

Jun 29, 2024 – 10:03 am BST

PDB ID	:	8QPB
EMDB ID	:	EMD-18547
Title	:	Cryo-EM Structure of Pre-B+ATP Complex (core part)
Authors	:	Zhang, Z.; Kumar, V.; Dybkov, O.; Will, C.L.; Zhong, J.; Ludwig, S.; Urlaub,
		H.; Kastner, B.; Stark, H.; Luehrmann, R.
Deposited on	:	2023-10-01
Resolution	:	3.70 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length			Q	uality o	of chain		
1	В	2136	•			99%)		
2	G	820	5% •			9	3%		
3	J	683	8% •				88%		
4	L	499	7%		55%		20%		25%
5	F	522	8% •				88%		
6	N	941	10%	36%		13%		51%	
7	А	2335	•		61%			24%	15%

Mol	Chain	Length	F	Qı	uality of	chain		
8	U	565	—	55%		25%		19%
9	S	800	15% •			82%		
10	С	972		61%		2	5%	14%
11	М	128	24%	73%			23%	•
12	D	142		61%			38%	•
13	5	117	34%		24%	9%	32%	
14	7	793	• 11% •			87%		
15	4	144	26%	21%	8%		44%	
16	6	106	26%	17%	•	55	5%	
17	Z	13		54%			46%	

2 Entry composition (i)

There are 18 unique types of molecules in this entry. The entry contains 43804 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called U5 small nuclear ribonucleoprotein 200 kDa helicase.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
1	В	22	Total 158	C 97	N 28	O 32	S 1	0	0

• Molecule 2 is a protein called Probable ATP-dependent RNA helicase DDX23.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
0	С	57	Total	С	Ν	0	S	0	0
	G	57	484	304	88	91	1	0	0

• Molecule 3 is a protein called U4/U6 small nuclear ribonucleoprotein Prp3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
3	J	84	Total 679	C 419	N 138	0 119	${ m S} { m 3}$	0	0

• Molecule 4 is a protein called U4/U6 small nuclear ribonucleoprotein Prp31.

Mol	Chain	Residues		At	AltConf	Trace			
4	L	376	Total 2886	C 1796	N 526	O 552	S 12	0	0

• Molecule 5 is a protein called U4/U6 small nuclear ribonucleoprotein Prp4.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
5	F	61	Total 488	C 297	N 97	O 93	S 1	0	0

• Molecule 6 is a protein called Pre-mRNA-processing factor 6.

Mol	Chain	Residues		At	AltConf	Trace			
6	Ν	457	Total 3502	C 2191	N 655	0 644	S 12	0	0

• Molecule 7 is a protein called Pre-mRNA-processing-splicing factor 8.

Mol	Chain	Residues		At	AltConf	Trace			
7	А	1977	Total 16409	C 10568	N 2864	O 2907	S 70	0	0

• Molecule 8 is a protein called Ubiquitin carboxyl-terminal hydrolase 39.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	U	456	Total 3749	C 2427	N 635	O 673	S 14	0	0

• Molecule 9 is a protein called U4/U6.U5 tri-snRNP-associated protein 1.

Mol	Chain	Residues		At	oms		AltConf	Trace	
9	S	148	Total 1164	С 724	N 216	0 222	${ m S} { m 2}$	0	0

• Molecule 10 is a protein called 116 kDa U5 small nuclear ribonucleoprotein component.

Mol	Chain	Residues		Α	toms			AltConf	Trace
10	С	836	Total 6592	C 4211	N 1110	O 1238	S 33	0	0

• Molecule 11 is a protein called NHP2-like protein 1, N-terminally processed.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	М	124	Total 962	C 608	N 171	0 178	${ m S}{ m 5}$	0	0

• Molecule 12 is a protein called Thioredoxin-like protein 4A.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
12	D	141	Total 1170	C 751	N 194	0 215	S 10	0	0

• Molecule 13 is a RNA chain called U5 snRNA.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms		AltConf	Trace	
13	5	79	Total 1660	C 744	N 275	0 562	P 79	0	0

• Molecule 14 is a protein called Splicing factor 3A subunit 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	7	107	Total 846	C 522	N 152	O 169	${ m S} { m 3}$	0	0

• Molecule 15 is a RNA chain called U4 snRNA.

Mol	Chain	Residues		A	toms			AltConf	Trace
15	4	80	Total 1699	C 760	N 297	O 562	Р 80	0	0

• Molecule 16 is a RNA chain called U6 snRNA.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
16	6	48	Total 1034	C 462	N 196	O 328	Р 48	0	0

• Molecule 17 is a RNA chain called 5'ss oligo.

Mol	Chain	Residues		Ate	oms		AltConf	Trace	
17	Z	13	Total 286	C 127	N 57	O 89	Р 13	0	0

• Molecule 18 is INOSITOL HEXAKISPHOSPHATE (three-letter code: IHP) (formula: $C_6H_{18}O_{24}P_6$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	A	tor	ns		AltConf
18	۸	1	Total	С	Ο	Р	0
	A	1	36	6	24	6	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: U5 small nuclear ribonucleoprotein 200 kDa helicase

VAL	ARG	LEU LEU	VAL GLU	ASP	PHE	ALA ASP	LYS	ILE	GLN	VAL LEU	VAL	SER THR	ALA	THR	ALA	TRP	GLY	ASN	LEU	PRO ALA	SIH	THR	ILE	ILE	GLY	THR	GLN VAL	TYR	SER PRO	GLU T VS	GLY	ARG TRP	THR	GLU	GLY	ALA	ASP	ILE	GLN
MET	GLY	ALA	GLY ARG	PRO GLN	TYR	ASP THR	LYS	GLU	GLY	TEU	ILE	SER	HIS	GLY	LEU	GLN	TYR TYR	TEU	SER	LEU	ASN	GLN	LEU	PRO TI F	GLU	SER	GLN	VAL	SER	LEU	ASP	MET	ASN	ALA	ILE	VAL	GLY	ASN	GLN
ASN	LYS	ASP ALA	VAL ASN	TRP	GLY	TYR ALA	TYR	TYR	ILE	MET	LEU	ARG	PRO	THR	TYR	GLY	ILE	HIS	ASP	ASP	LYS	GLY	PRO	LEU	ASP	CLN GLN	ARG	TEU	ASP LEU	VAL	THR	AL.A AT.A	TEU	MET	ASP	LYS	ASN	LEU	LYS
TYR	LYS	LYS THR	GLY ASN	PHE	VAL	THR GLU	LEU	ARG	ILE	ALA SER	SIH	TYR TYR	ILE	THR	ASP	THR	CT N	THR	TYR	ASN GLN	LEU	LEU	PRO	THR	SER	GLU	GLU	LEU	PHE ARG	VAL	SER	LEU SER	SER	GLU	LYS	ASN TIF	THR	VAL	GLU
GLU	LYS	GLU	GLN	LYS	LEU	GLU ARG	VAL	ILE	PRO	VAL LYS	GLU	SER	GLU	GLU	SER	ALA	LYS	ASN	VAL	LEU	GLN	ALA	ILE	SER	LEU	LYS	GLU	GLY	PHE	LEU	ALA	ASP Met	VAL	TYR	THR	GLN	ALA	GLY	LEU
MET	ALA	TLE	GLU	VAL	ASN	ARG GLY	TRP	GLN	LEU	ASP	LYS	THR	ASN	LEU	LYS	MET	ILE	LYS	ARG	TRP	GLN	SER	CYS	PRO I ETI	ARG	GLN	PHE ARG	LYS	LEU PRO	GLU	VAL	VAL	LYS	ILE	LYS	LYS	PHE	PRO	GLU
ARG	TYR	ASP LEU	ASN HIS	ASN	ILE	GLY	LEU	ARG	MET	LYS	MET	GLY LYS	THR	ILE	STU	TYR	VAL	TEU	PHE	PR0 LVS	TEU	GLU	SER	VAL	TEU	GLN	PR0 ILE	THR	ARG SER	THR	LYS	VAL	TEU	THR	THR	PRO	PHE	GLN	ASP
GLU	VAL	GLY	SER SER	GLU AT A	THE	TRP ILE	LEU	GLU	ASP	ASP	SER	GLU VAL	ILE	LEU	SIH	GLU	TYR PHF	TEU	TEU	LYS	LYS	TYR AT A	GLN	ASP	SIH	LEU	THR	PHE	PHE VAL	PRO	PHE	GLU PRO	TEU	PRO	GLN	TYR	ILE	ARG	VAL
SER	ARG	LEU	SER CYS	GLU THR	GLN	LEU PRO	VAL	PHE	ARG	TEU	ILE	LEU PRO	GLU	LYS	PRO	PRO	PRO THR	GLU	LEU	LEU	LEU	GLN	LEU	PRO	SER	ALA	LEU ARG	ASN	SER ALA	PHE	SER	LEU TYR	GLN	ASP	PHE	PRO PHF	PHE	ASN	ILE
GLN	GLN	VAL PHE	ASN THR	VAL TVR	ASN	SER ASP	ASP	VAL	PHE	VAL GLY	ALA	PRO THR	GLY	SER	TAS	THR	TLE	ALA	GLU	PHE	ILE	LEU	MET	LEU	GLN	SER	GLU	GLY	ARG CYS	VAL	ILE	THR	MET	GLU	LEU	ALA	CLU	VAL	MET
ASP	TYR	GLU	PHE	ASP	TEU	ASN LYS	LYS	VAL	LEU	THR	GLY	GLU THR	SER	THR	LEU	LYS	LEU	GLY	LYS	GLY	ILE	ILE	SER	THR	GLU	LYS	ASP	ILE	LEU SER	ARG	TRP	CI.N	ARG	LYS	VICH	GLN	ILE	ASN	PHE
VAL	ASP	GLU VAL	HIS	ILE	GLY	GLU ASN	GLY	VAL	LEU	VAL	ILE	CYS SER	ARG	MET	TYR	ILE	SER	GLN	ILE	GLU	PRO	ILE	ILE	VAL	LEU	SER	SER	LEU	SER	ALA	ASP	VAL	SIH	TRP	GLY	CYS	ALA	THR	THR
PHE	PHE	PRO	ASN VAL	ARG	VAL	PRO LEU	GLU GLU	HIS	ILE	GLY	PHE	ASN ILE	SER	HIS	GLN	THR	ARG	LEU	SER	MET	SAT	PRO VAT	TYR	AIA	ILE	THR	LYS HIS	SER	PRO LYS	LYS	VAL	ILE VAL	PHE	VAL	SER	ARG I VS	GLN	THR	LEU
THR	ILE	ASP ILE	LEU THR	THR	ALA	ALA ASP	ILE	ARG	GLN	PHE	LEU	HIS CYS	THR	GLU	ASP	LEU	TLE	TYR	LEU	GLU	LEU	SER	SER	THR	LYS	GLU	THR	LEU	GLY	VAL	TYR	LEU	GLU	I EII	SER	PRO MET	GLU	ARG	LEU
VAL	GLN	PHE	SER SER	GLY	ILE	GLN VAL	VAL	ALA	SER	SER	LEU	CYS TRP	GLY	MET	VAL	ALA	ALA HTS	TEU	VAL	TLE	MET	ASP	GLN	TYR TVD	ASN	GLY	LYS ILE	HIS	ALA TYR	VAL	TYR	PRO TLE	TYR	ASP	LEU	GLN	VAL	GLY	ALA
ASN	PRO	GLN	ASP	GLU GLU	ARG	CYS VAL	ILE MET	CYS	GLN	GLY	TAS	LYS ASP	PHE	PHE	LYS	PHE	LEU TVR	GLU	PRO	LEU PRO	VAL	GLU	HIS	LEU	HIS	CYS	MET HIS	ASP	HIS	ASN	GLU	TLE	THR	LYS	ILE	GLU	LYS	GLN	ALA
VAL	TYR	THR	TRP THR	PHE	TYR	ARG ARG	MET	GLN	ASN	ASN	TYR	TYR ASN	LEU	GLN	ILE	SER	ARG	SIH	LEU	SER	SIH	LEU	GLU	LEU	GLU	GLN	THR	SER	ASP LEU	GLU	SER	LYS	ILE	SER	GLU	ASP	MET	ASP	ALA
PRO TEUT	ASN	GLY	MET ILE	ALA	TYR	TYR TYR	ILE	TYR	THR	TLE	GLU	LEU PHE	SER	MET	LEU	ASN	ALA I VS	THR	LYS	VAL	GLY	LEU	GLU	ILE	SER	ASN	ALA ALA	GLU	GLU	ASN	PRO	ILE ARC	SIH	HIS	ASP	ASN FFII	LEU	ARG	LEU
ALA	LYS	VAL PRO	LYS	LEU	ASN	PR0 LYS	PHE	ASP	PRO	VAL	LYS	ASN	LEU	LEU	GLN	ALA	HIS	SER	ARG	MET GLN	TEU	SER	GLU	LEU	SER	ASP	GLU	GLU	ILEU	SER	ALA	ILE	LEU	ILE	ALA	CYS	ASP	VAL	SER
SER	GLY	LEU LEU	SER PRO	ALA	ALA	ALA MET	GLU	ALA	GLN	VAL	THR	GLN	MET	TRP	LYS	ASP	SER	TEU	LYS	GLN	PRO	HIS	THR	SER	SIH	ILE	LYS ARG	CYS	ASP	LYS	VAL	GLU SFB	VAL	PHE	ILE	MET CI II	MET	GLU	GLU

ALA TYR MET GUY GUY GUN GUN TYR GUU VAL LYS SER ASP ALA ASP ASP ASP SER ASP SER ASP

• Molecule 2: Probable ATP-dependent RNA helicase DDX23

 \bullet Molecule 3: U4/U6 small nuclear ribonucleoprotein Prp3

 \bullet Molecule 5: U4/U6 small nuclear ribonucleoprotein Prp4

T7 66 17 70 17 70 17 70 17 70 17 70 7 88 788 47 81 18 67 88 47 78 20 48 45 78 47 78 20 88 54 88 54 18 65 18

TYR SER ALA ASP ASP GLU ASP LEU TYR ALA

• Molecule 8: Ubiquitin carboxyl-terminal hydrolase 39

LYS GLN ASP VAL VAL LEU ASN TYR PRO MET

• Molecule 11: NHP2-like protein 1, N-terminally processed

• Molecule 12: Thioredoxin-like protein 4A

ASP GLU GLU GLU GLU GLN CLY GLY CLY CAL PRO PRO PRO PRO PRO PRO PRO PRO	PR0 LEU PR0 PR0 PR0 CLN ASP VAL LNS ASP LNS ASP LNS ASP LNS ASP LNS ASP LNS ASP LNS ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	SER LYS PRO PRO PRO PRO PRO ALA PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	R430
R437 R443 R444 R444 R444 R445 R445 R447 E448 R447 E448 R447 R447 R447	R473 14475 14475 14475 14475 14475 14481 1488 1488 1488 1488 1488 1488 14	E497 E498 K499 K499 A510 A515 A516 A516 A518 A518 A518 A518 A518 C51 C51 C520 C1N C510 C1N C510 C1N C510 C510 C510 C510 C510 C510 C510 C510	ILE GLU ALA ILE HIS LYS ALA
LYS CLY LEU VLL PRO CLU RSP CLU SR LYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS	ASN GLU TLC CLU PRO CLN CLN CLN PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	ALA PRO PRO THR THR SER VAL PRO PRO PRO PRO PRO PRO PRO PRO THR THR THR	VAL VAL SER
ALA VAL PRO VAL PRO PRO PRO PRO PRO PRO PRO ARG ALA ALA ALA ALL VAL VAL VAL VAL PRO	GLY SER VAL TLE VLL ALA ALA PRO PRO PRO PRO PRO PRO ALA ALA ALA ALA ALA ALA VAL VAL	PRO MET PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	THR ALA PHE
VAL PRO PRO PRO PRO PRO VAL PRO PRO PRO PRO PRO PRO PRO PRO PRO	HIS PRO PRO PRO PRO PRO PRO GLU CIU CIU CIU CIU CIU CIU CIU CIU CIU CI	SER LEU LEU MET PRC GLU GLU GLU GLU ASN ASN ASN CVS CVS VAL SER VAL VAL	GLN VAL PRO
ASN MET ALN ALN ALN ASP TTRP CIU TTRP GLU ASN ASN ASN ASN ASN ASN ASN TTRP TTRP TTRP TTRP TTRP	LEU PRO LEU LEU LEU ASP GLM CAL CAS LYS CLN CAL LYS LYS LYS LYS LYS CLU CAL CLN CAL CLN CAL CLN CAL CLN CAL CLN CAL CLN CAL CLN CAL CLN CAL CLN CAL CLN CAL CLN CAL CLN CAL CLN CAL CLN CAL CAL CAL CAL CAL CAL CAL CAL CAL CAL	MET PRO ALA GLY CLYS GLN CLN CLN CLN CLN CLN CLN CLN CLN CLN C	LEU ALA TYR
TYR ASN MET MET MET ALA ALA ALA ILEU LEU LEU LEU LEU LEU CLU CLU CLY GLU	ARG LYS LYS		
• Molecule 15: U4 snRN	A		
Chain 4: 26%	21% 8%	44%	
A1 U5 U6 U6 U6 U13 C12 C12 C12 C15 C15 C15 C12 C12 C22 C22	C23 U24 A26 A26 C26 C26 C26 C27 C28 C28 C28 C28 C28 C28 C28 C28 C28 C28	de contraction de la contracti	U73 C74 A80
000000000000000000000000000000000000000	0 < < > < > < 0 < 0 > 0 0 0 0 0 < 0 > 0 0 0 0	<pre>< < > ></pre>	GA
< U D U			
• Molecule 16: U6 snRN	Ā		
Chain 6: 26%	17% •	55%	
0 > 0 0 > 0 0 0 0 0 0 0 0 0 0 0 4 0 0 4	с 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	441 642 643 644 646 646 646 650 655 656 656 656 656 656 656 656 65	A70 G71 G72
A A A A A A A A A A A A A A A A A A A			
• Molecule 17: 5'ss oligo			
Chain z:	54%	46%	
A - 5 A - 2 A - 2 A - 2 A - 3 A - 3 A - 3 A - 5 A - 5 A - 5 A - 5 A - 2 A			

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	94460	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	45	Depositor
Minimum defocus (nm)	1500	Depositor
Maximum defocus (nm)	5000	Depositor
Magnification	Not provided	
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	0.130	Depositor
Minimum map value	-0.030	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.005	Depositor
Recommended contour level	0.027	Depositor
Map size (Å)	556.8, 556.8, 556.8	wwPDB
Map dimensions	480, 480, 480	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.16, 1.16, 1.16	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: IHP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond	angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	В	0.26	0/158	0.63	0/209
2	G	0.24	0/493	0.48	0/659
3	J	0.25	0/686	0.52	0/914
4	L	0.25	0/2924	0.48	0/3938
5	F	0.25	0/491	0.55	0/657
6	N	0.24	0/3565	0.48	0/4818
7	А	0.26	0/16856	0.48	0/22865
8	U	0.25	0/3845	0.46	0/5208
9	S	0.24	0/1172	0.49	0/1567
10	С	0.26	0/6739	0.48	0/9151
11	М	0.25	0/974	0.50	0/1316
12	D	0.27	0/1199	0.45	0/1620
13	5	0.22	0/1850	0.73	0/2875
14	7	0.24	0/858	0.50	0/1152
15	4	0.21	0/1898	0.67	0/2954
16	6	0.21	0/1159	0.72	0/1806
17	Z	0.24	0/321	0.67	0/500
All	All	0.25	0/45188	0.51	0/62209

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen

Mol	Chain	Non-H	${ m H}({ m model})$	H(added)	Clashes	Symm-Clashes
1	В	158	0	166	8	0
2	G	484	0	469	18	0
3	J	679	0	728	31	0
4	L	2886	0	2885	73	0
5	F	488	0	499	13	0
6	Ν	3502	0	3379	105	0
7	А	16409	0	16326	395	0
8	U	3749	0	3769	97	0
9	S	1164	0	1173	22	0
10	С	6592	0	6615	163	0
11	М	962	0	1012	26	0
12	D	1170	0	1141	37	0
13	5	1660	0	842	24	0
14	7	846	0	837	21	0
15	4	1699	0	858	28	0
16	6	1034	0	521	19	0
17	Z	286	0	142	0	0
18	А	36	0	6	1	0
All	All	43804	0	41368	927	0

atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

All (927) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic $distance (Å)$	Clash
		uistance (A)	overlap (A)
10:C:168:THR:H	10:C:536:ARG:HH22	1.03	0.98
3:J:489:ALA:HA	3:J:496:VAL:HG21	1.60	0.82
4:L:88:PRO:HD2	4:L:91:ARG:HE	1.44	0.82
7:A:152:ARG:HH22	7:A:619:GLY:H	1.29	0.81
8:U:174:CYS:O	8:U:178:ASN:HA	1.82	0.79
8:U:448:PRO:HA	8:U:554:ARG:HD2	1.65	0.79
7:A:1590:VAL:HG13	7:A:1629:ILE:HD11	1.66	0.78
7:A:516:LEU:HD11	7:A:538:SER:HB2	1.67	0.75
7:A:465:LYS:O	13:5:23:C:N4	2.20	0.75
4:L:200:SER:HA	4:L:203:ARG:HE	1.51	0.74
12:D:138:THR:HG22	12:D:140:TYR:H	1.53	0.73
8:U:246:VAL:HG12	8:U:248:PRO:HD2	1.71	0.72
7:A:1629:ILE:HB	7:A:1662:ILE:HB	1.71	0.72

	jus puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
7:A:1792:LYS:HB3	9:S:268:GLU:HA	1.71	0.72
8:U:270:MET:HE3	8:U:273:LEU:HB3	1.72	0.72
6:N:108:LEU:HD21	7:A:476:PHE:HE1	1.55	0.71
8:U:174:CYS:O	8:U:178:ASN:CA	2.38	0.71
7:A:384:VAL:O	10:C:354:ARG:NH2	2.22	0.71
7:A:1411:SER:HA	7:A:1414:ARG:HD2	1.72	0.71
10:C:843:VAL:HG22	10:C:871:ILE:HD11	1.73	0.71
9:S:259:VAL:HG12	9:S:289:LEU:HB3	1.72	0.71
8:U:271:PHE:HA	8:U:274:VAL:HG12	1.73	0.70
12:D:37:THR:HG23	12:D:105:ALA:HB2	1.73	0.70
10:C:227:LEU:HD11	10:C:239:THR:HG23	1.74	0.70
7:A:1988:LEU:HD21	7:A:2007:ILE:HG23	1.74	0.69
8:U:270:MET:HG3	8:U:333:ALA:HB2	1.74	0.69
3:J:465:ARG:NH2	15:4:58:C:OP1	2.26	0.69
10:C:347:ILE:HD11	10:C:356:PHE:HB3	1.75	0.69
7:A:317:PRO:O	7:A:321:ASN:ND2	2.26	0.69
7:A:1809:ILE:HG21	7:A:1848:LEU:HD23	1.75	0.69
8:U:208:GLN:HE21	8:U:210:LYS:HG3	1.58	0.68
7:A:679:SER:HB2	12:D:40:LYS:HE3	1.75	0.68
3:J:451:GLN:NE2	14:7:433:LEU:O	2.26	0.68
7:A:112:GLN:HE21	7:A:190:ALA:H	1.41	0.68
8:U:316:GLN:HE22	8:U:511:GLU:HA	1.58	0.68
3:J:480:ASN:HD21	16:6:55:C:H5"	1.59	0.68
8:U:174:CYS:O	8:U:178:ASN:N	2.27	0.68
10:C:683:ASN:HA	10:C:795:VAL:O	1.94	0.68
7:A:474:ARG:HD3	13:5:14:U:H5'	1.75	0.67
10:C:632:THR:H	10:C:636:TYR:HD2	1.42	0.67
12:D:29:ARG:HH21	12:D:60:LEU:HD13	1.58	0.67
14:7:422:ALA:HA	14:7:425:MET:HB2	1.76	0.67
7:A:1146:ASP:OD2	7:A:1182:ASN:ND2	2.26	0.67
1:B:42:SER:HA	7:A:1289:VAL:HG11	1.76	0.67
7:A:103:LEU:HD11	7:A:554:THR:HG22	1.77	0.67
6:N:390:LYS:HA	6:N:413:LEU:HD21	1.77	0.67
10:C:301:SER:HB2	10:C:304:LEU:HD12	1.77	0.66
8:U:101:ARG:NH2	8:U:177:ASP:O	2.28	0.66
10:C:168:THR:H	10:C:536:ARG:NH2	1.85	0.66
7:A:150:MET:SD	7:A:153:ARG:NH2	2.66	0.66
4:L:131:ASN:HB3	4:L:134:ASP:HB2	1.77	0.66
7:A:593:ARG:NH2	7:A:594:TYR:OH	2.29	0.66
4:L:408:ARG:NH1	7:A:1879:PHE:O	2.28	0.66
7:A:907:PRO:HG2	7:A:1032:ARG:HH21	1.60	0.66

	jus puge	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
4:L:376:ASN:HA	7:A:1505:LYS:HE3	1.79	0.65
6:N:825:GLN:HB3	6:N:829:LYS:HE3	1.76	0.65
6:N:250:LEU:HD23	7:A:1850:ARG:HE	1.61	0.65
7:A:419:ARG:NH2	7:A:423:ASP:O	2.29	0.65
7:A:99:VAL:HG13	7:A:554:THR:HG21	1.77	0.65
10:C:168:THR:N	10:C:536:ARG:HH22	1.87	0.65
4:L:257:LYS:HB2	4:L:267:VAL:HG13	1.76	0.65
7:A:281:PRO:O	7:A:284:ARG:NH2	2.29	0.65
10:C:595:VAL:HG22	10:C:654:LYS:HG3	1.78	0.65
7:A:863:GLU:HG2	7:A:913:PRO:HB3	1.79	0.65
8:U:262:ILE:O	8:U:264:ARG:NH1	2.30	0.65
8:U:358:LYS:HD3	8:U:438:LEU:HD23	1.79	0.65
7:A:281:PRO:HG2	7:A:284:ARG:HH21	1.60	0.65
7:A:974:ASN:OD1	7:A:1100:ARG:NH1	2.30	0.65
8:U:233:ASN:HD21	8:U:300:LEU:HD13	1.61	0.65
11:M:48:ARG:NH1	15:4:42:C:OP1	2.30	0.65
12:D:65:GLU:HG3	12:D:66:VAL:HG23	1.79	0.65
10:C:159:LYS:HB3	10:C:165:LEU:HB2	1.79	0.64
7:A:915:GLU:OE1	7:A:1012:LYS:NZ	2.29	0.64
7:A:1807:ILE:HB	7:A:1820:LYS:HB3	1.79	0.64
7:A:156:ARG:O	7:A:159:ARG:NH1	2.29	0.64
7:A:776:LEU:HD13	7:A:900:ASP:HB2	1.80	0.64
4:L:431:GLN:O	7:A:883:ARG:NH2	2.31	0.64
6:N:288:ILE:HD13	6:N:318:LEU:HD13	1.80	0.64
5:F:128:GLU:OE2	14:7:442:ARG:NH2	2.31	0.64
7:A:1737:ASN:HB3	7:A:1740:LEU:HB2	1.79	0.64
12:D:70:ASN:HA	12:D:75:LEU:HB2	1.78	0.63
6:N:916:SER:HA	6:N:921:ASN:H	1.61	0.63
8:U:515:ARG:HG2	8:U:530:GLN:HB2	1.80	0.63
10:C:183:SER:HA	10:C:204:ASP:O	1.99	0.63
3:J:462:GLU:HG3	5:F:90:PHE:HE1	1.62	0.63
3:J:444:GLU:OE1	11:M:91:ARG:NH2	2.32	0.63
4:L:222:ILE:HG22	4:L:223:ILE:HG23	1.80	0.63
4:L:141:GLU:OE1	4:L:154:ASN:ND2	2.32	0.63
7:A:142:SER:HA	7:A:242:ALA:HB2	1.80	0.63
7:A:694:LEU:HD12	14:7:466:LEU:HD12	1.80	0.63
7:A:1863:VAL:HG11	7:A:1868:MET:HB2	1.79	0.63
5:F:101:VAL:O	5:F:130:ARG:NH1	2.32	0.62
1:B:48:GLU:O	7:A:1209:HIS:NE2	2.31	0.62
9:S:160:ALA:HB1	9:S:164:ARG:HH21	1.62	0.62
13:5:8:G:H1	13:5:71:C:H5"	1.64	0.62

	jus puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
6:N:362:VAL:HG11	6:N:379:ALA:HB2	1.81	0.62
7:A:1069:ASN:ND2	7:A:1075:GLN:OE1	2.32	0.62
7:A:1072:LEU:HD22	7:A:1087:LEU:HD22	1.82	0.62
8:U:208:GLN:NE2	8:U:210:LYS:O	2.32	0.62
10:C:207:GLY:O	10:C:238:ASN:ND2	2.31	0.62
8:U:444:THR:HG23	8:U:488:VAL:HG11	1.80	0.62
14:7:430:ARG:NH1	15:4:25:A:OP2	2.33	0.62
10:C:531:TRP:HD1	10:C:540:GLU:HB2	1.64	0.62
7:A:888:GLN:O	7:A:889:ARG:NH1	2.33	0.62
7:A:2009:ASP:HB3	7:A:2014:MET:HB2	1.82	0.62
9:S:256:GLY:O	9:S:350:ARG:NH2	2.32	0.62
10:C:123:MET:HB3	10:C:548:ASN:HD21	1.65	0.62
10:C:259:LYS:NZ	10:C:313:GLN:OE1	2.33	0.62
10:C:504:GLY:N	10:C:527:VAL:O	2.33	0.62
7:A:909:TYR:HB2	7:A:1033:GLY:HA3	1.81	0.61
7:A:104:GLU:HB2	7:A:422:LEU:HD11	1.81	0.61
15:4:22:C:H2'	15:4:23:G:H8	1.64	0.61
8:U:127:SER:HB3	8:U:151:HIS:HE1	1.64	0.61
7:A:1661:TRP:CE2	7:A:1700:GLY:HA3	2.35	0.61
6:N:329:ARG:HH21	6:N:354:PRO:HD3	1.65	0.61
7:A:357:ASN:ND2	10:C:866:SER:O	2.34	0.61
7:A:820:ARG:NH1	7:A:1063:GLY:O	2.23	0.61
7:A:847:LYS:HG3	7:A:867:ILE:HG21	1.83	0.61
12:D:62:ASP:HB3	12:D:65:GLU:HG2	1.81	0.61
6:N:132:ARG:NE	14:7:481:GLU:OE2	2.30	0.61
7:A:939:TRP:NE1	7:A:1049:ASP:OD2	2.32	0.60
7:A:1809:ILE:HB	7:A:1818:PHE:HB2	1.83	0.60
10:C:776:GLU:HA	10:C:782:GLU:HA	1.83	0.60
7:A:1762:TYR:CE2	7:A:1888:GLU:HB3	2.36	0.60
7:A:414:ARG:NH1	10:C:410:LEU:O	2.35	0.60
7:A:1378:GLU:HB3	7:A:1416:ILE:HD11	1.84	0.60
3:J:466:LEU:HD13	5:F:86:VAL:HG22	1.84	0.60
7:A:293:TRP:NE1	7:A:298:ASP:OD1	2.30	0.60
5:F:121:LEU:H	5:F:124:GLU:HG2	1.67	0.59
7:A:689:VAL:HG21	7:A:742:TYR:HB2	1.83	0.59
7:A:1386:TRP:HH2	7:A:1422:LEU:HD11	1.66	0.59
7:A:1763:LEU:HD11	7:A:1771:LEU:HD12	1.84	0.59
8:U:276:ARG:HH11	8:U:302:ALA:HB2	1.67	0.59
3:J:457:GLN:NE2	16:6:57:U:O3'	2.34	0.59
7:A:143:GLN:O	7:A:147:MET:HG2	2.02	0.59
7:A:375:ASP:HB2	10:C:355:LYS:HD3	1.83	0.59

	Jus puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
7:A:1187:PHE:HE2	7:A:1189:MET:HG2	1.67	0.59
4:L:255:GLN:HB2	4:L:257:LYS:HE3	1.84	0.59
7:A:788:GLN:HG2	7:A:1024:HIS:HB3	1.83	0.59
3:J:481:LEU:HD12	3:J:500:VAL:HG21	1.83	0.59
7:A:641:MET:HA	7:A:644:ILE:HG22	1.83	0.59
7:A:1865:ARG:HD2	9:S:278:ASP:HB3	1.83	0.59
7:A:595:LYS:NZ	13:5:45:C:OP2	2.36	0.59
8:U:113:ARG:NH1	8:U:188:ASP:OD2	2.35	0.59
7:A:342:THR:HG23	10:C:268:LYS:HZ3	1.68	0.59
10:C:167:TYR:CE2	10:C:536:ARG:HD2	2.37	0.59
10:C:277:LYS:NZ	10:C:864:PRO:O	2.33	0.59
7:A:1787:ARG:HH21	7:A:1906:ILE:HD11	1.68	0.59
7:A:682:ASP:OD1	7:A:683:LEU:N	2.34	0.59
7:A:1806:ALA:HB3	7:A:1897:LEU:HD11	1.85	0.59
8:U:358:LYS:HB2	8:U:381:GLU:HG2	1.84	0.59
10:C:478:THR:HG21	10:C:492:ALA:HB1	1.85	0.59
7:A:1116:GLU:OE2	7:A:1155:TRP:NE1	2.36	0.58
10:C:133:THR:HG21	10:C:219:LEU:HD12	1.84	0.58
10:C:703:GLU:O	10:C:706:GLN:NE2	2.33	0.58
11:M:28:GLN:HG2	11:M:112:LEU:HD11	1.84	0.58
6:N:202:PRO:O	7:A:1393:ARG:NH1	2.34	0.58
7:A:1127:GLY:O	7:A:1170:TRP:NE1	2.28	0.58
7:A:952:VAL:HG22	7:A:1189:MET:HG3	1.85	0.58
8:U:156:SER:HB2	8:U:176:PRO:HD3	1.84	0.58
8:U:481:ARG:O	8:U:489:GLN:NE2	2.34	0.58
7:A:783:TYR:OH	7:A:986:GLU:OE2	2.21	0.58
7:A:1290:LYS:O	7:A:1294:LYS:HG2	2.04	0.58
8:U:425:ILE:HG13	8:U:426:THR:HG23	1.86	0.58
6:N:33:ASP:OD2	7:A:541:GLY:N	2.37	0.58
4:L:122:PHE:CD2	4:L:125:LEU:HB2	2.38	0.58
7:A:139:VAL:HG11	7:A:212:PRO:HG2	1.85	0.58
14:7:444:ARG:NH2	14:7:448:GLU:OE1	2.36	0.58
7:A:832:TYR:HB3	7:A:835:ASP:HB3	1.85	0.57
7:A:1556:ASP:OD2	16:6:44:G:N2	2.37	0.57
8:U:221:LEU:HD13	8:U:520:HIS:HD2	1.69	0.57
7:A:1631:LEU:HB2	7:A:1660:TYR:HB3	1.85	0.57
7:A:1899:VAL:HG12	7:A:1901:LYS:H	1.69	0.57
10:C:187:THR:HG23	10:C:534:VAL:HG22	1.86	0.57
10:C:338:GLU:O	10:C:342:ARG:NH1	2.37	0.57
10:C:347:ILE:HG23	10:C:368:SER:HB3	1.86	0.57
15:4:63:U:H2'	15:4:64:G:C8	2.40	0.57

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
8:U:136:CYS:SG	8:U:161:HIS:ND1	2.76	0.57
10:C:177:ARG:NH2	10:C:638:ASP:OD2	2.34	0.57
3:J:482:MET:HG3	7:A:1772:PHE:CD2	2.40	0.57
10:C:826:ARG:NH1	10:C:910:ASP:OD1	2.38	0.57
7:A:1775:GLN:HB2	7:A:1859:LYS:HD2	1.87	0.57
10:C:302:PRO:HB2	10:C:320:LEU:HD13	1.86	0.57
10:C:770:PHE:HE1	10:C:789:PHE:HD2	1.52	0.57
7:A:1797:ASN:HB3	9:S:356:THR:O	2.05	0.56
4:L:105:ASN:OD1	6:N:823:ARG:NH1	2.38	0.56
5:F:112:LEU:HD23	5:F:119:ILE:HA	1.88	0.56
8:U:331:HIS:HD1	8:U:343:THR:HG1	1.52	0.56
6:N:156:GLU:HG2	7:A:732:PRO:HG3	1.85	0.56
6:N:179:LEU:HD12	7:A:855:ARG:HB3	1.86	0.56
7:A:634:TRP:CE2	7:A:638:LEU:HD11	2.41	0.56
7:A:1278:VAL:HG13	7:A:1284:LEU:HD23	1.87	0.56
7:A:1622:MET:O	7:A:1687:TYR:OH	2.21	0.56
10:C:137:HIS:O	10:C:142:LYS:NZ	2.38	0.56
10:C:509:VAL:O	10:C:522:SER:HA	2.06	0.56
6:N:343:GLU:HA	6:N:346:TRP:HD1	1.70	0.56
10:C:230:ASP:HB3	10:C:233:GLU:HB2	1.86	0.56
12:D:81:VAL:HB	12:D:102:ILE:HB	1.85	0.56
3:J:497:GLU:HG2	7:A:1927:ILE:HG22	1.88	0.56
7:A:96:PRO:HB2	7:A:645:THR:HG23	1.87	0.56
7:A:103:LEU:O	7:A:634:TRP:NE1	2.32	0.56
10:C:434:CYS:HA	10:C:438:ILE:HD12	1.86	0.56
10:C:776:GLU:O	10:C:817:TYR:OH	2.20	0.56
11:M:62:PRO:HG2	11:M:65:ILE:HD13	1.88	0.56
10:C:478:THR:HA	10:C:494:GLY:HA3	1.88	0.56
8:U:270:MET:SD	8:U:329:ALA:HB1	2.45	0.56
13:5:17:U:H3	13:5:60:G:H1	1.52	0.56
7:A:1275:ARG:HG2	7:A:1375:TRP:NE1	2.21	0.56
8:U:402:LYS:HE2	8:U:408:LEU:HG	1.88	0.56
7:A:1102:THR:OG1	7:A:1104:ASP:OD1	2.20	0.56
7:A:1401:ARG:HH12	7:A:1403:LEU:HD13	1.70	0.56
7:A:901:LEU:O	7:A:1242:ASN:ND2	2.39	0.55
7:A:960:ASN:OD1	7:A:1225:THR:OG1	2.24	0.55
7:A:1730:MET:HA	7:A:1733:ILE:HG22	1.88	0.55
7:A:1761:PRO:HB2	7:A:1885:LYS:HG2	1.86	0.55
10:C:769:GLY:HA3	10:C:812:ALA:HB3	1.88	0.55
5:F:124:GLU:OE2	5:F:132:ARG:NH2	2.34	0.55
7:A:1871:PRO:HG3	9:S:281:VAL:HG21	1.89	0.55

	Jus puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
10:C:693:GLU:OE2	10:C:724:TRP:NE1	2.35	0.55
16:6:64:U:H2'	16:6:65:G:C8	2.42	0.55
4:L:322:ASP:OD1	4:L:323:GLU:N	2.39	0.55
10:C:846:VAL:HG22	10:C:887:LEU:HD11	1.88	0.55
4:L:327:LYS:NZ	15:4:28:C:O3'	2.37	0.55
7:A:766:THR:HG22	12:D:141:ARG:HB3	1.87	0.55
7:A:828:PRO:HD3	7:A:1005:ILE:HD11	1.87	0.55
7:A:1667:ARG:HH12	7:A:1674:HIS:HA	1.72	0.55
7:A:2059:THR:OG1	16:6:42:C:OP1	2.24	0.55
6:N:393:LEU:HD13	6:N:413:LEU:HD22	1.88	0.55
6:N:247:ARG:HE	7:A:1877:LEU:HD23	1.72	0.55
7:A:792:HIS:NE2	8:U:408:LEU:O	2.40	0.55
10:C:514:TYR:HB2	10:C:521:ASP:HB3	1.87	0.55
11:M:25:LEU:HD22	11:M:119:ILE:HG13	1.89	0.55
7:A:550:VAL:O	7:A:554:THR:HG23	2.07	0.55
10:C:509:VAL:HG22	10:C:565:ILE:HG12	1.88	0.55
13:5:23:C:O2'	13:5:57:G:N2	2.40	0.55
7:A:1246:GLN:HA	7:A:1249:MET:HG2	1.88	0.55
8:U:312:GLN:HB3	8:U:315:LYS:HG2	1.88	0.55
7:A:188:LEU:HD11	7:A:567:GLY:HA2	1.90	0.54
7:A:1434:LYS:O	7:A:1439:ARG:NH2	2.40	0.54
10:C:705:VAL:HG11	10:C:717:PHE:CD2	2.43	0.54
11:M:25:LEU:HD21	11:M:116:ILE:HD13	1.88	0.54
10:C:504:GLY:CA	10:C:527:VAL:O	2.56	0.54
4:L:251:LEU:HD13	15:4:40:U:H5'	1.88	0.54
7:A:1790:ILE:HD13	9:S:266:PHE:HE2	1.72	0.54
8:U:359:LYS:HB3	8:U:379:TYR:HA	1.89	0.54
2:G:320:TYR:HE1	10:C:840:ALA:HB3	1.72	0.54
7:A:158:ARG:HD2	7:A:161:PHE:HD1	1.72	0.54
8:U:206:ASP:OD1	8:U:250:ARG:NH2	2.41	0.54
8:U:274:VAL:HG23	8:U:330:LEU:HD22	1.88	0.54
9:S:274:LEU:HB3	9:S:289:LEU:HG	1.90	0.54
6:N:248:ASN:O	7:A:1850:ARG:NH2	2.40	0.54
7:A:1085:ILE:HG12	7:A:1099:PHE:CE1	2.42	0.54
8:U:504:VAL:HG21	8:U:545:SER:HB2	1.89	0.54
7:A:1314:VAL:HG23	7:A:1478:LEU:HD22	1.89	0.54
7:A:1773:SER:O	7:A:1813:ARG:NH1	2.41	0.54
3:J:457:GLN:OE1	16:6:57:U:O2'	2.25	0.54
7:A:425:PRO:HB2	7:A:428:LYS:HB2	1.89	0.54
4:L:97:ASN:ND2	4:L:237:GLY:HA2	2.23	0.54
6:N:119:ARG:NH1	13:5:19:A:OP2	2.38	0.54

	Jus puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
7:A:1782:ASP:HB3	7:A:1841:THR:HG21	1.89	0.54
10:C:836:VAL:HG21	10:C:846:VAL:HG11	1.90	0.54
4:L:377:ARG:HB3	4:L:398:HIS:HD2	1.71	0.54
7:A:942:PRO:HD2	7:A:1438:VAL:HG22	1.90	0.54
7:A:1232:VAL:HG21	7:A:1284:LEU:HD22	1.90	0.54
7:A:1281:THR:HG22	7:A:1284:LEU:H	1.73	0.53
7:A:1393:ARG:O	7:A:1397:ILE:HG12	2.07	0.53
10:C:134:LEU:HD13	10:C:202:ILE:HG23	1.90	0.53
10:C:313:GLN:O	10:C:417:ARG:NH1	2.38	0.53
1:B:43:LEU:HD21	7:A:1285:LEU:HD12	1.90	0.53
10:C:357:THR:OG1	10:C:359:LYS:O	2.26	0.53
12:D:35:ASP:HB3	12:D:38:CYS:HB2	1.91	0.53
7:A:544:PHE:HB2	7:A:651:TRP:HH2	1.74	0.53
14:7:411:LEU:HD13	14:7:422:ALA:HB2	1.91	0.53
4:L:399:LEU:HG	6:N:191:LEU:HD22	1.90	0.53
7:A:1762:TYR:HE2	7:A:1888:GLU:HB3	1.74	0.53
7:A:2063:GLU:O	7:A:2063:GLU:HG3	2.09	0.53
10:C:151:GLU:OE1	10:C:417:ARG:NH2	2.36	0.53
10:C:715:GLY:HA2	10:C:729:ALA:HB1	1.89	0.53
6:N:401:PRO:O	6:N:407:TRP:NE1	2.34	0.53
7:A:1090:ARG:NH1	7:A:1092:ILE:O	2.42	0.53
7:A:1237:MET:HG2	7:A:1284:LEU:HD13	1.89	0.53
7:A:1771:LEU:HD11	7:A:1779:PHE:HZ	1.74	0.53
10:C:304:LEU:O	10:C:437:HIS:NE2	2.37	0.53
6:N:247:ARG:NH1	6:N:314:ALA:O	2.32	0.53
6:N:818:ILE:HD11	6:N:834:LEU:HD13	1.89	0.53
10:C:165:LEU:HG	10:C:167:TYR:HB2	1.91	0.53
4:L:122:PHE:HD2	4:L:125:LEU:HB2	1.73	0.53
6:N:271:LYS:HE2	7:A:1914:MET:HG2	1.91	0.53
7:A:878:LEU:O	7:A:882:LYS:HG2	2.09	0.53
16:6:66:C:H2'	16:6:67:G:H8	1.73	0.53
2:G:304:ILE:HB	2:G:312:GLN:HE22	1.74	0.52
3:J:477:ARG:H	3:J:480:ASN:HB3	1.74	0.52
6:N:11:MET:HB2	12:D:12:TRP:HZ3	1.74	0.52
10:C:686:THR:HB	10:C:793:ASP:HB3	1.91	0.52
11:M:61:GLU:CD	11:M:62:PRO:HD3	2.28	0.52
7:A:1522:GLN:NE2	16:6:49:G:OP1	2.25	0.52
7:A:1644:LEU:O	7:A:1723:LYS:NZ	2.39	0.52
10:C:188:VAL:HG13	10:C:190:LEU:HD11	1.91	0.52
6:N:394:ARG:HB2	9:S:203:TRP:CE2	2.44	0.52
4:L:348:ASP:HA	16:6:49:G:H22	1.74	0.52

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:F:108:VAL:HG13	5:F:133:LEU:HD13	1.91	0.52
6:N:827:ARG:HB2	6:N:850:LEU:HD21	1.91	0.52
7:A:1088:PHE:HD1	7:A:1097:ILE:HG12	1.75	0.52
11:M:52:GLU:HB2	11:M:120:GLN:NE2	2.24	0.52
4:L:148:LYS:O	4:L:152:ASN:ND2	2.43	0.52
6:N:35:GLY:O	7:A:510:ARG:NH2	2.39	0.52
6:N:158:LEU:HA	7:A:702:LYS:HZ1	1.74	0.52
6:N:350:ALA:HA	6:N:358:ALA:HB1	1.90	0.52
7:A:1279:VAL:HG12	7:A:1369:TYR:HE1	1.75	0.52
8:U:146:ARG:HA	8:U:175:LEU:HD11	1.92	0.52
14:7:441:GLN:HA	14:7:444:ARG:HG2	1.92	0.52
6:N:394:ARG:HD2	6:N:395:LYS:N	2.25	0.52
10:C:127:GLU:O	10:C:130:ARG:NH1	2.42	0.52
10:C:224:GLY:HA3	10:C:438:ILE:HG12	1.92	0.52
10:C:493:PHE:HB2	10:C:551:LEU:HD23	1.91	0.52
10:C:589:LYS:HE3	10:C:661:THR:HG22	1.90	0.52
6:N:335:GLY:O	6:N:339:CYS:N	2.40	0.52
7:A:850:TYR:HA	7:A:853:LYS:HG2	1.91	0.52
7:A:1087:LEU:HB2	7:A:1098:PHE:HB3	1.92	0.52
8:U:316:GLN:NE2	8:U:510:SER:O	2.42	0.52
7:A:1124:ASN:ND2	7:A:1148:ASN:OD1	2.40	0.52
7:A:1251:SER:HB2	7:A:1259:ILE:HD11	1.91	0.52
10:C:603:MET:HG3	10:C:653:ILE:HD12	1.91	0.52
15:4:14:G:H2'	15:4:15:G:H8	1.74	0.52
6:N:168:ASN:OD1	6:N:171:GLN:NE2	2.33	0.52
7:A:452:LYS:NZ	13:5:48:A:OP2	2.42	0.52
7:A:1544:ARG:HD2	7:A:1672:ASP:H	1.75	0.52
10:C:461:LEU:HG	10:C:465:MET:HE2	1.92	0.52
1:B:43:LEU:HD23	1:B:43:LEU:H	1.74	0.51
6:N:254:ARG:N	7:A:1851:SER:OG	2.41	0.51
10:C:559:ILE:HD11	10:C:565:ILE:HD11	1.92	0.51
10:C:933:PHE:O	10:C:937:THR:OG1	2.22	0.51
12:D:8:LEU:HB2	12:D:61:VAL:HG22	1.92	0.51
4:L:408:ARG:HG2	7:A:1877:LEU:HD12	1.91	0.51
7:A:259:ASP:OD1	7:A:259:ASP:N	2.43	0.51
7:A:347:LEU:HD12	7:A:348:PRO:HD2	1.92	0.51
7:A:439:GLN:HB3	7:A:443:VAL:HG21	1.90	0.51
7:A:913:PRO:HA	7:A:916:LYS:HB2	1.91	0.51
7:A:1555:LEU:HB2	7:A:1558:THR:OG1	2.10	0.51
10:C:122:LEU:HD23	10:C:199:LEU:HB2	1.91	0.51
10:C:179:VAL:HG11	10:C:635:LEU:HD21	1.92	0.51

	Jus puge	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
12:D:139:LYS:HB2	13:5:41:U:H5'	1.92	0.51
6:N:34:ILE:HD11	12:D:76:TYR:HB2	1.92	0.51
7:A:1560:ILE:HG12	7:A:1668:TRP:HB2	1.92	0.51
7:A:467:GLN:HG2	7:A:469:LYS:H	1.75	0.51
7:A:759:GLU:N	7:A:759:GLU:OE1	2.43	0.51
3:J:440:LEU:HA	11:M:91:ARG:HH21	1.75	0.51
12:D:41:MET:HE3	12:D:106:MET:H	1.75	0.51
7:A:1057:ARG:NH1	7:A:1060:GLU:OE1	2.39	0.51
10:C:132:VAL:HG21	10:C:226:VAL:HG23	1.92	0.51
10:C:255:VAL:HG21	10:C:285:VAL:HG11	1.92	0.51
10:C:581:LYS:NZ	10:C:703:GLU:OE1	2.40	0.51
10:C:187:THR:CG2	10:C:534:VAL:HG22	2.40	0.51
2:G:324:MET:HG2	7:A:354:PRO:HG2	1.93	0.51
7:A:1288:LEU:HD13	7:A:1330:MET:HG2	1.93	0.51
7:A:1634:SER:OG	7:A:1635:TYR:N	2.44	0.51
4:L:114:ILE:HG23	4:L:187:LEU:HD11	1.93	0.51
4:L:348:ASP:OD2	12:D:124:ARG:NH1	2.43	0.51
5:F:111:CYS:HB3	5:F:133:LEU:HD11	1.92	0.51
7:A:546:LEU:HD22	7:A:648:LEU:HD11	1.92	0.51
4:L:121:ARG:HB2	4:L:179:LEU:HG	1.92	0.51
4:L:218:ASN:OD1	4:L:317:GLY:N	2.43	0.51
6:N:280:MET:HG3	6:N:317:ARG:NH2	2.26	0.51
7:A:1501:LEU:HD23	7:A:1753:LEU:HD12	1.93	0.51
7:A:1629:ILE:O	7:A:1662:ILE:N	2.43	0.51
10:C:634:GLU:OE2	10:C:882:GLY:N	2.35	0.51
6:N:271:LYS:NZ	7:A:1916:LEU:HB2	2.26	0.50
7:A:137:GLU:HG2	7:A:138:PRO:HD3	1.92	0.50
7:A:143:GLN:O	7:A:146:SER:OG	2.21	0.50
7:A:962:LEU:HB2	7:A:965:VAL:HB	1.93	0.50
4:L:166:VAL:HG13	7:A:995:ARG:HD2	1.93	0.50
6:N:115:ARG:HG2	7:A:470:ARG:HB2	1.94	0.50
7:A:209:ASP:HB2	7:A:212:PRO:HA	1.92	0.50
8:U:459:LYS:HA	8:U:464:VAL:HA	1.92	0.50
10:C:277:LYS:HD3	10:C:865:GLY:HA3	1.93	0.50
2:G:318:ARG:HE	2:G:321:GLY:HA3	1.75	0.50
8:U:391:LEU:HD12	8:U:452:PHE:HE1	1.75	0.50
10:C:328:ALA:O	10:C:332:GLY:N	2.43	0.50
7:A:1639:VAL:HG13	7:A:1717:ASN:HB3	1.92	0.50
8:U:134:TYR:CD1	8:U:145:GLY:HA2	2.46	0.50
13:5:70:A:H1'	13:5:71:C:C6	2.47	0.50
11:M:91:ARG:HH12	14:7:429:MET:HG3	1.75	0.50

	t i a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
12:D:127:ARG:NH2	16:6:47:A:OP1	2.45	0.50
5:F:119:ILE:O	5:F:132:ARG:NH2	2.45	0.50
7:A:102:LEU:HD22	7:A:493:GLY:HA2	1.93	0.50
15:4:4:U:H3	16:6:71:G:H1	1.57	0.50
3:J:462:GLU:HA	3:J:465:ARG:HD2	1.92	0.50
6:N:153:THR:HG23	6:N:156:GLU:H	1.75	0.50
8:U:356:PHE:HB2	8:U:440:ARG:HG3	1.94	0.50
8:U:459:LYS:HB2	8:U:464:VAL:HG22	1.94	0.50
8:U:134:TYR:OH	8:U:146:ARG:NH1	2.45	0.50
4:L:405:GLY:N	6:N:290:ASP:OD2	2.42	0.50
6:N:268:VAL:HG12	6:N:270:PRO:HD3	1.92	0.50
7:A:155:LYS:NZ	7:A:622:GLY:O	2.45	0.50
7:A:544:PHE:HB2	7:A:651:TRP:CH2	2.46	0.50
4:L:285:PRO:HA	4:L:288:ARG:HG3	1.93	0.49
4:L:383:ILE:HD13	7:A:1321:GLU:HB2	1.94	0.49
7:A:716:ALA:O	8:U:401:TYR:OH	2.28	0.49
7:A:893:GLU:HG3	7:A:1016:VAL:HB	1.94	0.49
7:A:1214:TRP:HB2	7:A:1228:CYS:HB3	1.93	0.49
13:5:78:U:O2'	13:5:80:U:OP1	2.26	0.49
4:L:219:LEU:HD21	4:L:231:ILE:HD11	1.95	0.49
6:N:814:TRP:HE3	6:N:834:LEU:HD12	1.76	0.49
7:A:1706:ASP:O	7:A:1710:ASN:N	2.45	0.49
8:U:227:LEU:HG	8:U:241:GLN:HE21	1.78	0.49
10:C:263:LEU:HD22	10:C:269:LEU:HD12	1.93	0.49
3:J:475:LYS:O	3:J:480:ASN:ND2	2.45	0.49
4:L:278:ASP:OD1	4:L:278:ASP:N	2.42	0.49
4:L:343:LEU:HD12	4:L:344:PRO:HD2	1.94	0.49
4:L:384:GLU:HB3	4:L:401:LYS:HE3	1.92	0.49
4:L:421:SER:OG	15:4:20:A:OP1	2.28	0.49
7:A:1645:LEU:HB2	7:A:1714:ALA:H	1.77	0.49
2:G:289:LEU:HD11	10:C:852:ARG:HD3	1.94	0.49
2:G:310:LYS:HB3	2:G:314:ARG:HH12	1.78	0.49
10:C:832:TYR:CD2	10:C:899:SER:HB3	2.47	0.49
7:A:1052:VAL:O	7:A:1160:ARG:NH1	2.37	0.49
3:J:506:LYS:HA	3:J:509:LYS:HE2	1.94	0.49
4:L:358:ARG:NH2	15:4:18:G:O2'	2.27	0.49
10:C:832:TYR:HD2	10:C:899:SER:HB3	1.77	0.49
4:L:165:MET:HE1	7:A:992:LEU:HB2	1.95	0.49
7:A:89:LEU:HA	7:A:92:LEU:HG	1.94	0.49
7:A:1576:ILE:HD13	7:A:1747:ILE:HG12	1.93	0.49
7:A:1667:ARG:HD2	7:A:1679:TYR:CE2	2.48	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
8:U:404:GLU:O	8:U:407:GLN:NE2	2.46	0.49
2:G:307:ILE:HG23	7:A:618:THR:HG21	1.94	0.49
6:N:112:MET:O	6:N:115:ARG:HG3	2.13	0.48
7:A:1834:GLY:O	7:A:1838:LYS:HG2	2.13	0.48
6:N:19:PRO:HG2	12:D:68:ASP:HB3	1.94	0.48
6:N:144:ASP:OD1	6:N:144:ASP:N	2.43	0.48
6:N:364:GLN:HE21	6:N:368:HIS:CE1	2.31	0.48
7:A:1294:LYS:HE3	13:5:40:U:OP2	2.13	0.48
10:C:732:ILE:HG12	10:C:746:VAL:HG22	1.94	0.48
16:6:64:U:H2'	16:6:65:G:H8	1.78	0.48
6:N:280:MET:HG3	6:N:317:ARG:HH22	1.79	0.48
6:N:833:ALA:HB2	11:M:48:ARG:HH21	1.78	0.48
7:A:191:ILE:HD11	7:A:572:PHE:HA	1.94	0.48
8:U:427:GLU:HA	8:U:440:ARG:HB3	1.96	0.48
7:A:1099:PHE:HZ	7:A:1157:ILE:HD11	1.78	0.48
7:A:1790:ILE:HD13	9:S:266:PHE:CE2	2.48	0.48
10:C:673:LYS:HG2	10:C:792:LEU:HD12	1.94	0.48
11:M:64:GLU:HG3	11:M:67:LEU:HD22	1.94	0.48
12:D:94:LEU:HD22	12:D:104:TRP:HH2	1.78	0.48
4:L:209:GLU:HG2	4:L:226:SER:HA	1.95	0.48
7:A:339:PHE:HZ	7:A:403:ALA:HA	1.78	0.48
7:A:1304:ASN:OD1	7:A:1305:SER:N	2.47	0.48
8:U:369:GLU:O	8:U:372:GLN:HG3	2.14	0.48
3:J:461:GLN:HB3	3:J:465:ARG:NH1	2.29	0.48
4:L:372:ARG:NH2	7:A:1511:GLU:OE2	2.43	0.48
7:A:206:TRP:HE3	7:A:212:PRO:HB3	1.78	0.48
7:A:985:TYR:HB3	7:A:1032:ARG:HH11	1.78	0.48
10:C:375:GLU:OE2	10:C:379:LYS:NZ	2.34	0.48
1:B:43:LEU:HD12	1:B:47:LEU:HD11	1.95	0.48
4:L:110:ILE:HG21	4:L:194:ALA:HB2	1.96	0.48
6:N:145:LEU:O	6:N:149:LEU:HG	2.14	0.48
7:A:1490:PHE:O	7:A:1493:THR:OG1	2.30	0.48
8:U:144:GLN:H	8:U:151:HIS:HB2	1.78	0.48
8:U:260:LYS:HG2	8:U:261:ASN:H	1.77	0.48
12:D:110:GLN:NE2	12:D:114:ASP:OD1	2.46	0.48
7:A:441:VAL:O	7:A:445:VAL:HG23	2.14	0.48
7:A:828:PRO:HB2	7:A:882:LYS:HE2	1.96	0.48
7:A:1892:PRO:HD2	7:A:1937:ILE:HD11	1.95	0.48
10:C:350:ASN:ND2	10:C:353:THR:OG1	2.46	0.48
7:A:1537:TRP:HE3	7:A:1751:LEU:HD23	1.79	0.48
8:U:101:ARG:H	8:U:101:ARG:HD3	1.79	0.48

	all page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
12:D:23:ASP:OD1	12:D:23:ASP:N	2.47	0.48
7:A:1110:ILE:HD11	7:A:1149:LEU:HB2	1.96	0.48
7:A:1806:ALA:HB1	7:A:1819:LEU:HD12	1.96	0.48
8:U:198:THR:HG23	8:U:201:GLN:H	1.78	0.48
10:C:237:LEU:HD13	10:C:833:PHE:HE2	1.78	0.48
15:4:6:U:H2'	15:4:7:G:C8	2.49	0.48
6:N:271:LYS:HZ2	7:A:1916:LEU:HB2	1.78	0.47
7:A:1244:VAL:HG11	7:A:1291:CYS:HB3	1.95	0.47
8:U:172:PHE:HB2	8:U:181:ILE:HB	1.96	0.47
4:L:137:ARG:HE	4:L:158:ILE:HG23	1.79	0.47
7:A:1810:PHE:HB2	7:A:1817:LEU:HD13	1.95	0.47
5:F:99:ILE:O	5:F:134:ARG:NH1	2.38	0.47
6:N:152:VAL:HG13	6:N:156:GLU:HB3	1.94	0.47
8:U:358:LYS:NZ	8:U:379:TYR:O	2.46	0.47
10:C:250:ARG:HH11	10:C:451:HIS:HB2	1.79	0.47
7:A:1583:GLN:NE2	7:A:1616:PRO:O	2.45	0.47
12:D:45:LEU:O	12:D:49:ALA:N	2.48	0.47
1:B:42:SER:HB2	7:A:1289:VAL:HG21	1.97	0.47
4:L:403:GLY:N	6:N:290:ASP:OD1	2.48	0.47
7:A:1265:THR:HG22	7:A:1452:PRO:HG3	1.96	0.47
7:A:1606:ILE:HG12	7:A:1637:TRP:HZ2	1.79	0.47
10:C:461:LEU:O	10:C:465:MET:HG2	2.15	0.47
6:N:814:TRP:CE3	6:N:834:LEU:HD12	2.49	0.47
6:N:814:TRP:HB3	6:N:834:LEU:CD1	2.44	0.47
11:M:59:ASP:OD1	11:M:59:ASP:N	2.47	0.47
11:M:64:GLU:HA	11:M:67:LEU:HD13	1.95	0.47
15:4:20:A:H2'	15:4:21:U:C6	2.50	0.47
4:L:408:ARG:NE	7:A:1873:GLU:OE1	2.30	0.47
6:N:155:GLU:HA	6:N:158:LEU:HD12	1.97	0.47
6:N:169:LYS:NZ	15:4:50:G:O6	2.48	0.47
7:A:126:ILE:HD12	7:A:128:PHE:CZ	2.49	0.47
7:A:610:HIS:HE2	18:A:2401:IHP:H3	1.80	0.47
8:U:164:PHE:CD1	8:U:175:LEU:HD23	2.49	0.47
10:C:609:LYS:HD2	10:C:648:TYR:HB3	1.97	0.47
10:C:830:PRO:HG2	10:C:877:ALA:HB3	1.96	0.47
12:D:32:HIS:CD2	12:D:64:THR:HG23	2.49	0.47
12:D:115:ILE:HD13	12:D:133:PRO:HD2	1.96	0.47
6:N:17:TYR:OH	12:D:15:ASP:OD2	2.28	0.47
7:A:112:GLN:NE2	7:A:190:ALA:H	2.10	0.47
7:A:293:TRP:HB3	7:A:1141:ARG:HA	1.96	0.47
7:A:339:PHE:CZ	7:A:403:ALA:HA	2.50	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
7:A:1541:THR:O	7:A:1544:ARG:NH1	2.48	0.47
7:A:1810:PHE:HD1	7:A:1817:LEU:HB2	1.78	0.47
10:C:213:ASP:OD1	10:C:214:GLU:N	2.48	0.47
3:J:497:GLU:OE1	7:A:1931:THR:OG1	2.27	0.47
7:A:1840:LYS:O	7:A:1844:GLU:HG2	2.15	0.47
8:U:286:ASN:ND2	8:U:289:ASN:OD1	2.48	0.47
9:S:298:GLU:O	9:S:301:GLU:HG3	2.14	0.47
10:C:798:GLN:HE21	10:C:799:GLU:HG2	1.79	0.47
6:N:844:LEU:HB3	6:N:867:THR:OG1	2.14	0.47
8:U:247:PRO:HD2	8:U:449:TYR:CE2	2.50	0.47
10:C:504:GLY:HA2	10:C:527:VAL:O	2.14	0.47
6:N:247:ARG:N	6:N:281:ILE:HB	2.30	0.46
7:A:66:VAL:HG11	7:A:487:LEU:HD11	1.97	0.46
9:S:274:LEU:HD23	9:S:291:ASN:HB2	1.96	0.46
10:C:531:TRP:HD1	10:C:540:GLU:CB	2.28	0.46
3:J:491:GLN:HE22	7:A:2007:ILE:HG21	1.80	0.46
4:L:100:THR:HG21	4:L:233:GLY:HA2	1.96	0.46
6:N:334:LYS:HD2	6:N:334:LYS:HA	1.74	0.46
12:D:41:MET:CE	12:D:106:MET:H	2.28	0.46
6:N:299:LYS:HA	6:N:302:ARG:HH11	1.81	0.46
7:A:1777:ILE:O	7:A:1812:PRO:HD2	2.15	0.46
10:C:938:ARG:NH2	10:C:944:SER:OG	2.46	0.46
15:4:63:U:H2'	15:4:64:G:H8	1.79	0.46
7:A:595:LYS:NZ	13:5:30:A:OP1	2.48	0.46
7:A:975:VAL:HG13	7:A:1099:PHE:HB2	1.98	0.46
11:M:56:MET:HE3	11:M:66:ILE:HD12	1.96	0.46
14:7:437:ARG:NH2	15:4:22:C:O2'	2.48	0.46
4:L:264:SER:O	4:L:269:PRO:HD3	2.16	0.46
6:N:269:ASP:HB2	7:A:1916:LEU:HB3	1.98	0.46
7:A:1162:PRO:HB2	7:A:1165:VAL:HG12	1.97	0.46
4:L:95:ASP:OD1	4:L:96:ALA:N	2.48	0.46
8:U:101:ARG:CZ	8:U:179:TYR:HB3	2.45	0.46
10:C:645:ARG:HH22	10:C:655:VAL:HG23	1.81	0.46
12:D:40:LYS:O	12:D:43:GLU:HG3	2.15	0.46
6:N:123:ARG:NH2	13:5:52:U:O2'	2.48	0.46
7:A:1276:GLU:OE2	7:A:1375:TRP:N	2.49	0.46
4:L:311:SER:OG	4:L:315:LYS:N	2.48	0.46
6:N:814:TRP:HB3	6:N:834:LEU:HD11	1.98	0.46
7:A:147:MET:O	7:A:151:MET:HG3	2.15	0.46
7:A:1507:SER:HB2	7:A:1752:GLN:NE2	2.30	0.46
15:4:6:U:H2'	15:4:7:G:H8	1.79	0.46

	Jus puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
6:N:29:THR:HG23	16:6:37:C:H5	1.81	0.46
8:U:445:LYS:HA	8:U:492:HIS:CE1	2.51	0.46
10:C:140:HIS:NE2	10:C:233:GLU:OE1	2.40	0.46
14:7:510:ALA:O	14:7:514:GLN:HG2	2.16	0.46
3:J:441:THR:HG23	3:J:444:GLU:H	1.81	0.46
4:L:53:LYS:HA	4:L:53:LYS:HD3	1.76	0.46
6:N:394:ARG:HB2	9:S:203:TRP:NE1	2.31	0.46
6:N:821:GLU:O	6:N:826:ARG:NE	2.35	0.46
7:A:1738:PRO:HG2	7:A:2022:GLN:OE1	2.15	0.46
7:A:1784:ASN:O	7:A:1806:ALA:N	2.39	0.46
13:5:48:A:H2'	13:5:49:A:H8	1.80	0.46
1:B:52:MET:HB2	7:A:1374:PRO:HG3	1.98	0.45
6:N:823:ARG:HA	6:N:826:ARG:HD2	1.98	0.45
7:A:1491:LYS:O	7:A:1710:ASN:ND2	2.49	0.45
10:C:140:HIS:CE1	10:C:230:ASP:H	2.35	0.45
13:5:47:A:O2'	13:5:48:A:H5"	2.15	0.45
7:A:1663:ASP:OD2	7:A:1665:GLN:NE2	2.49	0.45
10:C:137:HIS:CD2	10:C:138:LEU:H	2.34	0.45
7:A:168:PRO:HG2	7:A:559:ASP:HB3	1.98	0.45
7:A:1045:GLY:HA3	7:A:1090:ARG:CZ	2.45	0.45
7:A:1292:GLU:OE2	7:A:1317:TYR:OH	2.33	0.45
6:N:353:GLN:OE1	6:N:354:PRO:HD2	2.15	0.45
7:A:988:ILE:HG12	7:A:1044:TYR:CZ	2.50	0.45
7:A:1125:ILE:HG13	7:A:1147:VAL:HG11	1.99	0.45
7:A:1133:CYS:HB2	7:A:1231:ARG:NE	2.31	0.45
7:A:1321:GLU:O	7:A:1503:TRP:NE1	2.46	0.45
7:A:1902:PHE:O	7:A:1906:ILE:HG23	2.16	0.45
8:U:526:TRP:HD1	8:U:539:PRO:HG3	1.81	0.45
12:D:45:LEU:HD22	12:D:58:ILE:HD12	1.98	0.45
15:4:72:U:H3'	15:4:73:U:H5'	1.98	0.45
4:L:209:GLU:HA	4:L:212:MET:HG2	1.99	0.45
7:A:1134:TRP:O	7:A:1139:ARG:NH1	2.50	0.45
7:A:1308:PRO:HB2	7:A:1311:PHE:HB2	1.99	0.45
10:C:544:VAL:HG13	10:C:548:ASN:HD22	1.81	0.45
11:M:35:LEU:HD11	11:M:102:CYS:HB2	1.97	0.45
2:G:299:LEU:HA	2:G:320:TYR:CE2	2.50	0.45
4:L:117:LYS:HD3	4:L:117:LYS:HA	1.79	0.45
7:A:864:LEU:HD23	7:A:864:LEU:HA	1.82	0.45
7:A:898:PHE:CD1	7:A:905:LEU:HB3	2.51	0.45
7:A:1264:ASN:O	7:A:1268:ILE:HG12	2.17	0.45
7:A:1318:THR:HB	7:A:1324:GLY:HA3	1.98	0.45

	Jus puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
8:U:137:LEU:HB2	8:U:163:VAL:HG13	1.99	0.45
10:C:862:PRO:HA	10:C:869:TYR:HA	1.98	0.45
4:L:304:ARG:HB3	11:M:65:ILE:HA	1.98	0.45
10:C:827:LEU:HD11	10:C:934:MET:HB3	1.99	0.45
7:A:97:HIS:ND1	7:A:649:GLU:OE2	2.45	0.45
7:A:1149:LEU:HD23	7:A:1177:VAL:HG21	1.97	0.45
7:A:1421:THR:HA	7:A:1424:GLN:HG3	1.99	0.45
10:C:123:MET:HA	10:C:129:ILE:HD11	1.98	0.45
10:C:320:LEU:HB3	10:C:340:ALA:HB1	1.98	0.45
11:M:22:LEU:O	11:M:26:VAL:HG23	2.17	0.45
12:D:94:LEU:HD11	12:D:102:ILE:HG12	1.98	0.45
15:4:45:G:H2'	15:4:46:G:C8	2.52	0.45
3:J:473:GLU:HG2	3:J:474:PRO:HD2	1.98	0.45
4:L:392:LEU:HD21	7:A:1465:TRP:HH2	1.82	0.45
6:N:297:LEU:O	6:N:301:VAL:HG23	2.17	0.45
7:A:114:ARG:HG3	7:A:210:HIS:CD2	2.52	0.45
7:A:303:ILE:HG21	10:C:878:ILE:HD11	1.98	0.45
7:A:420:ARG:NH2	7:A:423:ASP:OD1	2.42	0.45
7:A:993:LEU:HD11	7:A:1040:ILE:HG23	1.99	0.45
7:A:1034:LEU:HB2	7:A:1037:ALA:HB2	1.98	0.45
7:A:1593:LEU:HA	7:A:1596:VAL:HG12	1.97	0.45
7:A:1787:ARG:NH2	7:A:1906:ILE:HD11	2.31	0.45
7:A:2006:GLU:O	7:A:2010:ILE:HG12	2.17	0.45
10:C:340:ALA:HA	10:C:343:LEU:HD12	1.99	0.45
14:7:473:ARG:NH2	14:7:475:ASP:OD2	2.40	0.45
16:6:48:A:H2'	16:6:49:G:O4'	2.17	0.45
4:L:245:PRO:HG2	4:L:248:ASN:HB2	1.99	0.45
7:A:213:LEU:HD13	7:A:219:TYR:CD2	2.52	0.45
2:G:294:HIS:HB3	10:C:891:THR:HA	1.99	0.44
4:L:112:LYS:HE3	6:N:855:ARG:HG2	1.98	0.44
4:L:250:MET:HB3	4:L:296:ALA:HB2	1.99	0.44
7:A:908:VAL:HG11	7:A:1448:LEU:HD22	1.98	0.44
7:A:957:GLN:HG3	7:A:961:ASN:ND2	2.32	0.44
7:A:972:GLU:HG3	7:A:1100:ARG:NH2	2.32	0.44
8:U:352:SER:HB3	8:U:445:LYS:HB3	1.99	0.44
10:C:370:VAL:HA	10:C:374:LEU:HB2	1.98	0.44
2:G:276:TRP:NE1	7:A:449:LYS:HG3	2.32	0.44
4:L:283:LEU:HD12	4:L:287:LEU:HD23	1.98	0.44
7:A:1781:ASP:HB3	7:A:1808:PHE:HB2	1.99	0.44
10:C:305:GLY:O	10:C:433:MET:HG3	2.17	0.44
10:C:744:ILE:HG22	10:C:788:LYS:HA	1.99	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
13:5:8:G:N2	13:5:70:A:O3'	2.48	0.44
16:6:66:C:H2'	16:6:67:G:C8	2.52	0.44
6:N:315:SER:O	6:N:319:GLU:HG2	2.17	0.44
7:A:825:ILE:HG23	7:A:929:GLU:HG3	1.99	0.44
7:A:1937:ILE:HD12	7:A:1937:ILE:HA	1.89	0.44
6:N:833:ALA:HA	6:N:836:LYS:HE2	1.99	0.44
7:A:237:THR:HG23	7:A:240:ARG:NH2	2.33	0.44
7:A:387:PHE:HD1	10:C:399:LEU:HD22	1.81	0.44
7:A:1050:LEU:HD22	7:A:1055:LEU:HD23	1.99	0.44
7:A:1187:PHE:CE1	7:A:1196:ILE:HD11	2.52	0.44
7:A:1489:LEU:HG	7:A:1540:PRO:HD3	2.00	0.44
7:A:1497:THR:HG23	7:A:1499:GLU:H	1.81	0.44
8:U:166:ASN:ND2	8:U:169:THR:OG1	2.51	0.44
8:U:307:SER:O	8:U:310:THR:HG22	2.17	0.44
8:U:501:ALA:HB3	8:U:551:ILE:HB	1.99	0.44
8:U:539:PRO:HA	8:U:542:ILE:HG12	1.99	0.44
10:C:614:TYR:HB2	10:C:617:LEU:HB2	1.99	0.44
2:G:299:LEU:HA	2:G:320:TYR:HE2	1.83	0.44
6:N:843:VAL:O	6:N:847:VAL:HG23	2.18	0.44
7:A:1601:LEU:HD23	7:A:1601:LEU:H	1.82	0.44
9:S:206:ARG:O	9:S:209:GLN:HG2	2.17	0.44
10:C:500:THR:OG1	10:C:502:HIS:NE2	2.50	0.44
11:M:97:ARG:NH1	15:4:29:A:N7	2.66	0.44
1:B:36:PRO:HB3	7:A:1336:PRO:HB3	1.98	0.44
4:L:207:TYR:O	4:L:210:SER:OG	2.30	0.44
6:N:31:ARG:NH2	6:N:33:ASP:OD2	2.50	0.44
6:N:197:HIS:CE1	7:A:1425:LYS:HA	2.53	0.44
6:N:326:GLN:HG3	9:S:173:ALA:HB1	1.99	0.44
7:A:346:ASP:N	7:A:346:ASP:OD1	2.50	0.44
7:A:374:ASP:N	7:A:374:ASP:OD1	2.51	0.44
7:A:858:GLN:HA	7:A:861:ARG:HG2	2.00	0.44
7:A:889:ARG:HA	7:A:889:ARG:HD3	1.81	0.44
7:A:1630:LEU:HD12	7:A:1696:PRO:HG3	2.00	0.44
7:A:1740:LEU:O	7:A:1744:ARG:HD3	2.18	0.44
8:U:456:ARG:HG3	8:U:548:TYR:HD1	1.82	0.44
4:L:103:ILE:HA	4:L:106:GLU:HG2	1.99	0.44
7:A:449:LYS:HD3	7:A:449:LYS:HA	1.78	0.44
7:A:780:THR:HG22	7:A:898:PHE:CD2	2.53	0.44
7:A:1104:ASP:OD1	7:A:1105:GLU:N	2.50	0.44
7:A:1998:ASN:OD1	7:A:1999:VAL:N	2.51	0.44
10:C:731:SER:HB3	10:C:747:ASP:O	2.17	0.44

	h a c	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
10:C:845:ALA:O	10:C:849:VAL:HG23	2.18	0.44
12:D:91:MET:HE2	12:D:129:LEU:HB2	2.00	0.44
16:6:44:G:O2'	16:6:46:G:OP1	2.28	0.44
7:A:944:ASP:OD2	7:A:1435:GLY:N	2.41	0.44
7:A:1661:TRP:CD2	7:A:1700:GLY:HA3	2.53	0.44
7:A:1955:LYS:HD2	7:A:1955:LYS:O	2.17	0.44
10:C:244:LYS:O	10:C:248:GLN:HG2	2.18	0.44
10:C:374:LEU:HD23	10:C:374:LEU:HA	1.89	0.44
10:C:375:GLU:HB3	10:C:376:PRO:HD3	2.00	0.44
10:C:486:ASP:N	10:C:486:ASP:OD1	2.50	0.44
10:C:824:THR:HG22	10:C:826:ARG:HH12	1.81	0.44
10:C:832:TYR:CD1	10:C:901:PHE:HA	2.53	0.44
7:A:303:ILE:HG12	10:C:936:LYS:HD2	2.00	0.44
7:A:966:TRP:CG	7:A:1198:PRO:HB3	2.53	0.44
7:A:1233:ASP:OD1	7:A:1234:ASP:N	2.51	0.44
7:A:1328:LEU:HD23	7:A:1470:TYR:CE2	2.53	0.44
8:U:442:GLN:NE2	8:U:443:LEU:O	2.42	0.44
14:7:447:ARG:HA	14:7:447:ARG:NE	2.33	0.44
3:J:497:GLU:OE2	3:J:501:ARG:NE	2.51	0.43
4:L:358:ARG:HH22	15:4:54:A:H3'	1.83	0.43
7:A:1484:ILE:O	7:A:1488:THR:HG23	2.18	0.43
3:J:461:GLN:HB3	3:J:465:ARG:HH12	1.82	0.43
4:L:386:ASP:O	7:A:1463:LYS:NZ	2.42	0.43
7:A:1788:VAL:HG12	7:A:1802:PRO:HA	2.01	0.43
10:C:221:ILE:HB	10:C:495:ARG:HB2	2.00	0.43
12:D:135:ASP:OD1	12:D:136:TYR:N	2.51	0.43
4:L:420:ILE:HG13	4:L:425:GLN:HG3	2.00	0.43
4:L:424:LEU:HD12	4:L:424:LEU:HA	1.81	0.43
7:A:1889:LEU:HD22	7:A:2012:LEU:HD13	1.99	0.43
10:C:300:LEU:HA	10:C:306:ASN:HD22	1.82	0.43
15:4:14:G:H2'	15:4:15:G:C8	2.52	0.43
7:A:678:GLU:HG2	7:A:679:SER:N	2.32	0.43
7:A:1426:ASP:HB2	7:A:1429:THR:HG22	2.01	0.43
8:U:135:ALA:HB2	8:U:167:LEU:HD21	2.01	0.43
8:U:433:TYR:CZ	8:U:434:LYS:HG3	2.54	0.43
10:C:743:ASN:ND2	10:C:784:ILE:O	2.51	0.43
12:D:29:ARG:NH2	12:D:33:ASP:OD1	2.48	0.43
2:G:276:TRP:CE2	7:A:449:LYS:HG3	2.53	0.43
3:J:493:PRO:HB3	7:A:1934:SER:HB3	2.00	0.43
7:A:866:LEU:HD12	7:A:913:PRO:HB2	2.00	0.43
7:A:1536:LEU:HD22	7:A:1572:SER:HB3	1.99	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
8:U:111:ILE:HD13	8:U:186:LEU:HD11	1.99	0.43
10:C:568:PRO:HG2	10:C:569:ARG:NH1	2.34	0.43
6:N:199:SER:HB2	7:A:1404:THR:HG22	2.01	0.43
7:A:180:ASP:OD1	7:A:180:ASP:N	2.50	0.43
7:A:738:MET:HE3	7:A:738:MET:HA	1.99	0.43
7:A:1589:ILE:HG22	7:A:1664:ILE:HD13	2.00	0.43
7:A:1667:ARG:HD2	7:A:1679:TYR:CZ	2.54	0.43
8:U:410:ILE:HD12	8:U:411:PRO:HD2	1.99	0.43
10:C:662:PHE:HB3	10:C:827:LEU:HD22	2.00	0.43
13:5:26:A:H2'	13:5:27:U:O4'	2.19	0.43
4:L:377:ARG:O	4:L:398:HIS:N	2.51	0.43
7:A:1335:ILE:HD11	7:A:1365:ILE:HG22	2.01	0.43
8:U:303:VAL:O	8:U:307:SER:OG	2.27	0.43
10:C:205:THR:HB	10:C:215:VAL:HG22	2.01	0.43
10:C:847:TYR:CE1	10:C:857:VAL:HG11	2.53	0.43
10:C:946:ASP:OD1	10:C:947:VAL:N	2.51	0.43
3:J:518:ARG:HB3	16:6:66:C:O2'	2.18	0.43
7:A:158:ARG:HD2	7:A:161:PHE:CD1	2.53	0.43
7:A:816:TRP:O	7:A:820:ARG:HG2	2.19	0.43
7:A:1260:VAL:HG21	7:A:1325:LEU:HB3	2.00	0.43
7:A:1950:ALA:O	7:A:1954:LEU:HG	2.19	0.43
8:U:123:LEU:HD22	10:C:608:ARG:HH21	1.84	0.43
8:U:540:GLN:OE1	8:U:540:GLN:N	2.52	0.43
13:5:9:G:OP2	13:5:9:G:N2	2.52	0.43
6:N:98:ASP:HB3	7:A:86:ARG:HG3	2.01	0.43
7:A:1582:TRP:HD1	7:A:1619:SER:HB3	1.84	0.43
8:U:262:ILE:HD11	8:U:271:PHE:HE1	1.83	0.43
10:C:743:ASN:OD1	10:C:787:VAL:N	2.46	0.43
12:D:30:PHE:HB2	12:D:80:THR:OG1	2.19	0.43
3:J:462:GLU:HG3	5:F:90:PHE:CE1	2.48	0.43
4:L:136:ILE:HD13	4:L:194:ALA:HB1	2.00	0.43
4:L:373:LYS:HB2	4:L:373:LYS:HE3	1.75	0.43
13:5:60:G:H2'	13:5:61:A:C8	2.54	0.43
7:A:136:ILE:HG22	7:A:138:PRO:HD2	2.00	0.42
7:A:200:ASP:OD1	7:A:240:ARG:NH2	2.49	0.42
7:A:470:ARG:NH1	13:5:16:U:OP2	2.51	0.42
7:A:770:THR:HG21	12:D:108:ASP:HB2	2.00	0.42
7:A:1271:MET:SD	7:A:1278:VAL:HG21	2.59	0.42
10:C:262:ARG:O	10:C:266:GLU:HB2	2.19	0.42
2:G:299:LEU:HD13	7:A:340:ILE:HG12	2.00	0.42
2:G:301:ARG:NH2	7:A:353:ASP:OD1	2.52	0.42

	in a page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:L:305:VAL:HG13	4:L:310:GLU:HB2	2.02	0.42
6:N:268:VAL:HG13	7:A:1915:VAL:HG13	2.01	0.42
6:N:317:ARG:NH2	6:N:348:GLU:OE1	2.51	0.42
6:N:325:LEU:HB3	6:N:329:ARG:NH1	2.35	0.42
6:N:332:ILE:HG13	6:N:352:LEU:HD12	2.00	0.42
7:A:688:ALA:HA	14:7:477:PHE:CE2	2.54	0.42
7:A:1410:ASP:N	7:A:1410:ASP:OD1	2.53	0.42
8:U:177:ASP:HB3	8:U:179:TYR:CD1	2.53	0.42
9:S:209:GLN:O	9:S:212:LYS:HG3	2.18	0.42
10:C:747:ASP:OD2	10:C:756:LYS:NZ	2.51	0.42
14:7:430:ARG:HH12	15:4:25:A:H5'	1.85	0.42
6:N:357:THR:O	6:N:361:VAL:HG23	2.19	0.42
7:A:336:ASN:OD1	10:C:837:GLN:NE2	2.28	0.42
7:A:682:ASP:OD1	7:A:683:LEU:HG	2.19	0.42
7:A:1385:VAL:HG21	7:A:1414:ARG:HB2	2.01	0.42
7:A:1316:PHE:HD1	7:A:1325:LEU:HD12	1.84	0.42
7:A:1670:ASP:O	7:A:1674:HIS:HB3	2.19	0.42
10:C:377:LEU:HA	10:C:380:ILE:HG22	2.01	0.42
10:C:769:GLY:HA2	10:C:809:ILE:HG23	2.01	0.42
10:C:858:THR:OG1	10:C:872:LYS:O	2.29	0.42
2:G:284:ILE:O	2:G:284:ILE:HG13	2.20	0.42
7:A:271:MET:SD	7:A:310:THR:HG23	2.60	0.42
7:A:965:VAL:O	7:A:974:ASN:ND2	2.39	0.42
7:A:1536:LEU:HD21	7:A:1576:ILE:HD11	2.01	0.42
10:C:480:LYS:HB2	10:C:493:PHE:HD2	1.84	0.42
10:C:705:VAL:HG12	10:C:709:TRP:CZ3	2.53	0.42
3:J:482:MET:HG3	7:A:1772:PHE:CG	2.54	0.42
7:A:427:VAL:HG12	7:A:430:TRP:CD2	2.54	0.42
7:A:517:HIS:HB2	7:A:527:VAL:HG12	2.00	0.42
7:A:1771:LEU:HD11	7:A:1779:PHE:CZ	2.53	0.42
10:C:208:HIS:HB3	10:C:211:PHE:HD2	1.83	0.42
10:C:432:ASP:OD1	10:C:433:MET:N	2.52	0.42
10:C:735:PHE:O	10:C:770:PHE:HE2	2.03	0.42
2:G:296:VAL:HG22	2:G:298:LEU:H	1.84	0.42
6:N:123:ARG:O	6:N:127:GLU:HG2	2.20	0.42
8:U:242:ALA:HB2	8:U:503:ILE:HD11	2.01	0.42
10:C:743:ASN:HD21	10:C:784:ILE:C	2.23	0.42
10:C:911:PRO:O	10:C:931:ARG:NH1	2.51	0.42
11:M:113:LYS:O	11:M:117:GLN:HG2	2.19	0.42
4:L:330:LYS:HE3	4:L:330:LYS:HB2	1.88	0.42
6:N:161:PRO:O	7:A:712:HIS:NE2	2.52	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
6:N:176:TYR:CZ	7:A:1517:LYS:HA	2.55	0.42
6:N:319:GLU:HB2	6:N:328:ALA:HB2	2.01	0.42
7:A:760:ARG:HG2	7:A:763:ARG:HH21	1.85	0.42
8:U:500:ILE:HD13	8:U:519:LEU:HD23	2.02	0.42
15:4:64:G:C5	15:4:65:A:H1'	2.54	0.42
4:L:121:ARG:HA	4:L:177:GLN:O	2.20	0.42
4:L:130:PRO:HG3	4:L:258:THR:HG23	2.01	0.42
7:A:348:PRO:HG2	7:A:351:TYR:HB2	2.02	0.42
7:A:750:TRP:HH2	7:A:781:ARG:HB2	1.85	0.42
7:A:894:VAL:HG23	7:A:1017:ILE:HD13	2.02	0.42
7:A:1641:ARG:HG3	7:A:1642:PRO:HD2	2.02	0.42
8:U:366:PRO:HB2	8:U:369:GLU:HG3	2.01	0.42
14:7:430:ARG:NH1	15:4:25:A:H5'	2.34	0.42
6:N:157:TRP:CZ3	7:A:697:MET:HE2	2.55	0.42
7:A:441:VAL:HG22	7:A:444:ARG:HH21	1.85	0.42
7:A:752:ASN:HD22	8:U:462:PHE:HD2	1.67	0.42
10:C:445:ALA:O	10:C:449:ILE:HG12	2.20	0.42
10:C:493:PHE:CZ	10:C:549:TRP:HB3	2.55	0.42
12:D:127:ARG:NH1	16:6:47:A:OP2	2.53	0.42
3:J:478:ILE:HD13	3:J:478:ILE:HA	1.92	0.41
7:A:504:LEU:HD11	7:A:548:ARG:HA	2.02	0.41
7:A:1333:VAL:O	7:A:1364:LEU:HD12	2.20	0.41
10:C:799:GLU:HB2	10:C:802:HIS:ND1	2.35	0.41
11:M:63:LEU:O	11:M:66:ILE:HG12	2.20	0.41
11:M:115:GLN:HE21	16:6:71:G:H4'	1.84	0.41
2:G:307:ILE:HD12	2:G:312:GLN:HE21	1.85	0.41
6:N:810:SER:HB2	6:N:813:LEU:HB2	2.02	0.41
7:A:547:CYS:O	7:A:550:VAL:HG12	2.20	0.41
7:A:933:ARG:O	7:A:935:LEU:N	2.53	0.41
7:A:1187:PHE:HE1	7:A:1196:ILE:HD11	1.86	0.41
7:A:1187:PHE:CE2	7:A:1189:MET:HG2	2.50	0.41
11:M:125:ARG:HD3	11:M:125:ARG:HA	1.80	0.41
3:J:438:VAL:HB	14:7:411:LEU:HD23	2.02	0.41
6:N:160:ILE:HD11	7:A:705:LYS:HB3	2.01	0.41
7:A:1083:HIS:CG	7:A:1084:PRO:HD2	2.55	0.41
7:A:1362:ASP:N	7:A:1362:ASP:OD1	2.53	0.41
7:A:1834:GLY:HA2	9:S:276:LEU:HD13	2.01	0.41
10:C:860:ASP:OD1	10:C:860:ASP:N	2.52	0.41
7:A:643:GLY:O	7:A:646:PRO:HD2	2.20	0.41
7:A:825:ILE:HB	7:A:1001:VAL:HG23	2.01	0.41
7:A:1137:ASP:OD1	7:A:1138:ALA:N	2.53	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
10:C:168:THR:HG22	10:C:184:THR:HB	2.02	0.41
10:C:770:PHE:CE1	10:C:789:PHE:HD2	2.34	0.41
6:N:326:GLN:NE2	9:S:177:LYS:HD2	2.35	0.41
8:U:134:TYR:CE2	8:U:146:ARG:HB2	2.56	0.41
10:C:426:GLU:HB2	10:C:428:THR:HG23	2.02	0.41
13:5:60:G:H2'	13:5:61:A:H8	1.86	0.41
15:4:37:C:H3'	15:4:38:U:H2'	2.03	0.41
6:N:273:TYR:OH	7:A:1820:LYS:HE2	2.20	0.41
7:A:1188:ASN:ND2	7:A:1193:GLU:OE2	2.53	0.41
7:A:1416:ILE:HB	7:A:1417:PRO:HD3	2.02	0.41
8:U:408:LEU:HD23	8:U:408:LEU:HA	1.83	0.41
8:U:422:PHE:HB3	8:U:443:LEU:HG	2.03	0.41
10:C:834:VAL:HG11	10:C:883:PHE:HE2	1.86	0.41
11:M:7:ASN:HD22	11:M:58:ALA:HB1	1.85	0.41
11:M:61:GLU:OE2	11:M:62:PRO:HD3	2.20	0.41
4:L:204:ILE:O	4:L:208:VAL:HG23	2.21	0.41
6:N:148:LYS:HA	6:N:148:LYS:HD3	1.89	0.41
7:A:494:LEU:HD21	7:A:562:VAL:HG21	2.02	0.41
7:A:1798:LEU:HD23	9:S:356:THR:O	2.20	0.41
7:A:1941:ARG:O	7:A:1945:VAL:HG23	2.21	0.41
8:U:197:PHE:HD2	8:U:254:LEU:HD13	1.85	0.41
8:U:503:ILE:O	8:U:548:TYR:N	2.45	0.41
4:L:406:ARG:O	6:N:289:ASN:HB3	2.21	0.41
7:A:182:ILE:HD11	7:A:562:VAL:HG13	2.01	0.41
7:A:390:ASP:OD1	7:A:390:ASP:N	2.54	0.41
7:A:1956:PRO:HD2	7:A:1960:THR:HG21	2.03	0.41
4:L:249:ILE:HD12	4:L:300:THR:OG1	2.21	0.41
5:F:82:ARG:O	5:F:85:GLU:HG3	2.20	0.41
6:N:158:LEU:HD23	7:A:702:LYS:NZ	2.36	0.41
6:N:247:ARG:N	6:N:317:ARG:HH11	2.19	0.41
6:N:349:ALA:HB1	6:N:361:VAL:HG11	2.02	0.41
6:N:794:ASN:O	6:N:798:THR:HG23	2.20	0.41
7:A:858:GLN:O	7:A:862:GLU:HG2	2.20	0.41
7:A:1051:LEU:HD13	7:A:1162:PRO:HD2	2.02	0.41
7:A:1245:ARG:O	7:A:1249:MET:HG2	2.20	0.41
7:A:1264:ASN:ND2	7:A:1326:GLY:O	2.47	0.41
7:A:1560:ILE:HG21	7:A:1573:LEU:HD13	2.02	0.41
7:A:1785:VAL:O	7:A:1805:GLY:HA3	2.20	0.41
10:C:134:LEU:HG	10:C:228:PHE:HE1	1.85	0.41
10:C:676:ALA:HB3	10:C:815:VAL:HB	2.03	0.41
10:C:812:ALA:HA	10:C:815:VAL:HG12	2.03	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
12:D:48:ILE:O	12:D:52:VAL:HG22	2.19	0.41
12:D:122:GLY:HA3	12:D:130:VAL:HG12	2.02	0.41
14:7:472:ARG:CZ	14:7:487:LYS:HG3	2.51	0.41
7:A:1061:MET:HE1	7:A:1088:PHE:HB3	2.01	0.41
8:U:124:CYS:SG	8:U:151:HIS:ND1	2.90	0.41
8:U:133:ALA:HB3	8:U:167:LEU:HB2	2.03	0.41
8:U:189:ILE:HG12	8:U:290:PHE:HZ	1.86	0.41
8:U:548:TYR:CD2	8:U:549:ILE:HG13	2.56	0.41
10:C:359:LYS:HA	10:C:359:LYS:HD3	1.88	0.41
2:G:322:ASP:O	2:G:325:GLU:HG2	2.21	0.40
4:L:282:SER:O	4:L:282:SER:OG	2.34	0.40
6:N:197:HIS:CE1	7:A:1425:LYS:HD3	2.56	0.40
6:N:329:ARG:HB3	6:N:353:GLN:NE2	2.36	0.40
6:N:373:VAL:HA	6:N:376:TYR:HD2	1.86	0.40
7:A:155:LYS:HG3	7:A:626:GLY:HA3	2.03	0.40
7:A:464:PRO:HB2	13:5:23:C:C4	2.56	0.40
7:A:1905:LEU:HA	7:A:1908:LYS:HE2	2.03	0.40
6:N:254:ARG:HD3	7:A:1914:MET:SD	2.61	0.40
7:A:1086:ARG:O	7:A:1087:LEU:HD23	2.21	0.40
7:A:1552:GLN:HB3	7:A:1563:HIS:HD2	1.86	0.40
7:A:1728:GLN:O	7:A:1732:LYS:HD3	2.20	0.40
8:U:113:ARG:HD3	8:U:215:TYR:CE2	2.57	0.40
10:C:392:LEU:N	10:C:393:PRO:HD2	2.36	0.40
14:7:445:SER:O	14:7:448:GLU:HG2	2.20	0.40
3:J:510:ALA:O	3:J:513:GLU:HG3	2.22	0.40
6:N:288:ILE:HD11	7:A:1877:LEU:HD21	2.03	0.40
7:A:101:LYS:HB3	7:A:129:VAL:HB	2.03	0.40
7:A:239:TYR:HE1	7:A:408:PRO:HD2	1.86	0.40
7:A:382:GLU:HA	10:C:354:ARG:NE	2.35	0.40
7:A:407:ALA:O	7:A:412:ASN:ND2	2.46	0.40
7:A:684:GLU:OE2	14:7:473:ARG:NH2	2.54	0.40
8:U:197:PHE:HZ	8:U:286:ASN:HA	1.86	0.40
8:U:231:LYS:HB2	8:U:313:ILE:HG22	2.02	0.40
8:U:353:MET:SD	8:U:354:ARG:N	2.95	0.40
8:U:460:ASN:ND2	8:U:465:GLU:OE1	2.55	0.40
9:S:329:LYS:HG3	9:S:330:PRO:HD3	2.04	0.40
10:C:449:ILE:HD12	10:C:465:MET:SD	2.61	0.40
15:4:11:A:H2'	15:4:12:G:C8	2.56	0.40
15:4:53:U:O2'	15:4:54:A:H5'	2.22	0.40
7:A:101:LYS:HA	7:A:101:LYS:HD2	1.69	0.40
7:A:507:LEU:O	7:A:510:ARG:HB2	2.22	0.40

Atom-1	Atom-2	$\begin{array}{l} \text{Interatomic} \\ \text{distance} \ (\text{\AA}) \end{array}$	Clash overlap (Å)	
7:A:994:ASN:HB2	7:A:1010:THR:HG21	2.04	0.40	
8:U:254:LEU:HD23	8:U:254:LEU:HA	1.84	0.40	
8:U:457:PHE:CD1	8:U:509:PRO:HB3	2.56	0.40	
10:C:260:ILE:HG12	10:C:310:SER:O	2.21	0.40	
10:C:715:GLY:O	10:C:719:GLN:HG2	2.22	0.40	
6:N:118:GLU:HA	6:N:121:GLU:HG2	2.02	0.40	
7:A:1531:ASN:O	7:A:1535:THR:HG23	2.21	0.40	
9:S:297:LYS:HE3	9:S:297:LYS:HB2	1.92	0.40	
10:C:594:PRO:HG3	10:C:600:LEU:HD13	2.04	0.40	
10:C:737:PRO:HD2	10:C:741:GLY:HA3	2.04	0.40	
11:M:37:LYS:HE2	11:M:37:LYS:HB2	1.97	0.40	
13:5:19:A:H4'	13:5:20:G:C8	2.56	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	В	20/2136~(1%)	20 (100%)	0	0	100	100
2	G	55/820~(7%)	53~(96%)	2(4%)	0	100	100
3	J	82/683~(12%)	82 (100%)	0	0	100	100
4	L	372/499~(74%)	366 (98%)	6 (2%)	0	100	100
5	F	59/522~(11%)	59 (100%)	0	0	100	100
6	Ν	447/941 (48%)	437 (98%)	10 (2%)	0	100	100
7	А	1971/2335~(84%)	1890 (96%)	81 (4%)	0	100	100
8	U	454/565~(80%)	441 (97%)	13 (3%)	0	100	100
9	S	138/800~(17%)	136 (99%)	2 (1%)	0	100	100
10	С	834/972~(86%)	817 (98%)	17 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
11	М	122/128~(95%)	114 (93%)	8 (7%)	0	100	100
12	D	139/142~(98%)	138~(99%)	1 (1%)	0	100	100
14	7	103/793~(13%)	98~(95%)	5(5%)	0	100	100
All	All	4796/11336 (42%)	4651 (97%)	145 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	В	17/1908~(1%)	17~(100%)	0	100	100
2	G	51/721~(7%)	51 (100%)	0	100	100
3	J	72/599~(12%)	72 (100%)	0	100	100
4	L	303/424~(72%)	303~(100%)	0	100	100
5	F	52/442~(12%)	51 (98%)	1 (2%)	57	76
6	Ν	341/792~(43%)	340 (100%)	1 (0%)	92	96
7	А	1786/2108~(85%)	1781 (100%)	5~(0%)	92	96
8	U	418/511 ($82%$)	416 (100%)	2~(0%)	88	94
9	S	120/681~(18%)	119 (99%)	1 (1%)	81	89
10	С	738/866~(85%)	736 (100%)	2~(0%)	92	96
11	М	108/111~(97%)	108 (100%)	0	100	100
12	D	129/130~(99%)	128 (99%)	1 (1%)	81	89
14	7	91/709~(13%)	91 (100%)	0	100	100
All	All	4226/10002 (42%)	4213 (100%)	13 (0%)	92	96

All (13) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type	
5	F	97	ARG	
Continued on next page				

PROTEIN DATA BANK

Mol	Chain	Res	Type
6	Ν	170	ARG
7	А	362	ARG
7	А	1014	ASN
7	А	1649	LYS
7	А	1658	GLN
7	А	1955	LYS
8	U	101	ARG
8	U	288	ARG
9	S	212	LYS
10	С	531	TRP
10	С	536	ARG
12	D	98	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (12) such sidechains are listed below:

Mol	Chain	Res	Type
6	Ν	197	HIS
6	Ν	330	ASN
6	Ν	364	GLN
7	А	112	GLN
7	А	1014	ASN
7	А	1083	HIS
7	А	1658	GLN
8	U	166	ASN
8	U	208	GLN
8	U	316	GLN
10	С	538	HIS
10	С	548	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
13	5	78/117~(66%)	24 (30%)	2(2%)
15	4	79/144~(54%)	24 (30%)	0
16	6	47/106~(44%)	8 (17%)	1 (2%)
17	Z	12/13~(92%)	6 (50%)	0
All	All	216/380~(56%)	62 (28%)	3 (1%)

All (62) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
13	5	10	U
13	5	14	U
13	5	20	G
13	5	21	А
13	5	22	U
13	5	23	С
13	5	24	G
13	5	25	С
13	5	26	А
13	5	28	А
13	5	35	U
13	5	36	С
13	5	39	С
13	5	41	U
13	5	42	U
13	5	44	А
13	5	45	С
13	5	52	U
13	5	57	G
13	5	70	А
13	5	72	U
13	5	78	U
13	5	79	С
13	5	80	U
15	4	11	А
15	4	18	G
15	4	19	U
15	4	25	А
15	4	26	G
15	4	36	U
15	4	38	U
15	4	39	А
15	4	40	U
15	4	41	С
15	4	42	С
15	4	44	А
15	4	45	G
15	4	53	U
15	4	55	U
15	4	58	С
15	4	65	A
15	4	68	A
15	4	69	С

Mol	Chain	Res	Type
15	4	70	U
15	4	71	U
15	4	72	U
15	4	73	U
15	4	74	С
16	6	35	А
16	6	37	С
16	6	40	U
16	6	46	G
16	6	50	А
16	6	70	А
16	6	77	С
16	6	78	А
17	Z	-2	G
17	Z	1	G
17	Z	2	U
17	Z	3	А
17	Z	4	А
17	Z	7	G

All (3) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
13	5	77	G
13	5	78	U
16	6	77	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

1 ligand is modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and

the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Pog Link		Bos Link Bond lengths				Bond angles		
	Type	Unam	nes	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
18	IHP	А	2401	-	36,36,36	0.70	0	54,60,60	1.01	0	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
18	IHP	А	2401	-	-	$\frac{5/30/54/54}{54}$	0/1/1/1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
18	А	2401	IHP	C1-C6-O16-P6
18	А	2401	IHP	C5-C6-O16-P6
18	А	2401	IHP	C4-O14-P4-O44
18	А	2401	IHP	C5-O15-P5-O35
18	А	2401	IHP	C6-O16-P6-O36

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
18	А	2401	IHP	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring

in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-18547. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

Х

Ζ

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 240

Y Index: 240

Z Index: 240

6.2.2 Raw map

X Index: 240

Y Index: 240

Z Index: 240

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 287

Y Index: 255

Z Index: 274

6.3.2 Raw map

X Index: 288

Y Index: 240

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.027. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 667 nm^3 ; this corresponds to an approximate mass of 602 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.270 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.270 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estim	ation	criterion (FSC cut-off)
resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.70	-	-
Author-provided FSC curve	3.62	4.51	3.72
Unmasked-calculated*	6.03	8.50	6.25

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 6.03 differs from the reported value 3.7 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-18547 and PDB model 8QPB. Per-residue inclusion information can be found in section 3 on page 7.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.027 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.027).

9.4 Atom inclusion (i)

At the recommended contour level, 93% of all backbone atoms, 88% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.027) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.8770	0.4230
4	0.8890	0.3960
5	0.9860	0.4040
6	0.8720	0.3990
7	0.7700	0.3800
А	0.9090	0.4570
В	0.8530	0.4010
С	0.9590	0.4230
D	0.9340	0.5000
F	0.8120	0.3510
G	0.9000	0.3210
J	0.9150	0.4390
L	0.8180	0.4070
М	0.6360	0.4180
Ν	0.7370	0.3710
S	0.6410	0.3590
U	0.8440	0.3830
Z	0.9790	0.4300

