

wwPDB X-ray Structure Validation Summary Report (i)

PDFCREATIONDATE INFOmissingINFO

PDB ID : 1QK5Title TOXOPLASMA GONDII HYPOXANTHINE-GUANINE PHOSPHORIBOS : YLTRANSFERASE WITH XMP, PYROPHOSPHATE AND TWO MG2+ IONS Authors Heroux, A.; White, E.L.; Ross, L.J.; Davis, R.L.; Borhani, D.W. : Deposited on 1999-07-09 1.60 Å(reported) Resolution :

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	NOT EXECUTED
Xtriage (Phenix)	:	1.13
EDS	:	FAILED
buster-report	:	NOT EXECUTED
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

PERCENTILES INFOmissingINFO

1 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 3724 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called HYPOXANTHINE-GUANINE PHOSPHORIBOSYLTRANS FERASE.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	А	215	Total 1730	C 1124	N 285	0 313	S 8	0	0	0
1	В	217	Total 1742	C 1133	N 288	0 314	${ m S} 7$	0	0	0

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	0A	GLY	-	cloning artifact	UNP Q26997
А	0B	SER	-	cloning artifact	UNP Q26997
А	$0\mathrm{C}$	HIS	-	cloning artifact	UNP Q26997
В	0A	GLY	-	cloning artifact	UNP Q26997
В	0B	SER	-	cloning artifact	UNP Q26997
В	$0\mathrm{C}$	HIS	-	cloning artifact	UNP Q26997
А	150	ALA	ASP	engineered mutation	UNP Q26997
В	150	ALA	ASP	engineered mutation	UNP Q26997

• Molecule 2 is XANTHOSINE-5'-MONOPHOSPHATE (three-letter code: XMP) (formula: $C_{10}H_{14}N_4O_9P$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	
9	Δ	1	Total	С	Ν	0	Р	0	0
	Л	I	24	10	4	9	1	0	0
0	р	1	Total	С	Ν	Ο	Р	0	0
	D	L	24	10	4	9	1	0	0

• Molecule 3 is PYROPHOSPHATE 2- (three-letter code: POP) (formula: $H_2O_7P_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	TotalOP972	0	0
3	В	1	TotalOP972	0	0

• Molecule 4 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	2	Total Mg 2 2	0	0
4	В	2	Total Mg 2 2	0	0

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	102	Total O 102 102	0	0
5	В	80	Total O 80 80	0	0

SEQUENCE-PLOTS INFOmissingINFO

2 Data and refinement statistics (i)

Property	Value	Source
Space group	C 2 2 21	Depositor
Cell constants	55.21Å 112.25Å 144.28Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Resolution (Å)	13.00 - 1.60	Depositor
% Data completeness	98.0 (13.00-1.60)	Depositor
(in resolution range)	56.6 (15.00 1.00)	Берозног
R _{merge}	(Not available)	Depositor
R _{sym}	0.08	Depositor
$< I/\sigma(I) > 1$	$2.14 (at 1.60 \text{\AA})$	Xtriage
Refinement program	REFMAC	Depositor
R, R_{free}	0.234 , 0.261	Depositor
Wilson B-factor ($Å^2$)	21.9	Xtriage
Anisotropy	0.337	Xtriage
L-test for twinning ²	$ < L >=0.49, < L^2>=0.32$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
Total number of atoms	3724	wwPDB-VP
Average B, all atoms $(Å^2)$	25.0	wwPDB-VP

EDS failed to run properly - this section is therefore incomplete.

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 5.20% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

3 Model quality (i)

3.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: POP, XMP, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal Chain		Bond	lengths	Bond angles		
INIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.76	0/1771	1.59	30/2388~(1.3%)	
1	В	0.77	0/1783	1.90	38/2405~(1.6%)	
All	All	0.76	0/3554	1.76	68/4793~(1.4%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1

There are no bond length outliers.

The worst 5 of 68 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	212	ARG	NE-CZ-NH1	26.82	133.71	120.30
1	В	82	ARG	CD-NE-CZ	26.21	160.30	123.60
1	В	171	ARG	NE-CZ-NH1	18.86	129.73	120.30
1	В	82	ARG	NE-CZ-NH2	13.59	127.09	120.30
1	В	212	ARG	NE-CZ-NH2	-12.18	114.21	120.30

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	195	ILE	Mainchain

3.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1730	0	1716	23	0
1	В	1742	0	1734	16	0
2	А	24	0	12	5	0
2	В	24	0	12	3	0
3	А	9	0	0	0	0
3	В	9	0	0	0	0
4	А	2	0	0	0	0
4	В	2	0	0	0	0
5	А	102	0	0	4	0
5	В	80	0	0	0	0
All	All	3724	0	3474	44	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

The worst 5 of 44 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:A:300:XMP:H8	2:A:300:XMP:H5'2	1.35	1.06
2:B:300:XMP:H5'2	2:B:300:XMP:H8	1.28	1.05
1:A:49:GLY:H	1:A:216:HIS:HD2	1.18	0.91
1:B:49:GLY:H	1:B:216:HIS:HD2	1.17	0.90
2:A:300:XMP:H8	2:A:300:XMP:C5'	2.04	0.87

There are no symmetry-related clashes.

3.3 Torsion angles (i)

3.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	А	209/233~(90%)	206 (99%)	3 (1%)	0	100	100
1	В	211/233~(91%)	205 (97%)	6 (3%)	0	100	100
All	All	420/466~(90%)	411 (98%)	9 (2%)	0	100	100

analysed, and the total number of residues.

There are no Ramachandran outliers to report.

3.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers Percen		ntiles
1	А	187/206~(91%)	183~(98%)	4 (2%)	53	29
1	В	188/206~(91%)	181 (96%)	7 (4%)	34	11
All	All	375/412 (91%)	364 (97%)	11 (3%)	42	18

5 of 11 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	В	51	LEU
1	В	114	ARG
1	В	203	CYS
1	В	155	LEU
1	В	4	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 7 such sidechains are listed below:

Mol	Chain	Res	Type
1	В	37	HIS
1	В	86	ASN
1	В	216	HIS
1	В	96	GLN
1	А	216	HIS

3.3.3 RNA (i)

There are no RNA molecules in this entry.

3.4 Non-standard residues in protein, DNA, RNA chains (i)

Mogul was not executed - this section is therefore empty.

3.5 Carbohydrates (i)

Mogul was not executed - this section is therefore empty.

3.6 Ligand geometry (i)

Mogul was not executed - this section is therefore empty.

3.7 Other polymers (i)

Mogul was not executed - this section is therefore empty.

3.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

4 Fit of model and data (i)

4.1 Protein, DNA and RNA chains (i)

EDS failed to run properly - this section is therefore empty.

4.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS failed to run properly - this section is therefore empty.

4.3 Carbohydrates (i)

EDS failed to run properly - this section is therefore empty.

4.4 Ligands (i)

EDS failed to run properly - this section is therefore empty.

4.5 Other polymers (i)

EDS failed to run properly - this section is therefore empty.

