		
	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m A}))$		
R_{free}	130704	1049 (3.88-3.52)		
Clashscore	141614	1027 (3.86-3.54)		
Ramachandran outliers	138981	1069 (3.88-3.52)		
Sidechain outliers	138945	1065 (3.88-3.52)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	А	155	84%	9% • 6%
1	В	155	77% 9%	14%
1	С	155	77% 9%	14%
1	D	155	73% 12%	• 14%
2	Е	582	47% 9% • 43%	
2	F	582	54% 14% • 2	9%
2	G	582	49% 10% • 39%	

Mol	Chain	Length	Quality of chain						
2	Н	582	43%	9% •	46%				
3	Ι	3	33%		67%				
4	J	2		100%					

7QDP

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 13508 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	145	Total	С	Ν	0	\mathbf{S}	0	0	0
	A	140	1050	665	181	196	8	0		0
1	D	194	Total	С	Ν	0	S	0	0	0
	D	154	937	595	164	169	9			0
1	C	122	Total	С	Ν	0	S	0	0	0
	199	935	594	159	175	7	0	0	0	
1	1 D	124	Total	С	Ν	0	S	0	0	0
	154	1024	652	178	186	8	0		U	

• Molecule 1 is a protein called Fms-related tyrosine kinase 3 ligand.

There are 84 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	-20	MET	-	initiating methionine	UNP P49771
А	-19	GLY	-	expression tag	UNP P49771
А	-18	SER	-	expression tag	UNP P49771
А	-17	SER	-	expression tag	UNP P49771
А	-16	HIS	-	expression tag	UNP P49771
А	-15	HIS	-	expression tag	UNP P49771
А	-14	HIS	-	expression tag	UNP P49771
А	-13	HIS	-	expression tag	UNP P49771
А	-12	HIS	-	expression tag	UNP P49771
А	-11	HIS	-	expression tag	UNP P49771
А	-10	SER	-	expression tag	UNP P49771
А	-9	SER	-	expression tag	UNP P49771
А	-8	GLY	-	expression tag	UNP P49771
А	-7	LEU	-	expression tag	UNP P49771
А	-6	VAL	-	expression tag	UNP P49771
А	-5	PRO	-	expression tag	UNP P49771
А	-4	ARG	-	expression tag	UNP P49771
A	-3	GLY	-	expression tag	UNP P49771
A	-2	SER	-	expression tag	UNP P49771
А	-1	HIS	-	expression tag	UNP P49771
А	0	MET	-	expression tag	UNP P49771

Actual	$\operatorname{Comment}$	Reference
-	initiating methionine	UNP P49771
-	expression tag	UNP P49771
-	expression tag	UNP P49771
-	expression tag	UNP P49771
_	expression tag	UNP P49771
-	expression tag	UNP P49771
-	expression tag	UNP P49771
-	expression tag	UNP P49771
-	expression tag	UNP P49771
-	expression tag	UNP P49771
-	expression tag	UNP P49771
-	expression tag	UNP P49771
-	expression tag	UNP P49771
-	expression tag	UNP P49771
_	expression tag	UNP P49771
-	expression tag	UNP P49771
_	expression tag	UNP P49771
-	expression tag	UNP P49771
-	expression tag	UNP P49771
_	expression tag	UNP P49771

Continued from previous page...ChainResidueModelled

В	-20	MET	-	initiating methionine	UNP P49771
В	-19	GLY	-	expression tag	UNP P49771
В	-18	SER	-	expression tag	UNP P49771
В	-17	SER	-	expression tag	UNP P49771
В	-16	HIS	-	expression tag	UNP P49771
В	-15	HIS	-	expression tag	UNP P49771
В	-14	HIS	-	expression tag	UNP P49771
В	-13	HIS	-	expression tag	UNP P49771
В	-12	HIS	-	expression tag	UNP P49771
В	-11	HIS	-	expression tag	UNP P49771
В	-10	SER	-	expression tag	UNP P49771
В	-9	SER	-	expression tag	UNP P49771
В	-8	GLY	-	expression tag	UNP P49771
В	-7	LEU	-	expression tag	UNP P49771
В	-6	VAL	-	expression tag	UNP P49771
В	-5	PRO	-	expression tag	UNP P49771
В	-4	ARG	-	expression tag	UNP P49771
В	-3	GLY	-	expression tag	UNP P49771
В	-2	SER	-	expression tag	UNP P49771
В	-1	HIS	-	expression tag	UNP P49771
В	0	MET	-	expression tag	UNP P49771
С	-20	MET	-	initiating methionine	UNP P49771
С	-19	GLY	-	expression tag	UNP P49771
С	-18	SER	-	expression tag	UNP P49771
С	-17	SER	-	expression tag	UNP P49771
С	-16	HIS	-	expression tag	UNP P49771
С	-15	HIS	-	expression tag	UNP P49771
С	-14	HIS	-	expression tag	UNP P49771
С	-13	HIS	-	expression tag	UNP P49771
С	-12	HIS	-	expression tag	UNP P49771
С	-11	HIS	-	expression tag	UNP P49771
С	-10	SER	-	expression tag	UNP P49771
С	-9	SER	-	expression tag	UNP P49771
С	-8	GLY	_	expression tag	UNP P49771
С	-7	LEU	_	expression tag	UNP P49771
С	-6	VAL	-	expression tag	UNP P49771
С	-5	PRO	-	expression tag	UNP P49771
С	-4	ARG	-	expression tag	UNP P49771
С	-3	GLY	-	expression tag	UNP P49771
С	-2	SER	_	expression tag	UNP P49771
С	-1	HIS	-	expression tag	UNP P49771
С	0	MET	-	expression tag	UNP P49771

Chain	Residue	Modelled	Actual Comment		Reference
D	-20	MET	-	initiating methionine	UNP P49771
D	-19	GLY	-	expression tag	UNP P49771
D	-18	SER	-	expression tag	UNP P49771
D	-17	SER	-	expression tag	UNP P49771
D	-16	HIS	-	expression tag	UNP P49771
D	-15	HIS	-	expression tag	UNP P49771
D	-14	HIS	-	expression tag	UNP P49771
D	-13	HIS	-	expression tag	UNP P49771
D	-12	HIS	-	expression tag	UNP P49771
D	-11	HIS	-	expression tag	UNP P49771
D	-10	SER	-	expression tag	UNP P49771
D	-9	SER	-	expression tag	UNP P49771
D	-8	GLY	-	expression tag	UNP P49771
D	-7	LEU	-	expression tag	UNP P49771
D	-6	VAL	-	expression tag	UNP P49771
D	-5	PRO	-	expression tag	UNP P49771
D	-4	ARG	-	expression tag	UNP P49771
D	-3	GLY	-	expression tag	UNP P49771
D	-2	SER	-	expression tag	UNP P49771
D	-1	HIS	-	expression tag	UNP P49771
D	0	MET	-	expression tag	UNP P49771

• Molecule 2 is a protein called Receptor-type tyrosine-protein kinase FLT3.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
9	F	330	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	Ľ	552	2163	1371	376	400	16	0		0
9	F	413	Total	С	Ν	Ο	S	0	1	0
	Г		2783	1750	483	530	20			
0	С	252	Total	С	Ν	0	S	6	1	0
	Z G	999	2391	1500	421	448	22	0	1	U
0	9 II	910	Total	С	Ν	0	S	0	1	0
	910	2102	1333	367	389	13	0		0	

There are 172 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Е	227	MET	THR	variant	UNP P36888
E	343	ILE	THR	engineered mutation	UNP P36888
Е	542	GLY	-	expression tag	UNP P36888
Е	543	SER	-	expression tag	UNP P36888
Е	544	SER	-	expression tag	UNP P36888

Е

Actual

-

Comment

expression tag

Continued from previous page... Modelled

GLY

545

Chain Residue

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Е	546	LEU	-	expression tag	UNP P36888
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Е	547	VAL	-	expression tag	UNP P36888
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Е	548	PRO	-	expression tag	UNP P36888
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Е	549	ARG	-	expression tag	UNP P36888
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Е	550	GLY	-	expression tag	UNP P36888
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Е	551	SER	-	expression tag	UNP P36888
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Е	552	GLY	-	expression tag	UNP P36888
E554SER-expression tagUNP P36888E555GLY-expression tagUNP P36888E556GLY-expression tagUNP P36888E557SER-expression tagUNP P36888E558GLY-expression tagUNP P36888E559LEU-expression tagUNP P36888E560ASN-expression tagUNP P36888E561ASP-expression tagUNP P36888E562ILE-expression tagUNP P36888E563PHE-expression tagUNP P36888E564GLU-expression tagUNP P36888E566GLN-expression tagUNP P36888E566GLU-expression tagUNP P36888E568ILE-expression tagUNP P36888E569GLU-expression tagUNP P36888E570TRP-expression tagUNP P36888E571HIS-expression tagUNP P36888E573GLY-expression tagUNP P36888E576LYS-expression tagUNP P36888E577HIS-expression tagUNP P36888E576LYS-expression tagUNP P36888E577HIS	Е	553	GLY	-	expression tag	UNP P36888
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Е	554	SER	-	expression tag	UNP P36888
E556GLY-expression tagUNP P36888E557SER-expression tagUNP P36888E558GLY-expression tagUNP P36888E559LEU-expression tagUNP P36888E560ASN-expression tagUNP P36888E561ASP-expression tagUNP P36888E562ILE-expression tagUNP P36888E563PHE-expression tagUNP P36888E564GLU-expression tagUNP P36888E565ALA-expression tagUNP P36888E566GLN-expression tagUNP P36888E566GLN-expression tagUNP P36888E568ILE-expression tagUNP P36888E569GLU-expression tagUNP P36888E570TRP-expression tagUNP P36888E573GLY-expression tagUNP P36888E574ARG-expression tagUNP P36888E577HIS-expression tagUNP P36888E578HIS-expression tagUNP P36888E579HIS-expression tagUNP P36888E579HIS-expression tagUNP P36888E579HIS	Е	555	GLY	-	expression tag	UNP P36888
E 557 SER-expression tagUNP P36888E 558 GLY-expression tagUNP P36888E 559 LEU-expression tagUNP P36888E 560 ASN-expression tagUNP P36888E 561 ASP-expression tagUNP P36888E 562 ILE-expression tagUNP P36888E 563 PHE-expression tagUNP P36888E 564 GLU-expression tagUNP P36888E 565 ALA-expression tagUNP P36888E 566 GLN-expression tagUNP P36888E 566 GLN-expression tagUNP P36888E 566 GLU-expression tagUNP P36888E 566 GLU-expression tagUNP P36888E 569 GLU-expression tagUNP P36888E 570 TRP-expression tagUNP P36888E 572 GLU-expression tagUNP P36888E 574 ARG-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 579 HIS-expression tagUNP P36888	Е	556	GLY	-	expression tag	UNP P36888
E558GLY-expression tagUNP P36888E559LEU-expression tagUNP P36888E560ASN-expression tagUNP P36888E561ASP-expression tagUNP P36888E562ILE-expression tagUNP P36888E563PHE-expression tagUNP P36888E564GLU-expression tagUNP P36888E565ALA-expression tagUNP P36888E566GLN-expression tagUNP P36888E566GLN-expression tagUNP P36888E567LYS-expression tagUNP P36888E568ILE-expression tagUNP P36888E569GLU-expression tagUNP P36888E570TRP-expression tagUNP P36888E571HIS-expression tagUNP P36888E572GLY-expression tagUNP P36888E576LYS-expression tagUNP P36888E577HIS-expression tagUNP P36888E578HIS-expression tagUNP P36888E580HIS-expression tagUNP P36888E580HIS-expression tagUNP P36888E580HIS	Е	557	SER	-	expression tag	UNP P36888
E559LEU-expression tagUNP P36888E560ASN-expression tagUNP P36888E561ASP-expression tagUNP P36888E562ILE-expression tagUNP P36888E563PHE-expression tagUNP P36888E564GLU-expression tagUNP P36888E565ALA-expression tagUNP P36888E566GLN-expression tagUNP P36888E567LYS-expression tagUNP P36888E566GLU-expression tagUNP P36888E567LYS-expression tagUNP P36888E568ILE-expression tagUNP P36888E570TRP-expression tagUNP P36888E571HIS-expression tagUNP P36888E572GLU-expression tagUNP P36888E573GLY-expression tagUNP P36888E576LYS-expression tagUNP P36888E577HIS-expression tagUNP P36888E578HIS-expression tagUNP P36888E580HIS-expression tagUNP P36888E581HIS-expression tagUNP P36888E582HIS	Е	558	GLY	-	expression tag	UNP P36888
E560ASN-expression tagUNP P36888E561ASP-expression tagUNP P36888E562ILE-expression tagUNP P36888E563PHE-expression tagUNP P36888E564GLU-expression tagUNP P36888E565ALA-expression tagUNP P36888E566GLN-expression tagUNP P36888E566GLN-expression tagUNP P36888E567LYS-expression tagUNP P36888E568ILE-expression tagUNP P36888E569GLU-expression tagUNP P36888E570TRP-expression tagUNP P36888E571HIS-expression tagUNP P36888E573GLY-expression tagUNP P36888E574ARG-expression tagUNP P36888E575THR-expression tagUNP P36888E577HIS-expression tagUNP P36888E578HIS-expression tagUNP P36888E581HIS-expression tagUNP P36888E582HIS-expression tagUNP P36888E581HIS-expression tagUNP P36888E582HIS	E	559	LEU	-	expression tag	UNP P36888
E561ASP-expression tagUNP P36888E562ILE-expression tagUNP P36888E563PHE-expression tagUNP P36888E564GLU-expression tagUNP P36888E565ALA-expression tagUNP P36888E566GLN-expression tagUNP P36888E566GLN-expression tagUNP P36888E567LYS-expression tagUNP P36888E568ILE-expression tagUNP P36888E569GLU-expression tagUNP P36888E570TRP-expression tagUNP P36888E571HIS-expression tagUNP P36888E572GLU-expression tagUNP P36888E573GLY-expression tagUNP P36888E575THR-expression tagUNP P36888E576LYS-expression tagUNP P36888E578HIS-expression tagUNP P36888E581HIS-expression tagUNP P36888E582HIS-expression tagUNP P36888E582HIS-expression tagUNP P36888F227METTHRvariantUNP P36888F343ILETHR </td <td>Е</td> <td>560</td> <td>ASN</td> <td>-</td> <td>expression tag</td> <td>UNP P36888</td>	Е	560	ASN	-	expression tag	UNP P36888
E 562 ILE-expression tagUNP P36888E 563 PHE-expression tagUNP P36888E 564 GLU-expression tagUNP P36888E 565 ALA-expression tagUNP P36888E 566 GLN-expression tagUNP P36888E 566 GLN-expression tagUNP P36888E 567 LYS-expression tagUNP P36888E 567 GLU-expression tagUNP P36888E 569 GLU-expression tagUNP P36888E 570 TRP-expression tagUNP P36888E 571 HIS-expression tagUNP P36888E 572 GLU-expression tagUNP P36888E 573 GLY-expression tagUNP P36888E 574 ARG-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 579 HIS-expression tagUNP P36888E 581 HIS-expression tagUNP P36888E 581 HIS-expression tagUNP P36888E 582 HIS-expression tagUNP P36888F 227 METTHRexpression tagUNP P36888 <td>Е</td> <td>561</td> <td>ASP</td> <td>-</td> <td>expression tag</td> <td>UNP P36888</td>	Е	561	ASP	-	expression tag	UNP P36888
E 563 PHE-expression tagUNP P36888E 564 GLU-expression tagUNP P36888E 565 ALA-expression tagUNP P36888E 566 GLN-expression tagUNP P36888E 567 LYS-expression tagUNP P36888E 567 LYS-expression tagUNP P36888E 566 GLU-expression tagUNP P36888E 569 GLU-expression tagUNP P36888E 570 TRP-expression tagUNP P36888E 571 HIS-expression tagUNP P36888E 572 GLU-expression tagUNP P36888E 573 GLY-expression tagUNP P36888E 574 ARG-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 579 HIS-expression tagUNP P36888E 581 HIS-expression tagUNP P36888E 582 HIS-expression tagUNP P36888F 227 METTHRexpression tagUNP P36888F 343 ILETHRengineered mutationUNP P36888<	Е	562	ILE	-	expression tag	UNP P36888
E 564 GLU-expression tagUNP P36888E 565 ALA-expression tagUNP P36888E 566 GLN-expression tagUNP P36888E 567 LYS-expression tagUNP P36888E 568 ILE-expression tagUNP P36888E 569 GLU-expression tagUNP P36888E 570 TRP-expression tagUNP P36888E 570 TRP-expression tagUNP P36888E 571 HIS-expression tagUNP P36888E 572 GLU-expression tagUNP P36888E 573 GLY-expression tagUNP P36888E 574 ARG-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 579 HIS-expression tagUNP P36888E 581 HIS-expression tagUNP P36888E 582 HIS-expression tagUNP P36888F 227 METTHRvariantUNP P36888F 343 ILETHRengineered mutationUNP P36888F 543 SER-expression tagUNP P36888 <td>Е</td> <td>563</td> <td>PHE</td> <td>-</td> <td>expression tag</td> <td>UNP P36888</td>	Е	563	PHE	-	expression tag	UNP P36888
E 565 ALA-expression tagUNP P36888E 566 GLN-expression tagUNP P36888E 567 LYS-expression tagUNP P36888E 568 ILE-expression tagUNP P36888E 569 GLU-expression tagUNP P36888E 570 TRP-expression tagUNP P36888E 571 HIS-expression tagUNP P36888E 572 GLU-expression tagUNP P36888E 573 GLY-expression tagUNP P36888E 574 ARG-expression tagUNP P36888E 575 THR-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 578 HIS-expression tagUNP P36888E 579 HIS-expression tagUNP P36888E 580 HIS-expression tagUNP P36888E 581 HIS-expression tagUNP P36888E 582 HIS-expression tagUNP P36888E 582 HIS-expression tagUNP P36888F 227 METTHRvariantUNP P36888<	Е	564	GLU	-	expression tag	UNP P36888
E 566 GLN-expression tagUNP P36888E 567 LYS-expression tagUNP P36888E 568 ILE-expression tagUNP P36888E 569 GLU-expression tagUNP P36888E 570 TRP-expression tagUNP P36888E 571 HIS-expression tagUNP P36888E 572 GLU-expression tagUNP P36888E 573 GLY-expression tagUNP P36888E 573 GLY-expression tagUNP P36888E 574 ARG-expression tagUNP P36888E 575 THR-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 579 HIS-expression tagUNP P36888E 580 HIS-expression tagUNP P36888E 581 HIS-expression tagUNP P36888F 227 METTHRvariantUNP P36888F 343 ILETHRengineered mutationUNP P36888F 543 SER-expression tagUNP P36888F 543 SER-expression tagUNP P36888 <td>Е</td> <td>565</td> <td>ALA</td> <td>-</td> <td>expression tag</td> <td>UNP P36888</td>	Е	565	ALA	-	expression tag	UNP P36888
E 567 LYS-expression tagUNP P36888E 568 ILE-expression tagUNP P36888E 569 GLU-expression tagUNP P36888E 570 TRP-expression tagUNP P36888E 571 HIS-expression tagUNP P36888E 572 GLU-expression tagUNP P36888E 573 GLY-expression tagUNP P36888E 573 GLY-expression tagUNP P36888E 574 ARG-expression tagUNP P36888E 575 THR-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 578 HIS-expression tagUNP P36888E 579 HIS-expression tagUNP P36888E 580 HIS-expression tagUNP P36888E 581 HIS-expression tagUNP P36888F 227 METTHRvariantUNP P36888F 343 ILETHRengineered mutationUNP P36888F 543 SER-expression tagUNP P36888F 543 SER-expression tagUNP P36888	Е	566	GLN	-	expression tag	UNP P36888
E 568 ILE-expression tagUNP P36888E 569 GLU-expression tagUNP P36888E 570 TRP-expression tagUNP P36888E 571 HIS-expression tagUNP P36888E 572 GLU-expression tagUNP P36888E 573 GLY-expression tagUNP P36888E 573 GLY-expression tagUNP P36888E 574 ARG-expression tagUNP P36888E 575 THR-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 578 HIS-expression tagUNP P36888E 579 HIS-expression tagUNP P36888E 580 HIS-expression tagUNP P36888E 581 HIS-expression tagUNP P36888E 582 HIS-expression tagUNP P36888F 247 METTHRvariantUNP P36888F 343 ILETHRengineered mutationUNP P36888F 543 SER-expression tagUNP P36888	Е	567	LYS	-	expression tag	UNP P36888
E 569 GLU-expression tagUNP P36888E 570 TRP-expression tagUNP P36888E 571 HIS-expression tagUNP P36888E 572 GLU-expression tagUNP P36888E 573 GLY-expression tagUNP P36888E 573 GLY-expression tagUNP P36888E 574 ARG-expression tagUNP P36888E 575 THR-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 576 HIS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 579 HIS-expression tagUNP P36888E 580 HIS-expression tagUNP P36888E 581 HIS-expression tagUNP P36888E 582 HIS-expression tagUNP P36888F 227 METTHRvariantUNP P36888F 343 ILETHRengineered mutationUNP P36888F 543 SER-expression tagUNP P36888	E	568	ILE	-	expression tag	UNP P36888
E 570 TRP-expression tagUNP P36888E 571 HIS-expression tagUNP P36888E 572 GLU-expression tagUNP P36888E 573 GLY-expression tagUNP P36888E 574 ARG-expression tagUNP P36888E 575 THR-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 576 HIS-expression tagUNP P36888E 578 HIS-expression tagUNP P36888E 579 HIS-expression tagUNP P36888E 580 HIS-expression tagUNP P36888E 581 HIS-expression tagUNP P36888E 582 HIS-expression tagUNP P36888F 227 METTHRvariantUNP P36888F 343 ILETHRengineered mutationUNP P36888F 543 SER-expression tagUNP P36888F 543 SER-expression tagUNP P36888	E	569	GLU	-	expression tag	UNP P36888
E 571 HIS-expression tagUNP P36888E 572 GLU-expression tagUNP P36888E 573 GLY-expression tagUNP P36888E 574 ARG-expression tagUNP P36888E 575 THR-expression tagUNP P36888E 575 THR-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 578 HIS-expression tagUNP P36888E 579 HIS-expression tagUNP P36888E 580 HIS-expression tagUNP P36888E 581 HIS-expression tagUNP P36888E 582 HIS-expression tagUNP P36888F 227 METTHRvariantUNP P36888F 343 ILETHRengineered mutationUNP P36888F 542 GLY-expression tagUNP P36888F 543 SER-expression tagUNP P36888	E	570	TRP	-	expression tag	UNP P36888
E 572 GLU-expression tagUNP P36888E 573 GLY-expression tagUNP P36888E 574 ARG-expression tagUNP P36888E 575 THR-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 576 HIS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 578 HIS-expression tagUNP P36888E 579 HIS-expression tagUNP P36888E 580 HIS-expression tagUNP P36888E 581 HIS-expression tagUNP P36888F 227 METTHRvariantUNP P36888F 343 ILETHRengineered mutationUNP P36888F 542 GLY-expression tagUNP P36888F 543 SER-expression tagUNP P36888	E	571	HIS	-	expression tag	UNP P36888
E 573 GLY-expression tagUNP P36888E 574 ARG-expression tagUNP P36888E 575 THR-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 578 HIS-expression tagUNP P36888E 579 HIS-expression tagUNP P36888E 580 HIS-expression tagUNP P36888E 581 HIS-expression tagUNP P36888E 582 HIS-expression tagUNP P36888F 227 METTHRvariantUNP P36888F 343 ILETHRengineered mutationUNP P36888F 543 SER-expression tagUNP P36888	Е	572	GLU	-	expression tag	UNP P36888
E 574 ARG-expression tagUNP P36888E 575 THR-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 578 HIS-expression tagUNP P36888E 579 HIS-expression tagUNP P36888E 579 HIS-expression tagUNP P36888E 580 HIS-expression tagUNP P36888E 581 HIS-expression tagUNP P36888E 582 HIS-expression tagUNP P36888F 227 METTHRvariantUNP P36888F 343 ILETHRengineered mutationUNP P36888F 542 GLY-expression tagUNP P36888F 543 SER-expression tagUNP P36888	E	573	GLY	-	expression tag	UNP P36888
E 575 THR-expression tagUNP P36888E 576 LYS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 578 HIS-expression tagUNP P36888E 579 HIS-expression tagUNP P36888E 579 HIS-expression tagUNP P36888E 580 HIS-expression tagUNP P36888E 581 HIS-expression tagUNP P36888E 582 HIS-expression tagUNP P36888F 227 METTHRvariantUNP P36888F 343 ILETHRengineered mutationUNP P36888F 542 GLY-expression tagUNP P36888F 543 SER-expression tagUNP P36888	E	574	ARG	-	expression tag	UNP P36888
E 576 LYS-expression tagUNP P36888E 577 HIS-expression tagUNP P36888E 578 HIS-expression tagUNP P36888E 579 HIS-expression tagUNP P36888E 580 HIS-expression tagUNP P36888E 580 HIS-expression tagUNP P36888E 581 HIS-expression tagUNP P36888E 582 HIS-expression tagUNP P36888F 227 METTHRvariantUNP P36888F 343 ILETHRengineered mutationUNP P36888F 542 GLY-expression tagUNP P36888F 543 SER-expression tagUNP P36888	E	575	THR	-	expression tag	UNP P36888
E577HIS-expression tagUNP P36888E578HIS-expression tagUNP P36888E579HIS-expression tagUNP P36888E580HIS-expression tagUNP P36888E581HIS-expression tagUNP P36888E582HIS-expression tagUNP P36888F227METTHRvariantUNP P36888F343ILETHRengineered mutationUNP P36888F542GLY-expression tagUNP P36888F543SER-expression tagUNP P36888	E	576	LYS	-	expression tag	UNP P36888
E578HIS-expression tagUNP P36888E579HIS-expression tagUNP P36888E580HIS-expression tagUNP P36888E581HIS-expression tagUNP P36888E582HIS-expression tagUNP P36888F227METTHRvariantUNP P36888F343ILETHRengineered mutationUNP P36888F542GLY-expression tagUNP P36888F543SER-expression tagUNP P36888	Е	577	HIS	-	expression tag	UNP P36888
E579HIS-expression tagUNP P36888E580HIS-expression tagUNP P36888E581HIS-expression tagUNP P36888E582HIS-expression tagUNP P36888F227METTHRvariantUNP P36888F343ILETHRengineered mutationUNP P36888F542GLY-expression tagUNP P36888F543SER-expression tagUNP P36888	E	578	HIS	-	expression tag	UNP P36888
E580HIS-expression tagUNP P36888E581HIS-expression tagUNP P36888E582HIS-expression tagUNP P36888F227METTHRvariantUNP P36888F343ILETHRengineered mutationUNP P36888F542GLY-expression tagUNP P36888F543SER-expression tagUNP P36888	Е	579	HIS	-	expression tag	UNP P36888
E581HIS-expression tagUNP P36888E582HIS-expression tagUNP P36888F227METTHRvariantUNP P36888F343ILETHRengineered mutationUNP P36888F542GLY-expression tagUNP P36888F543SER-expression tagUNP P36888	Е	580	HIS	-	expression tag	UNP P36888
E582HIS-expression tagUNP P36888F227METTHRvariantUNP P36888F343ILETHRengineered mutationUNP P36888F542GLY-expression tagUNP P36888F543SER-expression tagUNP P36888	Е	581	HIS	-	expression tag	UNP P36888
F227METTHRvariantUNP P36888F343ILETHRengineered mutationUNP P36888F542GLY-expression tagUNP P36888F543SER-expression tagUNP P36888	E	582	HIS	-	expression tag	UNP P36888
F343ILETHRengineered mutationUNP P36888F542GLY-expression tagUNP P36888F543SER-expression tagUNP P36888	F	227	MET	THR	variant	UNP P36888
F542GLY-expression tagUNP P36888F543SER-expression tagUNP P36888	F	343	ILE	THR	engineered mutation	UNP P36888
F 543 SER - expression tag UNP P36888	F	542	GLY	-	expression tag	UNP P36888
	F	543	SER	-	expression tag	UNP P36888

Continued on next page...

Reference

UNP P36888

Chain	Residue	Modelled	Actual	Comment	Reference
F	544	SER	-	expression tag	UNP P36888
F	545	GLY	-	expression tag	UNP P36888
F	546	LEU	-	expression tag	UNP P36888
F	547	VAL	-	expression tag	UNP P36888
F	548	PRO	-	expression tag	UNP P36888
F	549	ARG	-	expression tag	UNP P36888
F	550	GLY	-	expression tag	UNP P36888
F	551	SER	-	expression tag	UNP P36888
F	552	GLY	-	expression tag	UNP P36888
F	553	GLY	-	expression tag	UNP P36888
F	554	SER	-	expression tag	UNP P36888
F	555	GLY	-	expression tag	UNP P36888
F	556	GLY	-	expression tag	UNP P36888
F	557	SER	-	expression tag	UNP P36888
F	558	GLY	-	expression tag	UNP P36888
F	559	LEU	-	expression tag	UNP P36888
F	560	ASN	-	expression tag	UNP P36888
F	561	ASP	-	expression tag	UNP P36888
F	562	ILE	-	expression tag	UNP P36888
F	563	PHE	-	expression tag	UNP P36888
F	564	GLU	-	expression tag	UNP P36888
F	565	ALA	-	expression tag	UNP P36888
F	566	GLN	-	expression tag	UNP P36888
F	567	LYS	-	expression tag	UNP P36888
F	568	ILE	-	expression tag	UNP P36888
F	569	GLU	-	expression tag	UNP P36888
F	570	TRP	-	expression tag	UNP P36888
F	571	HIS	-	expression tag	UNP P36888
F	572	GLU	-	expression tag	UNP P36888
F	573	GLY	-	expression tag	UNP P36888
F	574	ARG	-	expression tag	UNP P36888
F	575	THR	-	expression tag	UNP P36888
F	576	LYS	-	expression tag	UNP P36888
F	577	HIS	-	expression tag	UNP P36888
F	578	HIS	-	expression tag	UNP P36888
F	579	HIS	-	expression tag	UNP P36888
F	580	HIS	-	expression tag	UNP P36888
F	581	HIS	-	expression tag	UNP P36888
F	582	HIS	-	expression tag	UNP P36888
G	227	MET	THR	variant	UNP P36888
G	343	ILE	THR	engineered mutation	UNP P36888
G	542	GLY	-	expression tag	UNP P36888

Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
G	543	SER	-	expression tag	UNP P36888
G	544	SER	-	expression tag	UNP P36888
G	545	GLY	-	expression tag	UNP P36888
G	546	LEU	-	expression tag	UNP P36888
G	547	VAL	-	expression tag	UNP P36888
G	548	PRO	-	expression tag	UNP P36888
G	549	ARG	-	expression tag	UNP P36888
G	550	GLY	-	expression tag	UNP P36888
G	551	SER	-	expression tag	UNP P36888
G	552	GLY	-	expression tag	UNP P36888
G	553	GLY	-	expression tag	UNP P36888
G	554	SER	-	expression tag	UNP P36888
G	555	GLY	-	expression tag	UNP P36888
G	556	GLY	-	expression tag	UNP P36888
G	557	SER	-	expression tag	UNP P36888
G	558	GLY	-	expression tag	UNP P36888
G	559	LEU	-	expression tag	UNP P36888
G	560	ASN	-	expression tag	UNP P36888
G	561	ASP	-	expression tag	UNP P36888
G	562	ILE	-	expression tag	UNP P36888
G	563	PHE	-	expression tag	UNP P36888
G	564	GLU	-	expression tag	UNP P36888
G	565	ALA	-	expression tag	UNP P36888
G	566	GLN	-	expression tag	UNP P36888
G	567	LYS	-	expression tag	UNP P36888
G	568	ILE	-	expression tag	UNP P36888
G	569	GLU	-	expression tag	UNP P36888
G	570	TRP	-	expression tag	UNP P36888
G	571	HIS	-	expression tag	UNP P36888
G	572	GLU	-	expression tag	UNP P36888
G	573	GLY	-	expression tag	UNP P36888
G	574	ARG	-	expression tag	UNP P36888
G	575	THR	-	expression tag	UNP P36888
G	576	LYS	-	expression tag	UNP P36888
G	577	HIS	-	expression tag	UNP P36888
G	578	HIS	-	expression tag	UNP P36888
G	579	HIS	-	expression tag	UNP P36888
G	580	HIS	-	expression tag	UNP P36888
G	581	HIS	-	expression tag	UNP P36888
G	582	HIS	-	expression tag	UNP P36888
Н	227	MET	THR	variant	UNP P36888
Н	343	ILE	THR	engineered mutation	UNP P36888

Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
Н	542	GLY	-	expression tag	UNP P36888
Н	543	SER	-	expression tag	UNP P36888
Н	544	SER	_	expression tag	UNP P36888
Н	545	GLY	-	expression tag	UNP P36888
Н	546	LEU	-	expression tag	UNP P36888
Н	547	VAL	-	expression tag	UNP P36888
Н	548	PRO	-	expression tag	UNP P36888
Н	549	ARG	-	expression tag	UNP P36888
Н	550	GLY	-	expression tag	UNP P36888
Н	551	SER	-	expression tag	UNP P36888
Н	552	GLY	-	expression tag	UNP P36888
Н	553	GLY	-	expression tag	UNP P36888
Н	554	SER	-	expression tag	UNP P36888
Н	555	GLY	-	expression tag	UNP P36888
Н	556	GLY	-	expression tag	UNP P36888
Н	557	SER	-	expression tag	UNP P36888
Н	558	GLY	_	expression tag	UNP P36888
Н	559	LEU	-	expression tag	UNP P36888
Н	560	ASN	-	expression tag	UNP P36888
Н	561	ASP	-	expression tag	UNP P36888
Н	562	ILE	-	expression tag	UNP P36888
H	563	PHE	-	expression tag	UNP P36888
H	564	GLU	-	expression tag	UNP P36888
H	565	ALA	-	expression tag	UNP P36888
H	566	GLN	-	expression tag	UNP P36888
H	567	LYS	-	expression tag	UNP P36888
H	568	ILE	-	expression tag	UNP P36888
H	569	GLU	-	expression tag	UNP P36888
H	570	TRP	-	expression tag	UNP P36888
H	571	HIS	-	expression tag	UNP P36888
H	572	GLU	-	expression tag	UNP P36888
H	573	GLY	-	expression tag	UNP P36888
H	574	ARG	-	expression tag	UNP P36888
H	575	THR	-	expression tag	UNP P36888
H	576	LYS	-	expression tag	UNP P36888
Н	577	HIS	-	expression tag	UNP P36888
H	578	HIS	-	expression tag	UNP P36888
H	579	HIS	-	expression tag	UNP P36888
H	580	HIS	-	expression tag	UNP P36888
Н	581	HIS	-	expression tag	UNP P36888
Н	582	HIS	-	expression tag	UNP P36888

• Molecule 3 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b

eta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	1	Aton	ns		ZeroOcc	AltConf	Trace
3	Ι	3	Total 39	С 22	N 2	O 15	0	0	0

• Molecule 4 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	l A	4ton	ns		ZeroOcc	AltConf	Trace
4	J	2	Total 28	C 16	N 2	O 10	0	0	0

• Molecule 5 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf
5	Е	1	Total 14	C 8	N 1	O 5	0	0

e ontrinaea from processae pagem								
Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
Ľ	F	1	Total	С	Ν	0	0	0
D F	1	14	8	1	5	0	0	
Ľ	F	1	Total	С	Ν	0	0	0
0	Г	1	14	8	1	5	0	
Б	Ц	1	Total	С	Ν	0	0	0
П	11	1	14	8	1	5	0	0

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Fms-related tyrosine kinase 3 ligand

Chain A:	84%		9% • 6%	
MET GLY SER SER HIS HIS HIS HIS HIS	812 K18 E21 621 77 77 777 777 777 777 776 806 808 8102 8102 8102 8102 8102 8102 8102	P134		
• Molecule 1: Fr	ms-related tyrosine kinase 3 ligar	nd		
Chain B:	77%	9%	14%	
MET GLY SER SER HIS HIS HIS SER SER SER	CLY LEU VAL PRO ARG CLY GLY GL CL CL CL CL CL CL CL CL CL CL CL CL CL	L112 L112 R121 S125 P133 P133		
• Molecule 1: Fr	ms-related tyrosine kinase 3 ligar	ıd		
Chain C:	77%	9%	14%	
MET GLY SER SER HIS HIS HIS HIS HIS SER SER	CLY LEU VAL VAC ARG ARG ARG ARG ARG ARG BRI BRI BRI BRI BRI BRI BRI BRI BRI BRI	H80 S102 1117 1119 11120 1120 R126 R126		
• Molecule 1: Fr	ms-related tyrosine kinase 3 ligar	ıd		
Chain D:	73%	12%	• 14%	I
MET GLY SER SER HIS HIS HIS HIS SER SER	GLY VAL VAL ARG ARG GLY GLY HIS MET 11 11 11 11 11 11 11 11 11 11 11 11 11	V51 V51 R59 R95 Q98 S102	0106 E107 E110 V113 V113	T120 R121 C132
0133 P134				
• Molecule 2: R	eceptor-type tyrosine-protein kir	ase FLT3		
Chain E:	47% 9% ·	43%		
MET PRO ALA ALA ALA ARG ASP GLY GLY GLY CLEU	LLEU VAL VAL VAL VAL ALA ALA ALA ALA ALA THR THR THR THR THR CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	LEU LIEU TILE ASN ASN ASN ASN ASP SER SER SER SER CLY	LYS SER SER SER TYR PRO MET	SER GLU SER PRO
GLU ASP GLY CYS CYS CYS ALA ARG FRO SER SER SER	1 GLY THR THR THR THR THR ALA ALA ALA ALA ALA ALA CLU VAL THR THR THR CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	ALA PRO GLY GLY ASN ASN ASN LEU CYS CYS CYS CYS CYS CYS CYS CYS CYS LEU VAL LEU VAL	HIS SER SER SER LEU ASN CYS GLN	HIS PHE ASP LEU

8210 P211 E217 E217 V220 V220 C231 C233 R233 R233 R233	R239 L244 L266 L260 1270 A274	V277 N278 H279 H279 1284 W285 E285 L287 L287 L287	1302 Y303 Y304 Y306 X306 N306 N306 N306 N309 N309 N309 N309 N309 N309 N300 N311 13110 13112 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312 1312	1325 8332 8333 8333 8333 8333 1335 1353 1353 1353
D562 V371 1379 1379 1382 R387 R387 C392	6396 LEU D398 298 298 298 241 611 611 1419 1419 1419 1419	R421 N422 R436 R436 C452 C452 P458 N462	1463 1464 148 148 148 148 148 148 148 148 1482 1482	4483 8484 8487 8489 8489 8499 8499 8499 8499
LEU N502 M503 E504 E505 S31 PR0 CV CV	PHE PRO PHE ILLE GLN ASP ASN ASN GLY SER SER SER SER LEU	VAL PRO ARG GLY SER GLY GLY GLY GLY SER GLY SLY	LEU ASN ASP ASP ILE PHE GLU GLU CLU GLU TRP HIS	GLU GLY ARG THR HIS HIS HIS HIS HIS HIS
• Molecule 2: R	eceptor-type tyre	osine-protein kin	ase FLT3	
Chain H:	43%	9% •	46%	
MET PRO ALA LEU ALA ALA ASP GLY GLY GLV FLU	LEU LEU VAL VAL PHE SER ALA MET TLE PHE GLY THR	ILE THR ASN GLN GLN ASP LEU PRO VAL ILE CYS CYS	LEU ILE ASN HTS ASN ASN ASP SER SER SER SER CLY CLY	SER SER SER TYR PRO MET VAL SER GLU SER PRO
GLU ASP ALF CYS CYS ALA ALA ARG PRO PRO GLN SER SER	GLY THR VAL TTR GLU GLU ALA ALA ALA ALA VAL VAL SP	VAL SER ALA SER SER THR THR TLEU VAL LEU VAL VAL VAL	ALA PRO GLY GLY ASN TLE SER CYS LEU TRP VAL PHE LYS HIS	SER SER LEU ASN CYS GLN PRO HTS PHE ASP LEU
GLN ASN ASN VAL VAL SER MET VAL TLE LEU	MET THR GLU GLU GLU GLU TYR LEU LEU PHE	ILE GLN SER GLU GLU ALA ALA THR THR THR ILE LEU LEU	L164 L165 L165 L166 T167 L166 R169 R169 A181 A181 V189	E196 1202 GLY GLY S205 S210 E217
H222 A233 E236 E236 E240 L244	1247 1246 1270 1270 1270 1270 1270 1275 1286	L287 L292 M300 S301 T302 T305 T305 N306 R307	T308 T310 T311 T312 T313 T312 T313 T313 T313 T325 H335 H335	L341 1344 K347 1361 V371
1379 1379 1387 1387 1387 1389 1399 1399	8404 8420 6421 0422 0433 1433 1435	Q440 V441 L442 Q449 Q449 P458 P458 P460 P460 V464 V464	LYS CYS SER ASP ASP LYS SER PRO ASN CYS CYS CYS CJU GLU GLU	1479 1482 1482 1486 1486 1486 1486 1486 1486 1485 1485 1485 1485 1485 1485 1485 1485
GLY GLN TRP VAL SER SER SER SER F500 L501 M502 M502 SER	GLU ALA ILE LYS GLY PHE CLY VAL LYS CYS CYS	TYR ASN ASN LEU CLEU GLV CYS GLV THR TLR LEU	LEU ASN SER PRO GLY PRO PRO PHE TLE GLN ASP ASN	GLY SER SER GLY LEU VAL PRO ARG GLY SER GLY GLY
GLY SER GLY GLY GLY GLY CLEU ASP ASP ASP TILE PHE CLU	ALA LYS LYS LYS TLE GLU HIS GLU GLU GLY ARG THR LYS	HIS HIS HIS HIS HIS HIS		

• Molecule 3: beta-D
-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain I:	33%	67%
NAG1 NAG2 BMA3		

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain J:

100%

NAG1 NAG2

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	102.43Å 113.38Å 123.22Å	Depositor
a, b, c, α , β , γ	105.37° 109.47° 108.22°	Depositor
Bosolution (Å)	48.58 - 3.69	Depositor
Itesolution (A)	48.58 - 3.69	EDS
% Data completeness	94.5 (48.58-3.69)	Depositor
(in resolution range)	$94.4 \ (48.58-3.69)$	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.04 (at 3.67 \text{\AA})$	Xtriage
Refinement program	BUSTER 2.10.3	Depositor
B B.	0.257 , 0.277	Depositor
II, II free	0.313 , 0.334	DCC
R_{free} test set	2298 reflections $(5.00%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	143.9	Xtriage
Anisotropy	0.294	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	(Not available), (Not available)	EDS
L-test for $twinning^2$	$ < L > = 0.39, < L^2 > = 0.22$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.85	EDS
Total number of atoms	13508	wwPDB-VP
Average B, all atoms $(Å^2)$	237.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 6.25% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: BMA, NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.29	0/1071	0.48	0/1467
1	В	0.30	0/956	0.50	0/1313
1	С	0.32	0/956	0.49	0/1314
1	D	0.33	0/1045	0.52	0/1423
2	Ε	0.33	0/2205	0.59	0/3033
2	F	0.36	0/2838	0.61	0/3887
2	G	0.33	0/2440	0.59	0/3343
2	Н	0.37	0/2146	0.63	0/2954
All	All	0.34	0/13657	0.57	0/18734

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	Ε	0	2

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	Ε	189	VAL	Peptide,Mainchain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1050	0	959	13	0
1	В	937	0	822	7	0
1	С	935	0	806	6	0
1	D	1024	0	986	13	0
2	Е	2163	0	1673	35	0
2	F	2783	0	2168	56	0
2	G	2391	0	1873	33	0
2	Н	2102	0	1641	27	0
3	Ι	39	0	34	0	0
4	J	28	0	25	0	0
5	Е	14	0	13	0	0
5	F	28	0	26	2	0
5	Н	14	0	13	0	0
All	All	13508	0	11039	180	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

All (180) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom_1	Atom_2	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
2:E:437:ARG:HA	2:E:458:PRO:HD2	1.12	1.09
2:G:436:ARG:HA	2:G:458:PRO:HG2	1.35	1.08
2:F:271:ARG:HA	2:F:314:PHE:HB3	1.34	1.06
1:A:77:THR:HG22	2:E:307:ARG:HE	1.15	1.05
2:F:462:TRP:HE1	2:F:501:LEU:HD13	1.22	1.03
1:B:22:LEU:HD22	1:B:105:LEU:HD11	1.46	0.97
2:E:437:ARG:HA	2:E:458:PRO:CD	1.94	0.96
2:F:462:TRP:CD1	2:F:501:LEU:HD22	2.04	0.93
2:H:304:SER:HB2	2:H:310:ILE:HD11	1.56	0.87
2:E:437:ARG:CA	2:E:458:PRO:HD2	2.01	0.87
2:F:299:GLU:HB3	2:F:313:LEU:HD12	1.61	0.83
1:D:37:ASN:HD21	1:D:95:ARG:H	1.26	0.82
2:F:483:TRP:CD1	2:F:501:LEU:HD12	2.16	0.81
1:A:77:THR:HG22	2:E:307:ARG:NE	1.95	0.80

	ti a	Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
2:F:462:TRP:NE1	2:F:501:LEU:HD13	1.97	0.79		
2:E:164:LEU:HA	2:E:234:ARG:HB3	1.65	0.78		
2:F:101:ILE:HA	2:F:147:SER:HB2	:SER:HB2 1.64			
1:D:106:GLN:HE21	1:D:106:GLN:HA	1.50	0.76		
2:F:462:TRP:HE1	2:F:501:LEU:CD1	2.00	0.75		
2:F:286:GLU:HB2	2:F:289:ASN:HA	1.68	0.75		
1:A:106:GLN:HE21	1:A:106:GLN:HA	1.52	0.74		
2:E:181:ALA:HB2	2:E:222:HIS:CD2	2.22	0.74		
2:F:234:ARG:HG2	2:F:239:ARG:HB3	1.70	0.73		
2:F:332:SER:HB3	2:F:335:HIS:HB2	1.68	0.73		
1:A:107:GLU:HA	1:A:110:GLU:HG2	1.72	0.72		
2:H:435:ILE:CB	2:H:460:PRO:HG2	2.19	0.72		
2:G:231:CYS:O	2:G:232:CYS:HB2	1.90	0.71		
2:G:233:ALA:HA	2:G:239:ARG:CG	2.23	0.69		
2:E:192:PRO:HA	2:E:235:ASN:HB2	1.75	0.68		
2:F:362:ASP:HA	2:F:437:ARG:HE	1.59	0.68		
2:F:464:TRP:CD1	2:F:479:THR:HG23	2.29	0.67		
2:H:181:ALA:HB2	2:H:222:HIS:CE1	2.29	0.67		
2:F:462:TRP:NE1	2:F:501:LEU:HD22	2.10	0.67		
1:A:77:THR:CG2	2:E:307:ARG:HE	2.00	0.66		
2:G:233:ALA:HA	2:G:239:ARG:HG2	1.78	0.66		
1:D:37:ASN:ND2	1:D:95:ARG:H	1.93	0.66		
2:G:172:TYR:HE1	2:G:174:ARG:HE	1.45	0.65		
2:H:486:LYS:CB	2:H:501:LEU:HA	2.27	0.64		
2:H:166:TYR:HA	2:H:189:VAL:HB	1.79	0.64		
2:F:271:ARG:CA	2:F:314:PHE:HB3	2.20	0.63		
1:B:2:GLN:HA	1:B:125:SER:HB3	1.79	0.62		
2:G:487:ALA:HB3	2:G:489:ARG:HE	1.64	0.61		
2:E:168:LEU:HB2	2:E:237:LEU:HD13	1.82	0.60		
2:F:454:SER:H	2:F:500:THR:HA	1.66	0.60		
1:A:54:GLN:HE21	1:A:76:ASN:HD21	1.51	0.58		
1:B:22:LEU:HD22	1:B:105:LEU:CD1	2.28	0.58		
2:E:320:VAL:HB	2:E:344:ILE:HD12	1.86	0.57		
2:F:362:ASP:HA	2:F:437:ARG:NE	2.18	0.57		
2:G:436:ARG:HA	2:G:458:PRO:CG	2.24	0.57		
2:G:379:ILE:HD13	2:G:420:ALA:HB1	1.87	0.57		
2:H:379:ILE:HD13	2:H:420:ALA:HB1	1.86	0.56		
2:H:250:ASN:HD21	2:H:275:VAL:H	1.53	0.56		
2:H:167:THR:HG22	2:H:189:VAL:HG23	1.88	0.56		
2:E:379:ILE:HD13	2:E:420:ALA:HB1	1.87	0.56		
2:E:245:PHE:HD2	2:E:270:ILE:HG23	1.70	0.55		

		Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
2:G:210:SER:N	2:G:211:PRO:HD3	2.21	0.55		
2:F:464:TRP:CD1	2:F:479:THR:CG2	2.90	0.55		
2:F:256:THR:O	2:F:258:PRO:HD3	2.07	0.55		
2:F:271:ARG:HA	2:F:314:PHE:CB	2.23	0.55		
2:G:195:GLU:O	2:G:231:CYS:O	2.25	0.55		
1:C:119:ILE:HG23	1:C:120:THR:HG23	1.89	0.54		
1:B:119:ILE:HG23	1:B:120:THR:HG23	1.89	0.54		
1:D:119:ILE:HG23	1:D:120:THR:HG23	1.90	0.54		
2:H:181:ALA:HB2	2:H:222:HIS:ND1	2.21	0.54		
2:G:209:GLU:HB3	2:G:211:PRO:HD3	1.89	0.53		
2:E:276:HIS:HE1	2:E:278:ASN:ND2	2.07	0.53		
1:D:37:ASN:HD22	1:D:37:ASN:H	1.55	0.53		
2:E:276:HIS:CE1	2:E:278:ASN:ND2	2.77	0.52		
2:E:245:PHE:CD2	2:E:270:ILE:HG23	2.45	0.52		
2:F:98:PRO:HG3	2:F:123:ARG:HA	1.92	0.52		
2:H:304:SER:O	2:H:306:ASN:O	2.28	0.52		
2:F:514:CYS:N	2:F:524:CYS:HG	2.08	0.52		
1:B:28:GLN:HG3	1:B:102:SER:HB3	1.92	0.51		
1:D:15:PHE:HZ	1:D:113:VAL:HG13	1.76	0.51		
2:F:467:CYS:HB2	2:F:477:GLU:HB3	1.92	0.51		
1:A:107:GLU:HA	1:A:110:GLU:CG	2.39	0.51		
2:G:482:VAL:HG21	2:G:505:GLU:HB3	1.92	0.51		
1:C:12:SER:HB2	2:G:302:THR:HA	1.93	0.51		
2:G:285:TRP:NE1	2:G:313:LEU:O	2.41	0.51		
1:C:77:THR:HG22	2:G:307:ARG:HG2	1.93	0.50		
2:F:247:ILE:HD12	2:F:285:TRP:HH2	1.76	0.50		
2:F:184:CYS:HG	2:F:231:CYS:HG	1.58	0.50		
2:F:250:ASN:HB3	2:F:275:VAL:H	1.77	0.50		
1:D:7:GLN:NE2	1:D:7:GLN:H	2.08	0.50		
2:E:234:ARG:HG3	2:E:235:ASN:H	1.76	0.50		
2:F:181:ALA:HB2	2:F:222:HIS:ND1	2.27	0.50		
1:C:28:GLN:HG3	1:C:102:SER:HB3	1.92	0.50		
2:F:285:TRP:CD1	2:F:313:LEU:HD23	2.47	0.50		
1:A:18:LYS:NZ	2:E:303:TYR:HB2	2.27	0.50		
1:A:28:GLN:HG3	1:A:102:SER:HB3	1.93	0.49		
1:D:28:GLN:HG3	1:D:102:SER:HB3	1.94	0.49		
2:F:323:ASN:HB2	5:F:601:NAG:O5	2.12	0.49		
2:F:277:VAL:HG22	2:F:308:THR:HG23	1.93	0.49		
2:G:279:HIS:O	2:G:311:ARG:NH2	2.44	0.49		
2:F:101:ILE:CA	2:F:147:SER:HB2	2.38	0.49		
2:F:439:PRO:HB3	2:F:518:ASN:ND2	2.28	0.49		

		Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
2:G:382:THR:CB	2:G:419:HIS:CE1	2.96	0.48		
2:H:304:SER:HB3	2:H:308:THR:HB	1.95	0.48		
2:G:210:SER:H	2:G:211:PRO:HD3	1.77	0.48		
2:F:277:VAL:O	2:F:278:ASN:CB	2.61	0.48		
2:F:77:GLU:HB2	2:F:154:ILE:HG23	1.95	0.48		
2:F:105:TRP:CD2	2:F:143:LEU:HD13	2.49	0.48		
2:G:195:GLU:HA	2:G:217:GLU:HA	1.96	0.48		
2:F:514:CYS:O	2:F:524:CYS:SG	2.71	0.47		
2:H:379:ILE:HG22	2:H:422:ASN:HB3	1.97	0.47		
1:B:12:SER:HB2	2:F:302:THR:HA	1.96	0.47		
1:D:7:GLN:H	1:D:7:GLN:CD	2.17	0.47		
2:E:332:SER:CB	2:E:335:HIS:HB2	2.44	0.47		
2:H:247:ILE:HD12	2:H:285:TRP:HH2	1.78	0.47		
2:F:286:GLU:HB2	2:F:289:ASN:CA	2.40	0.47		
2:F:361:ILE:CB	2:F:435:ILE:CB	2.93	0.47		
2:G:233:ALA:CA	2:G:239:ARG:HG2	2.45	0.47		
2:G:285:TRP:HB3	2:G:292:LEU:HD13	1.97	0.47		
2:H:361:ILE:O	2:H:435:ILE:O	2.33	0.47		
1:A:54:GLN:NE2	1:A:76:ASN:HD21	2.12	0.46		
2:E:247:ILE:HD12	2:E:285:TRP:HH2	1.79	0.46		
2:E:195:GLU:HA	2:E:217:GLU:HA	1.98	0.46		
2:F:272:CYS:HG	2:F:330:CYS:HG	1.61	0.46		
2:F:199:CYS:CB	2:F:213:VAL:CB	2.94	0.46		
2:H:275:VAL:HG22	2:H:310:ILE:HG23	1.97	0.46		
2:E:379:ILE:HG22	2:E:422:ASN:HB3	1.97	0.46		
2:G:233:ALA:HA	2:G:239:ARG:HG3	1.96	0.45		
2:H:285:TRP:CD1	2:H:313:LEU:HD23	2.50	0.45		
2:G:274:ALA:HB3	2:G:283:LEU:HD11	1.98	0.45		
2:F:115:GLN:HE21	2:F:117:HIS:CE1	2.35	0.45		
2:H:195:GLU:HA	2:H:217:GLU:HA	1.98	0.45		
2:H:309:MET:SD	2:H:311:ARG:NH2	2.90	0.45		
2:F:171:PRO:HB3	2:F:184:CYS:SG	2.57	0.44		
2:F:304:SER:HB3	2:F:308:THR:HB	2.00	0.44		
2:F:442:LEU:HD12	2:F:453:PHE:HD1	1.82	0.44		
2:G:332:SER:CB	2:G:335:HIS:HB2	2.47	0.44		
2:G:304:SER:HB3	2:G:308:THR:HB	2.00	0.44		
2:F:101:ILE:CB	2:F:147:SER:HB2	2.48	0.44		
2:F:195:GLU:HA	2:F:217:GLU:HA	1.99	0.44		
1:A:106:GLN:HA	1:A:106:GLN:NE2	2.28	0.43		
2:H:285:TRP:HB3	2:H:292:LEU:HD13	2.00	0.43		
2:E:304:SER:HB3	2:E:308:THR:HB	2.00	0.43		

	louis page	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:F:483:TRP:CD1	2:F:501:LEU:CD1	2.96	0.43	
1:D:37:ASN:HD22	1:D:37:ASN:N	2.15	0.43	
2:F:105:TRP:CE2	2:F:143:LEU:HD13	2.53	0.43	
2:G:379:ILE:HG22	2:G:422:ASN:HB3	1.99	0.43	
2:G:462:TRP:CD1	2:G:502:ASN:ND2	2.79	0.43	
2:F:314:PHE:HD1	2:F:314:PHE:H	1.65	0.43	
2:E:447:ALA:O	2:E:450:ALA:O	2.37	0.43	
2:H:250:ASN:ND2	2:H:335:HIS:NE2	2.67	0.43	
2:E:168:LEU:HD12	2:E:237:LEU:HB3	2.01	0.42	
2:H:320:VAL:HB	2:H:344:ILE:HD11	2.01	0.42	
2:E:164:LEU:HG	2:E:234:ARG:HD2	2.00	0.42	
2:E:285:TRP:HB3	2:E:292:LEU:HD13	2.00	0.42	
2:F:187:GLU:O	2:F:188:SER:OG	2.32	0.42	
1:C:117:PRO:HG2	1:C:118:TRP:CD1	2.55	0.42	
2:E:437:ARG:HA	2:E:458:PRO:CG	2.48	0.42	
1:A:12:SER:HB2	2:E:302:THR:HA	2.02	0.42	
2:E:281:PHE:CE1	2:E:311:ARG:NH1	2.88	0.42	
2:G:415:GLU:HG2	2:G:495:TRP:HH2	1.83	0.42	
2:F:323:ASN:CB	5:F:601:NAG:O5	2.68	0.41	
2:F:468:SER:HG	2:F:477:GLU:N	2.17	0.41	
2:H:371:VAL:HG23	2:H:404:SER:HB3	2.01	0.41	
2:E:168:LEU:HD22	2:E:188:SER:HA	2.03	0.41	
1:D:107:GLU:HA	1:D:110:GLU:OE1	2.21	0.41	
2:G:234:ARG:CB	2:G:239:ARG:HA	2.50	0.41	
2:F:285:TRP:HB3	2:F:292:LEU:HD13	2.03	0.41	
2:G:371:VAL:HG23	2:G:404:SER:HB3	2.02	0.41	
2:H:233:ALA:O	2:H:239:ARG:HA	2.20	0.41	
2:F:514:CYS:N	2:F:524:CYS:SG	2.93	0.41	
2:H:244:LEU:HD23	2:H:244:LEU:HA	1.92	0.40	
1:B:15:PHE:CE2	1:B:112:LEU:CB	3.04	0.40	
1:D:47:LEU:O	1:D:51:VAL:HG23	2.21	0.40	
2:F:320:VAL:HB	2:F:344:ILE:HD11	2.01	0.40	
2:G:452:CYS:HB3	2:G:503:MET:HA	2.02	0.40	
2:H:168:LEU:CD2	2:H:240:GLU:HG2	2.51	0.40	
2:H:300:MET:HB2	2:H:312:ILE:HG22	2.03	0.40	
1:C:80:HIS:CD2	2:G:307:ARG:HD3	2.57	0.40	
1:D:12:SER:HB2	2:H:302:THR:HA	2.02	0.40	
2:E:371:VAL:HG23	2:E:404:SER:HB3	2.03	0.40	
1:A:117:PRO:HG2	1:A:118:TRP:CD1	2.56	0.40	
2:E:164:LEU:HG	2:E:234:ARG:HB3	2.04	0.40	
2:E:367:PHE:O	2:E:407:CYS:SG	2.78	0.40	

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
2:E:193:ILE:CB	2:E:234:ARG:HG3	2.52	0.40	
2:G:483:TRP:CD1	2:G:483:TRP:N	2.89	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	P	erce	entiles
1	А	143/155~(92%)	133 (93%)	10 (7%)	0		100	100
1	В	132/155~(85%)	126 (96%)	5 (4%)	1 (1%)		19	56
1	С	131/155~(84%)	126 (96%)	4 (3%)	1 (1%)		19	56
1	D	132/155~(85%)	127 (96%)	5 (4%)	0		100	100
2	Е	316/582~(54%)	277 (88%)	32 (10%)	7 (2%)		6	37
2	F	392/582~(67%)	325 (83%)	54 (14%)	13 (3%)		4	31
2	G	340/582~(58%)	289~(85%)	40 (12%)	11 (3%)		4	31
2	Н	307/582~(53%)	254 (83%)	38 (12%)	15 (5%)		2	22
All	All	1893/2948~(64%)	1657 (88%)	188 (10%)	48 (2%)		5	35

All (48) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	3	ASP
2	Ε	190	PRO
2	Ε	334	LYS
2	Ε	364	TYR
2	F	85	VAL
2	F	334	LYS
2	G	334	LYS
2	Н	177	GLU

001000	iraca ji cii	v proces	b ab page
Mol	Chain	Res	Type
2	Н	305	THR
2	Н	334	LYS
2	Н	433	LEU
2	Н	435	ILE
2	Н	440	GLN
2	Н	458	PRO
1	С	3	ASP
2	Е	305	THR
2	Е	387	ARG
2	F	278	ASN
2	F	305	THR
2	F	387	ARG
2	F	435	ILE
2	G	231	CYS
2	G	305	THR
2	G	353	THR
2	G	387	ARG
2	Н	166	TYR
2	Н	306	ASN
2	Н	387	ARG
2	F	133	MET
2	G	232	CYS
2	G	256	THR
2	Н	236	GLU
2	Е	306	ASN
2	F	75	VAL
2	F	436	ARG
2	F	454	SER
2	G	484	ASN
2	F	255	THR
2	G	220	VAL
2	Н	347	LYS
2	F	257	LEU
2	G	210	SER
2	G	362	ASP
2	Н	210	SER
2	Н	482	VAL
2	Н	439	PRO
2	Е	213	VAL
2	F	471	SER

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric Outliers		Perce	entiles
1	А	104/142~(73%)	100 (96%)	4 (4%)	33	61
1	В	84/142~(59%)	82 (98%)	2(2%)	49	71
1	С	86/142~(61%)	82~(95%)	4(5%)	26	56
1	D	108/142~(76%)	99~(92%)	9 (8%)	11	40
2	Ε	161/515~(31%)	144 (89%)	17 (11%)	6	30
2	F	217/515~(42%)	188 (87%)	29~(13%)	4	21
2	G	188/515~(36%)	170 (90%)	18 (10%)	8	34
2	Н	157/515~(30%)	136 (87%)	21 (13%)	4	21
All	All	1105/2628~(42%)	1001 (91%)	104 (9%)	9	35

All (104) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	21	GLU
1	А	98	GLN
1	А	106	GLN
1	А	133	GLN
1	В	0	MET
1	В	121	ARG
1	С	41	GLU
1	С	42	GLU
1	С	52	LEU
1	С	126	ARG
1	D	20	ARG
1	D	36	SER
1	D	37	ASN
1	D	59	ARG
1	D	98	GLN
1	D	106	GLN
1	D	113	VAL
1	D	121	ARG
1	D	132	CYS

Mol	Chain	Res	Type
2	Е	168	LEU
2	Е	260	LEU
2	Е	270	ILE
2	Е	277	VAL
2	Е	287	LEU
2	Е	292	LEU
2	Е	307	ARG
2	Е	308	THR
2	Е	309	MET
2	Е	344	ILE
2	Е	349	PHE
2	Е	361	ILE
2	Е	371	VAL
2	Е	378	GLN
2	Е	392	CYS
2	Е	407	CYS
2	Е	518	ASN
2	F	140	GLU
2	F	154	ILE
2	F	165	LEU
2	F	166	TYR
2	F	196	TRP
2	F	234	ARG
2	F	239	ARG
2	F	286	GLU
2	F	292	LEU
2	F	298	PHE
2	F	306	ASN
2	F	308	THR
2	F	309	MET
2	F	311	ARG
2	F	313	LEU
2	F	314	PHE
2^{-}	F	325	THR
2	F	344	ILE
2	F	360	GLU
2	F	366[A]	GLU
2	F	366[B]	GLU
2	F	367	PHE
2	F	371	VAL
2	F	392	CYS
2	F	395	LYS

Mol	Chain	Res	Type
2	F	433	LEU
2	F	442	LEU
2	F	499	SER
2	F	504	SER
2	G	179	GLN
2	G	209	GLU
2	G	232	CYS
2	G	244	LEU
2	G	260	LEU
2	G	270	ILE
2	G	277	VAL
2	G	287	LEU
2	G	292	LEU
2	G	308	THR
2	G	309	MET
2	G	325	THR
2	G	357	GLU
2	G	371	VAL
2	G	392	CYS
2	G	422	ASN
2	G	440	GLN
2	G	518	ASN
2	Н	164	LEU
2	Н	165	LEU
2	Н	169	ARG
2	Н	177	GLU
2	Н	244	LEU
2	Н	270	ILE
2	Н	278	ASN
2	Н	287	LEU
2	Н	292	LEU
2	Н	308	THR
2	Н	309	MET
2	Н	312	ILE
2	Н	313	LEU
2	Н	325	THR
2	Н	341	LEU
2	Н	344	ILE
2	Н	361	ILE
2	Н	371	VAL
2	Н	392	CYS
2	Н	442	LEU

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type
2	Н	449	GLN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (20) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	8	HIS
1	А	76	ASN
1	А	106	GLN
1	С	80	HIS
1	D	7	GLN
1	D	37	ASN
1	D	106	GLN
1	D	111	GLN
2	Е	222	HIS
2	Е	278	ASN
2	Е	408	ASN
2	F	117	HIS
2	F	518	ASN
2	G	422	ASN
2	G	488	ASN
2	G	494	GLN
2	Н	250	ASN
2	Н	276	HIS
2	Н	278	ASN
2	Н	449	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

5 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and

the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	l Type Chain Beg Li				Link Bond lengths				Bond angles			
	Type	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2		
3	NAG	Ι	1	2,3	14,14,15	0.33	0	17,19,21	1.16	1 (5%)		
3	NAG	Ι	2	3	14,14,15	0.35	0	17,19,21	1.05	3 (17%)		
3	BMA	Ι	3	3	11,11,12	0.33	0	15,15,17	0.43	0		
4	NAG	J	1	2,4	14,14,15	0.45	0	17,19,21	1.60	3 (17%)		
4	NAG	J	2	4	14,14,15	0.31	0	17,19,21	0.73	1 (5%)		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	Ι	1	2,3	-	0/6/23/26	0/1/1/1
3	NAG	Ι	2	3	-	0/6/23/26	0/1/1/1
3	BMA	Ι	3	3	-	0/2/19/22	0/1/1/1
4	NAG	J	1	2,4	-	1/6/23/26	0/1/1/1
4	NAG	J	2	4	-	0/6/23/26	0/1/1/1

There are no bond length outliers.

All (8) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$\mathbf{Ideal}(^{o})$
4	J	1	NAG	C1-O5-C5	4.78	118.67	112.19
3	Ι	1	NAG	O5-C1-C2	-3.66	105.50	111.29
4	J	2	NAG	C1-O5-C5	2.84	116.05	112.19
3	Ι	2	NAG	C1-O5-C5	2.58	115.69	112.19
4	J	1	NAG	C2-N2-C7	2.56	126.55	122.90
3	Ι	2	NAG	C1-C2-N2	2.50	114.75	110.49
4	J	1	NAG	C3-C4-C5	2.25	114.25	110.24
3	Ι	2	NAG	O5-C1-C2	-2.21	107.80	111.29

There are no chirality outliers.

All (1) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	J	1	NAG	C1-C2-N2-C7

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

4 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type Chain Rea		Dog	Bes Link Bond lengths				B	ond ang	les	
MOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
5	NAG	F	602	2	$14,\!14,\!15$	0.30	0	17,19,21	0.40	0
5	NAG	F	601	2	14,14,15	0.33	0	17,19,21	0.46	0
5	NAG	Е	601	2	14,14,15	0.33	0	17,19,21	0.58	1 (5%)

Mol	Type	Chain	Res	Tink	Bond lengths			Bond angles		
					Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
5	NAG	Н	601	2	14,14,15	0.38	0	17,19,21	1.12	2 (11%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	NAG	F	602	2	-	0/6/23/26	0/1/1/1
5	NAG	F	601	2	-	2/6/23/26	0/1/1/1
5	NAG	Е	601	2	-	0/6/23/26	0/1/1/1
5	NAG	Н	601	2	-	2/6/23/26	0/1/1/1

There are no bond length outliers.

All (3) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	Н	601	NAG	C1-C2-N2	3.51	116.48	110.49
5	Н	601	NAG	C2-N2-C7	2.59	126.59	122.90
5	Е	601	NAG	C1-O5-C5	2.17	115.14	112.19

There are no chirality outliers.

All (4) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
5	Н	601	NAG	C1-C2-N2-C7
5	Н	601	NAG	O5-C5-C6-O6
5	F	601	NAG	C4-C5-C6-O6
5	F	601	NAG	O5-C5-C6-O6

There are no ring outliers.

1 monomer is involved in 2 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	F	601	NAG	2	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
2	G	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	G	504:SER	С	505:GLU	N	3.85

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

