

Full wwPDB X-ray Structure Validation Report (i)

Jun 25, 2024 – 10:47 AM EDT

PDB ID : 6QXH

Title : Crystal structure of His-tag human thymidylate synthase (HT-hTS) in complex

with dUMP

Authors : Pozzi, C.; Mangani, M.

Deposited on : 2019-03-07

Resolution : 2.04 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at

https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : 4.02b-467

Mogul : 1.8.5 (274361), CSD as541be (2020)

Xtriage (Phenix) : 1.13

EDS : 2.37.1

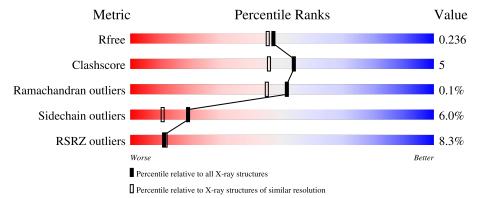
buster-report : 1.1.7 (2018)

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

 $Refmac \quad : \quad 5.8.0158$

CCP4 : 7.0.044 (Gargrove)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X- $RAY\ DIFFRACTION$

The reported resolution of this entry is 2.04 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} \text{Whole archive} \\ (\#\text{Entries}) \end{array}$	Similar resolution $(\# \text{Entries, resolution range}(\text{\AA}))$
R_{free}	130704	1692 (2.04-2.04)
Clashscore	141614	1773 (2.04-2.04)
Ramachandran outliers	138981	1752 (2.04-2.04)
Sidechain outliers	138945	1752 (2.04-2.04)
RSRZ outliers	127900	1672 (2.04-2.04)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
1	A	325	77%	11%	•	12%
1	В	325	76%	12%		12%
1	С	325	72%	15%	•	11%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	PEG	A	402	_	-	-	X

2 Entry composition (i)

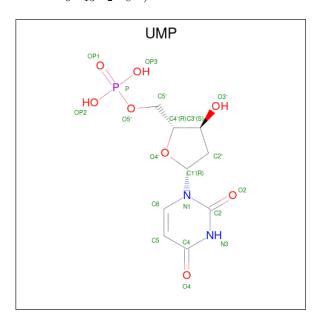
There are 6 unique types of molecules in this entry. The entry contains 7082 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Thymidylate synthase.

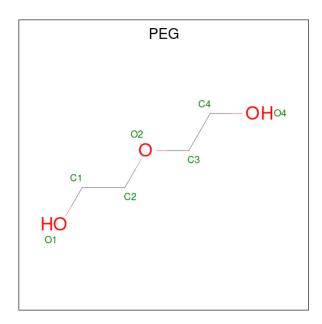
Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	٨	287	Total	С	N	О	S	0	0	0
1	A	201	2264	1452	383	415	14	0	U	U
1	В	287	Total	l C N O S		S	0	0	0	
1	Б	201	2267	1455	389	409	14	0	U	
1	С	288	Total	С	N	О	S	0	0	0
1		200	2273	1456	387	416	14			

There are 36 discrepancies between the modelled and reference sequences:


Chain	Residue	Modelled	Actual	Comment	Reference
A	-11	MET	-	initiating methionine	UNP P04818
A	-10	ARG	-	expression tag	UNP P04818
A	-9	GLY	-	expression tag	UNP P04818
A	-8	SER	-	expression tag	UNP P04818
A	-7	HIS	-	expression tag	UNP P04818
A	-6	HIS	-	expression tag	UNP P04818
A	-5	HIS	-	expression tag	UNP P04818
A	-4	HIS	-	expression tag	UNP P04818
A	-3	HIS	-	expression tag	UNP P04818
A	-2	HIS	-	expression tag	UNP P04818
A	-1	GLY	-	expression tag	UNP P04818
A	0	SER	-	expression tag	UNP P04818
В	-11	MET	-	initiating methionine	UNP P04818
В	-10	ARG	-	expression tag	UNP P04818
В	-9	GLY	-	expression tag	UNP P04818
В	-8	SER	-	expression tag	UNP P04818
В	-7	HIS	-	expression tag	UNP P04818
В	-6	HIS	-	expression tag	UNP P04818
В	-5	HIS	-	expression tag	UNP P04818
В	-4	HIS	-	expression tag	UNP P04818
В	-3	HIS	-	expression tag	UNP P04818
В	-2	HIS	-	expression tag	UNP P04818
В	-1	GLY	-	expression tag	UNP P04818

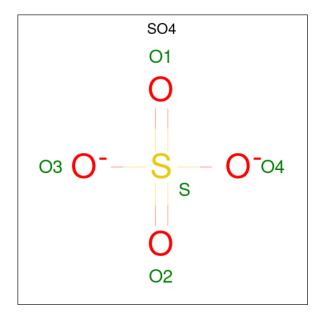
Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
В	0	SER	-	expression tag	UNP P04818
С	-11	MET	-	initiating methionine	UNP P04818
С	-10	ARG	-	expression tag	UNP P04818
С	-9	GLY	-	expression tag	UNP P04818
С	-8	SER	-	expression tag	UNP P04818
С	-7	HIS	-	expression tag	UNP P04818
С	-6	HIS	-	expression tag	UNP P04818
С	-5	HIS	-	expression tag	UNP P04818
С	-4	HIS	-	expression tag	UNP P04818
С	-3	HIS	-	expression tag	UNP P04818
С	-2	HIS	-	expression tag	UNP P04818
С	-1	GLY	-	expression tag	UNP P04818
С	0	SER	-	expression tag	UNP P04818


• Molecule 2 is 2'-DEOXYURIDINE 5'-MONOPHOSPHATE (three-letter code: UMP) (formula: $C_9H_{13}N_2O_8P$).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf		
2	Λ	1	Total	С	N	О	Р	0	0
2	A	1	20	9	2	8	1		U
2	D	1	Total	С	N	О	Р	0	0
2	Б	1	20	9	2	8	1	0	U
2	С	1	Total	С	N	О	Р	0	0
2		1	20	9	2	8	1	0	U

• Molecule 3 is DI(HYDROXYETHYL)ETHER (three-letter code: PEG) (formula: $C_4H_{10}O_3$).



Mol	Chain	Residues	Atoms			ZeroOcc	AltConf
3	A	1	Total 7	C 4	O 3	0	0

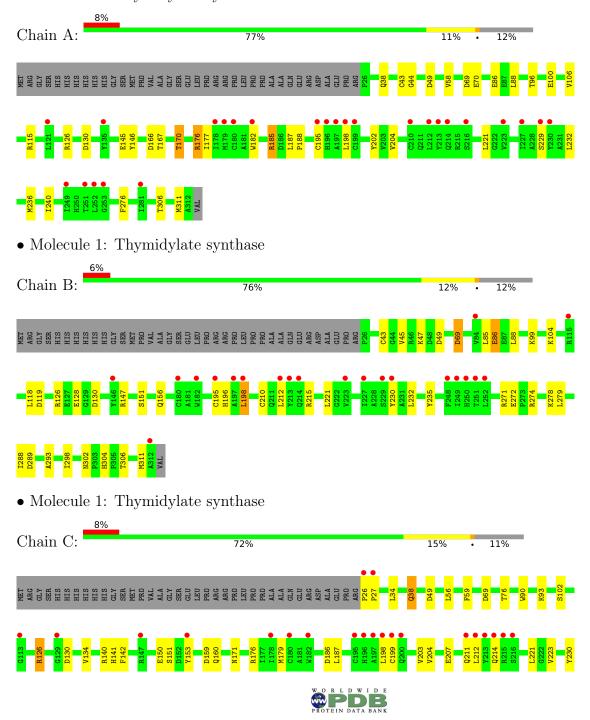
• Molecule 4 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	A	1	Total Cl 1 1	0	0

 \bullet Molecule 5 is SULFATE ION (three-letter code: SO4) (formula: $\mathrm{O_4S}).$

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf
5	С	1	Total 5	O 4	S 1	0	0

• Molecule 6 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	A	66	Total O 66 66	0	0
6	В	63	Total O 63 63	0	0
6	С	76	Total O 76 76	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Thymidylate synthase

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	182.11Å 61.59Å 101.10Å	Donasiton
a, b, c, α , β , γ	90.00° 115.38° 90.00°	Depositor
Resolution (Å)	34.19 - 2.04	Depositor
Resolution (A)	34.19 - 2.04	EDS
% Data completeness	96.7 (34.19-2.04)	Depositor
(in resolution range)	96.7 (34.19-2.04)	EDS
R_{merge}	0.07	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	2.74 (at 2.05Å)	Xtriage
Refinement program	REFMAC 5.8.0238	Depositor
D D.	0.187 , 0.237	Depositor
R, R_{free}	0.185 , 0.236	DCC
R_{free} test set	4434 reflections (7.08%)	wwPDB-VP
Wilson B-factor (Å ²)	56.8	Xtriage
Anisotropy	0.234	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.31, 56.7	EDS
L-test for twinning ²	$ < L > = 0.49, < L^2> = 0.32$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.97	EDS
Total number of atoms	7082	wwPDB-VP
Average B, all atoms (Å ²)	70.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 5.06% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: UMP, CL, PEG, SO4, SCH

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	A	0.53	0/2315	0.95	0/3141	
1	В	0.50	0/2318	0.93	0/3143	
1	С	0.54	0/2324	0.98	0/3150	
All	All	0.52	0/6957	0.95	0/9434	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	2264	0	2155	21	0
1	В	2267	0	2184	28	0
1	С	2273	0	2165	27	0
2	A	20	0	11	2	0
2	В	20	0	11	1	0
2	С	20	0	11	0	0
3	A	7	0	10	0	0
4	A	1	0	0	0	0
5	С	5	0	0	0	0
6	A	66	0	0	0	0

Continued from previous page...

Mol	Chain	Non-H	H(model)	$\mathbf{H}(\mathbf{added})$	Clashes	Symm-Clashes
6	В	63	0	0	0	0
6	С	76	0	0	2	0
All	All	7082	0	6547	71	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (71) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

A4 1	A + a 2	Interatomic	Clash
Atom-1	Atom-2	${\rm distance}(\mathring{\rm A})$	$-$ overlap (\mathring{A})
1:C:250:HIS:CE1	1:C:252:LEU:HD21	2.03	0.94
1:A:166:ASP:O	1:A:170:THR:HG23	1.82	0.80
1:A:70:GLU:OE2	1:A:276:PHE:HD2	1.79	0.66
1:A:88:LEU:HD23	1:A:236:MET:HE1	1.77	0.66
1:B:196:HIS:HB3	1:B:212:LEU:HD11	1.77	0.65
1:A:195:CYS:SG	2:A:401:UMP:C6	2.91	0.64
1:B:147:ARG:NH2	1:B:151:SER:HB3	2.14	0.62
1:C:160:GLN:HB3	1:C:179:MET:HG3	1.82	0.62
1:A:198:LEU:HD23	1:B:198:LEU:HD23	1.82	0.61
1:C:214:GLN:HB3	1:C:252:LEU:HD23	1.83	0.60
1:A:166:ASP:O	1:A:170:THR:CG2	2.50	0.59
1:B:147:ARG:NH1	1:B:156:GLN:OE1	2.35	0.59
1:B:126:ARG:HD3	1:B:130:ASP:HB3	1.86	0.58
1:C:38:GLN:HE21	1:C:269:LEU:HD22	1.71	0.56
1:C:250:HIS:NE2	1:C:252:LEU:HD21	2.20	0.55
1:C:59:PHE:HA	1:C:253:GLY:O	2.07	0.54
1:B:86:GLU:HG2	1:B:104:LYS:HB3	1.90	0.54
1:C:266:LYS:HE2	6:C:566:HOH:O	2.07	0.53
1:B:271:ARG:HH11	1:B:304:HIS:HB2	1.75	0.52
1:A:195:CYS:SG	2:A:401:UMP:C5	3.03	0.51
1:B:279:LEU:HD13	1:B:298:ILE:CD1	2.40	0.51
1:A:204:VAL:HG21	1:B:45:VAL:CG2	2.42	0.49
1:B:147:ARG:HH21	1:B:151:SER:HB3	1.76	0.49
1:B:86:GLU:OE2	1:B:86:GLU:HA	2.12	0.49
1:B:196:HIS:HB3	1:B:212:LEU:CD1	2.43	0.49
1:B:99:LYS:HE3	1:B:128:GLU:HG3	1.94	0.48
1:C:34:LEU:HD22	1:C:269:LEU:HD23	1.93	0.48
1:C:126:ARG:HG2	1:C:130:ASP:HB3	1.96	0.48
1:C:301:TYR:HA	6:C:516:HOH:O	2.14	0.48
1:B:86:GLU:CG	1:B:104:LYS:HB3	2.44	0.47
1:A:232:LEU:HD11	1:A:236:MET:HE3	1.95	0.47

Continued from previous page...

Atom-1	Atom-2	Interatomic	Clash
			$-$ overlap (\AA)
1:C:198:LEU:C	1:C:198:LEU:HD12	2.35	0.47
1:A:167:THR:HG21	1:A:177:ILE:HG12	1.97	0.47
1:C:151:SER:HB2	1:C:153:TYR:CZ	2.50	0.47
1:B:118:LEU:HD13	1:B:126:ARG:HB3	1.97	0.46
1:A:187:LEU:N	1:A:188:PRO:CD	2.79	0.46
1:C:90:TRP:HA	1:C:93:LYS:HD3	1.98	0.46
1:B:69:ASP:OD1	1:B:278:LYS:HE3	2.16	0.45
1:C:223:VAL:HG13	1:C:250:HIS:CE1	2.51	0.45
1:C:207:GLU:HA	1:C:244:LYS:O	2.16	0.45
1:B:274:ARG:HD3	1:B:302:ASN:O	2.16	0.45
1:B:85:LEU:HD21	1:B:293:ALA:HA	1.99	0.45
1:C:140:ARG:NH2	1:C:159:ASP:OD2	2.43	0.44
1:A:126:ARG:HG2	1:A:130:ASP:HB3	2.00	0.44
1:C:141:HIS:O	1:C:142:PHE:C	2.56	0.44
1:C:34:LEU:HD11	1:C:76:THR:HG21	2.00	0.43
1:C:308:LYS:HD3	1:C:310:GLU:OE1	2.18	0.43
1:B:279:LEU:HD13	1:B:298:ILE:HD11	2.00	0.43
1:C:235:TYR:CD2	1:C:279:LEU:HD23	2.53	0.43
1:B:195:CYS:SG	2:B:401:UMP:C6	3.11	0.43
1:A:182:TRP:CZ2	1:A:187:LEU:HD11	2.54	0.43
1:B:88:LEU:HD23	1:B:232:LEU:HG	2.01	0.43
1:C:186:ASP:O	1:C:187:LEU:C	2.57	0.43
1:A:176:ARG:HG3	1:B:215:ARG:NH1	2.34	0.42
1:A:202:TYR:CE1	1:B:47:LYS:HE3	2.54	0.42
1:C:212:LEU:HD22	1:C:230:TYR:CD1	2.53	0.42
1:C:38:GLN:NE2	1:C:269:LEU:HD22	2.34	0.42
1:B:279:LEU:CD1	1:B:298:ILE:HD13	2.50	0.42
1:A:86:GLU:HB2	1:A:106:VAL:HG21	2.01	0.42
1:B:279:LEU:HD13	1:B:298:ILE:HD13	2.01	0.42
1:A:130:ASP:OD1	1:A:146:TYR:OH	2.34	0.42
1:A:44:GLY:HA2	1:A:58:VAL:HG23	2.02	0.42
1:A:167:THR:CG2	1:A:177:ILE:HG12	2.50	0.42
1:C:199:CYS:HA	1:C:211:GLN:O	2.18	0.42
1:A:204:VAL:HG21	1:B:45:VAL:HG23	2.02	0.41
1:B:212:LEU:HD22	1:B:230:TYR:CD1	2.54	0.41
1:C:26:PRO:HA	1:C:27:PRO:HD3	1.85	0.41
1:C:269:LEU:HD23	1:C:269:LEU:HA	1.91	0.41
1:B:118:LEU:HD23	1:B:118:LEU:HA	1.92	0.41
1:A:145:GLU:OE1	1:A:185:ARG:NH1	2.54	0.40
1:C:203:VAL:HA	1:C:207:GLU:O	2.22	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	A	$284/325 \ (87\%)$	276 (97%)	8 (3%)	0	100	100
1	В	284/325 (87%)	271 (95%)	13 (5%)	0	100	100
1	С	285/325~(88%)	269 (94%)	15 (5%)	1 (0%)	34	24
All	All	853/975 (88%)	816 (96%)	36 (4%)	1 (0%)	51	45

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	С	134	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	A	231/280 (82%)	217 (94%)	14 (6%)	18 10	
1	В	233/280 (83%)	220 (94%)	13 (6%)	21 12	
1	С	231/280 (82%)	216 (94%)	15 (6%)	17 9	
All	All	695/840 (83%)	653 (94%)	42 (6%)	19 11	

All (42) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	A	38	GLN
1	A	49	ASP

Continued from previous page...

Mol	Chain	Res	$egin{array}{c} ext{rus } page \ ext{ } ext{ }$
1	A	69	ASP
1	A	96	THR
1	A	100	GLU
1	A	115	ARG
1	A	170	THR
1	A	176	ARG
1	A	185	ARG
1	A	221	LEU
1	A	229	SER
1	A	240	ILE
1	A	306	THR
1	A	311	MET
1	В	49	ASP
1	В	69	ASP
1	В	86	GLU
1	В	119	ASP
1	В	198	LEU
1	В	210	CYS
1	В	221	LEU
1	В	235	TYR
1	В	272	GLU
1	В	288	ILE
1	В	289	ASP
1	В	306	THR
1	В	311	MET
1	С	38	GLN
1	C C	49	ASP
1	C	56	LEU
1	С	69	ASP
1	С	102	SER
1	С	126	ARG
1	C	150	GLU
1	С	171	ASN
1	C C C C C C C C	176	ARG
1	С	204	VAL
1	С	221	LEU
1	С	272	GLU
1	С	294	GLU
1	С	299	GLU
1	С	310	GLU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (4) such sidechains are listed below:

Mol	Chain	Res	Type
1	С	38	GLN
1	С	62	GLN
1	С	171	ASN
1	С	211	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

3 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Mol Type Chain Res I		Link	Bond lengths		Bond angles		gles		
MIOI	Type	Chain	Res	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
1	SCH	В	43	1	6,7,8	0.62	0	3,7,9	1.54	1 (33%)
1	SCH	A	43	1	6,7,8	0.54	0	3,7,9	1.27	1 (33%)
1	SCH	С	43	1	6,7,8	0.55	0	3,7,9	0.83	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	SCH	В	43	1	-	0/2/6/8	-
1	SCH	A	43	1	-	0/2/6/8	-
1	SCH	С	43	1	-	0/2/6/8	-

There are no bond length outliers.

All (2) bond angle outliers are listed below:

11101	Chain	ites	rype	Atoms	Z	$\operatorname{Observed}(^{o})$	ruear()
1	В	43	SCH	CE-SD-SG	2.57	111.44	102.58

Continued from previous page...

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\mathbf{Observed}(^{o})$	$\operatorname{Ideal}({}^{o})$
1	A	43	SCH	CE-SD-SG	2.18	110.12	102.58

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 6 ligands modelled in this entry, 1 is monoatomic - leaving 5 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Trme	Chain	Res	Bond lengths			ths	Bond angles		
MIOI	Type	Chain	nes	Lilik	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	UMP	A	401	-	21,21,21	0.51	0	31,31,31	0.71	0
3	PEG	A	402	-	6,6,6	0.12	0	5,5,5	0.18	0
2	UMP	С	401	-	21,21,21	0.54	0	31,31,31	0.63	0
5	SO4	С	402	-	4,4,4	0.36	0	6,6,6	0.08	0
2	UMP	В	401	-	21,21,21	0.39	0	31,31,31	0.68	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	PEG	A	402	-	-	2/4/4/4	-
2	UMP	С	401	-	-	1/10/22/22	0/2/2/2
2	UMP	В	401	_	-	2/10/22/22	0/2/2/2

Continued from previous page...

\mathbf{Mol}	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	UMP	A	401	-	-	4/10/22/22	0/2/2/2

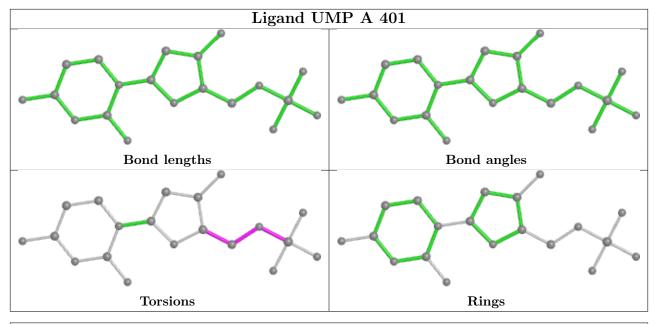
There are no bond length outliers.

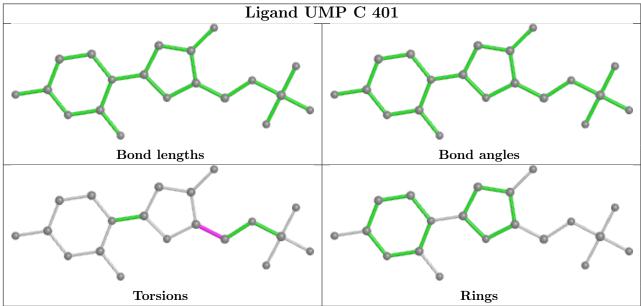
There are no bond angle outliers.

There are no chirality outliers.

All (9) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	В	401	UMP	O4'-C4'-C5'-O5'
3	A	402	PEG	O2-C3-C4-O4
2	A	401	UMP	O4'-C4'-C5'-O5'
2	В	401	UMP	C3'-C4'-C5'-O5'
2	С	401	UMP	O4'-C4'-C5'-O5'
3	A	402	PEG	O1-C1-C2-O2
2	A	401	UMP	C3'-C4'-C5'-O5'
2	A	401	UMP	C5'-O5'-P-OP3
2	A	401	UMP	C4'-C5'-O5'-P


There are no ring outliers.


2 monomers are involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	A	401	UMP	2	0
2	В	401	UMP	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	$\#\mathrm{RSRZ}{>}2$		$OWAB(Å^2)$	Q < 0.9	
1	A	286/325~(88%)	0.24	25 (8%)	10	10	47, 69, 91, 104	0
1	В	286/325~(88%)	0.18	21 (7%)	15	16	48, 73, 93, 103	2 (0%)
1	С	287/325 (88%)	0.16	25 (8%)	10	10	53, 69, 88, 126	1 (0%)
All	All	859/975 (88%)	0.19	71 (8%)	11	11	47, 70, 92, 126	3 (0%)

All (71) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	С	26	PRO	5.7
1	A	213	TYR	5.0
1	С	198	LEU	5.0
1	В	212	LEU	4.7
1	A	212	LEU	4.4
1	С	212	LEU	4.3
1	С	213	TYR	4.3
1	С	197	ALA	4.2
1	A	198	LEU	4.1
1	A	180	CYS	4.0
1	С	195	CYS	4.0
1	В	251	THR	4.0
1	A	195	CYS	3.9
1	A	252	LEU	3.9
1	В	252	LEU	3.9
1	С	251	THR	3.8
1	В	213	TYR	3.8
1	С	178	ILE	3.8
1	В	195	CYS	3.7
1	A	251	THR	3.7
1	В	198	LEU	3.7
1	В	180	CYS	3.6
1	В	230	TYR	3.6

Continued from previous page...

Mol Chain Res Type F 1 C 249 ILE 1 C 180 CYS 1 A 199 CYS	3.5
1 C 180 CYS	3.5
	0.4
1 A 199 CYS	3.4
4 4 4 7 7 7	3.4
1 A 178 ILE	3.3
1 A 281 ILE	3.2
1 B 223 VAL	3.2
1 B 312 ALA	3.2
1 C 252 LEU	3.2
1 C 199 CYS	3.2
1 B 249 ILE	3.2
1 A 253 GLY	2.9
1 B 227 ILE	2.9
1 C 196 HIS	2.8
1 A 121 LEU	2.8
1 C 211 GLN	2.8
1 A 214 GLN	2.7
1 B 197 ALA	2.7
1 C 129 GLY	2.6
1 B 229 SER	2.6
1 C 216 SER	2.6
1 A 227 ILE	2.5
1 A 223 VAL	2.5
1 B 250 HIS	2.4
1 A 230 TYR	2.4
1 B 248 PHE	2.4
1 C 200 GLN	2.3
1 B 182 TRP	2.3
1 A 135 TYR	2.3
1 C 153 TYR	2.3
1 C 27 PRO	2.2
1 C 182 TRP	2.2
1 C 147 ARG	2.2
1 B 146 TYR	2.2
1 A 210 CYS	2.2
1 C 113 GLY	2.2
1 A 249 ILE	2.1
1 B 84 VAL	2.1
1 A 197 ALA	2.1
1 A 196 HIS	2.1
1 C 250 HIS	2.1
1 A 216 SER	2.1
1 A 182 TRP	2.1

Continued from previous page...

Mol	Chain	Res	Type	RSRZ
1	В	214	GLN	2.1
1	A	179	MET	2.1
1	A	229	SER	2.0
1	В	115	ARG	2.0
1	С	215	ARG	2.0
1	С	214	GLN	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

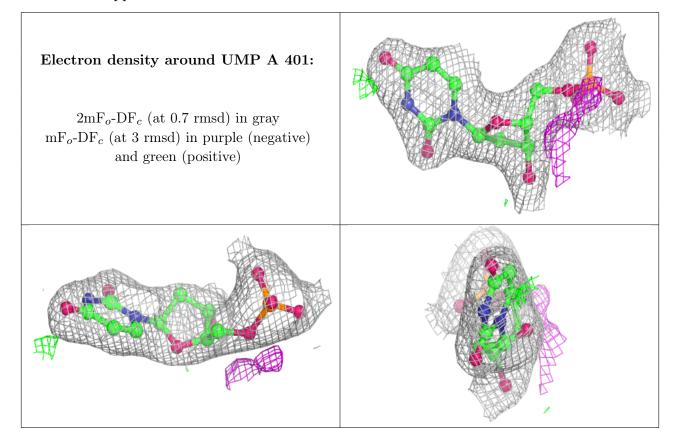
In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$	Q < 0.9
1	SCH	В	43	8/9	0.92	0.12	70,76,102,106	0
1	SCH	С	43	8/9	0.95	0.11	68,74,101,112	0
1	SCH	A	43	8/9	0.96	0.12	74,78,99,101	2

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)


In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$	Q<0.9
3	PEG	A	402	7/7	0.51	0.60	91,97,107,110	0
4	CL	A	403	1/1	0.95	0.18	69,69,69,69	0
2	UMP	A	401	20/20	0.96	0.13	53,64,71,74	0
5	SO4	С	402	5/5	0.96	0.09	91,94,97,100	0
2	UMP	С	401	20/20	0.98	0.14	52,59,67,74	0
2	UMP	В	401	20/20	0.98	0.14	51,62,69,75	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers

as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

Electron density around UMP C 401: $2 \mathrm{mF}_o\text{-}\mathrm{DF}_c$ (at 0.7 rmsd) in gray mF_o -DF_c (at 3 rmsd) in purple (negative) and green (positive) Electron density around UMP B 401: $2 \mathrm{mF}_o\text{-}\mathrm{DF}_c$ (at 0.7 rmsd) in gray mF_o -DF_c (at 3 rmsd) in purple (negative) and green (positive)

6.5 Other polymers (i)

There are no such residues in this entry.

