

Full wwPDB X-ray Structure Validation Report (i)

Aug 5, 2024 – 04:07 pm BST

PDB ID : 8QWI

Title : Comparison of room-temperature and cryogenic structures of soluble Epoxide

Hydrolase with ligands bound.

Authors: Dunge, A.; Uwangue, O.; Phan, C.; Bjelcic, M.; Gunnarsson, J.; Wehlander,

G.; Kack, H.; Branden, G.

Deposited on : 2023-10-19

Resolution : 2.12 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

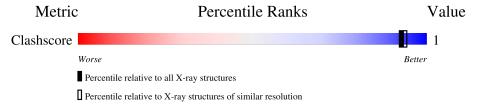
The following versions of software and data (see references (i)) were used in the production of this report:

MolProbity : 4.02b-467 Xtriage (Phenix) : 1.13

EDS : FAILED buster-report : 1.1.7 (2018)

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\ DIFFRACTION$

The reported resolution of this entry is 2.12 Å.

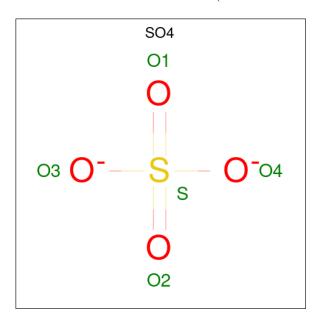
Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
Medic	$(\# ext{Entries})$	$(\# ext{Entries}, ext{ resolution range}(ext{Å}))$
Clashscore	141614	6778 (2.14-2.10)

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 4577 atoms, of which 0 are hydrogens and 0 are deuteriums.

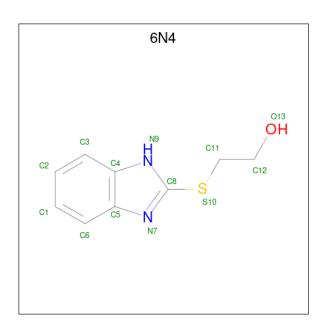
In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.


• Molecule 1 is a protein called Bifunctional epoxide hydrolase 2.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	٨	546	Total	С	N	О	S	0	5	0
1	A	040	4350	2783	732	797	38	0)	

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	0	GLY	-	expression tag	UNP P34913


• Molecule 2 is SULFATE ION (three-letter code: SO4) (formula: O₄S).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf
2	A	1	Total 5	O 4	S 1	0	0

• Molecule 3 is 2-(1H-BENZIMIDAZOL-2-YLSULFANYL)ETHANOL (three-letter code: 6N4) (formula: $C_9H_{10}N_2OS$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf		
9	٨	1	Total	С	N	О	S	0	1
3	A	1	13	9	2	1	1	0	1

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	A	209	Total O 209 209	0	0

 ${\tt SEQUENCE-PLOTS\ INFOmissing INFO}$

3 Data and refinement statistics (i)

EDS failed to run properly - this section is therefore incomplete.

Property	Value	Source
Space group	P 65 2 2	Depositor
Cell constants	93.95Å 93.95Å 246.69Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor
Resolution (Å)	49.15 - 2.12	Depositor
% Data completeness	100.0 (49.15-2.12)	Depositor
(in resolution range)	`	_
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	1.69 (at 2.12Å)	Xtriage
Refinement program	BUSTER 2.11.8	Depositor
R, R_{free}	0.177 , 0.204	Depositor
Wilson B-factor (A^2)	39.2	Xtriage
Anisotropy	0.279	Xtriage
L-test for twinning ²	$ < L > = 0.50, < L^2> = 0.34$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
Total number of atoms	4577	wwPDB-VP
Average B, all atoms (Å ²)	43.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.64% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

4 Model quality (i)

4.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SO4, 6N4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	A	0.39	0/4457	0.56	1/6040 (0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a maintain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	A	0	1

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\mathbf{Observed}(^o)$	$\operatorname{Ideal}({}^{o})$
1	A	292	ASP	N-CA-C	-5.22	96.91	111.00

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	1 A 232		CYS	Mainchain

4.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	4350	0	4339	13	0
2	A	5	0	0	0	0
3	A	13	0	10	1	0
4	A	209	0	0	0	1
All	All	4577	0	4349	13	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

All (13) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$egin{array}{ll} ext{Interatomic} \ ext{distance} \ (ext{Å}) \end{array}$	Clash overlap (Å)
1:A:22:VAL:HG11	1:A:95:ALA:HB2	1.83	0.60
1:A:266:GLY:HA3	1:A:335:ASP:HB3	1.89	0.54
1:A:199:VAL:HG11	1:A:216:VAL:HG21	1.92	0.52
1:A:453:GLN:HA	1:A:456:LYS:HE2	1.91	0.51
1:A:383:TYR:OH	3:A:602[A]:6N4:N7	2.30	0.51
1:A:484:ILE:HB	1:A:511:ILE:HG12	1.95	0.48
1:A:15:ALA:HB1	1:A:99:ARG:HG2	1.96	0.47
1:A:190:LEU:HD22	1:A:200:THR:HB	2.00	0.43
1:A:421:LYS:HZ2	1:A:424:GLU:HB3	1.83	0.42
1:A:110:LEU:HD21	1:A:146:HIS:HB3	2.02	0.42
1:A:88:ILE:HD13	1:A:88:ILE:HA	1.96	0.41
1:A:315:LYS:HE2	1:A:315:LYS:HB2	1.88	0.41
1:A:370:SER:HB2	1:A:373:GLU:HG3	2.03	0.41

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	$\begin{array}{c} \text{Clash} \\ \text{overlap } (\text{\AA}) \end{array}$
4:A:837:HOH:O	4:A:896:HOH:O[12_544]	2.15	0.05

4.3 Torsion angles (i)

4.3.1 Protein backbone (i)

There are no protein backbone outliers to report in this entry.

4.3.2 Protein sidechains (i)

There are no protein residues with a non-rotameric sidechain to report in this entry.

4.3.3 RNA (i)

There are no RNA molecules in this entry.

4.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

4.5 Carbohydrates (i)

There are no monosaccharides in this entry.

4.6 Ligand geometry (i)

2 ligands are modelled in this entry.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

4.7 Other polymers (i)

There are no such residues in this entry.

4.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

5 Fit of model and data (i)

5.1 Protein, DNA and RNA chains (i)

EDS failed to run properly - this section is therefore empty.

5.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS failed to run properly - this section is therefore empty.

5.3 Carbohydrates (i)

EDS failed to run properly - this section is therefore empty.

5.4 Ligands (i)

EDS failed to run properly - this section is therefore empty.

5.5 Other polymers (i)

EDS failed to run properly - this section is therefore empty.

