

wwPDB X-ray Structure Validation Summary Report (i)

Oct 23, 2024 – 04:23 pm BST

PDB ID : 8R52

Title: The complex of Glycogen Phosphorylase with epigallocatechin (EGC).

Authors: Alexopoulos, S.; Papakostopoulou, S.; Koulas, M.S.; Leonidas, D.D.; Skam-

naki, V.

Deposited on : 2023-11-15

Resolution : 2.10 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at

https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : 4.02b-467

Mogul : 1.8.4, CSD as541be (2020)

Xtriage (Phenix) : 1.13

EDS : 3.0

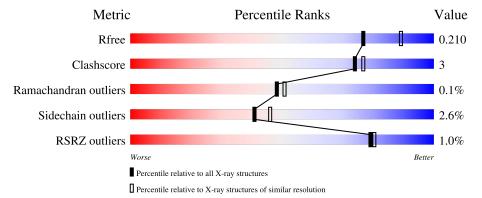
buster-report : 1.1.7 (2018)

Percentile statistics : 20231227.v01 (using entries in the PDB archive December 27th 2023)

CCP4 : 9.0.003 (Gargrove)

Density-Fitness : 1.0.11

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
Metric	$(\# ext{Entries})$	$(\# ext{Entries}, ext{ resolution range}(ext{Å}))$
R_{free}	164625	6234 (2.10-2.10)
Clashscore	180529	6893 (2.10-2.10)
Ramachandran outliers	177936	6839 (2.10-2.10)
Sidechain outliers	177891	6840 (2.10-2.10)
RSRZ outliers	164620	6234 (2.10-2.10)

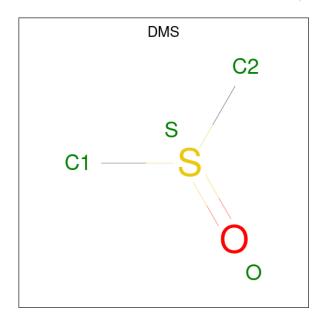
The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	A	829	91%	7% ••

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 7427 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.


• Molecule 1 is a protein called Glycogen phosphorylase, muscle form.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace			
1	A	814	Total 6698	C 4265	N 1184	O 1219	P 1	S 29	0	8	0

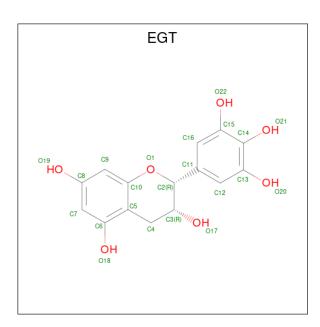
There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	380	ILE	LEU	conflict	UNP P00489

• Molecule 2 is DIMETHYL SULFOXIDE (three-letter code: DMS) (formula: C₂H₆OS).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	A	1	Total C O S 4 2 1 1	0	0
2	A	1	Total C O S 4 2 1 1	0	0
2	A	1	Total C O S 4 2 1 1	0	0

Continued on next page...



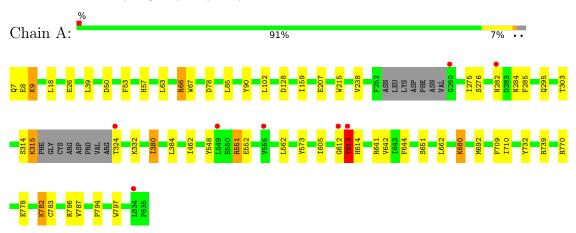
Continued from previous page...

2 A 1 Total C O S A 4 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mol	Chain	$oxed{ \mathbf{Residues} }$		ton	ns		ZeroOcc	AltConf
2 A 1 4 2 1 1 0 0 2 A 1 Total C O S A 4 2 1 1 1 0 0 0 0 0 2 A 1 Total C O S A 4 2 1 1 1 0 0 0 0 0 2 A 1 Total C O S A 4 2 1 1 1 0 0 0 0 0 2 A 1 Total C O S A 4 2 1 1 1 0 0 0 0 0 2 A 1 Total C O S A 4 2 1 1 1 0 0 0 0 0 0 2 A 1 Total C O S A 4 2 1 1 1 0 0 0 0 0 0 0 2 A 1 Total C O S A 4 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							S		
2 A 1 Total C O S A 4 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	A	1		2	1	1	0	0
2 A 1 Total C O S A 2 1 1 1 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2	0	٨	1	Total	С	О	S	0	0
2 A 1 4 2 1 1 0 0 2 A 1 Total C O S S A A D D D D D D D D D D D D D D D D	2	A	1	4	2	1		0	U
2 A 1 Total C O S S 4 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	Λ	1	Total	С	О	S	0	0
2 A 1 4 2 1 1 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 0 0 0 0 0 0 2 A 1 Total C O S A 2 1 1 0 0 0 0 0 0 0 0 2 A 1 Total C O S A 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	A	1	4				0	U
2 A 1 Total C O S A 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9	Δ	1				S	0	0
2 A 1 4 2 1 1 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 0 0 0 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 0 0 0 0 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 0 0 0 0 0 0 0 0 0 0 0 2 A 1 Total C O S A 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		11	1					0	U
2 A 1 Total C O S A 2 1 1 1 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 0 0 0 0 0 2 A 1 Total C O S A 2 1 1 0 0 0 0 0 2 A 1 Total C O S A 2 1 1 0 0 0 0 0 0 2 A 1 Total C O S A 2 1 1 0 0 0 0 0 0 0 0 2 A 1 Total C O S A 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	A	1					0	0
2 A 1 4 2 1 1 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 0 0 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 0 0 0 0 0 0 0 2 A 1 Total C O S A 2 1 1 0 0 0 0 0 0 0 2 A 1 Total C O S A 2 1 1 0 0 0 0 0 0 0 0 2 A 1 Total C O S A 2 1 1 0 0 0 0 0 0 0 0 0 0 2 A 1 Total C O S A 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		11	1					Ů,	0
2 A 1 Total C O S A 4 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	A	1					0	0
2 A 1 4 2 1 1 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 2 A 1 Total C O S A 4 2 1 1 1 0 0 0 0 0 2 A 1 Total C O S A 4 2 1 1 1 0 0		11							
2 A 1 Total C O S A 4 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	A	1					0	0
2 A 1 4 2 1 1 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_		_						, and the second
2 A 1 Total C O S A 4 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	A	1					0	0
2 A 1 4 2 1 1 0 0 2 A 1 Total C O S A A D D D D D D D D D D D D D D D D D								_	-
2 A 1 Total C O S A 4 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	A	1					0	0
2 A 1 4 2 1 1 0 0 2 A 1 Total C O S A A 2 1 1 0 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 0 0 0 0 2 A 1 Total C O S A A 2 1 1 0 0 0 0 2 A 1 Total C O S A A 2 1 1 0 0 0 0 2 A 1 Total C O S A A 2 1 1 0 0 0 0 2 A 1 Total C O S A A 2 1 1 0 0 0 0 2 A 1 Total C O S A 2 1 1 0 0 0 0 2 A 1 Total C O S 0 S 0 0 0 0 2 A 1 Total C O S 0 S 0 0 0 0 2 A 1 Total C O S 0 S 0 0 0 0									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	A	1					0	0
2 A 1 4 2 1 1 0 0 2 A 1 Total C O S A A 2 1 1 1 0 0 0 0 0 2 A 1 Total C O S A A 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	A	1					0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	A	1					0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	A	1					0	0
2 A 1 4 2 1 1 0 0 2 A 1 Total C O S 4 2 1 1 0 0 2 A 1 Total C O S 4 2 1 1 0 0 2 A 1 Total C O S 4 2 1 1 0 0 2 A 1 Total C O S 4 2 1 1 0 0 2 A 1 Total C O S 4 2 1 1 0 0 2 A 1 Total C O S 4 2 1 1 0 0 2 A 1 Total C O S 0 S 0 0 0									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	A	1					0	0
2 A 1 4 2 1 1 0 0 2 A 1 Total C O S 4 2 1 1 0 0 2 A 1 Total C O S 4 2 1 1 0 0 2 A 1 Total C O S 4 2 1 1 0 0 2 A 1 Total C O S 4 2 1 1 0 0 2 A 1 Total C O S 0 0 0 2 A 1 Total C O S 0 0									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	A	1					0	0
2 A 1 4 2 1 1 0 0 2 A 1 Total C O S 4 2 1 1 0 0 2 A 1 Total C O S 4 2 1 1 0 0 2 A 1 Total C O S 0 0 0 2 A 1 Total C O S 0 0 0									
2 A 1 Total C O S 4 2 1 1 0 0 0 2 A 1 Total C O S 4 2 1 1 0 0 0 2 A 1 Total C O S 0 0 0 0 2 A 1 Total C O S 0 0 0 0	2	A	1					0	0
2 A 1 4 2 1 1 0 0 2 A 1 Total C O S A 2 1 1 0 0 2 A 1 Total C O S O S O O O O O O O O O O O O O O O									
2 A 1 Total C O S 0 0 2 A 1 Total C O S 0 0	2	A	1					0	0
2 A 1 4 2 1 1 0 0 2 A 1 Total C O S 0									6
2 A 1 Total C O S 0	2	A	1					0	0
		Α.	1					0	0
	2	A	1			1		0	U

• Molecule 3 is 2-(3,4,5-TRIHYDROXY-PHENYL)-CHROMAN-3,5,7-TRIOL (three-letter code: EGT) (formula: $C_{15}H_{14}O_7$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	
3	A	1	Total 22	C 15	O 7	0	0

• Molecule 4 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	A	619	Total O 619 619	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Glycogen phosphorylase, muscle form

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 43 21 2	Depositor
Cell constants	125.97Å 125.97Å 115.17Å	Donogitor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Resolution (Å)	89.08 - 2.10	Depositor
Resolution (A)	89.08 - 2.10	EDS
% Data completeness	88.3 (89.08-2.10)	Depositor
(in resolution range)	88.3 (89.08-2.10)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	7.86 (at 2.10Å)	Xtriage
Refinement program	REFMAC 5.8.0267	Depositor
D D.	0.151 , 0.203	Depositor
R, R_{free}	0.164 , 0.210	DCC
R_{free} test set	2743 reflections (4.98%)	wwPDB-VP
Wilson B-factor (Å ²)	27.7	Xtriage
Anisotropy	0.033	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.36 , 48.4	EDS
L-test for twinning ²	$ < L >=0.50, < L^2>=0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	7427	wwPDB-VP
Average B, all atoms (Å ²)	32.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.94% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: EGT, DMS, CSO, LLP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Chain		$\mathbf{lengths}$	Bond angles		
MIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	A	0.73	0/6827	0.81	0/9229	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	6698	0	6647	40	0
2	A	88	0	132	7	0
3	A	22	0	14	2	0
4	A	619	0	0	6	0
All	All	7427	0	6793	41	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

The worst 5 of 41 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} ({\rm \AA}) \end{array}$	Clash overlap (Å)
1:A:770:ARG:HD3	4:A:1060:HOH:O	1.74	0.87
1:A:782:LYS:HE2	4:A:1054:HOH:O	1.88	0.72
1:A:159[B]:ILE:HD11	1:A:276:SER:HA	1.73	0.69
1:A:797:TRP:HB3	2:A:917:DMS:H12	1.75	0.67
1:A:548:TYR:HB2	3:A:923:EGT:C4	2.24	0.67

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	A	814/829 (98%)	793 (97%)	20 (2%)	1 (0%)	48 51	

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	A	613	TYR

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
1	A	711/717 (99%)	692 (97%)	19 (3%)	40 44		

5 of 19 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	A	641	ARG
1	A	651[B]	SER
1	A	782	LYS
1	A	651[A]	SER
1	A	324	THR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 9 such sidechains are listed below:

Mol	Chain	Res	Type
1	A	707	ASN
1	A	744	GLN
1	A	284	ASN
1	A	481	ASN
1	A	484	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains i

2 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

_	Mol	Type	Chain	Res	Link	Bond lengths			Bond angles		
L	VIOI					Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
	1	LLP	A	680	1	23,24,25	0.62	0	25,32,34	0.77	1 (4%)
	1	CSO	A	171	1	3,6,7	0.67	0	0,6,8	-	-

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	LLP	A	680	1	-	2/16/17/19	0/1/1/1
1	CSO	A	171	1	-	0/1/5/7	-

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\mathbf{Observed}(^o)$	$\operatorname{Ideal}({}^{o})$
1	A	680	LLP	OP4-P-OP1	-2.36	99.85	106.47

There are no chirality outliers.

All (2) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	A	680	LLP	C4-C5-C5'-OP4
1	A	680	LLP	C6-C5-C5'-OP4

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes	
1	A	680	LLP	1	0	

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

23 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

	Mol	Type	Chain	Res	Link	Bond lengths			Bond angles		
						Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
ſ	2	DMS	A	917	-	3,3,3	0.18	0	3,3,3	0.32	0

Mol	Type	Chain	Dog	Link	Во	ond leng	ths	В	ond ang	eles
IVIOI	Type	Chain	Res	Lilik	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	DMS	A	911	-	3,3,3	0.28	0	3,3,3	0.07	0
2	DMS	A	902	-	3,3,3	0.17	0	3,3,3	0.16	0
2	DMS	A	914	-	3,3,3	0.20	0	3,3,3	0.11	0
2	DMS	A	916	-	3,3,3	0.34	0	3,3,3	0.16	0
2	DMS	A	922	-	3,3,3	0.34	0	3,3,3	0.14	0
2	DMS	A	921	-	3,3,3	0.20	0	3,3,3	0.11	0
2	DMS	A	918	-	3,3,3	0.18	0	3,3,3	0.09	0
2	DMS	A	904	-	3,3,3	0.27	0	3,3,3	0.09	0
2	DMS	A	901	-	3,3,3	0.22	0	3,3,3	0.11	0
2	DMS	A	920	-	3,3,3	0.34	0	3,3,3	0.19	0
2	DMS	A	903	-	3,3,3	0.20	0	3,3,3	0.19	0
2	DMS	A	913	-	3,3,3	0.37	0	3,3,3	0.13	0
3	EGT	A	923	-	24,24,24	0.44	0	36,36,36	0.60	0
2	DMS	A	906	-	3,3,3	0.31	0	3,3,3	0.23	0
2	DMS	A	912	-	3,3,3	0.26	0	3,3,3	0.17	0
2	DMS	A	915	-	3,3,3	0.16	0	3,3,3	0.08	0
2	DMS	A	919	-	3,3,3	0.18	0	3,3,3	0.07	0
2	DMS	A	907	-	3,3,3	0.63	0	3,3,3	0.64	0
2	DMS	A	909	-	3,3,3	0.23	0	3,3,3	0.30	0
2	DMS	A	905	-	3,3,3	0.27	0	3,3,3	0.16	0
2	DMS	A	908	-	3,3,3	0.20	0	3,3,3	0.15	0
2	DMS	A	910	-	3,3,3	0.22	0	3,3,3	0.12	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

\mathbf{Mol}	\mathbf{Type}	Chain	Res	Link	Chirals	Torsions	Rings
3	EGT	A	923	-	-	0/4/16/16	0/3/3/3

There are no bond length outliers.

There are no bond angle outliers.

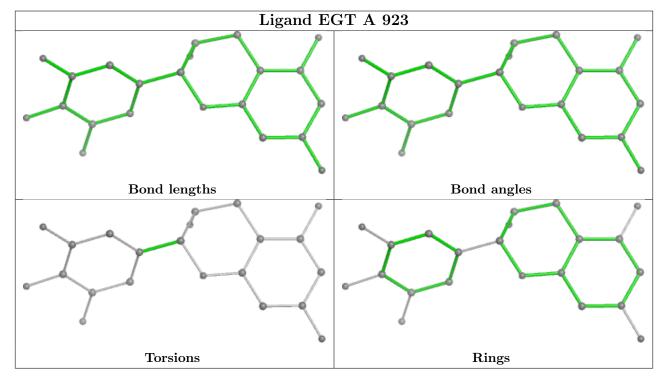
There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

6 monomers are involved in 9 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	A	917	DMS	3	0


Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	A	921	DMS	1	0
2	A	903	DMS	1	0
3	A	923	EGT	2	0
2	A	907	DMS	1	0
2	A	905	DMS	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Mol Chain Analysed		<RSRZ $>$	# RSRZ > 2		$OWAB(Å^2)$	Q<0.9	
1	A	812/829 (97%)	-0.28	8 (0%)	79	80	13, 28, 51, 96	8 (0%)

The worst 5 of 8 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	A	260	GLY	3.2
1	A	613	TYR	2.4
1	A	324	THR	2.4
1	A	612	GLY	2.3
1	A	282	ASN	2.3

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

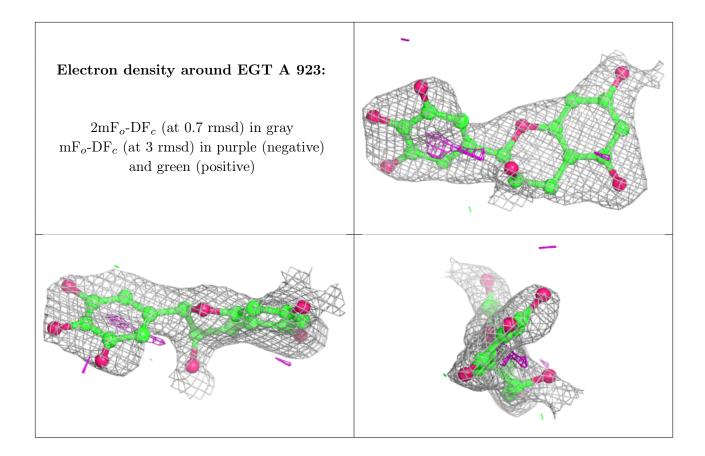
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$	Q<0.9
1	CSO	A	171	7/8	0.92	0.09	28,35,55,56	0
1	LLP	A	680	24/25	0.98	0.04	21,22,23,24	0

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum,



median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$	Q<0.9
2	DMS	A	922	4/4	0.61	0.26	79,79,82,89	0
2	DMS	A	916	4/4	0.68	0.19	64,74,74,76	0
2	DMS	A	915	4/4	0.75	0.18	84,96,97,100	0
2	DMS	A	920	4/4	0.78	0.20	73,77,79,82	0
2	DMS	A	911	4/4	0.78	0.19	75,82,88,88	0
2	DMS	A	917	4/4	0.79	0.23	43,61,71,79	0
2	DMS	A	912	4/4	0.79	0.19	73,84,88,91	0
2	DMS	A	914	4/4	0.79	0.23	86,94,97,100	0
2	DMS	A	918	4/4	0.87	0.20	69,82,83,93	0
3	EGT	A	923	22/22	0.87	0.10	46,60,64,65	0
2	DMS	A	903	4/4	0.88	0.17	51,64,64,73	0
2	DMS	A	908	4/4	0.89	0.16	61,68,71,75	0
2	DMS	A	921	4/4	0.92	0.14	54,56,60,61	0
2	DMS	A	904	4/4	0.92	0.12	40,41,42,43	0
2	DMS	A	910	4/4	0.92	0.12	71,72,73,76	0
2	DMS	A	905	4/4	0.93	0.15	43,44,48,50	0
2	DMS	A	909	4/4	0.94	0.11	48,49,53,57	0
2	DMS	A	902	4/4	0.94	0.11	61,63,68,72	0
2	DMS	A	913	4/4	0.94	0.14	39,45,46,54	0
2	DMS	A	919	4/4	0.95	0.10	53,58,58,60	0
2	DMS	A	901	4/4	0.96	0.10	56,58,62,66	0
2	DMS	A	906	4/4	0.96	0.10	41,52,52,54	0
2	DMS	A	907	4/4	0.97	0.09	36,36,37,39	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

