

# wwPDB EM Validation Summary Report (i)

#### May 12, 2022 - 01:17 pm BST

| PDB ID                 | : | 7QH7                                                                      |
|------------------------|---|---------------------------------------------------------------------------|
| EMDB ID                | : | EMD-13967                                                                 |
| Title                  | : | Cryo-EM structure of the human mtLSU assembly intermediate upon MRM2      |
|                        |   | depletion - class 4                                                       |
| Authors                | : | Rebelo-Guiomar, P.; Pellegrino, S.; Dent, K.C.; Warren, A.J.; Minczuk, M. |
| Deposited on           | : | 2021-12-10                                                                |
| Resolution             | : | 2.89  Å(reported)                                                         |
| Based on initial model | : | 500L                                                                      |

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | 0.0.1. dev 8                                                       |
|--------------------------------|---|--------------------------------------------------------------------|
| MolProbity                     | : | 4.02b-467                                                          |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.28.1                                                             |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 2.89 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Motria                | Whole archive       | EM structures        |
|-----------------------|---------------------|----------------------|
| Metric                | $(\# { m Entries})$ | $(\# {\rm Entries})$ |
| Ramachandran outliers | 154571              | 4023                 |
| Sidechain outliers    | 154315              | 3826                 |
| RNA backbone          | 4643                | 859                  |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for  $\geq=3, 2, 1$  and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions  $\leq=5\%$  The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |     |
|-----|-------|--------|------------------|-----|
| 1   | D     | 215    | 94%              | 6%  |
| 2   | Е     | 304    | 97%              | •   |
| 3   | F     | 250    | 97%              | •   |
| 4   | Н     | 95     | 96%              | •   |
| 5   | Ι     | 30     | 97%              | •   |
| 6   | K     | 177    | 95%              | 5%  |
| 7   | L     | 115    | 97%              | ••• |
| 8   | М     | 287    | 97%              | •   |



| Mol | Chain | Length | Quality of chain |                |
|-----|-------|--------|------------------|----------------|
| 9   | Ν     | 201    | <b>•</b><br>99%  | <del>.</del> . |
| 10  | О     | 152    | <b>•</b><br>97%  | •              |
| 11  | Р     | 141    | 97%              | <del>.</del>   |
| 12  | Q     | 217    | 99%              | <del>.</del>   |
| 13  | R     | 139    | 99%              | <mark>.</mark> |
| 14  | S     | 156    | 95%              | 5%             |
| 15  | Т     | 166    | 92%              | • 7%           |
| 16  | U     | 125    | 98%              |                |
| 17  | V     | 48     | 94%              | 6%             |
| 18  | W     | 100    | 99%              | •              |
| 19  | Х     | 243    | 98%              | •              |
| 20  | Y     | 175    | 95%              | 5%             |
| 21  | Ζ     | 115    | 96%              | •              |
| 22  | 0     | 108    | 96%              | •              |
| 23  | 1     | 49     | 94%              | 6%             |
| 24  | 2     | 45     | 98%              | <del>.</del>   |
| 25  | 3     | 95     | 98%              | <del>.</del>   |
| 26  | 5     | 392    | 96%              | •              |
| 27  | 6     | 292    | <b>•</b><br>96%  | •              |
| 28  | 7     | 287    | 97%              | <del>.</del>   |
| 29  | 9     | 123    | 91%              | • 5%           |
| 30  | a     | 80     | 95%              | 5%             |
| 31  | b     | 148    | 97%              | <del>.</del>   |
| 32  | с     | 287    | 92%              | •••            |
| 33  | d     | 169    | 90%              | • 7%           |

Continued from previous page...



| Mol | Chain        | Length | Quality of chain  |      |
|-----|--------------|--------|-------------------|------|
| 34  | f            | 17     | 94%               | 6%   |
| 35  | g            | 129    | 96%               | •    |
| 36  | h            | 105    | 90%               | 7% • |
| 37  | i            | 97     | 99%               | •    |
| 38  | j            | 86     | 98%               | •    |
| 39  | 0            | 81     | 96%               | •    |
| 40  | р            | 125    | 9%                | •    |
| 41  | q            | 101    | 99%               | •    |
| 42  | r            | 140    | 89%               | • 8% |
| 43  | $\mathbf{S}$ | 390    | 91%               | • 5% |
| 44  | u            | 111    | 95%               | 5%   |
| 45  | V            | 69     | 9%                | •    |
| 46  | W            | 79     | 70%               |      |
| 47  | А            | 1256   | 74%               | 26%  |
| 48  | В            | 61     | 18%<br>62%<br>30% | 8%   |
| 49  | 4            | 37     | 95%               | 5%   |

Continued from previous page...



# 2 Entry composition (i)

There are 52 unique types of molecules in this entry. The entry contains 85397 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 39S ribosomal protein L2, mitochondrial.

| Mol | Chain | Residues | Atoms         |           |          |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---------|-------|
| 1   | D     | 215      | Total<br>1671 | C<br>1034 | N<br>337 | O<br>292 | S<br>8 | 0       | 0     |

• Molecule 2 is a protein called 39S ribosomal protein L3, mitochondrial.

| Mol | Chain | Residues | Atoms         |           |          |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 2   | Е     | 304      | Total<br>2396 | C<br>1539 | N<br>416 | 0<br>430 | S<br>11 | 0       | 0     |

• Molecule 3 is a protein called 39S ribosomal protein L4, mitochondrial.

| Mol | Chain | Residues | Atoms         |           |          |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---------|-------|
| 3   | F     | 250      | Total<br>2013 | C<br>1294 | N<br>365 | 0<br>348 | S<br>6 | 0       | 0     |

• Molecule 4 is a protein called 39S ribosomal protein L9, mitochondrial.

| Mol | Chain | Residues | Atoms        |          |          |          | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|---------|-------|
| 4   | Н     | 95       | Total<br>784 | C<br>498 | N<br>152 | 0<br>134 | 0       | 0     |

• Molecule 5 is a protein called 39S ribosomal protein L10, mitochondrial.

| Mol | Chain | Residues | Atoms |     |    |    |   | AltConf | Trace |
|-----|-------|----------|-------|-----|----|----|---|---------|-------|
| 5   | I     | 30       | Total | С   | Ν  | 0  | S | 0       | 0     |
| 0   | -     | 00       | 247   | 160 | 47 | 37 | 3 |         | Ŭ     |

• Molecule 6 is a protein called 39S ribosomal protein L13, mitochondrial.

| Mol | Chain | Residues | Atoms         |          |          |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 6   | K     | 177      | Total<br>1451 | C<br>934 | N<br>259 | 0<br>251 | S<br>7 | 0       | 0     |



• Molecule 7 is a protein called 39S ribosomal protein L14, mitochondrial.

| Mol | Chain | Residues |              | At                                               | oms      |          |                | AltConf | Trace |
|-----|-------|----------|--------------|--------------------------------------------------|----------|----------|----------------|---------|-------|
| 7   | L     | 115      | Total<br>889 | $\begin{array}{c} \mathrm{C} \\ 559 \end{array}$ | N<br>171 | 0<br>154 | ${ m S}{ m 5}$ | 0       | 0     |

• Molecule 8 is a protein called 39S ribosomal protein L15, mitochondrial.

| Mol | Chain | Residues | Atoms         |           |          |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---------|-------|
| 8   | М     | 287      | Total<br>2305 | C<br>1472 | N<br>425 | O<br>402 | S<br>6 | 0       | 0     |

• Molecule 9 is a protein called 39S ribosomal protein L16, mitochondrial.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 9   | Ν     | 201      | Total<br>1621 | C<br>1033 | N<br>302 | O<br>276 | S<br>10 | 0 | 0 |

• Molecule 10 is a protein called 39S ribosomal protein L17, mitochondrial.

| Mol | Chain | Residues |               | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 10  | О     | 152      | Total<br>1245 | C<br>784 | N<br>239 | 0<br>215 | S<br>7 | 0       | 0     |

• Molecule 11 is a protein called 39S ribosomal protein L18, mitochondrial.

| Mol | Chain | Residues |               | At       | oms      |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---------|-------|
| 11  | Р     | 141      | Total<br>1148 | C<br>719 | N<br>221 | O<br>203 | ${S \atop 5}$ | 0       | 0     |

• Molecule 12 is a protein called 39S ribosomal protein L19, mitochondrial.

| Mol | Chain | Residues | Atoms         |           |          |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---------|-------|
| 12  | Q     | 217      | Total<br>1805 | C<br>1159 | N<br>317 | 0<br>320 | S<br>9 | 0       | 0     |

• Molecule 13 is a protein called 39S ribosomal protein L20, mitochondrial.

| Mol | Chain | Residues | Atoms         |          |          |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---------|-------|
| 13  | R     | 139      | Total<br>1143 | C<br>726 | N<br>228 | 0<br>185 | ${S \atop 4}$ | 0       | 0     |

• Molecule 14 is a protein called 39S ribosomal protein L21, mitochondrial.



| Mol | Chain | Residues |               | At       | oms      |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---------|-------|
| 14  | S     | 156      | Total<br>1251 | C<br>806 | N<br>222 | O<br>219 | $\frac{S}{4}$ | 0       | 0     |

• Molecule 15 is a protein called 39S ribosomal protein L22, mitochondrial.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace      |   |   |
|-----|-------|----------|---------------|----------|----------|----------|------------|---|---|
| 15  | Т     | 155      | Total<br>1274 | C<br>815 | N<br>232 | O<br>220 | ${ m S} 7$ | 0 | 0 |

• Molecule 16 is a protein called 39S ribosomal protein L23, mitochondrial.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace         |   |   |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---|---|
| 16  | U     | 125      | Total<br>1030 | C<br>660 | N<br>197 | 0<br>171 | ${S \over 2}$ | 0 | 0 |

• Molecule 17 is a protein called 39S ribosomal protein L24, mitochondrial.

| Mol | Chain | Residues |       | Ato      | $\mathbf{ms}$ |         |        | AltConf | Trace |
|-----|-------|----------|-------|----------|---------------|---------|--------|---------|-------|
| 17  | V     | 48       | Total | C<br>250 | N<br>63       | 0<br>77 | S<br>3 | 0       | 0     |
|     |       |          | 402   | 239      | 00            | ( (     | 5      |         |       |

• Molecule 18 is a protein called 39S ribosomal protein L27, mitochondrial.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace           |   |   |
|-----|-------|----------|--------------|----------|----------|----------|-----------------|---|---|
| 18  | W     | 100      | Total<br>801 | C<br>518 | N<br>150 | 0<br>130 | ${ m S} { m 3}$ | 0 | 0 |

• Molecule 19 is a protein called 39S ribosomal protein L28, mitochondrial.

| Mol | Chain | Residues |               | Ate       | oms      |          |                | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|----------------|---------|-------|
| 19  | Х     | 243      | Total<br>2035 | C<br>1317 | N<br>351 | O<br>362 | ${ m S}{ m 5}$ | 0       | 0     |

• Molecule 20 is a protein called 39S ribosomal protein L47, mitochondrial.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace      |   |   |
|-----|-------|----------|---------------|----------|----------|----------|------------|---|---|
| 20  | Y     | 175      | Total<br>1506 | C<br>961 | N<br>290 | 0<br>251 | ${f S}{4}$ | 0 | 0 |

• Molecule 21 is a protein called 39S ribosomal protein L30, mitochondrial.



| Mol | Chain | Residues |              | At                                               | oms      |          |                 | AltConf | Trace |
|-----|-------|----------|--------------|--------------------------------------------------|----------|----------|-----------------|---------|-------|
| 21  | Z     | 115      | Total<br>937 | $\begin{array}{c} \mathrm{C} \\ 598 \end{array}$ | N<br>175 | 0<br>161 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 22 is a protein called 39S ribosomal protein L32, mitochondrial.

| Mol | Chain | Residues | Atoms        |          |          |          |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|--------|---------|-------|
| 22  | 0     | 108      | Total<br>880 | C<br>545 | N<br>172 | 0<br>157 | S<br>6 | 0       | 0     |

• Molecule 23 is a protein called 39S ribosomal protein L33, mitochondrial.

| Mol | Chain | Residues |              | Atc      | $\mathbf{ms}$ | AltConf | Trace                                                   |   |   |
|-----|-------|----------|--------------|----------|---------------|---------|---------------------------------------------------------|---|---|
| 23  | 1     | 49       | Total<br>408 | C<br>263 | N<br>77       | O<br>66 | $\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$ | 0 | 0 |

• Molecule 24 is a protein called 39S ribosomal protein L34, mitochondrial.

| Mol | Chain | Residues |       | Ato | $\mathbf{ms}$ |    |   | AltConf | Trace |
|-----|-------|----------|-------|-----|---------------|----|---|---------|-------|
| 24  | 2     | 45       | Total | С   | Ν             | Ο  | S | 0       | Ο     |
| 24  | 2     | 40       | 367   | 227 | 81            | 58 | 1 | 0       | 0     |

• Molecule 25 is a protein called 39S ribosomal protein L35, mitochondrial.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace           |   |   |
|-----|-------|----------|--------------|----------|----------|----------|-----------------|---|---|
| 25  | 3     | 95       | Total<br>831 | C<br>539 | N<br>162 | 0<br>127 | ${ m S} { m 3}$ | 0 | 0 |

• Molecule 26 is a protein called 39S ribosomal protein L37, mitochondrial.

| Mol | Chain | Residues |               | At        | oms      |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 26  | 5     | 392      | Total<br>3199 | C<br>2067 | N<br>558 | O<br>563 | S<br>11 | 0       | 0     |

• Molecule 27 is a protein called 39S ribosomal protein L38, mitochondrial.

| Mol | Chain | Residues |               | Ate       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---------|-------|
| 27  | 6     | 292      | Total<br>2460 | C<br>1586 | N<br>432 | 0<br>434 | S<br>8 | 0       | 0     |

• Molecule 28 is a protein called 39S ribosomal protein L39, mitochondrial.



| Mol | Chain | Residues |               | At        | oms      |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 28  | 7     | 287      | Total<br>2334 | C<br>1495 | N<br>397 | O<br>425 | S<br>17 | 0       | 0     |

• Molecule 29 is a protein called 39S ribosomal protein L41, mitochondrial.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace         |   |   |
|-----|-------|----------|--------------|----------|----------|----------|---------------|---|---|
| 29  | 9     | 117      | Total<br>947 | C<br>614 | N<br>163 | 0<br>168 | ${S \over 2}$ | 0 | 0 |

• Molecule 30 is a protein called 39S ribosomal protein L42, mitochondrial.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace      |   |   |
|-----|-------|----------|--------------|----------|----------|----------|------------|---|---|
| 30  | a     | 80       | Total<br>672 | C<br>425 | N<br>124 | 0<br>118 | ${f S}{5}$ | 0 | 0 |

• Molecule 31 is a protein called 39S ribosomal protein L43, mitochondrial.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace           |   |   |
|-----|-------|----------|---------------|----------|----------|----------|-----------------|---|---|
| 31  | b     | 148      | Total<br>1178 | C<br>733 | N<br>229 | 0<br>213 | ${ m S} { m 3}$ | 0 | 0 |

• Molecule 32 is a protein called 39S ribosomal protein L44, mitochondrial.

| Mol | Chain | Residues |               | Ate       | AltConf  | Trace    |        |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---|---|
| 32  | с     | 275      | Total<br>2214 | C<br>1413 | N<br>382 | 0<br>410 | S<br>9 | 0 | 0 |

• Molecule 33 is a protein called 39S ribosomal protein L45, mitochondrial.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|---------------|----------|----------|----------|--------|---|---|
| 33  | d     | 157      | Total<br>1308 | C<br>843 | N<br>228 | O<br>229 | S<br>8 | 0 | 0 |

• Molecule 34 is a protein called 39S ribosomal protein L48, mitochondrial.

| Mol | Chain | Residues | L            | Ator    | ns      | AltConf | Trace |   |
|-----|-------|----------|--------------|---------|---------|---------|-------|---|
| 34  | f     | 17       | Total<br>142 | C<br>95 | N<br>26 | O<br>21 | 0     | 0 |

• Molecule 35 is a protein called 39S ribosomal protein L49, mitochondrial.



| Mol | Chain | Residues |               | At       | oms      |          |                 | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|-----------------|---------|-------|
| 35  | g     | 129      | Total<br>1067 | C<br>690 | N<br>185 | O<br>190 | ${ m S} { m 2}$ | 0       | 0     |

• Molecule 36 is a protein called 39S ribosomal protein L50, mitochondrial.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace         |   |   |
|-----|-------|----------|--------------|----------|----------|----------|---------------|---|---|
| 36  | h     | 101      | Total<br>829 | C<br>525 | N<br>147 | 0<br>155 | ${S \over 2}$ | 0 | 0 |

• Molecule 37 is a protein called 39S ribosomal protein L51, mitochondrial.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace         |   |   |
|-----|-------|----------|--------------|----------|----------|----------|---------------|---|---|
| 37  | i     | 97       | Total<br>827 | C<br>532 | N<br>165 | 0<br>126 | $\frac{S}{4}$ | 0 | 0 |

• Molecule 38 is a protein called 39S ribosomal protein L52, mitochondrial.

| Mol | Chain | Residues |              | At       | $\mathbf{oms}$ |          |                 | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------------|----------|-----------------|---------|-------|
| 38  | j     | 86       | Total<br>689 | C<br>426 | N<br>134       | 0<br>127 | ${ m S} { m 2}$ | 0       | 0     |

• Molecule 39 is a protein called Ribosomal protein 63, mitochondrial.

| Mol | Chain | Residues |              | At       | oms      |          |                 | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|-----------------|---------|-------|
| 39  | 0     | 81       | Total<br>687 | C<br>432 | N<br>138 | 0<br>114 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 40 is a protein called Peptidyl-tRNA hydrolase ICT1, mitochondrial.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace         |   |   |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---|---|
| 40  | р     | 125      | Total<br>1045 | C<br>653 | N<br>199 | O<br>189 | ${S \over 4}$ | 0 | 0 |

• Molecule 41 is a protein called Growth arrest and DNA damage-inducible proteins-interacting protein 1.

| Mol | Chain | Residues |              | At       | oms      |          |                 | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|-----------------|---------|-------|
| 41  | q     | 101      | Total<br>841 | C<br>527 | N<br>162 | 0<br>149 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 42 is a protein called 39S ribosomal protein S18a, mitochondrial.



| Mol | Chain | Residues |               | At       | AltConf  | Trace    |        |   |   |
|-----|-------|----------|---------------|----------|----------|----------|--------|---|---|
| 42  | r     | 129      | Total<br>1068 | C<br>679 | N<br>209 | 0<br>172 | S<br>8 | 0 | 0 |

• Molecule 43 is a protein called 39S ribosomal protein S30, mitochondrial.

| Mol | Chain | Residues | Atoms         |           |          |          | AltConf | Trace |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|-------|---|
| 43  | s     | 370      | Total<br>3036 | C<br>1946 | N<br>542 | 0<br>534 | S<br>14 | 0     | 0 |

• Molecule 44 is a protein called Mitochondrial assembly of ribosomal large subunit protein 1.

| Mol | Chain | Residues | Atoms        |                                                  |          |          | AltConf | Trace |   |
|-----|-------|----------|--------------|--------------------------------------------------|----------|----------|---------|-------|---|
| 44  | u     | 111      | Total<br>927 | $\begin{array}{c} \mathrm{C} \\ 595 \end{array}$ | N<br>155 | 0<br>167 | S<br>10 | 0     | 0 |

• Molecule 45 is a protein called MIEF1 upstream open reading frame protein.

| Mol | Chain | Residues | Atoms        |          |          | AltConf  | Trace |   |
|-----|-------|----------|--------------|----------|----------|----------|-------|---|
| 45  | v     | 69       | Total<br>588 | C<br>372 | N<br>116 | O<br>100 | 0     | 0 |

• Molecule 46 is a protein called Acyl carrier protein, mitochondrial.

| Mol | Chain | Residues | Atoms        |          |         |          | AltConf        | Trace |   |
|-----|-------|----------|--------------|----------|---------|----------|----------------|-------|---|
| 46  | W     | 79       | Total<br>638 | C<br>410 | N<br>95 | 0<br>128 | ${ m S}{ m 5}$ | 0     | 0 |

• Molecule 47 is a RNA chain called 16S ribosomal RNA.

| Mol | Chain | Residues | Atoms          |            |           |           |           | AltConf | Trace |
|-----|-------|----------|----------------|------------|-----------|-----------|-----------|---------|-------|
| 47  | А     | 1256     | Total<br>26670 | C<br>11966 | N<br>4809 | O<br>8639 | Р<br>1256 | 0       | 0     |

• Molecule 48 is a RNA chain called mitochondrial tRNAVal.

| Mol | Chain | Residues | Atoms         |          |          |          | AltConf | Trace |   |
|-----|-------|----------|---------------|----------|----------|----------|---------|-------|---|
| 48  | В     | 56       | Total<br>1191 | C<br>534 | N<br>214 | O<br>387 | Р<br>56 | 0     | 0 |

• Molecule 49 is a protein called 39S ribosomal protein L36, mitochondrial.



| Mol | Chain | Residues | Atoms        |          |         | AltConf | Trace           |   |   |
|-----|-------|----------|--------------|----------|---------|---------|-----------------|---|---|
| 49  | 4     | 37       | Total<br>333 | C<br>212 | N<br>71 | O<br>47 | ${ m S} { m 3}$ | 0 | 0 |

• Molecule 50 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

| Mol | Chain | Residues | Atoms           | AltConf |
|-----|-------|----------|-----------------|---------|
| 50  | Е     | 1        | Total Mg<br>1 1 | 0       |
| 50  | А     | 49       | TotalMg4949     | 0       |

• Molecule 51 is ZINC ION (three-letter code: ZN) (formula: Zn).

| Mol | Chain | Residues | Atoms           | AltConf |
|-----|-------|----------|-----------------|---------|
| 51  | 0     | 1        | Total Zn<br>1 1 | 0       |
| 51  | r     | 1        | Total Zn<br>1 1 | 0       |
| 51  | 4     | 1        | Total Zn<br>1 1 | 0       |

• Molecule 52 is water.

| Mol | Chain | Residues | Atoms                                   | AltConf |
|-----|-------|----------|-----------------------------------------|---------|
| 52  | Ο     | 1        | Total O<br>1 1                          | 0       |
| 52  | Т     | 1        | Total O<br>1 1                          | 0       |
| 52  | b     | 1        | Total O<br>1 1                          | 0       |
| 52  | i     | 1        | Total O<br>1 1                          | 0       |
| 52  | А     | 10       | Total         O           10         10 | 0       |



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 39S ribosomal protein L2, mitochondrial





| Chain K:                                                                                              | 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5% |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| S<br>S51<br>67<br>67<br>67<br>64<br>84<br>84<br>84<br>84<br>8115<br>8115<br>8115<br>8115<br>8115<br>8 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| • Molecule 7: 39S riboso                                                                              | mal protein L14, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| Chain L:                                                                                              | 97%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •• |
| A31<br>N43<br>544<br>72<br>1130<br>₩133                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| • Molecule 8: 39S riboso                                                                              | mal protein L15, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| Chain M:                                                                                              | 97%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •  |
| A10<br>R44<br>R134<br>D146<br>D146<br>T175<br>C188<br>V187<br>V187<br>V274<br>V274<br>D279            | 9<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| • Molecule 9: 39S riboso                                                                              | mal protein L16, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| Chain N:                                                                                              | 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| R51<br>F52<br>V59<br>V61<br>V61<br>K116<br>E34<br>K116<br>H237<br>F203                                | <mark>1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1255 - 1</mark> |    |
| • Molecule 10: 39S ribos                                                                              | omal protein L17, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| Chain O:                                                                                              | 97%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·  |
| Sio<br>142<br>061<br>4154<br>4154<br>4160                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| • Molecule 11: 39S ribos                                                                              | omal protein L18, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| Chain P:                                                                                              | 97%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •  |
| V39<br>F72<br>Q134<br>N142<br>V179<br>Y179                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| • Molecule 12: 39S ribos                                                                              | omal protein L19, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| Chain Q:                                                                                              | 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| F75<br>1189<br>F226<br>K290                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| • Molecule 13: 39S ribos                                                                              | omal protein L20, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |

W O R L D W I D E PROTEIN DATA BANK

| Chain R:                                                                                                     | 99%                        | ·    |
|--------------------------------------------------------------------------------------------------------------|----------------------------|------|
| L10<br>T 6<br>Y 148                                                                                          |                            |      |
| • Molecule 14: 39S ribosomal                                                                                 | protein L21, mitochondrial |      |
| Chain S:                                                                                                     | 95%                        | 5%   |
| 649<br>11<br>12<br>128<br>112<br>112<br>112<br>112<br>1134<br>1134<br>1134<br>1134<br>113                    |                            |      |
| • Molecule 15: 39S ribosomal                                                                                 | protein L22, mitochondrial |      |
| Chain T:                                                                                                     | 92%                        | • 7% |
| 147<br>149<br>150<br>150<br>150<br>150<br>152<br>115<br>115<br>115<br>115<br>115<br>115<br>115<br>115<br>115 |                            |      |
| • Molecule 16: 39S ribosomal                                                                                 | protein L23, mitochondrial |      |
| Chain U:                                                                                                     | 98%                        | ·    |
| 42<br>E47<br>L153                                                                                            |                            |      |
| • Molecule 17: 39S ribosomal                                                                                 | protein L24, mitochondrial |      |
| Chain V:                                                                                                     | 94%                        | 6%   |
| 1169<br>1194<br>M 99<br>K211<br>V216                                                                         |                            |      |
| • Molecule 18: 39S ribosomal                                                                                 | protein L27, mitochondrial |      |
| Chain W:                                                                                                     | 99%                        |      |
| R4 9<br>M1 47<br>L1 48                                                                                       |                            |      |
| • Molecule 19: 39S ribosomal                                                                                 | protein L28, mitochondrial |      |
| Chain X:                                                                                                     | 98%                        |      |
| 72<br>C154<br>D189<br>E220<br>K21<br>S244                                                                    |                            |      |
| • Molecule 20: 39S ribosomal                                                                                 | protein L47, mitochondrial |      |







| Chain 6:                                                                  | 96                                                                                                                                               | 6% ·                         |   |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---|
| R27<br>D41<br>R75<br>L161<br>E161                                         | E203<br>222<br>1233<br>1255<br>1255<br>1255<br>1255<br>1255<br>1255                                                                              |                              |   |
| • Molecule 28: 3                                                          | 39S ribosomal protein L3                                                                                                                         | 9, mitochondrial             |   |
| Chain 7:                                                                  | 9                                                                                                                                                | ·7% ·                        |   |
| <b>336</b><br>Υ89<br>896<br>1129<br>1129<br>1129                          | E101<br>E171<br>E171<br>E279<br>E279<br>K322                                                                                                     |                              |   |
| • Molecule 29: 3                                                          | 39S ribosomal protein L4                                                                                                                         | 1, mitochondrial             |   |
| Chain 9:                                                                  | 91%                                                                                                                                              | • 5%                         |   |
| A15<br>819<br>829<br>145<br>145<br>010<br>6                               | THR<br>PHE<br>ASP<br>MI13<br>M113<br>FI37                                                                                                        |                              |   |
| • Molecule 30: 3                                                          | 39S ribosomal protein L4                                                                                                                         | 2, mitochondrial             |   |
| Chain a:                                                                  | 95                                                                                                                                               | i% 5%                        |   |
| L39<br>N46<br>E105<br>E105<br>R142                                        |                                                                                                                                                  |                              |   |
| • Molecule 31: 3                                                          | 39S ribosomal protein L4                                                                                                                         | 3, mitochondrial             |   |
| Chain b:                                                                  | 9                                                                                                                                                | )7% ·                        | l |
| 12<br>88<br>893<br>1138<br>1144<br>1144                                   |                                                                                                                                                  |                              |   |
| • Molecule 32: 3                                                          | 39S ribosomal protein L4                                                                                                                         | 4, mitochondrial             |   |
| Chain c:                                                                  | 92%                                                                                                                                              | 6 · ·                        |   |
| V31<br>Y68<br>H69<br>H69<br>GLN<br>GLN<br>GLN<br>GLN<br>GLU<br>GLU<br>CLU | dLa<br>ALA<br>VAL<br>LEU<br>LEU<br>LEU<br>LEU<br>LEU<br>CL67<br>CL67<br>CL67<br>CL67<br>CL67<br>CL67<br>CL67<br>CL67                             | 128 1<br>294<br>1307<br>8317 |   |
| • Molecule 33: 3                                                          | 39S ribosomal protein L4                                                                                                                         | 5, mitochondrial             |   |
| Chain d:                                                                  | 90%                                                                                                                                              | • 7%                         | I |
| A117<br>D127<br>1145<br>1145<br>1152<br>1152<br>1153<br>1153<br>1153      | SER<br>NET<br>MET<br>MET<br>MET<br>ASU<br>ASU<br>CLY<br>CJA<br>CL2<br>S2<br>HIR<br>ASU<br>F255<br>R240<br>THR<br>ASU<br>THR<br>ASU<br>THR<br>ASU | Px0<br>19285<br>19285        |   |

• Molecule 34: 39S ribosomal protein L48, mitochondrial



| Chain f:                                                                                                                                           | 94%                              | 6%           |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|
| K K 60<br>45<br>7                                                                                                                                  |                                  |              |
| • Molecule 35: 39S ribos                                                                                                                           | somal protein L49, mitochondrial |              |
| Chain g:                                                                                                                                           | 96%                              |              |
| F 38<br>E 44<br>T 63<br>F 16<br>F 16<br>G                                                                                                          |                                  |              |
| • Molecule 36: 39S ribos                                                                                                                           | somal protein L50, mitochondrial |              |
| Chain h:                                                                                                                                           | 90%                              | 7% •         |
| P553<br>P554<br>P554<br>P555<br>C155<br>C177<br>P568<br>G177<br>S55R<br>S55R<br>P503<br>F103<br>F103<br>F103<br>F103<br>F103<br>F103<br>F103<br>F1 | E142<br>157                      |              |
| • Molecule 37: 39S ribos                                                                                                                           | somal protein L51, mitochondrial |              |
| Chain i:                                                                                                                                           | 99%                              |              |
| R128<br>R128                                                                                                                                       |                                  |              |
| • Molecule 38: 39S ribo                                                                                                                            | somal protein L52, mitochondrial |              |
| Chain j:                                                                                                                                           | 98%                              | <del>.</del> |
| A 108<br>A 108                                                                                                                                     |                                  |              |
| • Molecule 39: Ribosom                                                                                                                             | al protein 63, mitochondrial     |              |
| Chain o:                                                                                                                                           | 96%                              | •            |
| <b>1</b> 129<br>1129<br>1129<br>1129<br>1129<br>1129<br>1129<br>1129                                                                               |                                  |              |
| • Molecule 40: Peptidyl                                                                                                                            | -tRNA hydrolase ICT1, mitochono  | drial        |
| Chain p:                                                                                                                                           | 99%                              |              |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                              |                                  |              |
|                                                                                                                                                    |                                  |              |

 $\bullet$  Molecule 41: Growth arrest and DNA damage-inducible proteins-interacting protein 1



| Chain q:                                                                                                                                  | 99%                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <mark>728 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1</mark>                                                                                   |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| • Molecule 42: 39S ribosomal prot                                                                                                         | ein S18a, mitochondrial                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chain r:                                                                                                                                  | 89% • 8%                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| P57<br>C73<br>C73<br>C73<br>C73<br>C73<br>C73<br>C73<br>C13<br>F110<br>C73<br>C73<br>C73<br>C73<br>C73<br>C73<br>C73<br>C73<br>C73<br>C73 |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| • Molecule 43: 39S ribosomal prot                                                                                                         | ein S30, mitochondrial                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chain s:                                                                                                                                  | 91% • 5%                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| V41<br>V41<br>PR0<br>PR0<br>PR0<br>PR0<br>PR0<br>PR0<br>PR0<br>PR0<br>PR0<br>PR0                                                          | 4152<br>4152<br>1174<br>1174<br>1174<br>1180<br>1180<br>1180<br>1271<br>1271<br>1280<br>1283<br>1281<br>1280<br>1283<br>1281<br>1280<br>1283<br>1281<br>1280<br>1281<br>1280<br>1281<br>1280 | N427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| • Molecule 44: Mitochondrial asser                                                                                                        | mbly of ribosomal large subunit protein                                                                                                                                                      | . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Chain u:                                                                                                                                  | 95% 59                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| K81<br>1100<br>11100<br>1119<br>1114<br>1141<br>1148<br>1185<br>1185                                                                      |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| • Molecule 45: MIEF1 upstream o                                                                                                           | pen reading frame protein                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chain v:                                                                                                                                  | 99%                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| A2<br>R18<br>Q22<br>L23<br>A2<br>R24<br>R24<br>K57<br>K65<br>K65                                                                          |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| • Molecule 46: Acyl carrier protein                                                                                                       | n, mitochondrial                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chain w:                                                                                                                                  | 100%                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| L74<br>175<br>1775<br>1776<br>1779<br>080<br>080<br>080<br>080<br>183<br>183<br>183<br>183<br>189<br>189<br>193<br>193                    | P95<br>E36<br>K87<br>L38<br>S99<br>Y100<br>M101<br>M101<br>L108<br>C1108<br>C1108<br>C1108<br>C1108<br>C1108<br>C1108<br>C1108<br>C126<br>F128<br>F128<br>F128<br>F128                       | 1130<br>1132<br>1132<br>1133<br>1135<br>1135<br>1135<br>1135<br>1135<br>1135<br>1144<br>1144<br>1144<br>1144<br>1144<br>1144<br>1144<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146<br>1146 |
|                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| • Molecule 47: 16S ribosomal RNA                                                                                                          | Α                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chain A: 749                                                                                                                              | % 26%                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



| G1671<br>C1678<br>U1678<br>U16679<br>G1681<br>C1689<br>C1689<br>U1700<br>U1700<br>U1700<br>U1703<br>C1703<br>C1703<br>C1703<br>C1703<br>C1703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UIT17<br>AIT24<br>AIT24<br>AIT27<br>UIT28<br>UIT28<br>UIT28<br>CIT32<br>CIT32<br>CIT32<br>CIT32<br>CIT32<br>CIT32<br>CIT32<br>CIT32<br>CIT32<br>CIT32<br>CIT32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C1789<br>A1789<br>A1794<br>A1814<br>A1814<br>A1812<br>A1821                            | 01824<br>C1827<br>A1828<br>A1828<br>A1828<br>A1832<br>A1832<br>A1833                   |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|
| A1844<br>61851<br>61851<br>61853<br>A1853<br>A1855<br>A1855<br>A1855<br>A1857<br>A1870<br>A1870<br>A1870<br>A1870<br>A1870<br>A1870<br>A1871<br>A1871<br>A1871<br>A1871<br>A1881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G1883<br>G1886<br>G1886<br>G1888<br>G1888<br>C1885<br>C1885<br>C1885<br>C1885<br>G1884<br>G1893<br>G1893<br>G1903<br>G1918<br>G1918<br>G1918<br>G1938<br>G1948<br>G1938<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1948<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958<br>G1958 | A1957<br>G1958<br>A1974<br>U1975<br>G1985<br>A1986<br>G1987                            | C1992<br>C1993<br>A1994<br>A1995<br>C1996<br>C1996<br>C1997<br>U1998<br>A1999<br>C2000 |  |  |  |
| C2001<br>C2015<br>C2019<br>C2019<br>C2022<br>C2022<br>C2022<br>C2035<br>C2035<br>C2035<br>C2035<br>C2035<br>C2035<br>C2035<br>C2035<br>C2035<br>C2035<br>C2036<br>C2040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A2044<br>U2055<br>A2060<br>A2065<br>C2065<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073<br>A2073 | U2093<br>A2097<br>G2098<br>G2108<br>A2109<br>A2110<br>C2111<br>C2111<br>C2113<br>C2113 | C2114<br>U2115<br>U2126<br>G2129<br>A2133                                              |  |  |  |
| U2141<br>42142<br>42147<br>02147<br>02147<br>42155<br>42233<br>12233<br>42237<br>42245<br>42245<br>42245<br>42245<br>42245<br>47245<br>47245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A2250<br>C2257<br>C2263<br>C2263<br>C2263<br>C2263<br>A2397<br>A2397<br>A2300<br>A2300<br>A2300<br>C23300<br>C2317<br>C2322<br>C2322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03324<br>03324<br>03331<br>02331<br>02345<br>02345<br>02345<br>02370<br>03371          | A2373<br>A2374<br>C2375<br>A2376<br>C2377<br>A2381<br>A2381<br>A2384                   |  |  |  |
| U2385<br>C2386<br>A2391<br>U2392<br>C2393<br>C2397<br>A2401<br>A2401<br>A2401<br>A2402<br>C2414<br>C2414<br>C2414<br>C2415<br>C2417<br>C2417<br>A2418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02419<br>02420<br>02420<br>02426<br>02428<br>4243<br>4243<br>4245<br>4244<br>4244<br>02449<br>02449<br>02449<br>02449<br>42450<br>42450<br>42450<br>42451<br>42457<br>42458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (22478)<br>(22479)<br>(22483)<br>(22483)<br>(22488)<br>(22493)<br>(22493)              | C2501<br>A2506<br>C2511<br>C2520<br>A2521<br>V2522                                     |  |  |  |
| C2523<br>C2526<br>A5527<br>C2526<br>A5529<br>U2529<br>U2529<br>C2541<br>C2541<br>C2543<br>C2543<br>C2543<br>C2543<br>C2543<br>C2543<br>C2543<br>C2543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C2645<br>U2654<br>U2656<br>U2656<br>U2666<br>A2678<br>A2678<br>A2678<br>C2683<br>C2683<br>C2683<br>C2683<br>C2683<br>A2706<br>A2706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22718<br>02719<br>42720<br>2732<br>2735<br>62735<br>62735<br>62735<br>42740<br>10743   | U2745<br>A2745<br>U2750<br>C2793<br>A2801<br>A2802                                     |  |  |  |
| A2803<br>A2804<br>C2810<br>C2815<br>C2815<br>C2815<br>C2815<br>C2815<br>C2815<br>C2828<br>C2817<br>C2828<br>A2833<br>A2833<br>A2833<br>A2833<br>A2833<br>A2833<br>A2833<br>C2833<br>A2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833<br>C2833 | U2857<br>22864<br>22865<br>22865<br>42875<br>42901<br>42903<br>42904<br>42904<br>42904<br>42904<br>42904<br>42904<br>42904<br>42904<br>42904<br>42904<br>42913<br>42913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A2922<br>A2926<br>C2928<br>C2928<br>C2928<br>C2928<br>C2928<br>A2948<br>A2948<br>C2948 | u2952<br>U2953<br>U2955<br>U2955<br>A2956<br>G2957<br>C2962                            |  |  |  |
| A2963<br>U2964<br>A2965<br>A2969<br>A2969<br>A2969<br>A2969<br>A2969<br>A3005<br>A3005<br>A3005<br>C3007<br>C3007<br>C3007<br>C3007<br>C3007<br>C3016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C3017<br>A3018<br>C3019<br>C3021<br>C3021<br>C3022<br>C3023<br>C3023<br>C3023<br>C3043<br>C3043<br>C3043<br>C3043<br>C3043<br>C3043<br>C3043<br>C3043<br>C3043<br>C3054<br>C3053<br>C3063<br>C3063<br>C3063<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C3065<br>C305<br>C305<br>C305<br>C305<br>C305<br>C305<br>C305<br>C30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A3064<br>U3065<br>U3067<br>U3067<br>U3071<br>U3071<br>U3072<br>G3075<br>G3075<br>G3082 | u3086<br>A3089<br>(33090<br>U3097<br>U3098<br>U3098                                    |  |  |  |
| U3100<br>U3108<br>U3108<br>U3120<br>C3120<br>C3122<br>U3122<br>U3122<br>A3128<br>A3128<br>A3128<br>A3135<br>A3135<br>A3135<br>A3135<br>A3135<br>A3135<br>A3135<br>C3134<br>C3137<br>C3134<br>C3137<br>C3134<br>C3137<br>C3134<br>C3137<br>C3134<br>C3137<br>C3137<br>C3137<br>C3137<br>C3137<br>C3137<br>C3137<br>C3137<br>C3137<br>C3137<br>C3137<br>C3137<br>C3137<br>C3137<br>C3137<br>C3137<br>C3137<br>C3137<br>C3137<br>C3137<br>C3137<br>C3137<br>C3127<br>C3137<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C317<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C3127<br>C317<br>C317<br>C317<br>C317<br>C317<br>C317<br>C317<br>C31                                                                                                                                                                                                                                                                                                                                                        | A3140<br>C3148<br>C3149<br>C3149<br>A3151<br>A3157<br>A3158<br>A3158<br>C3162<br>C3164<br>A3175<br>A3175<br>C3164<br>A3175<br>C3164<br>C3164<br>C3163<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3163<br>C3164<br>C3163<br>C3164<br>C3163<br>C3164<br>C3163<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3164<br>C3165<br>C3164<br>C3165<br>C3164<br>C3165<br>C3164<br>C3165<br>C3164<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165<br>C3165 | U3188<br>C3189<br>A3190<br>U3194<br>A3201<br>U3202<br>U3202<br>A3207<br>A3207          | C3212<br>A3217<br>A3218<br>A3218<br>C3222<br>A3223                                     |  |  |  |
| <mark>13228</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        |                                                                                        |  |  |  |
| • Molecule 48: mitochond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rial tRNAVal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                                        |  |  |  |
| Chain B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30%                                                                                    | 8%                                                                                     |  |  |  |
| A1603<br>C1604<br>C1607<br>C1609<br>C1609<br>C1609<br>C1609<br>C1609<br>C1614<br>C1637<br>C1631<br>A1640<br>C1633<br>C1641<br>C1633<br>C1641<br>C1633<br>C1641<br>C1641<br>C1653<br>C1641<br>C1653<br>C1641<br>C1653<br>C1654<br>C1653<br>C1654<br>C1653<br>C1654<br>C1653<br>C1654<br>C1653<br>C1654<br>C1653<br>C1654<br>C1653<br>C1654<br>C1653<br>C1654<br>C1655<br>C1654<br>C1655<br>C1654<br>C1655<br>C1655<br>C1654<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C1655<br>C16555<br>C16555<br>C16555<br>C16555<br>C16555<br>C16555<br>C16555<br>C16555<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        |                                                                                        |  |  |  |
| • Molecule 49: 398 ribosol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mai protein L36, mitochondri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lai                                                                                    |                                                                                        |  |  |  |

Chain 4:

95%





5%

# 4 Experimental information (i)

| Property                           | Value                           | Source    |
|------------------------------------|---------------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE                 | Depositor |
| Imposed symmetry                   | POINT, Not provided             |           |
| Number of particles used           | 224933                          | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF               | Depositor |
| CTF correction method              | PHASE FLIPPING AND AMPLITUDE    | Depositor |
|                                    | CORRECTION                      |           |
| Microscope                         | FEI TITAN KRIOS                 | Depositor |
| Voltage (kV)                       | 300                             | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 52.5                            | Depositor |
| Minimum defocus (nm)               | 1000                            | Depositor |
| Maximum defocus (nm)               | 2600                            | Depositor |
| Magnification                      | Not provided                    |           |
| Image detector                     | FEI FALCON III $(4k \ge 4k)$    | Depositor |
| Maximum map value                  | 0.066                           | Depositor |
| Minimum map value                  | -0.017                          | Depositor |
| Average map value                  | -0.000                          | Depositor |
| Map value standard deviation       | 0.004                           | Depositor |
| Recommended contour level          | 0.01                            | Depositor |
| Map size (Å)                       | 381.59998, 381.59998, 381.59998 | wwPDB     |
| Map dimensions                     | 360, 360, 360                   | wwPDB     |
| Map angles (°)                     | 90.0, 90.0, 90.0                | wwPDB     |
| Pixel spacing (Å)                  | 1.06, 1.06, 1.06                | Depositor |



# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain | Bond | lengths  | E    | Sond angles |
|-----|-------|------|----------|------|-------------|
|     | Chain | RMSZ | # Z  > 5 | RMSZ | # Z  > 5    |
| 1   | D     | 0.37 | 0/1701   | 0.51 | 0/2288      |
| 2   | Ε     | 0.44 | 0/2465   | 0.50 | 0/3344      |
| 3   | F     | 0.49 | 0/2071   | 0.51 | 0/2817      |
| 4   | Н     | 0.38 | 0/798    | 0.51 | 0/1073      |
| 5   | Ι     | 0.32 | 0/255    | 0.44 | 0/345       |
| 6   | К     | 0.48 | 0/1495   | 0.46 | 0/2029      |
| 7   | L     | 0.36 | 0/904    | 0.49 | 0/1218      |
| 8   | М     | 0.46 | 0/2359   | 0.54 | 0/3185      |
| 9   | N     | 0.29 | 0/1663   | 0.45 | 0/2236      |
| 10  | 0     | 0.46 | 0/1269   | 0.50 | 0/1708      |
| 11  | Р     | 0.30 | 0/1173   | 0.47 | 0/1588      |
| 12  | Q     | 0.40 | 0/1846   | 0.47 | 0/2487      |
| 13  | R     | 0.50 | 0/1163   | 0.49 | 0/1557      |
| 14  | S     | 0.44 | 0/1276   | 0.52 | 0/1729      |
| 15  | Т     | 0.49 | 0/1304   | 0.48 | 0/1755      |
| 16  | U     | 0.49 | 0/1058   | 0.51 | 0/1434      |
| 17  | V     | 0.40 | 0/411    | 0.45 | 0/555       |
| 18  | W     | 0.39 | 0/823    | 0.49 | 0/1113      |
| 19  | Х     | 0.40 | 0/2090   | 0.46 | 0/2825      |
| 20  | Y     | 0.43 | 0/1540   | 0.47 | 0/2063      |
| 21  | Ζ     | 0.37 | 0/960    | 0.49 | 0/1295      |
| 22  | 0     | 0.39 | 0/895    | 0.47 | 0/1201      |
| 23  | 1     | 0.25 | 0/413    | 0.46 | 0/550       |
| 24  | 2     | 0.57 | 0/373    | 0.55 | 0/496       |
| 25  | 3     | 0.53 | 0/852    | 0.49 | 0/1136      |
| 26  | 5     | 0.34 | 0/3294   | 0.48 | 0/4488      |
| 27  | 6     | 0.34 | 0/2546   | 0.46 | 0/3465      |
| 28  | 7     | 0.35 | 0/2391   | 0.48 | 0/3234      |
| 29  | 9     | 0.42 | 0/972    | 0.48 | 0/1306      |
| 30  | a     | 0.44 | 0/694    | 0.51 | 0/941       |
| 31  | b     | 0.45 | 0/1202   | 0.51 | 0/1626      |
| 32  | С     | 0.39 | 0/2261   | 0.45 | 0/3055      |



| Mol Chain |      | Bond lengths |          | Bond angles |                  |  |
|-----------|------|--------------|----------|-------------|------------------|--|
|           | Unam | RMSZ         | # Z  > 5 | RMSZ        | # Z  > 5         |  |
| 33        | d    | 0.28         | 0/1344   | 0.47        | 0/1817           |  |
| 34        | f    | 0.35         | 0/146    | 0.43        | 0/193            |  |
| 35        | g    | 0.48         | 0/1102   | 0.51        | 0/1503           |  |
| 36        | h    | 0.32         | 0/850    | 0.46        | 0/1154           |  |
| 37        | i    | 0.54         | 0/849    | 0.49        | 0/1135           |  |
| 38        | j    | 0.39         | 0/703    | 0.44        | 0/947            |  |
| 39        | 0    | 0.39         | 0/704    | 0.49        | 0/945            |  |
| 40        | р    | 0.29         | 0/1058   | 0.47        | 0/1415           |  |
| 41        | q    | 0.35         | 0/867    | 0.43        | 0/1176           |  |
| 42        | r    | 0.41         | 0/1103   | 0.47        | 0/1493           |  |
| 43        | s    | 0.44         | 0/3114   | 0.51        | 0/4225           |  |
| 44        | u    | 0.30         | 0/949    | 0.46        | 0/1281           |  |
| 45        | V    | 0.26         | 0/597    | 0.44        | 0/796            |  |
| 46        | W    | 0.25         | 0/647    | 0.41        | 0/871            |  |
| 47        | A    | 0.85         | 0/29818  | 0.86        | 11/46362~(0.0%)  |  |
| 48        | В    | 0.19         | 0/1328   | 0.72        | 0/2056           |  |
| 49        | 4    | 0.39         | 0/341    | 0.51        | 0/451            |  |
| All       | All  | 0.59         | 0/90037  | 0.65        | 11/127962~(0.0%) |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 1   | D     | 0                   | 1                   |
| 2   | Е     | 0                   | 1                   |
| 7   | L     | 0                   | 1                   |
| 15  | Т     | 0                   | 1                   |
| 21  | Ζ     | 0                   | 1                   |
| All | All   | 0                   | 5                   |

There are no bond length outliers.

The worst 5 of 11 bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms    | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|----------|-------|------------------|---------------|
| 47  | А     | 3149 | C    | C6-N1-C2 | -7.98 | 117.11           | 120.30        |
| 47  | А     | 3148 | С    | N1-C2-O2 | 6.80  | 122.98           | 118.90        |
| 47  | А     | 3163 | G    | N1-C2-N2 | -5.81 | 110.97           | 116.20        |
| 47  | А     | 2403 | G    | N3-C4-N9 | 5.74  | 129.44           | 126.00        |
| 47  | А     | 3023 | С    | N3-C2-O2 | -5.63 | 117.96           | 121.90        |



There are no chirality outliers.

All (5) planarity outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type | Group   |
|-----|-------|----------------|------|---------|
| 1   | D     | 206            | TYR  | Peptide |
| 2   | Е     | 230            | THR  | Peptide |
| 7   | L     | 43             | ASN  | Peptide |
| 15  | Т     | 151            | GLN  | Peptide |
| 21  | Ζ     | 94             | ALA  | Peptide |

## 5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Favoured  | Allowed  | Outliers | Perce | ntiles |
|-----|-------|---------------|-----------|----------|----------|-------|--------|
| 1   | D     | 213/215~(99%) | 191 (90%) | 21 (10%) | 1 (0%)   | 29    | 61     |
| 2   | Е     | 302/304~(99%) | 273 (90%) | 27 (9%)  | 2(1%)    | 22    | 54     |
| 3   | F     | 248/250~(99%) | 228 (92%) | 20 (8%)  | 0        | 100   | 100    |
| 4   | Н     | 93/95~(98%)   | 83 (89%)  | 10 (11%) | 0        | 100   | 100    |
| 5   | Ι     | 28/30~(93%)   | 27 (96%)  | 1 (4%)   | 0        | 100   | 100    |
| 6   | K     | 175/177~(99%) | 162 (93%) | 13 (7%)  | 0        | 100   | 100    |
| 7   | L     | 113/115~(98%) | 95 (84%)  | 17 (15%) | 1 (1%)   | 17    | 48     |
| 8   | М     | 285/287~(99%) | 269 (94%) | 16 (6%)  | 0        | 100   | 100    |
| 9   | Ν     | 199/201~(99%) | 187 (94%) | 12 (6%)  | 0        | 100   | 100    |
| 10  | Ο     | 150/152~(99%) | 142 (95%) | 8 (5%)   | 0        | 100   | 100    |
| 11  | Р     | 139/141~(99%) | 129 (93%) | 10 (7%)  | 0        | 100   | 100    |
| 12  | Q     | 215/217~(99%) | 192 (89%) | 22 (10%) | 1 (0%)   | 29    | 61     |
| 13  | R     | 137/139~(99%) | 133 (97%) | 4 (3%)   | 0        | 100   | 100    |



| $\alpha$ $\cdot$ $\cdot$ $\cdot$ | C       |            |             |
|----------------------------------|---------|------------|-------------|
| Continued                        | trom    | previous   | <i>paae</i> |
| 0 0 1 0 0 0 0 0 0 0 0 0          | J. 0110 | proceed as | p ~ g ~     |

| Mol | Chain | Analysed       | Favoured  | Allowed  | Outliers | Perce | ntiles |
|-----|-------|----------------|-----------|----------|----------|-------|--------|
| 14  | S     | 154/156~(99%)  | 141 (92%) | 13 (8%)  | 0        | 100   | 100    |
| 15  | Т     | 151/166~(91%)  | 140 (93%) | 11 (7%)  | 0        | 100   | 100    |
| 16  | U     | 121/125~(97%)  | 115~(95%) | 6 (5%)   | 0        | 100   | 100    |
| 17  | V     | 46/48~(96%)    | 44 (96%)  | 2 (4%)   | 0        | 100   | 100    |
| 18  | W     | 98/100~(98%)   | 95~(97%)  | 3 (3%)   | 0        | 100   | 100    |
| 19  | Х     | 241/243~(99%)  | 230 (95%) | 11 (5%)  | 0        | 100   | 100    |
| 20  | Y     | 173/175~(99%)  | 164 (95%) | 9 (5%)   | 0        | 100   | 100    |
| 21  | Z     | 113/115 (98%)  | 101 (89%) | 12 (11%) | 0        | 100   | 100    |
| 22  | 0     | 106/108~(98%)  | 102 (96%) | 4 (4%)   | 0        | 100   | 100    |
| 23  | 1     | 47/49~(96%)    | 45 (96%)  | 2 (4%)   | 0        | 100   | 100    |
| 24  | 2     | 43/45~(96%)    | 39 (91%)  | 4 (9%)   | 0        | 100   | 100    |
| 25  | 3     | 93/95~(98%)    | 87 (94%)  | 6 (6%)   | 0        | 100   | 100    |
| 26  | 5     | 390/392~(100%) | 363 (93%) | 27 (7%)  | 0        | 100   | 100    |
| 27  | 6     | 284/292~(97%)  | 253 (89%) | 30 (11%) | 1 (0%)   | 34    | 66     |
| 28  | 7     | 285/287~(99%)  | 262 (92%) | 23 (8%)  | 0        | 100   | 100    |
| 29  | 9     | 113/123~(92%)  | 106 (94%) | 7 (6%)   | 0        | 100   | 100    |
| 30  | a     | 76/80~(95%)    | 64 (84%)  | 12 (16%) | 0        | 100   | 100    |
| 31  | b     | 146/148~(99%)  | 131 (90%) | 15 (10%) | 0        | 100   | 100    |
| 32  | с     | 271/287~(94%)  | 255~(94%) | 16 (6%)  | 0        | 100   | 100    |
| 33  | d     | 149/169~(88%)  | 133 (89%) | 16 (11%) | 0        | 100   | 100    |
| 34  | f     | 15/17~(88%)    | 13 (87%)  | 2 (13%)  | 0        | 100   | 100    |
| 35  | g     | 127/129~(98%)  | 115 (91%) | 12 (9%)  | 0        | 100   | 100    |
| 36  | h     | 97/105~(92%)   | 89 (92%)  | 8 (8%)   | 0        | 100   | 100    |
| 37  | i     | 95/97~(98%)    | 92 (97%)  | 3 (3%)   | 0        | 100   | 100    |
| 38  | j     | 84/86~(98%)    | 81 (96%)  | 3 (4%)   | 0        | 100   | 100    |
| 39  | О     | 79/81~(98%)    | 76 (96%)  | 3 (4%)   | 0        | 100   | 100    |
| 40  | р     | 117/125~(94%)  | 110 (94%) | 7 (6%)   | 0        | 100   | 100    |
| 41  | q     | 99/101 (98%)   | 95 (96%)  | 4 (4%)   | 0        | 100   | 100    |
| 42  | r     | 125/140 (89%)  | 111 (89%) | 14 (11%) | 0        | 100   | 100    |
| 43  | s     | 366/390~(94%)  | 331 (90%) | 35 (10%) | 0        | 100   | 100    |
| 44  | u     | 109/111~(98%)  | 100 (92%) | 9 (8%)   | 0        | 100   | 100    |



| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|----------|----------|-------|--------|
| 45  | v     | 67/69~(97%)     | 60~(90%)   | 7 (10%)  | 0        | 100   | 100    |
| 46  | W     | 77/79~(98%)     | 71 (92%)   | 6 (8%)   | 0        | 100   | 100    |
| 49  | 4     | 35/37~(95%)     | 33~(94%)   | 2~(6%)   | 0        | 100   | 100    |
| All | All   | 6889/7093~(97%) | 6358~(92%) | 525 (8%) | 6 (0%)   | 54    | 82     |

Continued from previous page...

5 of 6 Ramachandran outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 2   | Ε     | 230            | THR  |
| 12  | Q     | 226            | PRO  |
| 27  | 6     | 325            | ASP  |
| 2   | Е     | 231            | HIS  |
| 7   | L     | 130            | ARG  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed       | Rotameric | Outliers | Perce | ntiles |
|-----|-------|----------------|-----------|----------|-------|--------|
| 1   | D     | 173/173~(100%) | 163~(94%) | 10 (6%)  | 20    | 50     |
| 2   | Е     | 259/259~(100%) | 252 (97%) | 7(3%)    | 44    | 77     |
| 3   | F     | 217/217~(100%) | 209~(96%) | 8 (4%)   | 34    | 68     |
| 4   | Η     | 86/86~(100%)   | 82~(95%)  | 4(5%)    | 26    | 59     |
| 5   | Ι     | 28/28~(100%)   | 27~(96%)  | 1 (4%)   | 35    | 69     |
| 6   | Κ     | 155/155~(100%) | 147~(95%) | 8 (5%)   | 23    | 55     |
| 7   | L     | 98/98~(100%)   | 95~(97%)  | 3~(3%)   | 40    | 74     |
| 8   | М     | 245/245~(100%) | 236~(96%) | 9~(4%)   | 34    | 68     |
| 9   | Ν     | 168/168~(100%) | 165~(98%) | 3~(2%)   | 59    | 85     |
| 10  | Ο     | 133/133~(100%) | 129~(97%) | 4 (3%)   | 41    | 75     |
| 11  | Р     | 123/123~(100%) | 119~(97%) | 4 (3%)   | 38    | 72     |
| 12  | Q     | 199/199~(100%) | 197 (99%) | 2 (1%)   | 76    | 92     |
| 13  | R     | 117/117~(100%) | 116 (99%) | 1 (1%)   | 78    | 93     |



Continued from previous page...

| Mol | Chain | Analysed       | Rotameric | Outliers | Percentiles |
|-----|-------|----------------|-----------|----------|-------------|
| 14  | S     | 141/141~(100%) | 133~(94%) | 8~(6%)   | 20 51       |
| 15  | Т     | 138/146~(94%)  | 136~(99%) | 2(1%)    | 67 89       |
| 16  | U     | 110/110~(100%) | 108~(98%) | 2(2%)    | 59 85       |
| 17  | V     | 44/44~(100%)   | 41 (93%)  | 3 (7%)   | 16 42       |
| 18  | W     | 83/83~(100%)   | 82~(99%)  | 1 (1%)   | 71 91       |
| 19  | Х     | 219/219~(100%) | 215 (98%) | 4 (2%)   | 59 85       |
| 20  | Y     | 158/158 (100%) | 149 (94%) | 9 (6%)   | 20 51       |
| 21  | Ζ     | 106/106~(100%) | 102 (96%) | 4 (4%)   | 33 67       |
| 22  | 0     | 97/97~(100%)   | 93~(96%)  | 4 (4%)   | 30 64       |
| 23  | 1     | 46/46 (100%)   | 43 (94%)  | 3 (6%)   | 17 45       |
| 24  | 2     | 39/39~(100%)   | 38~(97%)  | 1 (3%)   | 46 77       |
| 25  | 3     | 88/88 (100%)   | 86 (98%)  | 2 (2%)   | 50 80       |
| 26  | 5     | 353/353~(100%) | 339 (96%) | 14 (4%)  | 31 65       |
| 27  | 6     | 259/259~(100%) | 249 (96%) | 10 (4%)  | 32 66       |
| 28  | 7     | 263/263~(100%) | 255~(97%) | 8 (3%)   | 41 75       |
| 29  | 9     | 99/104~(95%)   | 94 (95%)  | 5 (5%)   | 24 56       |
| 30  | a     | 76/76~(100%)   | 72~(95%)  | 4 (5%)   | 22 54       |
| 31  | b     | 130/130~(100%) | 126 (97%) | 4 (3%)   | 40 74       |
| 32  | с     | 241/251~(96%)  | 231 (96%) | 10 (4%)  | 30 64       |
| 33  | d     | 146/157~(93%)  | 141 (97%) | 5 (3%)   | 37 71       |
| 34  | f     | 15/15~(100%)   | 14 (93%)  | 1 (7%)   | 16 43       |
| 35  | g     | 119/119~(100%) | 114 (96%) | 5 (4%)   | 30 63       |
| 36  | h     | 96/99~(97%)    | 89 (93%)  | 7 (7%)   | 14 38       |
| 37  | i     | 86/86~(100%)   | 85 (99%)  | 1 (1%)   | 71 91       |
| 38  | j     | 68/68~(100%)   | 66~(97%)  | 2(3%)    | 42 76       |
| 39  | 0     | 70/70~(100%)   | 67~(96%)  | 3 (4%)   | 29 62       |
| 40  | р     | 115/115 (100%) | 114 (99%) | 1 (1%)   | 78 93       |
| 41  | q     | 86/86 (100%)   | 85 (99%)  | 1 (1%)   | 71 91       |
| 42  | r     | 118/128~(92%)  | 113 (96%) | 5 (4%)   | 30 63       |
| 43  | S     | 326/344~(95%)  | 312 (96%) | 14 (4%)  | 29 62       |
| 44  | u     | 105/105~(100%) | 99 (94%)  | 6 (6%)   | 20 51       |



| Mol | Chain | Analysed        | Rotameric  | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|----------|-------|--------|
| 45  | v     | 59/59~(100%)    | 58~(98%)   | 1 (2%)   | 60    | 86     |
| 46  | W     | 73/73~(100%)    | 73~(100%)  | 0        | 100   | 100    |
| 49  | 4     | 36/36~(100%)    | 34 (94%)   | 2~(6%)   | 21    | 52     |
| All | All   | 6209/6274~(99%) | 5993~(96%) | 216 (4%) | 39    | 70     |

Continued from previous page...

5 of 216 residues with a non-rotameric sidechain are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 26  | 5     | 176            | TYR  |
| 29  | 9     | 113            | ASN  |
| 43  | s     | 221            | HIS  |
| 26  | 5     | 361            | THR  |
| 27  | 6     | 374            | GLU  |

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (5) such side chains are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 2   | Ε     | 128            | HIS  |
| 13  | R     | 36             | ASN  |
| 32  | с     | 69             | HIS  |
| 42  | r     | 79             | HIS  |
| 43  | s     | 382            | GLN  |

#### 5.3.3 RNA (i)

| Mol | Chain | Analysed        | Backbone Outliers | Pucker Outliers |
|-----|-------|-----------------|-------------------|-----------------|
| 47  | А     | 1230/1256~(97%) | 323~(26%)         | 10 (0%)         |
| 48  | В     | 51/61~(83%)     | 17 (33%)          | 1 (1%)          |
| All | All   | 1281/1317~(97%) | 340 (26%)         | 11 (0%)         |

5 of 340 RNA backbone outliers are listed below:

| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 47  | А     | 1678 | С    |
| 47  | А     | 1679 | U    |
| 47  | А     | 1680 | А    |
| 47  | А     | 1681 | G    |
| 47  | А     | 1689 | С    |



5 of 11 RNA pucker outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 47  | А     | 2638           | U    |
| 47  | А     | 2718           | С    |
| 48  | В     | 1614           | U    |
| 47  | А     | 2905           | А    |
| 47  | А     | 2417           | C    |

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

### 5.6 Ligand geometry (i)

Of 53 ligands modelled in this entry, 53 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

#### 5.7 Other polymers (i)

There are no such residues in this entry.

#### 5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

| Mol | Chain | Number of breaks |  |
|-----|-------|------------------|--|
| 47  | А     | 25               |  |
| 27  | 6     | 3                |  |



Continued from previous page...

| Mol | Chain | Number of breaks |
|-----|-------|------------------|
| 40  | р     | 3                |
| 48  | В     | 2                |
| 16  | U     | 1                |
| 30  | a     | 1                |

The worst 5 of 35 chain breaks are listed below:

| Model | Chain | Residue-1 | Atom-1 | Residue-2 | Atom-2 | Distance (Å) |
|-------|-------|-----------|--------|-----------|--------|--------------|
| 1     | А     | 2545:U    | O3'    | 2611:C    | Р      | 40.96        |
| 1     | 6     | 79:GLY    | С      | 131:PRO   | Ν      | 39.19        |
| 1     | U     | 112:PRO   | С      | 140:SER   | Ν      | 37.93        |
| 1     | А     | 2880:A    | O3'    | 2896:G    | Р      | 32.37        |
| 1     | А     | 2982:C    | O3'    | 2994:U    | Р      | 30.68        |



# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-13967. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

## 6.1 Orthogonal projections (i)

#### 6.1.1 Primary map



The images above show the map projected in three orthogonal directions.

### 6.2 Central slices (i)

#### 6.2.1 Primary map



X Index: 180



Y Index: 180



Z Index: 180



The images above show central slices of the map in three orthogonal directions.

### 6.3 Largest variance slices (i)

#### 6.3.1 Primary map



X Index: 164

Y Index: 164

Z Index: 221

The images above show the largest variance slices of the map in three orthogonal directions.

### 6.4 Orthogonal surface views (i)

#### 6.4.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.01. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.



## 6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



## 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

## 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



## 7.2 Volume estimate (i)



The volume at the recommended contour level is  $1452 \text{ nm}^3$ ; this corresponds to an approximate mass of 1312 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



## 7.3 Rotationally averaged power spectrum (i)



\*Reported resolution corresponds to spatial frequency of 0.346  $\mathrm{\AA^{-1}}$ 



## 8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

#### 8.1 FSC (i)



\*Reported resolution corresponds to spatial frequency of 0.346  $\text{\AA}^{-1}$ 



## 8.2 Resolution estimates (i)

| <b>B</b> osolution ostimato $(\hat{\lambda})$ | Estimation criterion (FSC cut-off) |      |          |  |
|-----------------------------------------------|------------------------------------|------|----------|--|
| Resolution estimate (A)                       | 0.143                              | 0.5  | Half-bit |  |
| Reported by author                            | 2.89                               | -    | -        |  |
| Author-provided FSC curve                     | 2.88                               | 3.26 | 2.93     |  |
| Unmasked-calculated*                          | -                                  | -    | -        |  |

\*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.



## 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-13967 and PDB model 7QH7. Per-residue inclusion information can be found in section 3 on page 13.

## 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.01 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



### 9.2 Atom inclusion (i)



At the recommended contour level, 99% of all backbone atoms, 95% of all non-hydrogen atoms, are inside the map.

