This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org

A user guide is available at
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

MolProbity : 4.02b-467
Mogul : 1.7.3 (157068), CSD as539be (2018)
Xtriage (Phenix) : 1.13
EDS : trunk30967
Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
Refmac : 5.8.0158
CCP4 : 7.0 (Gargrove)
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) : trunk30967
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

X-RAY DIFFRACTION

The reported resolution of this entry is 3.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clashscore</td>
<td>122126</td>
<td>2167 (3.00-3.00)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>120053</td>
<td>2101 (3.00-3.00)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>120020</td>
<td>2104 (3.00-3.00)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>108989</td>
<td>1751 (3.00-3.00)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for \(\geq 3 \), \(2 \), \(1 \) and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions \(\leq 5\% \).

The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol Chain Length Quality of chain

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>514</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>69%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\geq 3)</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>514</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\geq 3)</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>514</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>69%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\geq 3)</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>514</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>68%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\geq 3)</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>514</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\geq 3)</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>514</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>71%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\geq 3)</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>514</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>69%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\geq 3)</td>
</tr>
</tbody>
</table>

Continued on next page...
The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Chirality</th>
<th>Geometry</th>
<th>Clashes</th>
<th>Electron density</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>GOA</td>
<td>F</td>
<td>900</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>GOL</td>
<td>C</td>
<td>1103</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>GOL</td>
<td>E</td>
<td>1105</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 5 unique types of molecules in this entry. The entry contains 31663 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called GLUCOSE-6-PHOSPHATE 1-DEHYDROGENASE.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Total Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>488</td>
<td>3892 C 2484 N 674 O 714 S 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>489</td>
<td>3892 C 2484 N 673 O 715 S 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>489</td>
<td>3893 C 2484 N 673 O 715 S 21</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>490</td>
<td>3898 C 2487 N 674 O 716 S 21</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>487</td>
<td>3884 C 2479 N 671 O 713 S 21</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>491</td>
<td>3903 C 2490 N 675 O 717 S 21</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>489</td>
<td>3895 C 2486 N 674 O 715 S 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>489</td>
<td>3897 C 2486 N 674 O 716 S 21</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

There are 8 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>459</td>
<td>LEU</td>
<td>ARG</td>
<td>variant</td>
<td>UNP P11413</td>
</tr>
<tr>
<td>B</td>
<td>459</td>
<td>LEU</td>
<td>ARG</td>
<td>variant</td>
<td>UNP P11413</td>
</tr>
<tr>
<td>C</td>
<td>459</td>
<td>LEU</td>
<td>ARG</td>
<td>variant</td>
<td>UNP P11413</td>
</tr>
<tr>
<td>D</td>
<td>459</td>
<td>LEU</td>
<td>ARG</td>
<td>variant</td>
<td>UNP P11413</td>
</tr>
<tr>
<td>E</td>
<td>459</td>
<td>LEU</td>
<td>ARG</td>
<td>variant</td>
<td>UNP P11413</td>
</tr>
<tr>
<td>F</td>
<td>459</td>
<td>LEU</td>
<td>ARG</td>
<td>variant</td>
<td>UNP P11413</td>
</tr>
<tr>
<td>G</td>
<td>459</td>
<td>LEU</td>
<td>ARG</td>
<td>variant</td>
<td>UNP P11413</td>
</tr>
<tr>
<td>H</td>
<td>459</td>
<td>LEU</td>
<td>ARG</td>
<td>variant</td>
<td>UNP P11413</td>
</tr>
</tbody>
</table>

- Molecule 2 is NADP NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (three-letter code: NAP) (formula: \(C_{21}H_{28}N_{7}O_{17}P_{3}\)).
Molecule 3 is GLYCOLIC ACID (three-letter code: GOA) (formula: $\text{C}_2\text{H}_4\text{O}_3$).
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 2 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 2 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 2 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 2 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 2 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 2 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 2 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 2 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 4 is GLYCEROL (three-letter code: GOL) (formula: C₃H₈O₃).
Molecule 5 is water.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>G</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 3 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: GLUCOSE-6-PHOSPHATE 1-DEHYDROGENASE

Chain A:

• Molecule 1: GLUCOSE-6-PHOSPHATE 1-DEHYDROGENASE

Chain B:
• Molecule 1: GLUCOSE-6-PHOSPHATE 1-DEHYDROGENASE

Chain C:

• Molecule 1: GLUCOSE-6-PHOSPHATE 1-DEHYDROGENASE

Chain D:

• Molecule 1: GLUCOSE-6-PHOSPHATE 1-DEHYDROGENASE

Chain E:
- Molecule 1: GLUCOSE-6-PHOSPHATE 1-DEHYDROGENASE

Chain F:

- Molecule 1: GLUCOSE-6-PHOSPHATE 1-DEHYDROGENASE

Chain G:

- Molecule 1: GLUCOSE-6-PHOSPHATE 1-DEHYDROGENASE

Chain H:
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 21 21 21</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>128.90Å 208.70Å 214.30Å</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>90.00° 90.00° 90.00°</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>25.00 – 3.00</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>25.00 – 3.00</td>
<td>EDS</td>
</tr>
<tr>
<td>% Data completeness (in resolution range)</td>
<td>85.3 (25.00-3.00)</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>85.3 (25.00-3.00)</td>
<td>EDS</td>
</tr>
<tr>
<td>R<sub>merge</sub></td>
<td>0.11</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>sym</sub></td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td><I/σ(I)><sup>1</sup></td>
<td>1.21 (at 2.99Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>X-PLOR 3.851</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>free</sub>, R<sub>free</sub> test set</td>
<td>0.247 , 0.294, 0.266</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>(Not available)</td>
<td>DCC</td>
</tr>
<tr>
<td>Wilson B-factor (Å<sup>2</sup>)</td>
<td>69.9</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.290</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent k<sub>sol</sub> (e/Å<sup>3</sup>), B<sub>sol</sub> (Å<sup>2</sup>)</td>
<td>0.33 , 71.8</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning<sup>2</sup></td>
<td><L> = 0.48, <L<sup>2</sup>> = 0.32</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>0.020 for -h,l,k</td>
<td>Xtriage</td>
</tr>
<tr>
<td>F<sub>o</sub>-F<sub>c</sub> correlation</td>
<td>0.91</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>31663</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å<sup>2</sup>)</td>
<td>49.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: *The largest off-origin peak in the Patterson function is 2.24% of the height of the origin peak. No significant pseudotranslation is detected.*

¹Intensities estimated from amplitudes.

²Theoretical values of <L>, <L²> for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: GOL, NAP, GOA.

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.43</td>
<td>0/3985</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>0.44</td>
<td>0/3984</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>0.44</td>
<td>0/3985</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>0.41</td>
<td>0/3990</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>0.44</td>
<td>0/3976</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>0.43</td>
<td>0/3995</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>0.44</td>
<td>0/3987</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>0.44</td>
<td>0/3989</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.43</td>
<td>0/31891</td>
</tr>
</tbody>
</table>

There are no bond length outliers.

All (1) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>174</td>
<td>GLY</td>
<td>N-CA-C</td>
<td>-5.05</td>
<td>100.48</td>
<td>113.10</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>3892</td>
<td>0</td>
<td>3770</td>
<td>82</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>3892</td>
<td>0</td>
<td>3767</td>
<td>97</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

All (711) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:177:LEU:HB2</td>
<td>1:B:466:THR:HG21</td>
<td>1.42</td>
<td>0.98</td>
</tr>
<tr>
<td>1:E:227:ARG:NH2</td>
<td>4:E:1105:GOL:H2</td>
<td>1.80</td>
<td>0.96</td>
</tr>
<tr>
<td>1:B:262:ASN:HD22</td>
<td>1:B:262:ASN:H</td>
<td>1.15</td>
<td>0.94</td>
</tr>
<tr>
<td>1:G:140:LEU:HD11</td>
<td>1:G:167:ILE:HD11</td>
<td>1.50</td>
<td>0.94</td>
</tr>
<tr>
<td>1:A:262:ASN:HD22</td>
<td>1:A:262:ASN:H</td>
<td>1.18</td>
<td>0.89</td>
</tr>
<tr>
<td>1:B:151:THR:HG22</td>
<td>1:B:190:LEU:HD12</td>
<td>1.62</td>
<td>0.82</td>
</tr>
<tr>
<td>1:E:177:LEU:HB2</td>
<td>1:E:462:TRP:HB3</td>
<td>1.60</td>
<td>0.81</td>
</tr>
<tr>
<td>1:A:240:PRO:HD3</td>
<td>1:A:365:ARG:HB2</td>
<td>1.61</td>
<td>0.81</td>
</tr>
<tr>
<td>1:A:463:ARG:HG2</td>
<td>1:E:474:LEU:HD21</td>
<td>1.61</td>
<td>0.81</td>
</tr>
<tr>
<td>1:D:264:LEU:HD23</td>
<td>1:D:356:LEU:HB3</td>
<td>1.62</td>
<td>0.80</td>
</tr>
<tr>
<td>1:G:264:LEU:HD23</td>
<td>1:G:356:LEU:HB3</td>
<td>1.63</td>
<td>0.79</td>
</tr>
<tr>
<td>1:D:240:PRO:HD3</td>
<td>1:D:365:ARG:HB2</td>
<td>1.62</td>
<td>0.79</td>
</tr>
<tr>
<td>1:F:264:LEU:HD23</td>
<td>1:F:356:LEU:HB3</td>
<td>1.65</td>
<td>0.78</td>
</tr>
<tr>
<td>1:H:240:PRO:HD3</td>
<td>1:H:365:ARG:HB2</td>
<td>1.64</td>
<td>0.78</td>
</tr>
<tr>
<td>1:B:264:LEU:HD23</td>
<td>1:B:356:LEU:HB3</td>
<td>1.65</td>
<td>0.78</td>
</tr>
<tr>
<td>1:E:227:ARG:HH22</td>
<td>4:E:1105:GOL:H2</td>
<td>1.44</td>
<td>0.78</td>
</tr>
<tr>
<td>1:H:175:ARG:HD3</td>
<td>1:H:175:ARG:H</td>
<td>1.47</td>
<td>0.78</td>
</tr>
<tr>
<td>1:C:76:THR:CB</td>
<td>1:C:81:ARG:HG2</td>
<td>2.13</td>
<td>0.78</td>
</tr>
<tr>
<td>1:H:508:LYS:H</td>
<td>1:H:508:LYS:HE2</td>
<td>1.49</td>
<td>0.78</td>
</tr>
<tr>
<td>1:B:146:VAL:HG12</td>
<td>1:B:150:VAL:HG23</td>
<td>1.66</td>
<td>0.77</td>
</tr>
<tr>
<td>1:C:227:ARG:HH22</td>
<td>4:C:1103:GOL:H2</td>
<td>1.49</td>
<td>0.77</td>
</tr>
<tr>
<td>1:B:140:LEU:HD11</td>
<td>1:B:167:ILE:HD11</td>
<td>1.65</td>
<td>0.77</td>
</tr>
<tr>
<td>1:E:146:VAL:HG12</td>
<td>1:E:150:VAL:HG23</td>
<td>1.67</td>
<td>0.76</td>
</tr>
<tr>
<td>1:C:240:PRO:HD3</td>
<td>1:C:365:ARG:HB2</td>
<td>1.67</td>
<td>0.76</td>
</tr>
<tr>
<td>1:C:146:VAL:HG12</td>
<td>1:C:150:VAL:HG23</td>
<td>1.68</td>
<td>0.75</td>
</tr>
<tr>
<td>1:F:82:LYS:O</td>
<td>1:F:86:PRO:HD2</td>
<td>1.86</td>
<td>0.75</td>
</tr>
<tr>
<td>1:H:264:LEU:HD23</td>
<td>1:H:356:LEU:HB3</td>
<td>1.69</td>
<td>0.75</td>
</tr>
<tr>
<td>1:F:205:LYS:HZ1</td>
<td>3:F:900:GOA:H21</td>
<td>1.51</td>
<td>0.75</td>
</tr>
<tr>
<td>1:D:140:LEU:HD11</td>
<td>1:D:167:ILE:HD11</td>
<td>1.69</td>
<td>0.74</td>
</tr>
<tr>
<td>1:G:262:ASN:HD22</td>
<td>1:G:262:ASN:H</td>
<td>1.36</td>
<td>0.74</td>
</tr>
<tr>
<td>1:C:264:LEU:HD23</td>
<td>1:C:356:LEU:HB3</td>
<td>1.68</td>
<td>0.74</td>
</tr>
<tr>
<td>1:E:240:PRO:HD3</td>
<td>1:E:365:ARG:HB2</td>
<td>1.70</td>
<td>0.73</td>
</tr>
<tr>
<td>1:G:177:LEU:HB2</td>
<td>1:G:466:THR:HG21</td>
<td>1.69</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:226:ASN:HD21</td>
<td>1:B:228:ASP:HB2</td>
<td>1.53</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:240:PRO:HD3</td>
<td>1:B:365:ARG:HB2</td>
<td>1.70</td>
<td>0.73</td>
</tr>
<tr>
<td>1:E:264:LEU:HD23</td>
<td>1:E:356:LEU:HB3</td>
<td>1.69</td>
<td>0.72</td>
</tr>
<tr>
<td>1:G:240:PRO:HD3</td>
<td>1:G:365:ARG:HB2</td>
<td>1.71</td>
<td>0.72</td>
</tr>
<tr>
<td>1:D:142:LEU:HB2</td>
<td>1:D:143:PRO:HD2</td>
<td>1.70</td>
<td>0.72</td>
</tr>
<tr>
<td>1:F:146:VAL:HG12</td>
<td>1:F:150:VAL:HG23</td>
<td>1.72</td>
<td>0.72</td>
</tr>
<tr>
<td>4:B:1101:GOL:H2</td>
<td>1:D:227:ARG:NH2</td>
<td>2.05</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Continued on next page...
Interatomic distance (Å) and Clash overlap (Å)

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:G:146:VAL:HG12</td>
<td>1:G:150:VAL:HG23</td>
<td>1.71</td>
<td>0.71</td>
</tr>
<tr>
<td>1:F:142:LEU:HB2</td>
<td>1:F:143:PRO:HD2</td>
<td>1.71</td>
<td>0.71</td>
</tr>
<tr>
<td>1:C:177:LEU:HB2</td>
<td>1:C:466:THR:HG21</td>
<td>1.72</td>
<td>0.71</td>
</tr>
<tr>
<td>1:D:146:VAL:HG12</td>
<td>1:D:150:VAL:HG23</td>
<td>1.73</td>
<td>0.71</td>
</tr>
<tr>
<td>1:E:136:ARG:HB2</td>
<td>1:E:165:ASN:HD22</td>
<td>1.57</td>
<td>0.69</td>
</tr>
<tr>
<td>1:E:35:ILE:H</td>
<td>1:E:35:ILE:HD12</td>
<td>1.57</td>
<td>0.69</td>
</tr>
<tr>
<td>1:A:146:VAL:HG12</td>
<td>1:A:150:VAL:HG23</td>
<td>1.73</td>
<td>0.69</td>
</tr>
<tr>
<td>1:E:262:ASN:H</td>
<td>1:E:262:ASN:HD22</td>
<td>1.39</td>
<td>0.69</td>
</tr>
<tr>
<td>1:B:75:LEU:HB2</td>
<td>1:B:107:TYR:CE2</td>
<td>2.29</td>
<td>0.68</td>
</tr>
<tr>
<td>1:C:140:LEU:HD11</td>
<td>1:C:167:ILE:HD11</td>
<td>1.74</td>
<td>0.68</td>
</tr>
<tr>
<td>1:E:151:THR:HG22</td>
<td>1:E:190:LEU:HD12</td>
<td>1.73</td>
<td>0.68</td>
</tr>
<tr>
<td>1:G:177:LEU:HD13</td>
<td>1:G:462:TRP:HB3</td>
<td>1.76</td>
<td>0.68</td>
</tr>
<tr>
<td>1:G:226:ASN:HD21</td>
<td>1:G:228:ASP:HB2</td>
<td>1.59</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:177:LEU:HD13</td>
<td>1:B:462:TRP:HB3</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>1:G:170:GLU:HG3</td>
<td>1:G:171:LYS:HD3</td>
<td>1.77</td>
<td>0.67</td>
</tr>
<tr>
<td>1:G:227:ARG:HH21</td>
<td>4:G:1104:GOL:H11</td>
<td>1.60</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:325:ASP:O</td>
<td>1:A:328:VAL:HG12</td>
<td>1.96</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:180:SER:HB3</td>
<td>1:B:462:TRP:CH2</td>
<td>2.29</td>
<td>0.66</td>
</tr>
<tr>
<td>1:C:226:ASN:HD21</td>
<td>1:C:228:ASP:HB2</td>
<td>1.61</td>
<td>0.66</td>
</tr>
<tr>
<td>1:F:325:ASP:O</td>
<td>1:F:328:VAL:HG12</td>
<td>1.95</td>
<td>0.66</td>
</tr>
<tr>
<td>1:G:71:ALA:HB3</td>
<td>1:G:107:TYR:OH</td>
<td>1.96</td>
<td>0.66</td>
</tr>
<tr>
<td>1:C:325:ASP:O</td>
<td>1:C:328:VAL:HG12</td>
<td>1.96</td>
<td>0.66</td>
</tr>
<tr>
<td>1:D:226:ASN:HD21</td>
<td>1:D:228:ASP:HB2</td>
<td>1.60</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:76:THR:CB</td>
<td>1:B:81:ARG:HB2</td>
<td>2.26</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:270:LEU:HA</td>
<td>1:C:273:MET:CE</td>
<td>2.26</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:262:ASN:H</td>
<td>1:C:262:ASN:HD22</td>
<td>1.44</td>
<td>0.65</td>
</tr>
<tr>
<td>1:F:240:PRO:HD3</td>
<td>1:F:365:ARG:HB2</td>
<td>1.77</td>
<td>0.65</td>
</tr>
<tr>
<td>1:D:78:ALA:O</td>
<td>1:D:82:LYS:HB2</td>
<td>1.97</td>
<td>0.65</td>
</tr>
<tr>
<td>1:H:151:THR:HG22</td>
<td>1:H:190:LEU:HD12</td>
<td>1.77</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:226:ASN:HD21</td>
<td>1:A:228:ASP:HB2</td>
<td>1.61</td>
<td>0.65</td>
</tr>
<tr>
<td>1:D:35:ILE:HD12</td>
<td>1:D:35:ILE:H</td>
<td>1.61</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:91:THR:HG23</td>
<td>1:B:94:GLU:CB</td>
<td>2.27</td>
<td>0.64</td>
</tr>
<tr>
<td>1:F:262:ASN:ND2</td>
<td>1:F:262:ASN:H</td>
<td>1.95</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:142:LEU:HB2</td>
<td>1:C:143:PRO:HD2</td>
<td>1.79</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:270:LEU:HA</td>
<td>1:C:273:MET:HE2</td>
<td>1.79</td>
<td>0.64</td>
</tr>
<tr>
<td>1:G:262:ASN:ND2</td>
<td>1:G:262:ASN:H</td>
<td>1.95</td>
<td>0.64</td>
</tr>
<tr>
<td>1:G:35:ILE:HD12</td>
<td>1:G:35:ILE:H</td>
<td>1.62</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:182:ARG:HD2</td>
<td>1:E:182:ARG:N</td>
<td>2.13</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:136:ARG:HB2</td>
<td>1:B:165:ASN:HD22</td>
<td>1.64</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:35:ILE:H</td>
<td>1:A:35:ILE:HD12</td>
<td>1.64</td>
<td>0.62</td>
</tr>
<tr>
<td>1:C:151:THR:HG22</td>
<td>1:C:190:LEU:HD12</td>
<td>1.82</td>
<td>0.62</td>
</tr>
<tr>
<td>1:C:91:THR:HG23</td>
<td>1:C:94:GLU:CB</td>
<td>2.29</td>
<td>0.62</td>
</tr>
<tr>
<td>1:H:146:VAL:HG12</td>
<td>1:H:150:VAL:HG23</td>
<td>1.82</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:49:TYR:O</td>
<td>1:B:52:ILE:HG22</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:G:142:LEU:HB2</td>
<td>1:G:143:PRO:HD2</td>
<td>1.82</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:270:LEU:HA</td>
<td>1:A:273:MET:CE</td>
<td>2.30</td>
<td>0.61</td>
</tr>
<tr>
<td>1:E:76:THR:CB</td>
<td>1:E:81:ARG:HB2</td>
<td>2.30</td>
<td>0.61</td>
</tr>
<tr>
<td>1:H:302:ASN:HB3</td>
<td>1:H:341:VAL:HB</td>
<td>1.82</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:325:ASP:O</td>
<td>1:B:328:VAL:HG12</td>
<td>1.99</td>
<td>0.61</td>
</tr>
<tr>
<td>4:B:1101:GOL:H2</td>
<td>1:D:227:ARG:HH22</td>
<td>1.65</td>
<td>0.61</td>
</tr>
<tr>
<td>1:F:177:LEU:HB2</td>
<td>1:F:466:THR:HG21</td>
<td>1.82</td>
<td>0.61</td>
</tr>
<tr>
<td>1:H:88:PHE:HD1</td>
<td>1:H:88:PHE:H</td>
<td>1.45</td>
<td>0.61</td>
</tr>
<tr>
<td>1:E:262:ASN:ND2</td>
<td>1:E:262:ASN:H</td>
<td>1.99</td>
<td>0.61</td>
</tr>
<tr>
<td>1:F:71:ALA:HB3</td>
<td>1:F:107:TYR:OH</td>
<td>2.01</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:88:PHE:H</td>
<td>1:B:88:PHE:HD1</td>
<td>1.46</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:170:GLU:O</td>
<td>1:D:172:PRO:HD3</td>
<td>2.00</td>
<td>0.60</td>
</tr>
<tr>
<td>1:H:136:ARG:HB2</td>
<td>1:H:165:ASN:ND2</td>
<td>2.16</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:142:LEU:HB2</td>
<td>1:B:143:PRO:HD2</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:226:ASN:ND2</td>
<td>1:B:228:ASP:HB2</td>
<td>2.15</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:262:ASN:N</td>
<td>1:A:262:ASN:HD22</td>
<td>1.89</td>
<td>0.60</td>
</tr>
<tr>
<td>1:D:83:GLN:H</td>
<td>1:D:86:PRO:HD2</td>
<td>1.67</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:264:LEU:HD23</td>
<td>1:A:356:LEU:HB3</td>
<td>1.84</td>
<td>0.60</td>
</tr>
<tr>
<td>1:G:325:ASP:O</td>
<td>1:G:328:VAL:HG12</td>
<td>2.01</td>
<td>0.59</td>
</tr>
<tr>
<td>1:F:226:ASN:HD21</td>
<td>1:F:228:ASP:HB2</td>
<td>1.66</td>
<td>0.59</td>
</tr>
<tr>
<td>1:H:270:LEU:HA</td>
<td>1:H:273:MET:CE</td>
<td>2.31</td>
<td>0.59</td>
</tr>
<tr>
<td>1:F:85:GLU:CB</td>
<td>1:F:86:PRO:HD3</td>
<td>2.32</td>
<td>0.59</td>
</tr>
<tr>
<td>1:E:227:ARG:NH2</td>
<td>4:E:1105:GOL:C2</td>
<td>2.62</td>
<td>0.59</td>
</tr>
<tr>
<td>1:C:302:ASN:HB3</td>
<td>1:C:341:VAL:HB</td>
<td>1.85</td>
<td>0.59</td>
</tr>
<tr>
<td>1:H:49:TYR:O</td>
<td>1:H:52:ILE:HG22</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:151:THR:HG22</td>
<td>1:A:190:LEU:HD12</td>
<td>1.83</td>
<td>0.59</td>
</tr>
<tr>
<td>1:G:270:LEU:HA</td>
<td>1:G:273:MET:CE</td>
<td>2.32</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:429:LYS:N</td>
<td>1:A:429:LYS:HE2</td>
<td>2.17</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:473:GLU:OE1</td>
<td>1:E:178:GLN:HA</td>
<td>2.03</td>
<td>0.59</td>
</tr>
<tr>
<td>1:H:226:ASN:HD21</td>
<td>1:H:228:ASP:HB2</td>
<td>1.67</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:137:LEU:HD21</td>
<td>1:D:168:ILE:HD11</td>
<td>1.85</td>
<td>0.59</td>
</tr>
<tr>
<td>1:H:325:ASP:O</td>
<td>1:H:328:VAL:HG12</td>
<td>2.03</td>
<td>0.59</td>
</tr>
<tr>
<td>1:E:104:ARG:HH11</td>
<td>1:E:104:ARG:HG3</td>
<td>1.66</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:H:85:GLU:CB</td>
<td>1:H:86:PRO:HD3</td>
<td>2.33</td>
<td>0.59</td>
</tr>
<tr>
<td>1:G:343:TYR:HE1</td>
<td>1:G:353:PRO:HB3</td>
<td>1.69</td>
<td>0.58</td>
</tr>
<tr>
<td>1:C:227:ARG:NH2</td>
<td>4:C:1103:GOL:H2</td>
<td>2.16</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:262:ASN:ND2</td>
<td>1:D:262:ASN:H</td>
<td>2.01</td>
<td>0.58</td>
</tr>
<tr>
<td>1:H:342:LEU:O</td>
<td>1:H:343:TYR:HD1</td>
<td>1.85</td>
<td>0.58</td>
</tr>
<tr>
<td>1:H:142:LEU:HB2</td>
<td>1:H:143:PRO:HD2</td>
<td>1.85</td>
<td>0.58</td>
</tr>
<tr>
<td>1:C:104:ARG:HH11</td>
<td>1:C:104:ARG:HG3</td>
<td>1.69</td>
<td>0.58</td>
</tr>
<tr>
<td>1:G:466:THR:OG1</td>
<td>1:G:467:PRO:HD3</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>1:H:170:GLU:O</td>
<td>1:H:172:PRO:HD3</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>1:F:177:LEU:O</td>
<td>1:F:181:ASP:HB2</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>1:E:270:LEU:HA</td>
<td>1:E:273:MET:HE2</td>
<td>1.85</td>
<td>0.58</td>
</tr>
<tr>
<td>1:E:129:HIS:O</td>
<td>1:E:130:LEU:HB2</td>
<td>2.03</td>
<td>0.57</td>
</tr>
<tr>
<td>1:G:226:ASN:ND2</td>
<td>1:G:228:ASP:HB2</td>
<td>2.18</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:227:ARG:HH22</td>
<td>4:B:1102:GOL:H11</td>
<td>1.68</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:49:TYR:O</td>
<td>1:D:52:ILE:HG22</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:104:ARG:HG3</td>
<td>1:A:104:ARG:HH11</td>
<td>1.69</td>
<td>0.57</td>
</tr>
<tr>
<td>1:G:72:ARG:HG3</td>
<td>1:G:73:SER:H</td>
<td>1.69</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:12:VAL:C</td>
<td>1:D:14:GLY:H</td>
<td>2.08</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:88:PHE:HD1</td>
<td>1:C:88:PHE:H</td>
<td>1.53</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:262:ASN:ND2</td>
<td>1:E:263:HIS:H</td>
<td>2.03</td>
<td>0.56</td>
</tr>
<tr>
<td>1:H:192:ARG:HG2</td>
<td>1:H:195:GLN:OE1</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:466:THR:OG1</td>
<td>1:C:467:PRO:HD3</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:67:ILE:N</td>
<td>1:C:67:ILE:HD12</td>
<td>2.21</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:67:ILE:HD12</td>
<td>1:D:67:ILE:N</td>
<td>2.19</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:270:LEU:HA</td>
<td>1:E:273:MET:CE</td>
<td>2.35</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:343:TYR:CE1</td>
<td>1:E:353:PRO:HA</td>
<td>2.39</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:209:GLN:HE2</td>
<td>1:E:439:ARG:HG3</td>
<td>1.69</td>
<td>0.56</td>
</tr>
<tr>
<td>1:G:146:VAL:HG12</td>
<td>1:G:150:VAL:CG2</td>
<td>2.35</td>
<td>0.56</td>
</tr>
<tr>
<td>1:G:72:ARG:HG3</td>
<td>1:G:73:SER:N</td>
<td>2.20</td>
<td>0.56</td>
</tr>
<tr>
<td>1:H:259:VAL:HA</td>
<td>1:H:262:ASN:HD21</td>
<td>1.71</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:325:ASP:O</td>
<td>1:E:328:VAL:HG12</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:226:ASN:ND2</td>
<td>1:D:228:ASP:HB2</td>
<td>2.20</td>
<td>0.56</td>
</tr>
<tr>
<td>1:H:175:ARG:HG2</td>
<td>1:H:176:ASP:H</td>
<td>1.69</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:67:ILE:HD12</td>
<td>1:E:67:ILE:N</td>
<td>2.21</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:262:ASN:H</td>
<td>1:F:262:ASN:HD22</td>
<td>1.54</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:302:ASN:HB3</td>
<td>1:B:341:VAL:HB</td>
<td>1.88</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:210:ASN:OD1</td>
<td>1:A:214:LEU:HG</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:270:LEU:HA</td>
<td>1:A:273:MET:HE2</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:G:150:VAL:O</td>
<td>1:G:154:ILE:HG13</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:262:ASN:HD22</td>
<td>1:B:262:ASN:N</td>
<td>1.89</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:76:THR:CB</td>
<td>1:D:81:ARG:HD3</td>
<td>2.37</td>
<td>0.55</td>
</tr>
<tr>
<td>1:G:104:ARG:HH11</td>
<td>1:G:104:ARG:HG3</td>
<td>1.71</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:75:LEU:HB2</td>
<td>1:B:107:TYR:CZ</td>
<td>2.41</td>
<td>0.55</td>
</tr>
<tr>
<td>1:G:151:THR:HG22</td>
<td>1:G:100:LEU:HD12</td>
<td>1.86</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:85:GLU:CB</td>
<td>1:A:86:PRO:HD3</td>
<td>2.36</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:104:ARG:HG3</td>
<td>1:B:104:ARG:HH11</td>
<td>1.72</td>
<td>0.55</td>
</tr>
<tr>
<td>1:E:45:LYS:HB3</td>
<td>1:E:82:LYS:HZ3</td>
<td>1.71</td>
<td>0.55</td>
</tr>
<tr>
<td>1:G:343:TYR:CE1</td>
<td>1:G:353:PRO:HA</td>
<td>2.42</td>
<td>0.55</td>
</tr>
<tr>
<td>1:G:85:GLU:CB</td>
<td>1:G:86:PRO:HD3</td>
<td>2.37</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:137:LEU:HD21</td>
<td>1:B:168:ILE:HD11</td>
<td>1.89</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:201:HIS:HA</td>
<td>1:B:440:LEU:HD11</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:136:ARG:HB2</td>
<td>1:D:165:ASN:HD22</td>
<td>1.72</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:325:ASP:O</td>
<td>1:D:328:VAL:HG12</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:85:GLU:CB</td>
<td>1:B:86:PRO:HD3</td>
<td>2.37</td>
<td>0.55</td>
</tr>
<tr>
<td>1:E:343:TYR:HE1</td>
<td>1:E:353:PRO:HB3</td>
<td>1.72</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:49:TYR:O</td>
<td>1:C:52:ILE:HG22</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:136:ARG:HB2</td>
<td>1:B:165:ASN:ND2</td>
<td>2.22</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:267:MET:O</td>
<td>1:B:271:VAL:HG23</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:49:TYR:O</td>
<td>1:E:52:ILE:HG22</td>
<td>2.06</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:136:ARG:HD2</td>
<td>1:A:160:SER:HB2</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:226:ASN:ND2</td>
<td>1:A:228:ASP:HB2</td>
<td>2.21</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:35:ILE:HD12</td>
<td>1:D:35:ILE:N</td>
<td>2.23</td>
<td>0.54</td>
</tr>
<tr>
<td>1:G:49:TYR:O</td>
<td>1:G:52:ILE:HG22</td>
<td>2.06</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:264:LEU:HD12</td>
<td>1:C:267:MET:HE2</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:104:ARG:HG3</td>
<td>1:F:104:ARG:HH11</td>
<td>1.71</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:136:ARG:HB2</td>
<td>1:F:165:ASN:ND2</td>
<td>2.23</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:192:ARG:HG2</td>
<td>1:A:195:GLN:OE1</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:71:ALA:HB3</td>
<td>1:B:107:TYR:OH</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:504:GLU:O</td>
<td>1:C:504:GLU:HG2</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:H:226:ASN:ND2</td>
<td>1:H:228:ASP:HB2</td>
<td>2.23</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:175:ARG:HD3</td>
<td>1:B:176:ASP:H</td>
<td>1.73</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:91:THR:HG23</td>
<td>1:D:94:GLU:CB</td>
<td>2.38</td>
<td>0.54</td>
</tr>
<tr>
<td>1:G:407:LYS:HB3</td>
<td>1:H:210:ASN:ND2</td>
<td>2.23</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:150:VAL:O</td>
<td>1:B:154:ILE:HG13</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:91:THR:HG23</td>
<td>1:A:94:GLU:CB</td>
<td>2.38</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:407:LYS:HE2</td>
<td>1:D:412:PHE:O</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:466:THR:OG1</td>
<td>1:D:467:PRO:HD3</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:G:101:PHE:O</td>
<td>1:G:104:ARG:HB2</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:H:262:ASN:HD22</td>
<td>1:H:262:ASN:N</td>
<td>1.98</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:343:TYR:CE1</td>
<td>1:A:353:PRO:HA</td>
<td>2.43</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:393:ARG:HD2</td>
<td>1:A:396:PRO:O</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:136:ARG:HB2</td>
<td>1:E:165:ASN:ND2</td>
<td>2.22</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:227:ARG:NH2</td>
<td>4:C:1103:GOL:C2</td>
<td>2.71</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:51:THR:HG21</td>
<td>1:E:441:ILE:HD12</td>
<td>1.89</td>
<td>0.53</td>
</tr>
<tr>
<td>1:G:262:ASN:N</td>
<td>1:G:262:ASN:HD22</td>
<td>2.00</td>
<td>0.53</td>
</tr>
<tr>
<td>1:G:91:THR:HG23</td>
<td>1:G:94:GLU:CB</td>
<td>2.39</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:343:TYR:CE1</td>
<td>1:F:353:PRO:HA</td>
<td>2.43</td>
<td>0.53</td>
</tr>
<tr>
<td>1:G:144:PRO:HA</td>
<td>1:G:147:TYR:CD2</td>
<td>2.44</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:270:LEU:HA</td>
<td>1:B:273:MET:CE</td>
<td>2.38</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:175:ARG:HD3</td>
<td>1:F:252:GLU:HD3</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:209:GLN:HE22</td>
<td>1:B:439:ARG:HD3</td>
<td>1.74</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:429:LYS:HE2</td>
<td>1:C:429:LYS:N</td>
<td>2.23</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:226:ASN:ND2</td>
<td>1:F:228:ASP:HB2</td>
<td>2.24</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:93:GLU:CD</td>
<td>1:B:93:GLU:H</td>
<td>2.13</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:71:ALA:HB3</td>
<td>1:C:107:TYR:OH</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:393:ARG:NH1</td>
<td>1:D:397:ASN:O</td>
<td>2.42</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:175:ARG:HG2</td>
<td>1:F:175:ARG:O</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:H:270:LEU:HA</td>
<td>1:H:273:MET:HE3</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:140:LEU:HD11</td>
<td>1:E:167:ILE:HD11</td>
<td>1.89</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:136:ARG:HD2</td>
<td>1:F:160:SER:HB2</td>
<td>1.90</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:49:TYR:O</td>
<td>1:F:52:ILE:HG22</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:G:73:SER:O</td>
<td>1:G:75:LEU:N</td>
<td>2.42</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:136:ARG:HB2</td>
<td>1:C:165:ASN:HD22</td>
<td>1.74</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:176:ASP:HB2</td>
<td>1:A:179:SER:OG</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:85:GLU:CB</td>
<td>1:C:86:PRO:HD3</td>
<td>2.39</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:227:ARG:NH1</td>
<td>1:F:350:ASP:O</td>
<td>2.43</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:182:ARG:HB2</td>
<td>1:A:182:ARG:HH11</td>
<td>1.74</td>
<td>0.52</td>
</tr>
<tr>
<td>1:H:71:ALA:HB3</td>
<td>1:H:107:TYR:OH</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:85:GLU:CB</td>
<td>1:E:86:PRO:HD3</td>
<td>2.40</td>
<td>0.52</td>
</tr>
<tr>
<td>1:G:177:LEU:HD22</td>
<td>1:G:466:THR:HG21</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:262:ASN:N</td>
<td>1:E:262:ASN:HD22</td>
<td>2.01</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:427:ARG:NH1</td>
<td>1:B:510:VAL:HG22</td>
<td>2.26</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:88:PHE:N</td>
<td>1:B:88:PHE:CD1</td>
<td>2.78</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:70:TYR:HD2</td>
<td>1:D:121:LEU:HD13</td>
<td>1.73</td>
<td>0.51</td>
</tr>
<tr>
<td>1:G:238:LYS:O</td>
<td>1:G:365:ARG:HA</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:209:GLN:HE22</td>
<td>1:D:439:ARG:HD3</td>
<td>1.75</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:264:LEU:HB3</td>
<td>1:C:356:LEU:HD13</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:35:ILE:HD12</td>
<td>1:E:35:ILE:N</td>
<td>2.25</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:56:PHE:HB2</td>
<td>1:E:61:LEU:HD12</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>1:G:137:LEU:HD21</td>
<td>1:G:168:ILE:CD1</td>
<td>2.40</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:343:TYR:HE1</td>
<td>1:A:353:PRO:HB3</td>
<td>1.76</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:466:THR:OG1</td>
<td>1:B:467:PRO:HD3</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:144:PRO:HA</td>
<td>1:C:147:TYR:CD2</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:453:VAL:HG11</td>
<td>1:B:458:LEU:CD2</td>
<td>2.41</td>
<td>0.51</td>
</tr>
<tr>
<td>1:G:175:ARG:HG2</td>
<td>1:G:253:PHE:CE1</td>
<td>2.45</td>
<td>0.51</td>
</tr>
<tr>
<td>1:H:393:ARG:HD2</td>
<td>1:H:396:PRO:O</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:466:THR:OG1</td>
<td>1:A:467:PRO:HD3</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:136:ARG:HB2</td>
<td>1:C:165:ASN:ND2</td>
<td>2.26</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:182:ARG:HA</td>
<td>1:E:182:ARG:HH11</td>
<td>1.75</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:238:LYS:O</td>
<td>1:E:365:ARG:HA</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:H:35:ILE:HD12</td>
<td>1:H:35:ILE:H</td>
<td>1.75</td>
<td>0.51</td>
</tr>
<tr>
<td>1:H:91:THR:HG23</td>
<td>1:H:94:GLU:CB</td>
<td>2.41</td>
<td>0.51</td>
</tr>
<tr>
<td>1:G:270:LEU:HA</td>
<td>1:G:273:MET:HE2</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>1:H:129:HIS:O</td>
<td>1:H:130:LEU:HB2</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:136:ARG:HD2</td>
<td>1:B:160:SER:HB2</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:161:GLN:HA</td>
<td>1:B:161:GLN:NE2</td>
<td>2.25</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:177:LEU:HD13</td>
<td>1:B:462:TRP:CB</td>
<td>2.40</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:210:ASN:OD1</td>
<td>1:D:214:LEU:HG</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:91:THR:HG23</td>
<td>1:E:94:GLU:CB</td>
<td>2.40</td>
<td>0.50</td>
</tr>
<tr>
<td>1:H:393:ARG:NH1</td>
<td>1:H:397:ASN:O</td>
<td>2.45</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:429:LYS:HE2</td>
<td>1:B:429:LYS:N</td>
<td>2.26</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:248:GLY:H</td>
<td>1:C:327:THR:HB</td>
<td>1.77</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:35:ILE:HD12</td>
<td>1:C:35:ILE:H</td>
<td>1.77</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:136:ARG:HB2</td>
<td>1:D:165:ASN:ND2</td>
<td>2.26</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:227:ARG:HH22</td>
<td>4:E:1105:GOL:C2</td>
<td>2.20</td>
<td>0.50</td>
</tr>
<tr>
<td>1:H:175:ARG:CD</td>
<td>1:H:175:ARG:H</td>
<td>2.18</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:342:LEU:O</td>
<td>1:B:343:TYR:HD1</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:93:GLU:CD</td>
<td>1:D:93:GLU:H</td>
<td>2.15</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:262:ASN:ND2</td>
<td>1:B:262:ASN:H</td>
<td>1.97</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:197:TYR:HB3</td>
<td>1:F:452:PHE:CD2</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>1:G:88:PHE:HD1</td>
<td>1:G:88:PHE:H</td>
<td>1.59</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:226:ASN:ND2</td>
<td>1:C:228:ASP:HB2</td>
<td>2.25</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:49:TYR:O</td>
<td>1:A:52:ILE:HG22</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:169:VAL:HG22</td>
<td>1:E:173:PHE:HE1</td>
<td>1.76</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:129:HIS:O</td>
<td>1:A:130:LEU:HB2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:427:ARG:HH11</td>
<td>1:B:510:VAL:HG22</td>
<td>1.77</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:91:THR:HG23</td>
<td>1:F:94:GLU:CB</td>
<td>2.41</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:270:LEU:HA</td>
<td>1:D:273:MET:CE</td>
<td>2.41</td>
<td>0.49</td>
</tr>
<tr>
<td>1:H:45:LYS:HG3</td>
<td>1:H:46:LYS:HG3</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:343:TYR:CE1</td>
<td>1:B:353:PRO:HA</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:71:ALA:HB3</td>
<td>1:D:107:TYR:OH</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:270:LEU:HA</td>
<td>1:B:273:MET:HE2</td>
<td>1.92</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:343:TYR:HE1</td>
<td>1:D:353:PRO:HB3</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:343:TYR:HE1</td>
<td>1:E:353:PRO:CA</td>
<td>2.24</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:78:ALA:O</td>
<td>1:F:82:LYS:HB2</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:G:227:ARG:NH2</td>
<td>4:G:1104:GOL:C1</td>
<td>2.73</td>
<td>0.49</td>
</tr>
<tr>
<td>1:G:129:HIS:O</td>
<td>1:G:130:LEU:HB2</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:235:LEU:HD12</td>
<td>1:B:356:LEU:HD22</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:177:LEU:HD12</td>
<td>1:E:462:TRP:CB</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>1:H:177:LEU:HD22</td>
<td>1:H:466:THR:HG21</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:151:THR:HG22</td>
<td>1:D:190:LEU:HD12</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:82:LYS:C</td>
<td>1:D:84:SER:H</td>
<td>2.16</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:393:ARG:HD2</td>
<td>1:F:396:PRO:O</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:H:325:ASP:HB3</td>
<td>1:H:328:VAL:HG12</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:142:LEU:HB2</td>
<td>1:A:143:PRO:HD2</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:508:LYS:O</td>
<td>1:F:508:LYS:HG2</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:93:GLU:H</td>
<td>1:A:93:GLU:CD</td>
<td>2.15</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:129:HIS:O</td>
<td>1:C:130:LEU:HB2</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:302:ASN:HB3</td>
<td>1:D:341:VAL:HB</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:393:ARG:HD2</td>
<td>1:D:396:PRO:O</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:440:LEU:O</td>
<td>1:E:443:ASP:HB2</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:45:LYS:HB2</td>
<td>1:B:86:PRO:HG3</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:429:LYS:N</td>
<td>1:E:429:LYS:HE2</td>
<td>2.27</td>
<td>0.49</td>
</tr>
<tr>
<td>1:G:407:LYS:HB3</td>
<td>1:H:210:ASN:HD22</td>
<td>1.76</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:302:ASN:HB3</td>
<td>1:A:341:VAL:HB</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:129:HIS:O</td>
<td>1:D:130:LEU:HB2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:210:ASN:OD1</td>
<td>1:E:214:LEU:HG</td>
<td>2.12</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:440:LEU:O</td>
<td>1:F:443:ASP:HB2</td>
<td>2.12</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:101:PHE:O</td>
<td>1:A:104:ARG:HB2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:209:GLN:OE1</td>
<td>1:B:439:ARG:HD2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:85:GLU:CB</td>
<td>1:D:86:PRO:HD3</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:262:ASN:N</td>
<td>1:A:262:ASN:ND2</td>
<td>2.59</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:137:LEU:HD21</td>
<td>1:B:168:ILE:CD1</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:248:GLY:H</td>
<td>1:B:337:THR:HB</td>
<td>1.77</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:70:TYR:HD2</td>
<td>1:C:121:LEU:HD13</td>
<td>1.77</td>
<td>0.48</td>
</tr>
<tr>
<td>1:G:210:ASN:OD1</td>
<td>1:G:214:LEU:HG</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:248:GLY:H</td>
<td>1:D:327:THR:HB</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:466:THR:OG1</td>
<td>1:F:467:PRO:HD3</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:143:PRO:HA</td>
<td>1:A:144:PRO:HD3</td>
<td>1.81</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:302:ASN:HB3</td>
<td>1:E:341:VAL:HB</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:202:TYR:HA</td>
<td>1:F:205:LYS:HG3</td>
<td>1.94</td>
<td>0.48</td>
</tr>
<tr>
<td>1:G:504:GLU:HG3</td>
<td>1:G:506:THR:OG1</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:407:LYS:HB3</td>
<td>1:D:210:ASN:ND2</td>
<td>2.29</td>
<td>0.48</td>
</tr>
<tr>
<td>1:G:176:ASP:HB2</td>
<td>1:G:179:SER:HB3</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:H:175:ARG:HG2</td>
<td>1:H:176:ASP:N</td>
<td>2.28</td>
<td>0.48</td>
</tr>
<tr>
<td>1:G:199:ILE:CG2</td>
<td>1:G:200:ASP:N</td>
<td>2.77</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:262:ASN:H</td>
<td>1:A:262:ASN:ND2</td>
<td>1.98</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:253:PHE:CD1</td>
<td>1:D:253:PHE:N</td>
<td>2.81</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:253:PHE:O</td>
<td>1:E:257:ARG:HD2</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:407:LYS:HB3</td>
<td>1:B:210:ASN:ND2</td>
<td>2.29</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:343:TYR:CE1</td>
<td>1:C:353:PRO:HA</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:146:VAL:HG12</td>
<td>1:E:150:VAL:CG2</td>
<td>2.40</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:302:ASN:HB3</td>
<td>1:F:341:VAL:HB</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:370:ARG:CZ</td>
<td>2:B:800:NAP:H51A</td>
<td>2.44</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:227:ARG:HG2</td>
<td>1:D:348:ARG:O</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:177:LEU:CB</td>
<td>1:E:466:THR:HG21</td>
<td>2.44</td>
<td>0.47</td>
</tr>
<tr>
<td>1:H:88:PHE:N</td>
<td>1:H:88:PHE:CD1</td>
<td>2.81</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:407:LYS:HE2</td>
<td>1:C:412:PHE:O</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:457:LYS:C</td>
<td>1:C:50:PRO:HD2</td>
<td>2.34</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:177:LEU:HD12</td>
<td>1:E:462:TRP:HB2</td>
<td>1.96</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:393:ARG:HD2</td>
<td>1:E:396:PRO:O</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:H:143:PRO:HA</td>
<td>1:H:144:PRO:HD3</td>
<td>1.75</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:393:ARG:HD2</td>
<td>1:B:396:PRO:O</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:343:TYR:CE1</td>
<td>1:D:353:PRO:HA</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:87:PHE:H</td>
<td>1:B:88:PHE:HD1</td>
<td>1.63</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:136:ARG:HB2</td>
<td>1:G:165:ASN:ND2</td>
<td>2.29</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:460:GLU:O</td>
<td>1:B:464:ILE:HG13</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:F:210:ASN:OD1</td>
<td>1:F:214:LEU:HG</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:270:LEU:HA</td>
<td>1:G:273:MET:HE3</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:35:ILE:HD12</td>
<td>1:G:35:ILE:N</td>
<td>2.28</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:201:HIS:HA</td>
<td>1:A:440:LEU:HD11</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:343:TYR:HE1</td>
<td>1:C:353:PRO:HB3</td>
<td>1.80</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:136:ARG:HD2</td>
<td>1:E:160:SER:HB2</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:F:53:TRP:C</td>
<td>1:F:53:TRP:CD1</td>
<td>2.88</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:269:CYS:HB3</td>
<td>1:G:288:LYS:HG2</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:45:LYS:HG3</td>
<td>1:A:46:LYS:HG3</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:371:LEU:O</td>
<td>1:C:389:GLU:HA</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:343:TYR:HE1</td>
<td>1:E:353:PRO:HA</td>
<td>1.77</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:343:TYR:HE1</td>
<td>1:G:353:PRO:CA</td>
<td>2.28</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:497:LYS:HA</td>
<td>1:G:501:PHE:O</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:H:466:THR:OG1</td>
<td>1:H:467:PRO:HD3</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:343:TYR:HE1</td>
<td>1:E:353:PRO:CB</td>
<td>2.28</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:302:ASN:HB3</td>
<td>1:G:341:VAL:HB</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:227:ARG:HB2</td>
<td>1:C:348:ARG:O</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:226:ASN:HD22</td>
<td>1:D:228:ASP:H</td>
<td>1.62</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:53:TRP:C</td>
<td>1:E:53:TRP:CD1</td>
<td>2.88</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:72:ARG:CG</td>
<td>1:G:73:SER:H</td>
<td>2.28</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:88:PHE:CD1</td>
<td>1:C:88:PHE:N</td>
<td>2.83</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:262:ASN:HD22</td>
<td>1:D:263:HIS:H</td>
<td>1.61</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:210:ASN:OD1</td>
<td>1:B:214:LEU:HG</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:270:LEU:HA</td>
<td>1:F:273:MET:HE3</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:174:GLY:HA3</td>
<td>1:E:180:SER:OG</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:213:VAL:HG21</td>
<td>1:D:407:LYS:HB2</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:177:LEU:H</td>
<td>1:E:466:THR:HG21</td>
<td>1.79</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:104:ARG:CG</td>
<td>1:F:104:ARG:HH11</td>
<td>2.27</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:370:ARG:CZ</td>
<td>2:C:800:NAP:H51A</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:262:ASN:ND2</td>
<td>1:D:263:HIS:H</td>
<td>2.14</td>
<td>0.46</td>
</tr>
<tr>
<td>1:G:393:ARG:NH1</td>
<td>1:G:397:ASN:O</td>
<td>2.49</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:370:ARG:NH2</td>
<td>2:D:800:NAP:O2N</td>
<td>2.47</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:262:ASN:N</td>
<td>1:F:262:ASN:ND2</td>
<td>2.60</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:87:PHE:C</td>
<td>1:F:87:PHE:CD1</td>
<td>2.89</td>
<td>0.46</td>
</tr>
<tr>
<td>1:G:227:ARG:HG2</td>
<td>1:G:348:ARG:O</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:G:47:LYS:C</td>
<td>1:G:50:PRO:HD2</td>
<td>2.36</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:243:THR:HG23</td>
<td>1:B:243:THR:O</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:201:HIS:HA</td>
<td>1:E:440:LEU:HD11</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:129:HIS:O</td>
<td>1:F:130:LEU:HB2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:G:343:TYR:HE1</td>
<td>1:G:353:PRO:CB</td>
<td>2.28</td>
<td>0.46</td>
</tr>
<tr>
<td>1:H:231:ALA:O</td>
<td>1:H:232:CYS:HB3</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:129:HIS:O</td>
<td>1:B:130:LEU:HB2</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:393:ARG:NH1</td>
<td>1:B:397:ASN:O</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:124:HIS:O</td>
<td>1:E:128:LEU:HD13</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:H:270:LEU:HA</td>
<td>1:H:273:MET:HE2</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:259:VAL:O</td>
<td>1:E:262:ASN:ND2</td>
<td>2.49</td>
<td>0.45</td>
</tr>
<tr>
<td>1:G:194:ASP:HA</td>
<td>1:G:449:GLN:OE1</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>1:G:227:ARG:NH1</td>
<td>1:G:350:ASP:O</td>
<td>2.48</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:375:ASP:O</td>
<td>1:D:219:ARG:NH1</td>
<td>2.49</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:440:LEU:O</td>
<td>1:D:443:ASP:HB2</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:F:311:ASN:HA</td>
<td>1:F:312:PRO:HD2</td>
<td>1.78</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:227:ARG:NH1</td>
<td>1:B:350:ASP:O</td>
<td>2.49</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:269:CYS:HB3</td>
<td>1:C:288:LYS:HG2</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:233:VAL:HG22</td>
<td>1:E:371:LEU:HD22</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:F:248:GLY:H</td>
<td>1:F:327:THR:HB</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:H:496:MET:O</td>
<td>1:H:499:VAL:HG12</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:12:VAL:C</td>
<td>1:D:14:GLY:N</td>
<td>2.70</td>
<td>0.45</td>
</tr>
<tr>
<td>1:G:201:HIS:HA</td>
<td>1:G:440:LEU:HD11</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:G:307:GLN:O</td>
<td>1:G:481:PRO:HA</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:H:243:THR:O</td>
<td>1:H:245:GLY:N</td>
<td>2.48</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:180:SER:HB3</td>
<td>1:B:462:TRP:CZ2</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:210:ASN:OD1</td>
<td>1:C:214:LEU:HG</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:346:ASN:ND2</td>
<td>5:C:2001:HOH:O</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:270:LEU:HD23</td>
<td>1:D:273:MET:CE</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:197:TYR:HB3</td>
<td>1:D:452:PHE:CD2</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:150:VAL:O</td>
<td>1:E:154:ILE:HG13</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:H:201:HIS:HA</td>
<td>1:H:440:LEU:HD11</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:202:TYR:HA</td>
<td>1:D:205:LYS:HG3</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:240:PRO:CD</td>
<td>1:D:365:ARG:HB2</td>
<td>2.42</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:440:LEU:O</td>
<td>1:B:443:ASP:HB2</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:393:ARG:NH1</td>
<td>1:C:397:ASN:O</td>
<td>2.49</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:504:GLU:C</td>
<td>1:D:506:THR:H</td>
<td>2.20</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:270:LEU:HA</td>
<td>1:F:273:MET:CE</td>
<td>2.46</td>
<td>0.45</td>
</tr>
<tr>
<td>1:H:136:ARG:HD2</td>
<td>1:H:160:SER:HB2</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:H:78:ALA:C</td>
<td>1:H:80:ILE:HA</td>
<td>2.20</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:111:GLN:NE2</td>
<td>1:A:111:GLN:HA</td>
<td>2.32</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:285:ARG:O</td>
<td>1:B:289:VAL:HG12</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:35:ILE:HD12</td>
<td>1:B:35:ILE:HA</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:343:TYR:HE1</td>
<td>1:A:353:PRO:CB</td>
<td>2.30</td>
<td>0.45</td>
</tr>
<tr>
<td>1:G:177:LEU:HB2</td>
<td>1:G:466:THR:CG2</td>
<td>2.45</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:146:VAL:HG12</td>
<td>1:C:150:VAL:CG2</td>
<td>2.43</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:45:LYS:HG3</td>
<td>1:F:46:LYS:HG3</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:262:ASN:N</td>
<td>1:B:262:ASN:ND2</td>
<td>2.60</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:452:PHE:N</td>
<td>1:B:452:PHE:CD1</td>
<td>2.85</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:262:ASN:N</td>
<td>1:C:262:ASN:HD22</td>
<td>2.08</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:31:THR:HA</td>
<td>1:C:64:ASN:HB2</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:H:176:ASP:HB2</td>
<td>1:H:179:SER:OG</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:70:TYR:CD2</td>
<td>1:C:121:LEU:HD22</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:104:ARG:HG3</td>
<td>1:D:104:ARG:HH11</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:460:GLU:O</td>
<td>1:D:464:ILE:HG13</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:83:GLN:H</td>
<td>1:E:86:PRO:HD2</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:53:TRP:C</td>
<td>1:A:53:TRP:CD1</td>
<td>2.90</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:166:ARG:NH1</td>
<td>1:B:444:VAL:O</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:285:ARG:O</td>
<td>1:D:289:VAL:HG12</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:170:GLU:C</td>
<td>1:F:172:PRO:HD3</td>
<td>2.37</td>
<td>0.44</td>
</tr>
<tr>
<td>1:G:219:ARG:NH1</td>
<td>1:H:375:ASP:O</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:227:ARG:NH1</td>
<td>1:E:350:ASP:O</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:238:LYS:O</td>
<td>1:C:365:ARG:HA</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:227:ARG:NH1</td>
<td>1:D:350:ASP:O</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:393:ARG:HD2</td>
<td>1:C:396:PRO:O</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:53:TRP:C</td>
<td>1:C:53:TRP:CD1</td>
<td>2.90</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:411:MET:CE</td>
<td>1:D:439:ARG:HG3</td>
<td>2.48</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:88:PHE:CD1</td>
<td>1:F:88:PHE:N</td>
<td>2.86</td>
<td>0.44</td>
</tr>
<tr>
<td>1:H:202:TYR:HA</td>
<td>1:H:205:LYS:HG3</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:35:ILE:HD12</td>
<td>1:C:35:ILE:N</td>
<td>2.33</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:452:PHE:CD1</td>
<td>1:D:452:PHE:N</td>
<td>2.84</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:45:LYS:HG3</td>
<td>1:E:46:LYS:HG3</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:H:161:GLN:NE2</td>
<td>1:H:161:GLN:HA</td>
<td>2.33</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:243:THR:O</td>
<td>1:A:243:THR:HG23</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:117:SER:HA</td>
<td>1:B:120:ARG:NH1</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:193:GLU:HG3</td>
<td>5:B:2009:HOH:O</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:238:VAL:HG22</td>
<td>1:B:371:LEU:HD22</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:70:TYR:HD2</td>
<td>1:E:121:LEU:HD13</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:411:MET:HB3</td>
<td>1:F:411:MET:HE2</td>
<td>1.94</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:202:TYR:HA</td>
<td>1:G:205:LYS:HG3</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:393:ARG:ND2</td>
<td>1:G:396:PRO:O</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:72:ARG:CG</td>
<td>1:G:73:SER:N</td>
<td>2.81</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:53:TRP:CD1</td>
<td>1:B:53:TRP:C</td>
<td>2.91</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:209:GLN:HE22</td>
<td>1:C:439:ARG:HD3</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:33:ILE:HG21</td>
<td>1:D:125:MET:HE3</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:177:LEU:H</td>
<td>1:E:466:THR:CG2</td>
<td>2.31</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:136:ARG:HD2</td>
<td>1:G:139:ARG:CG</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:343:TYR:HE1</td>
<td>1:F:353:PRO:HB3</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:343:TYR:HE1</td>
<td>1:F:353:PRO:HB3</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:226:ASN:HD22</td>
<td>1:H:228:ASP:H</td>
<td>1.66</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:262:ASN:ND2</td>
<td>1:C:262:ASN:H</td>
<td>2.14</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:47:LYS:O</td>
<td>1:C:50:PRO:HD2</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:237:PHE:HB2</td>
<td>1:D:264:LEU:HD11</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:55:LEU:HB3</td>
<td>1:D:61:LEU:HG</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:139:TYR:HA</td>
<td>1:H:168:ILE:HB</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:87:PHE:C</td>
<td>1:H:87:PHE:CD1</td>
<td>2.91</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:55:LEU:HB3</td>
<td>1:D:61:LEU:HG</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:226:ASN:HD22</td>
<td>1:H:228:ASP:H</td>
<td>1.66</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:173:PHE:CE2</td>
<td>1:C:262:ASN:HB3</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:209:GLN:OE1</td>
<td>1:C:439:ARG:HD2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:262:ASN:N</td>
<td>1:E:262:ASN:ND2</td>
<td>2.61</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:393:ARG:NH1</td>
<td>1:A:397:ASN:O</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:460:GLU:O</td>
<td>1:A:464:ILE:HG13</td>
<td>2.18</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:310:GLY:HA3</td>
<td>1:E:319:THR:O</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:209:GLN:OE1</td>
<td>1:E:439:ARG:HD2</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:202:TYR:HA</td>
<td>1:A:205:LYS:HG3</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:343:TYR:HE1</td>
<td>1:A:353:PRO:HA</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:262:ASN:ND2</td>
<td>1:C:263:HIS:H</td>
<td>2.16</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:393:ARG:NH1</td>
<td>1:F:397:ASN:O</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:269:CYS:HB3</td>
<td>1:H:288:LYS:HG2</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:82:LYS:C</td>
<td>1:H:86:PRO:HD2</td>
<td>2.39</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:115:ALA:o</td>
<td>1:A:119:GLN:HB2</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:144:PRO:HA</td>
<td>1:A:147:TYR:CD2</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:117:SER:HA</td>
<td>1:B:120:ARG:CZ</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:219:ARG:NH1</td>
<td>1:D:376:VAL:HA</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:236:THR:O</td>
<td>1:C:367:ALA:HA</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:243:THR:HG22</td>
<td>1:D:308:TYR:OH</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:93:GLU:CD</td>
<td>1:H:93:GLU:H</td>
<td>2.22</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:268:LEU:C</td>
<td>1:B:268:LEU:HD23</td>
<td>2.39</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:307:GLN:O</td>
<td>1:B:481:PRO:HA</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:124:HIS:o</td>
<td>1:C:127:ALA:HB3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:136:ARG:CD</td>
<td>1:E:160:SER:HB2</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:144:PRO:HG2</td>
<td>1:E:172:PRO:HD2</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:270:LEU:HD23</td>
<td>1:G:273:MET:CE</td>
<td>2.48</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:53:TRP:CD1</td>
<td>1:G:53:TRP:C</td>
<td>2.92</td>
<td>0.42</td>
</tr>
<tr>
<td>1:H:452:PHE:CD1</td>
<td>1:H:452:PHE:N</td>
<td>2.87</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:137:LEU:HD21</td>
<td>1:D:168:ILE:CD1</td>
<td>2.46</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:75:LEU:HA</td>
<td>1:D:75:LEU:HD23</td>
<td>1.82</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:328:VAL:HA</td>
<td>1:D:329:PRO:HD3</td>
<td>1.91</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:168:ILE:HD11</td>
<td>1:F:444:VAL:HG21</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:235:LEU:CD2</td>
<td>1:C:369:VAL:HG13</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:452:PHE:N</td>
<td>1:C:452:PHE:CD1</td>
<td>2.87</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:176:ASP:O</td>
<td>1:E:178:GLN:N</td>
<td>2.53</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:210:ASN:ND2</td>
<td>1:F:407:LYS:HB3</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:70:TYR:CD1</td>
<td>1:A:71:ALA:N</td>
<td>2.87</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:88:PHE:HD1</td>
<td>1:A:88:PHE:H</td>
<td>1.65</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:273:MET:HA</td>
<td>1:C:291:VAL:CG2</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:172:PRO:HB3</td>
<td>1:G:198:ARG:HD3</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:177:LEU:HD13</td>
<td>1:G:462:TRP:CB</td>
<td>2.47</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:262:ASN:ND2</td>
<td>1:G:263:HIS:H</td>
<td>2.18</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:H:82:LYS:O</td>
<td>1:H:86:PRO:HD2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:198:ARG:HD3</td>
<td>1:B:458:LEU:HD11</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:125:MET:O</td>
<td>1:C:131:GLY:HA3</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:93:GLU:CD</td>
<td>1:C:93:GLU:H</td>
<td>2.23</td>
<td>0.42</td>
</tr>
<tr>
<td>1:H:75:LEU:HB2</td>
<td>1:H:107:TYR:CE2</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:H:151:THR:HG23</td>
<td>1:H:191:PHE:CE1</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:67:ILE:HD12</td>
<td>1:B:67:ILE:N</td>
<td>2.35</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:82:LYS:HD2</td>
<td>1:E:82:LYS:HA</td>
<td>1.73</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:70:TYR:HD2</td>
<td>1:F:121:LEU:HD13</td>
<td>1.85</td>
<td>0.42</td>
</tr>
<tr>
<td>1:H:35:ILE:N</td>
<td>1:H:35:ILE:HD12</td>
<td>2.35</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:70:TYR:CD1</td>
<td>1:A:70:TYR:C</td>
<td>2.93</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:86:PRO:O</td>
<td>1:A:87:PHE:HB3</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:375:ASP:O</td>
<td>1:B:219:ARG:NH1</td>
<td>2.53</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:473:GLU:O</td>
<td>1:C:476:LYS:HE3</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:243:THR:HG23</td>
<td>1:D:243:THR:O</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:45:LYS:HG3</td>
<td>1:D:46:LYS:HG3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:144:PRO:O</td>
<td>1:F:147:TYR:HB2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:311:ASN:HA</td>
<td>1:G:312:PRO:HD2</td>
<td>1.88</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:429:LYS:HE2</td>
<td>1:G:429:LYS:N</td>
<td>2.35</td>
<td>0.42</td>
</tr>
<tr>
<td>1:H:243:THR:OG1</td>
<td>1:H:247:GLY:HA2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:115:ALA:O</td>
<td>1:B:119:GLN:HB2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:219:ARG:NH1</td>
<td>1:B:375:ASP:O</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:202:TYR:HA</td>
<td>1:C:205:LYS:HG3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:70:TYR:CD1</td>
<td>1:D:70:TYR:C</td>
<td>2.93</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:178:GLN:HB3</td>
<td>1:E:179:SER:H</td>
<td>1.76</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:226:ASN:HD21</td>
<td>1:E:228:ASP:HB2</td>
<td>1.85</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:162:ILE:HA</td>
<td>1:C:162:ILE:HD13</td>
<td>1.88</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:171:LYS:HE2</td>
<td>1:C:171:LYS:HB3</td>
<td>1.79</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:267:MET:O</td>
<td>1:D:271:VAL:HG23</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:429:LYS:N</td>
<td>1:D:429:LYS:HE2</td>
<td>2.34</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:53:TRP:CD1</td>
<td>1:D:53:TRP:C</td>
<td>2.93</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:225:TRP:O</td>
<td>1:E:348:ARG:NH1</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:93:GLU:H</td>
<td>1:E:93:GLU:CD</td>
<td>2.23</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:45:LYS:HB2</td>
<td>1:F:86:PRO:HG3</td>
<td>2.01</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:H:342:LEU:O</td>
<td>1:H:343:TYR:CD1</td>
<td>2.71</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:104:ARG:CG</td>
<td>1:A:104:ARG:HH11</td>
<td>2.32</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:149:ALA:O</td>
<td>1:B:152:LYS:HB3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:177:LEU:HD13</td>
<td>1:C:462:TRP:HB3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:201:HIS:HA</td>
<td>1:C:440:LEU:HD11</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:270:LEU:HA</td>
<td>1:D:273:MET:HE3</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:287:GLU:O</td>
<td>1:D:291:VAL:HG23</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>2:D:800:NAP:H4N</td>
<td>2:D:800:NAP:H71N</td>
<td>1.52</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:201:HIS:HA</td>
<td>1:F:440:LEU:HD11</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:328:VAL:HA</td>
<td>1:G:329:PRO:HD3</td>
<td>1.94</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:78:ALA:O</td>
<td>1:A:80:ILE:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:269:CYSS:SG</td>
<td>1:B:292:LEU:HD21</td>
<td>2.60</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:35:ILE:HG22</td>
<td>1:B:37:MET:SD</td>
<td>2.60</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:240:PRO:HA</td>
<td>1:B:362:LEU:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:61:LEU:HA</td>
<td>1:C:62:PRO:HD3</td>
<td>1.96</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:270:LEU:HD23</td>
<td>1:E:273:MET:CE</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:87:PHE:C</td>
<td>1:C:87:PHE:CD1</td>
<td>2.94</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:201:HIS:HA</td>
<td>1:D:440:LEU:HD11</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:162:ILE:HA</td>
<td>1:E:162:ILE:HD13</td>
<td>1.84</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:199:ILE:CG2</td>
<td>1:A:200:ASP:N</td>
<td>2.84</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:35:ILE:HD12</td>
<td>1:A:35:ILE:N</td>
<td>2.33</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:87:PHE:CD1</td>
<td>1:B:87:PHE:C</td>
<td>2.94</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:227:ARG:HH22</td>
<td>4:C:1103:GOL:C2</td>
<td>2.23</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:192:ARG:HG2</td>
<td>1:D:195:GLN:OE1</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:311:ASN:HA</td>
<td>1:E:312:PRO:HD2</td>
<td>1.84</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:466:THR:OG1</td>
<td>1:E:467:PRO:HD3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:273:MET:HA</td>
<td>1:B:291:VAL:CG2</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:126:ASN:HA</td>
<td>1:F:131:GLY:HA3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:172:PRO:CG</td>
<td>1:G:198:ARG:HB3</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:176:ASP:HB2</td>
<td>1:G:179:SER:CB</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:209:GLN:OE1</td>
<td>1:G:439:ARG:HD2</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:78:ALA:HB1</td>
<td>1:G:105:ASN:HB3</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:H:210:ASN:OD1</td>
<td>1:H:214:LEU:HG</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:104:ARG:HH11</td>
<td>1:E:104:ARG:CG</td>
<td>2.32</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:144:PRO:HA</td>
<td>1:E:147:TYR:CD2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:325:ASP:HB3</td>
<td>1:E:328:VAL:HG12</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:248:GLY:H</td>
<td>1:E:332:THR:HB</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:144:PRO:HA</td>
<td>1:F:147:TYR:CD2</td>
<td>2.56</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:G:142:LEU:CB</td>
<td>1:G:143:PRO:HD2</td>
<td>2.49</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:47:LYS:O</td>
<td>1:G:50:PRO:HD2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:H:270:LEU:HD23</td>
<td>1:H:273:MET:HE3</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:226:ASN:ND2</td>
<td>1:B:228:ASP:H</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:238:LYS:O</td>
<td>1:B:365:ARG:HA</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:143:PRO:HA</td>
<td>1:C:144:PRO:HD3</td>
<td>1.78</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:143:PRO:HA</td>
<td>1:D:144:PRO:HD3</td>
<td>1.84</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:264:LEU:HD12</td>
<td>1:E:267:MET:HE2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:497:LYS:HA</td>
<td>1:E:501:PHE:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:136:ARG:HB2</td>
<td>1:G:165:ASN:HD22</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:202:TYR:O</td>
<td>1:G:205:LYS:HG3</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:H:142:LEU:HD13</td>
<td>1:H:146:VAL:HB</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:H:151:THR:HG23</td>
<td>1:H:191:PHE:HE1</td>
<td>1.84</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:440:LEU:O</td>
<td>1:C:443:ASP:HB2</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:91:THR:HA</td>
<td>1:E:92:PRO:HD3</td>
<td>1.99</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:375:ASP:O</td>
<td>1:H:219:ARG:NH1</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:268:LEU:C</td>
<td>1:A:268:LEU:HD23</td>
<td>2.42</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:162:ILE:HD13</td>
<td>1:B:162:ILE:HA</td>
<td>1.94</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:198:ARG:CD</td>
<td>1:B:458:LEU:HD11</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:325:ASP:HB3</td>
<td>1:B:328:VAL:HG12</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:238:LYS:O</td>
<td>1:D:365:ARG:HA</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:259:VAL:HA</td>
<td>1:E:262:ASN:HD21</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:87:PHE:C</td>
<td>1:G:87:PHE:CD1</td>
<td>2.95</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:125:MET:O</td>
<td>1:D:131:GLY:HA3</td>
<td>2.20</td>
<td>0.40</td>
</tr>
<tr>
<td>1:E:243:THR:OG1</td>
<td>1:E:247:GLY:HA2</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:G:355:ILE:HD13</td>
<td>1:G:496:MET:HG2</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:177:LEU:HD22</td>
<td>1:A:466:THR:HG21</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:104:ARG:NH1</td>
<td>1:F:104:ARG:CG</td>
<td>2.84</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:508:LYS:HE2</td>
<td>1:F:508:LYS:H</td>
<td>1.87</td>
<td>0.40</td>
</tr>
<tr>
<td>1:G:259:VAL:O</td>
<td>1:G:262:ASN:ND2</td>
<td>2.54</td>
<td>0.40</td>
</tr>
<tr>
<td>1:G:55:LEU:HB3</td>
<td>1:G:61:LEU:HG</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:H:421:ASP:OD1</td>
<td>2:H:800:NAP:N7N</td>
<td>2.54</td>
<td>0.40</td>
</tr>
<tr>
<td>1:H:87:PHE:H</td>
<td>1:H:88:PHE:HD1</td>
<td>1.69</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:202:TYR:HA</td>
<td>1:B:205:LYS:HG3</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:12:VAL:O</td>
<td>1:D:14:GLY:N</td>
<td>2.54</td>
<td>0.40</td>
</tr>
</tbody>
</table>

\textit{Continued on next page...}
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:427:ARG:NH2</td>
<td>1:F:508:LYS:O</td>
<td>2.55</td>
<td>0.40</td>
</tr>
<tr>
<td>1:G:343:TYR:CD1</td>
<td>1:G:353:PRO:HA</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>1:H:177:LEU:HG</td>
<td>1:H:178:GLN:N</td>
<td>2.35</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:342:LEU:O</td>
<td>1:B:343:TYR:CD1</td>
<td>2.74</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:227:ARG:HG2</td>
<td>1:B:348:ARG:O</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:211:LEU:HD23</td>
<td>1:C:392:ILE:HD13</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:G:210:ASN:ND2</td>
<td>1:H:407:LYS:HB3</td>
<td>2.35</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:343:TYR:HE1</td>
<td>1:A:353:PRO:CA</td>
<td>2.35</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:82:LYS:HZ1</td>
<td>1:B:86:PRO:HD3</td>
<td>1.87</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:205:LYS:HZ1</td>
<td>3:F:900:GOA:C2</td>
<td>2.27</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.

5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>484/514 (94%)</td>
<td>420 (87%)</td>
<td>50 (10%)</td>
<td>14 (3%)</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>485/514 (94%)</td>
<td>430 (89%)</td>
<td>45 (9%)</td>
<td>10 (2%)</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>485/514 (94%)</td>
<td>431 (89%)</td>
<td>42 (9%)</td>
<td>12 (2%)</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>486/514 (95%)</td>
<td>435 (90%)</td>
<td>39 (8%)</td>
<td>12 (2%)</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>483/514 (94%)</td>
<td>424 (88%)</td>
<td>46 (10%)</td>
<td>13 (3%)</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>487/514 (95%)</td>
<td>424 (87%)</td>
<td>52 (11%)</td>
<td>11 (2%)</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>485/514 (94%)</td>
<td>430 (89%)</td>
<td>45 (9%)</td>
<td>10 (2%)</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>485/514 (94%)</td>
<td>430 (89%)</td>
<td>48 (10%)</td>
<td>7 (1%)</td>
<td>12</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3880/4112 (94%)</td>
<td>3424 (88%)</td>
<td>367 (10%)</td>
<td>89 (2%)</td>
<td>7</td>
</tr>
</tbody>
</table>
All (89) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>87</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>244</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>383</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>87</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>244</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>383</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>77</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>79</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>83</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>87</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>244</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>77</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>87</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>244</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>76</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>79</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>87</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>178</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>244</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>77</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>80</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>87</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>178</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>244</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>83</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>87</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>244</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>87</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>244</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>78</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>79</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>29</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>80</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>201</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>330</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>14</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>201</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>383</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>12</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>83</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>177</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>383</td>
<td>GLN</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>201</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>383</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>74</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>76</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>193</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>383</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>77</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>170</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>383</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>75</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>83</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>347</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>330</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>383</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>78</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>201</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>113</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>80</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>180</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>201</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>29</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>79</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>80</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>129</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>74</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>13</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>129</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>330</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>13</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>129</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>10</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>78</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>80</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>80</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>95</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>330</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>30</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>129</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>80</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>92</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>505</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>12</td>
<td>VAL</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>172</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>77</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>77</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>222</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>223</td>
<td>PRO</td>
</tr>
</tbody>
</table>

5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>410/449 (91%)</td>
<td>379 (92%)</td>
<td>31 (8%)</td>
<td>14 46</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>409/449 (91%)</td>
<td>378 (92%)</td>
<td>31 (8%)</td>
<td>14 46</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>410/449 (91%)</td>
<td>383 (93%)</td>
<td>27 (7%)</td>
<td>18 53</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>410/449 (91%)</td>
<td>381 (93%)</td>
<td>29 (7%)</td>
<td>16 50</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>410/449 (91%)</td>
<td>372 (91%)</td>
<td>38 (9%)</td>
<td>10 36</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>410/449 (91%)</td>
<td>380 (93%)</td>
<td>30 (7%)</td>
<td>15 48</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>409/449 (91%)</td>
<td>379 (93%)</td>
<td>30 (7%)</td>
<td>15 48</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>411/449 (92%)</td>
<td>383 (93%)</td>
<td>28 (7%)</td>
<td>17 52</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3279/3592 (91%)</td>
<td>3035 (93%)</td>
<td>244 (7%)</td>
<td>15 47</td>
</tr>
</tbody>
</table>

All (244) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>27</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>29</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>42</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>53</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>55</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>70</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>81</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>91</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>104</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>145</td>
<td>THR</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>159</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>180</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>182</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>183</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>207</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>225</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>227</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>246</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>279</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>327</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>345</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>357</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>383</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>400</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>404</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>419</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>429</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>443</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>483</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>495</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>42</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>53</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>55</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>81</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>91</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>104</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>145</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>157</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>159</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>175</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>181</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>207</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>225</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>227</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>246</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>279</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>327</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>345</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>357</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>383</td>
<td>GLN</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>400</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>404</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>419</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>429</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>442</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>443</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>452</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>483</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>495</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>508</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>42</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>53</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>55</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>70</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>91</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>104</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>145</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>159</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>207</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>225</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>227</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>246</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>279</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>327</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>345</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>357</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>383</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>400</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>404</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>419</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>429</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>442</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>443</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>483</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>495</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>508</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>42</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>53</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>55</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>91</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>104</td>
<td>ARG</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>145</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>159</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>176</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>183</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>207</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>225</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>227</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>246</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>279</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>296</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>327</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>345</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>357</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>383</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>400</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>404</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>419</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>429</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>442</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>470</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>483</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>495</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>508</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>13</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>42</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>53</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>55</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>60</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>73</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>81</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>91</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>104</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>145</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>159</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>169</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>175</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>176</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>178</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>181</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>182</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>183</td>
<td>LEU</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>207</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>225</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>227</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>246</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>279</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>296</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>327</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>345</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>357</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>383</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>400</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>404</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>419</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>429</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>443</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>483</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>495</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>504</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>508</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>29</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>42</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>53</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>55</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>91</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>104</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>139</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>145</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>159</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>176</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>181</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>207</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>225</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>246</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>327</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>345</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>357</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>383</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>400</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>404</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>419</td>
<td>GLU</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>429</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>442</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>443</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>446</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>470</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>473</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>495</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>508</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>42</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>53</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>55</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>73</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>91</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>104</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>139</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>145</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>159</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>171</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>178</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>180</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>207</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>225</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>227</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>246</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>279</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>327</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>345</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>357</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>383</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>400</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>404</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>419</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>429</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>443</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>483</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>495</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>508</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>42</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>53</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>88</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>91</td>
<td>THR</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>104</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>145</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>159</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>175</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>207</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>225</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>227</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>246</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>296</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>327</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>345</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>357</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>383</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>400</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>404</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>419</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>429</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>442</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>443</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>483</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>495</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>504</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>508</td>
<td>LYS</td>
</tr>
</tbody>
</table>

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (71) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>32</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>83</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>111</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>124</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>135</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>161</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>226</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>307</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>470</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>32</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>83</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>111</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>135</td>
<td>ASN</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>161</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>226</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>229</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>307</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>449</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>32</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>83</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>111</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>135</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>153</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>161</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>226</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>307</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>32</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>83</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>111</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>135</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>155</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>226</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>32</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>83</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>111</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>135</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>165</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>178</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>226</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>32</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>83</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>111</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>135</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>161</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>226</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>229</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>307</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>32</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>83</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>111</td>
<td>GLN</td>
</tr>
</tbody>
</table>

Continued on next page...
5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

21 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G</td>
<td>135</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>161</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>185</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>226</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>307</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>451</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>32</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>83</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>111</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>135</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>161</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>226</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>451</td>
<td>HIS</td>
</tr>
</tbody>
</table>
In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. ‘-’ means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>NAP</td>
<td>A</td>
<td>800</td>
<td>-</td>
<td>0/27/67/67</td>
<td>0/5/5/5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>A</td>
<td>900</td>
<td>-</td>
<td>0/0/2/2</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>GOL</td>
<td>B</td>
<td>1101</td>
<td>-</td>
<td>0/4/4/4</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>GOL</td>
<td>B</td>
<td>1102</td>
<td>-</td>
<td>0/4/4/4</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>B</td>
<td>800</td>
<td>-</td>
<td>0/27/67/67</td>
<td>0/5/5/5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>B</td>
<td>900</td>
<td>-</td>
<td>0/0/2/2</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>GOL</td>
<td>C</td>
<td>1103</td>
<td>-</td>
<td>0/4/4/4</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>C</td>
<td>800</td>
<td>-</td>
<td>0/27/67/67</td>
<td>0/5/5/5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>C</td>
<td>900</td>
<td>-</td>
<td>0/0/2/2</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>D</td>
<td>800</td>
<td>-</td>
<td>0/27/67/67</td>
<td>0/5/5/5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>D</td>
<td>900</td>
<td>-</td>
<td>0/0/2/2</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>GOL</td>
<td>E</td>
<td>1105</td>
<td>-</td>
<td>0/4/4/4</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>E</td>
<td>800</td>
<td>-</td>
<td>0/27/67/67</td>
<td>0/5/5/5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>E</td>
<td>900</td>
<td>-</td>
<td>0/0/2/2</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>F</td>
<td>800</td>
<td>-</td>
<td>0/27/67/67</td>
<td>0/5/5/5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>F</td>
<td>900</td>
<td>-</td>
<td>0/0/2/2</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>GOL</td>
<td>G</td>
<td>1104</td>
<td>-</td>
<td>0/4/4/4</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>G</td>
<td>800</td>
<td>-</td>
<td>0/27/67/67</td>
<td>0/5/5/5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>G</td>
<td>900</td>
<td>-</td>
<td>0/0/2/2</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>H</td>
<td>800</td>
<td>-</td>
<td>0/27/67/67</td>
<td>0/5/5/5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>H</td>
<td>900</td>
<td>-</td>
<td>0/0/2/2</td>
<td>0/0/0/0</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>GOA</td>
<td>E</td>
<td>900</td>
<td>-</td>
<td>-</td>
<td>0/0/2/2</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>F</td>
<td>800</td>
<td>-</td>
<td>-</td>
<td>0/27/67/67</td>
<td>0/5/5/5</td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>F</td>
<td>900</td>
<td>-</td>
<td>-</td>
<td>0/0/2/2</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>4</td>
<td>GOL</td>
<td>G</td>
<td>1104</td>
<td>-</td>
<td>-</td>
<td>0/4/4/4</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>G</td>
<td>800</td>
<td>-</td>
<td>-</td>
<td>0/27/67/67</td>
<td>0/5/5/5</td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>G</td>
<td>900</td>
<td>-</td>
<td>-</td>
<td>0/0/2/2</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>H</td>
<td>800</td>
<td>-</td>
<td>-</td>
<td>0/27/67/67</td>
<td>0/5/5/5</td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>H</td>
<td>900</td>
<td>-</td>
<td>-</td>
<td>0/0/2/2</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

All (1) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>G</td>
<td>800</td>
<td>NAP</td>
<td>C2D-C3D</td>
<td>-2.05</td>
<td>1.48</td>
<td>1.53</td>
</tr>
</tbody>
</table>

All (70) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C</td>
<td>800</td>
<td>NAP</td>
<td>C4B-O4B-C1B</td>
<td>-5.91</td>
<td>103.66</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>800</td>
<td>NAP</td>
<td>C4B-O4B-C1B</td>
<td>-5.50</td>
<td>104.09</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>800</td>
<td>NAP</td>
<td>C4B-O4B-C1B</td>
<td>-5.45</td>
<td>104.14</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>800</td>
<td>NAP</td>
<td>C4B-O4B-C1B</td>
<td>-5.40</td>
<td>104.19</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>800</td>
<td>NAP</td>
<td>O4B-C1B-C2B</td>
<td>-5.23</td>
<td>97.50</td>
<td>106.60</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>800</td>
<td>NAP</td>
<td>C4B-O4B-C1B</td>
<td>-5.19</td>
<td>104.42</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>800</td>
<td>NAP</td>
<td>C4B-O4B-C1B</td>
<td>-5.07</td>
<td>104.55</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>800</td>
<td>NAP</td>
<td>O4B-C1B-C2B</td>
<td>-4.87</td>
<td>98.13</td>
<td>106.60</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>800</td>
<td>NAP</td>
<td>O4B-C1B-C2B</td>
<td>-4.85</td>
<td>98.17</td>
<td>106.60</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>800</td>
<td>NAP</td>
<td>O4B-C1B-C2B</td>
<td>-4.56</td>
<td>98.68</td>
<td>106.60</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>800</td>
<td>NAP</td>
<td>O4B-C1B-C2B</td>
<td>-4.42</td>
<td>98.90</td>
<td>106.60</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>800</td>
<td>NAP</td>
<td>O4B-C1B-C2B</td>
<td>-4.39</td>
<td>98.97</td>
<td>106.60</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>800</td>
<td>NAP</td>
<td>C4N-C3N-C7N</td>
<td>-4.06</td>
<td>110.18</td>
<td>121.08</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>800</td>
<td>NAP</td>
<td>C4B-O4B-C1B</td>
<td>-4.02</td>
<td>105.64</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>800</td>
<td>NAP</td>
<td>O4B-C1B-C2B</td>
<td>-3.97</td>
<td>99.69</td>
<td>106.60</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>800</td>
<td>NAP</td>
<td>C4D-O4D-C1D</td>
<td>-3.90</td>
<td>105.77</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>800</td>
<td>NAP</td>
<td>C4N-C3N-C7N</td>
<td>-3.88</td>
<td>110.68</td>
<td>121.08</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>800</td>
<td>NAP</td>
<td>C4D-O4D-C1D</td>
<td>-3.81</td>
<td>105.86</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>800</td>
<td>NAP</td>
<td>C4B-O4B-C1B</td>
<td>-3.75</td>
<td>105.92</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>800</td>
<td>NAP</td>
<td>C3B-C2B-C1B</td>
<td>-3.71</td>
<td>95.82</td>
<td>102.89</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>800</td>
<td>NAP</td>
<td>C4D-O4D-C1D</td>
<td>-3.54</td>
<td>106.14</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>800</td>
<td>NAP</td>
<td>O4B-C1B-C2B</td>
<td>-3.53</td>
<td>100.47</td>
<td>106.60</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>800</td>
<td>NAP</td>
<td>C4D-O4D-C1D</td>
<td>-3.46</td>
<td>106.22</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>800</td>
<td>NAP</td>
<td>C4D-O4D-C1D</td>
<td>-3.44</td>
<td>106.24</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>800</td>
<td>NAP</td>
<td>C4N-C3N-C7N</td>
<td>-3.32</td>
<td>112.17</td>
<td>121.08</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>G</td>
<td>800</td>
<td>NAP</td>
<td>C3B-C2B-C1B</td>
<td>-3.11</td>
<td>96.97</td>
<td>102.89</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>800</td>
<td>NAP</td>
<td>C3B-C2B-C1B</td>
<td>-3.07</td>
<td>97.04</td>
<td>102.89</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>800</td>
<td>NAP</td>
<td>C4D-O4D-C1D</td>
<td>-3.02</td>
<td>106.67</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>800</td>
<td>NAP</td>
<td>C4D-O4D-C1D</td>
<td>-2.98</td>
<td>106.72</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>800</td>
<td>NAP</td>
<td>C3B-C2B-C1B</td>
<td>-2.95</td>
<td>97.26</td>
<td>102.89</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>800</td>
<td>NAP</td>
<td>C4N-C3N-C7N</td>
<td>-2.94</td>
<td>113.19</td>
<td>121.08</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>800</td>
<td>NAP</td>
<td>C4N-C3N-C7N</td>
<td>-2.91</td>
<td>113.27</td>
<td>121.08</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>800</td>
<td>NAP</td>
<td>C3B-C2B-C1B</td>
<td>-2.89</td>
<td>97.39</td>
<td>102.89</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>800</td>
<td>NAP</td>
<td>C4N-C3N-C7N</td>
<td>-2.78</td>
<td>113.61</td>
<td>121.08</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>800</td>
<td>NAP</td>
<td>C3N-C7N-N7N</td>
<td>-2.57</td>
<td>114.77</td>
<td>117.76</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>800</td>
<td>NAP</td>
<td>C4N-C3N-C7N</td>
<td>-2.55</td>
<td>114.23</td>
<td>121.08</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>800</td>
<td>NAP</td>
<td>C3N-C7N-N7N</td>
<td>-2.37</td>
<td>115.00</td>
<td>117.76</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>800</td>
<td>NAP</td>
<td>C4D-O4D-C1D</td>
<td>-2.32</td>
<td>107.41</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>800</td>
<td>NAP</td>
<td>C3B-C2B-C1B</td>
<td>-2.27</td>
<td>98.56</td>
<td>102.89</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>800</td>
<td>NAP</td>
<td>O7N-C7N-C3N</td>
<td>-2.20</td>
<td>116.87</td>
<td>119.62</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>800</td>
<td>NAP</td>
<td>C4N-C3N-C7N</td>
<td>-2.19</td>
<td>115.21</td>
<td>121.08</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>800</td>
<td>NAP</td>
<td>O7N-C7N-C3N</td>
<td>-2.15</td>
<td>116.94</td>
<td>119.62</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>800</td>
<td>NAP</td>
<td>C3N-C7N-N7N</td>
<td>-2.04</td>
<td>115.39</td>
<td>117.76</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>800</td>
<td>NAP</td>
<td>C3N-C7N-N7N</td>
<td>-2.03</td>
<td>115.40</td>
<td>117.76</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>800</td>
<td>NAP</td>
<td>C5B-C4B-C3B</td>
<td>-2.01</td>
<td>107.71</td>
<td>115.29</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>800</td>
<td>NAP</td>
<td>C3N-C2N-N1N</td>
<td>2.01</td>
<td>122.42</td>
<td>120.41</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>800</td>
<td>NAP</td>
<td>C3N-C2N-N1N</td>
<td>2.14</td>
<td>122.55</td>
<td>120.41</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>800</td>
<td>NAP</td>
<td>C3N-C2N-N1N</td>
<td>2.16</td>
<td>122.58</td>
<td>120.41</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>800</td>
<td>NAP</td>
<td>O7N-C7N-N7N</td>
<td>2.34</td>
<td>126.00</td>
<td>122.60</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>800</td>
<td>NAP</td>
<td>O7N-C7N-N7N</td>
<td>2.52</td>
<td>126.26</td>
<td>122.60</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>800</td>
<td>NAP</td>
<td>C2N-C3N-C7N</td>
<td>2.59</td>
<td>126.87</td>
<td>119.81</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>800</td>
<td>NAP</td>
<td>O7N-C7N-N7N</td>
<td>2.70</td>
<td>126.52</td>
<td>122.60</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>800</td>
<td>NAP</td>
<td>O7N-C7N-N7N</td>
<td>2.87</td>
<td>126.77</td>
<td>122.60</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>800</td>
<td>NAP</td>
<td>C4A-C5A-N7A</td>
<td>2.88</td>
<td>112.19</td>
<td>109.41</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>800</td>
<td>NAP</td>
<td>O7N-C7N-N7N</td>
<td>2.89</td>
<td>126.80</td>
<td>122.60</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>800</td>
<td>NAP</td>
<td>C4A-C5A-N7A</td>
<td>2.95</td>
<td>112.26</td>
<td>109.41</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>800</td>
<td>NAP</td>
<td>C2N-C3N-C7N</td>
<td>3.08</td>
<td>128.29</td>
<td>119.31</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>800</td>
<td>NAP</td>
<td>O7N-C7N-N7N</td>
<td>3.08</td>
<td>127.08</td>
<td>122.60</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>800</td>
<td>NAP</td>
<td>C2N-C3N-C7N</td>
<td>3.16</td>
<td>128.52</td>
<td>119.31</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>800</td>
<td>NAP</td>
<td>C4A-C5A-N7A</td>
<td>3.34</td>
<td>112.63</td>
<td>109.41</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>800</td>
<td>NAP</td>
<td>C2N-C3N-C7N</td>
<td>3.34</td>
<td>129.05</td>
<td>119.31</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>800</td>
<td>NAP</td>
<td>C4A-C5A-N7A</td>
<td>3.39</td>
<td>112.68</td>
<td>109.41</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>800</td>
<td>NAP</td>
<td>C4A-C5A-N7A</td>
<td>3.41</td>
<td>112.71</td>
<td>109.41</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>800</td>
<td>NAP</td>
<td>C4A-C5A-N7A</td>
<td>3.44</td>
<td>112.73</td>
<td>109.41</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>800</td>
<td>NAP</td>
<td>C4A-C5A-N7A</td>
<td>3.48</td>
<td>112.77</td>
<td>109.41</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>800</td>
<td>NAP</td>
<td>C2N-C3N-C7N</td>
<td>3.58</td>
<td>129.73</td>
<td>119.31</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>800</td>
<td>NAP</td>
<td>C4A-C5A-N7A</td>
<td>3.60</td>
<td>112.89</td>
<td>109.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>800</td>
<td>NAP</td>
<td>C2N-C3N-C7N</td>
<td>3.63</td>
<td>129.89</td>
<td>119.31</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>800</td>
<td>NAP</td>
<td>C2N-C3N-C7N</td>
<td>4.25</td>
<td>131.68</td>
<td>119.31</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>800</td>
<td>NAP</td>
<td>C2N-C3N-C7N</td>
<td>4.39</td>
<td>132.10</td>
<td>119.31</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

10 monomers are involved in 23 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>B</td>
<td>1101</td>
<td>GOL</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1102</td>
<td>GOL</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>800</td>
<td>NAP</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>1103</td>
<td>GOL</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>800</td>
<td>NAP</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>800</td>
<td>NAP</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>1105</td>
<td>GOL</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>900</td>
<td>GOA</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
<td>1104</td>
<td>GOL</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>800</td>
<td>NAP</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ> 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q< 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ>2</th>
<th>OWAB(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>488/514 (94%)</td>
<td>-0.29</td>
<td>5 (1%)</td>
<td>82</td>
<td>59</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>489/514 (95%)</td>
<td>-0.24</td>
<td>5 (1%)</td>
<td>82</td>
<td>59</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>489/514 (95%)</td>
<td>-0.19</td>
<td>10 (2%)</td>
<td>65</td>
<td>36</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>490/514 (95%)</td>
<td>-0.31</td>
<td>4 (0%)</td>
<td>86</td>
<td>64</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>487/514 (94%)</td>
<td>-0.31</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>491/514 (95%)</td>
<td>-0.22</td>
<td>11 (2%)</td>
<td>62</td>
<td>33</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>489/514 (95%)</td>
<td>-0.21</td>
<td>8 (1%)</td>
<td>72</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>489/514 (95%)</td>
<td>-0.23</td>
<td>6 (1%)</td>
<td>79</td>
<td>53</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3912/4112 (95%)</td>
<td>-0.25</td>
<td>49 (1%)</td>
<td>77</td>
<td>51</td>
</tr>
</tbody>
</table>

All (49) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>79</td>
<td>ASP</td>
<td>6.4</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>10</td>
<td>THR</td>
<td>5.4</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>10</td>
<td>THR</td>
<td>4.3</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>8</td>
<td>SER</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>11</td>
<td>HIS</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>79</td>
<td>ASP</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>13</td>
<td>CYS</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>79</td>
<td>ASP</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>28</td>
<td>GLN</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>79</td>
<td>ASP</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>14</td>
<td>GLY</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>79</td>
<td>ASP</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>29</td>
<td>SER</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>249</td>
<td>TYR</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>12</td>
<td>VAL</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>79</td>
<td>ASP</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Continued on next page...
6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates

There are no carbohydrates in this entry.
6.4 Ligands

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q< 0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>GOL</td>
<td>B</td>
<td>1101</td>
<td>6/6</td>
<td>0.68</td>
<td>0.30</td>
<td>26,38,43,45</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>GOL</td>
<td>E</td>
<td>1105</td>
<td>6/6</td>
<td>0.89</td>
<td>0.19</td>
<td>4,21,24,27</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>F</td>
<td>900</td>
<td>5/5</td>
<td>0.89</td>
<td>0.12</td>
<td>43,46,48,49</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>GOL</td>
<td>B</td>
<td>1102</td>
<td>6/6</td>
<td>0.89</td>
<td>0.18</td>
<td>54,55,58,61</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>H</td>
<td>900</td>
<td>5/5</td>
<td>0.91</td>
<td>0.12</td>
<td>49,52,54,55</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>GOL</td>
<td>C</td>
<td>1103</td>
<td>6/6</td>
<td>0.91</td>
<td>0.20</td>
<td>27,38,41,42</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>G</td>
<td>900</td>
<td>5/5</td>
<td>0.91</td>
<td>0.12</td>
<td>47,49,54,54</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>A</td>
<td>900</td>
<td>5/5</td>
<td>0.92</td>
<td>0.12</td>
<td>42,45,49,51</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>B</td>
<td>900</td>
<td>5/5</td>
<td>0.92</td>
<td>0.12</td>
<td>50,51,52,55</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>D</td>
<td>800</td>
<td>48/48</td>
<td>0.93</td>
<td>0.19</td>
<td>32,48,58,61</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>H</td>
<td>800</td>
<td>48/48</td>
<td>0.94</td>
<td>0.15</td>
<td>39,45,60,67</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>E</td>
<td>900</td>
<td>5/5</td>
<td>0.94</td>
<td>0.09</td>
<td>33,45,49,49</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>G</td>
<td>800</td>
<td>48/48</td>
<td>0.94</td>
<td>0.16</td>
<td>39,48,58,65</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>B</td>
<td>800</td>
<td>48/48</td>
<td>0.95</td>
<td>0.14</td>
<td>36,48,56,60</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>C</td>
<td>800</td>
<td>48/48</td>
<td>0.95</td>
<td>0.17</td>
<td>33,48,54,56</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>A</td>
<td>800</td>
<td>48/48</td>
<td>0.95</td>
<td>0.15</td>
<td>34,44,58,67</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>GOL</td>
<td>G</td>
<td>1104</td>
<td>6/6</td>
<td>0.95</td>
<td>0.20</td>
<td>8,17,23,27</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>F</td>
<td>800</td>
<td>48/48</td>
<td>0.95</td>
<td>0.13</td>
<td>35,46,55,58</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>E</td>
<td>800</td>
<td>48/48</td>
<td>0.95</td>
<td>0.17</td>
<td>35,45,55,61</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>C</td>
<td>900</td>
<td>5/5</td>
<td>0.96</td>
<td>0.15</td>
<td>44,46,53,56</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>GOA</td>
<td>D</td>
<td>900</td>
<td>5/5</td>
<td>0.96</td>
<td>0.10</td>
<td>25,27,29,31</td>
<td>0</td>
</tr>
</tbody>
</table>

6.5 Other polymers

There are no such residues in this entry.