PDB ID : 2RDA
Title : Human Thymidylate Synthase Stabilized in Active Conformation by R163K
Mutation: Asymmetry and Reactivity of Cys195
Authors : Gibson, L.M.; Lovelace, L.L.; Lebioda, L.
Deposited on : 2007-09-21
Resolution : 2.67 Å (reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

- MolProbity : 4.02b-467
- Mogul : 1.7.3 (157068), CSD as539be (2018)
- Xtriage (Phenix) : 1.13
- EDS : trunk30967
- Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
- Refmac : 5.8.0158
- CCP4 : 7.0 (Gargrove)
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : trunk30967
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

X-RAY DIFFRACTION

The reported resolution of this entry is 2.67 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{free})</td>
<td>111664</td>
<td>3333 (2.70-2.66)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>122126</td>
<td>3672 (2.70-2.66)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>120053</td>
<td>3620 (2.70-2.66)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>120020</td>
<td>3620 (2.70-2.66)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>108989</td>
<td>3248 (2.70-2.66)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for \(> = 3 \), 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions \(<= 5\% \). The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>313</td>
<td></td>
</tr>
</tbody>
</table>
The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Chirality</th>
<th>Geometry</th>
<th>Clashes</th>
<th>Electron density</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>PO4</td>
<td>E</td>
<td>618</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>PO4</td>
<td>E</td>
<td>619</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 4 unique types of molecules in this entry. The entry contains 13834 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Thymidylate synthase.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>282</td>
<td>Total 2279 C 1457 N 399 O 412 S 11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>281</td>
<td>Total 2268 C 1451 N 395 O 411 S 11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>281</td>
<td>Total 2268 C 1451 N 395 O 411 S 11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>281</td>
<td>Total 2268 C 1451 N 395 O 411 S 11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>281</td>
<td>Total 2268 C 1451 N 395 O 411 S 11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>281</td>
<td>Total 2268 C 1451 N 395 O 411 S 11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

There are 6 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>163</td>
<td>LYS</td>
<td>ARG</td>
<td>ENGINEERED</td>
<td>UNP P04818</td>
</tr>
<tr>
<td>B</td>
<td>163</td>
<td>LYS</td>
<td>ARG</td>
<td>ENGINEERED</td>
<td>UNP P04818</td>
</tr>
<tr>
<td>C</td>
<td>163</td>
<td>LYS</td>
<td>ARG</td>
<td>ENGINEERED</td>
<td>UNP P04818</td>
</tr>
<tr>
<td>D</td>
<td>163</td>
<td>LYS</td>
<td>ARG</td>
<td>ENGINEERED</td>
<td>UNP P04818</td>
</tr>
<tr>
<td>E</td>
<td>163</td>
<td>LYS</td>
<td>ARG</td>
<td>ENGINEERED</td>
<td>UNP P04818</td>
</tr>
<tr>
<td>F</td>
<td>163</td>
<td>LYS</td>
<td>ARG</td>
<td>ENGINEERED</td>
<td>UNP P04818</td>
</tr>
</tbody>
</table>

- Molecule 2 is PHOSPHATE ION (three-letter code: PO4) (formula: O₄P).
Molecule 3 is BETA-MERCAPTOETHANOL (three-letter code: BME) (formula: C₂H₆OS).
Molecule 4 is water.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>1</td>
<td>Total C O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1</td>
<td>Total C O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A</td>
<td>62</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>62</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>52</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>30</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>23</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>9</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>6</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Thymidylate synthase

Chain A:

Chain B:

• Molecule 1: Thymidylate synthase

• Molecule 1: Thymidylate synthase
Chain C:

- Molecule 1: Thymidylate synthase

Chain D:

- Molecule 1: Thymidylate synthase

Chain E:

- Molecule 1: Thymidylate synthase
Molecule 1: Thymidylate synthase

Chain F:

<table>
<thead>
<tr>
<th>Position</th>
<th>Residue</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>134</td>
<td>MET</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>Q270</td>
<td></td>
</tr>
<tr>
<td>269</td>
<td>L269</td>
<td></td>
</tr>
<tr>
<td>271</td>
<td>R271</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Y135</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>V203</td>
<td></td>
</tr>
<tr>
<td>272</td>
<td>E272</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>R68</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>N205</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>P72</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>R140</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>H141</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>L73</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>F142</td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>L212</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>A144</td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>Q214</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>Y146</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>V79</td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>I215</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>R147</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>F80</td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>D218</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>E83</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>G83</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>I85</td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>D222</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>L88</td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>N227</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>I92</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>E150</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>A98</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>E158</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>K99</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>L161</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>G105</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>I108</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>D159</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>L109</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>Q162</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>I110</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>K163</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>K112</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>Y164</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>I115</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>V165</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>I117</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>N166</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>N118</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>I169</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>I120</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>K171</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>I122</td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>K174</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>I125</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>Y175</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>I126</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>V176</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>I127</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>I177</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>I128</td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>I178</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>I130</td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>I179</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>I131</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>C180</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>I132</td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>C181</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>I133</td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>C182</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>I134</td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>C183</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>I135</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>C184</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>I136</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>C185</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>I137</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>C186</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>I138</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>C187</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>I139</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>C188</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>I140</td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>C189</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>I141</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>C190</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>I142</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>C191</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>I143</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>C192</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>I144</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>C193</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>I145</td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>C194</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>I146</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>C195</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>I147</td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>C196</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>I148</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>C197</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>I149</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>C198</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>I150</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>C199</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>I151</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>C200</td>
<td></td>
</tr>
</tbody>
</table>
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 32 2 1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td></td>
<td>Depositor</td>
</tr>
<tr>
<td>a, b, c, α, β, γ</td>
<td></td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td></td>
<td>Depositor</td>
</tr>
<tr>
<td>% Data completeness (in resolution range)</td>
<td>97.2 (107.21-2.67)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>merge</sub></td>
<td>0.21</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>sym</sub></td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td>< I/σ(I) ></td>
<td>4.33 (at 2.65Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>REFMAC</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, R<sub>free</sub></td>
<td>0.209 , 0.279</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>free</sub> test set</td>
<td>7351 reflections (10.12%)</td>
<td>DCC</td>
</tr>
<tr>
<td>Wilson B-factor (Å<sup>2</sup>)</td>
<td>35.8</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.438</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent k<sub>sol</sub>(e/Å<sup>3</sup>), B<sub>sol</sub>(Å<sup>2</sup>)</td>
<td>0.31 , 48.9</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning<sup>2</sup></td>
<td><</td>
<td>L</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>0.028 for -h,-k,l</td>
<td>Xtriage</td>
</tr>
<tr>
<td>F<sub>A</sub>·F<sub>C</sub> correlation</td>
<td>0.92</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>13834</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å<sup>2</sup>)</td>
<td>44.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: *The largest off-origin peak in the Patterson function is 12.50% of the height of the origin peak. No significant pseudotranslation is detected.*

¹Intensities estimated from amplitudes.

²Theoretical values of < |L| >, < L² > for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: PO4, BME

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>2.05</td>
<td>62/2339 (2.7%)</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>2.13</td>
<td>74/2328 (3.2%)</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1.89</td>
<td>41/2328 (1.8%)</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>1.72</td>
<td>31/2328 (1.3%)</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>1.44</td>
<td>12/2328 (0.5%)</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>1.26</td>
<td>5/2328 (0.2%)</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1.78</td>
<td>225/13979 (1.6%)</td>
</tr>
</tbody>
</table>

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>#Chirality outliers</th>
<th>#Planarity outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

All (225) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>150</td>
<td>GLU</td>
<td>CG-CG</td>
<td>-13.31</td>
<td>1.72</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>199</td>
<td>CYS</td>
<td>CB-SG</td>
<td>-0.57</td>
<td>1.62</td>
<td>1.82</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>150</td>
<td>GLU</td>
<td>CB-CG</td>
<td>10.62</td>
<td>1.72</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>294</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>10.57</td>
<td>1.37</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>195</td>
<td>CYS</td>
<td>CB-SG</td>
<td>-10.48</td>
<td>1.64</td>
<td>1.82</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>294</td>
<td>GLU</td>
<td>CG-CG</td>
<td>10.28</td>
<td>1.67</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>127</td>
<td>ARG</td>
<td>CG-CG</td>
<td>10.22</td>
<td>1.77</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>137</td>
<td>PHE</td>
<td>CE1-CZ</td>
<td>9.53</td>
<td>1.55</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>272</td>
<td>GLU</td>
<td>CG-CG</td>
<td>9.28</td>
<td>1.65</td>
<td>1.51</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>150</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>9.01</td>
<td>1.35</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>213</td>
<td>TYR</td>
<td>CE1-CZ</td>
<td>-8.76</td>
<td>1.27</td>
<td>1.38</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>182</td>
<td>TRP</td>
<td>CE3-CZ3</td>
<td>8.60</td>
<td>1.53</td>
<td>1.38</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>84</td>
<td>VAL</td>
<td>CA-CB</td>
<td>-8.53</td>
<td>1.36</td>
<td>1.54</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>153</td>
<td>TYR</td>
<td>CD1-CE1</td>
<td>8.46</td>
<td>1.52</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>70</td>
<td>GLU</td>
<td>CG-CD</td>
<td>8.35</td>
<td>1.64</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>70</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>8.25</td>
<td>1.34</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>272</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>8.12</td>
<td>1.34</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>207</td>
<td>GLU</td>
<td>CG-CD</td>
<td>8.06</td>
<td>1.64</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>84</td>
<td>VAL</td>
<td>CB-CG2</td>
<td>8.03</td>
<td>1.69</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>272</td>
<td>GLU</td>
<td>CG-CD</td>
<td>7.93</td>
<td>1.63</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>267</td>
<td>ILE</td>
<td>CA-CB</td>
<td>7.91</td>
<td>1.73</td>
<td>1.54</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>201</td>
<td>PHE</td>
<td>CD1-CE1</td>
<td>-7.88</td>
<td>1.23</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>180</td>
<td>CYS</td>
<td>CB-SG</td>
<td>-7.85</td>
<td>1.68</td>
<td>1.82</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>64</td>
<td>ARG</td>
<td>CZ-NH2</td>
<td>7.83</td>
<td>1.43</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>294</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>7.77</td>
<td>1.34</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>65</td>
<td>TYR</td>
<td>CE1-CZ</td>
<td>-7.72</td>
<td>1.28</td>
<td>1.38</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>142</td>
<td>PHE</td>
<td>CD1-CE1</td>
<td>-7.70</td>
<td>1.23</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>30</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>7.61</td>
<td>1.34</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>173</td>
<td>ASP</td>
<td>CB-CG</td>
<td>7.60</td>
<td>1.67</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>199</td>
<td>CYS</td>
<td>CB-SG</td>
<td>-7.55</td>
<td>1.69</td>
<td>1.82</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>180</td>
<td>CYS</td>
<td>CB-SG</td>
<td>7.52</td>
<td>1.95</td>
<td>1.82</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>201</td>
<td>PHE</td>
<td>CE2-CZ</td>
<td>7.50</td>
<td>1.51</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>104</td>
<td>LYS</td>
<td>CE-NZ</td>
<td>7.49</td>
<td>1.67</td>
<td>1.49</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>240</td>
<td>ILE</td>
<td>CA-CB</td>
<td>-7.48</td>
<td>1.37</td>
<td>1.54</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>207</td>
<td>GLU</td>
<td>CG-CD</td>
<td>7.48</td>
<td>1.63</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>297</td>
<td>GLN</td>
<td>CG-CD</td>
<td>7.46</td>
<td>1.68</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>182</td>
<td>TRP</td>
<td>CB-CG</td>
<td>-7.44</td>
<td>1.36</td>
<td>1.50</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>163</td>
<td>LYS</td>
<td>CD-CE</td>
<td>7.43</td>
<td>1.69</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>297</td>
<td>GLN</td>
<td>CG-CD</td>
<td>7.41</td>
<td>1.68</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>45</td>
<td>VAL</td>
<td>CB-CG2</td>
<td>-7.39</td>
<td>1.37</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>30</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>7.37</td>
<td>1.33</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>286</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>7.32</td>
<td>1.33</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>80</td>
<td>PHE</td>
<td>CE1-CZ</td>
<td>7.27</td>
<td>1.51</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>134</td>
<td>VAL</td>
<td>CB-CG2</td>
<td>-7.26</td>
<td>1.37</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>301</td>
<td>TYR</td>
<td>CD1-CE1</td>
<td>7.26</td>
<td>1.50</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>98</td>
<td>ALA</td>
<td>CA-CB</td>
<td>-7.24</td>
<td>1.37</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>78</td>
<td>ARG</td>
<td>CG-CD</td>
<td>7.22</td>
<td>1.70</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>64</td>
<td>ARG</td>
<td>CB-CG</td>
<td>7.21</td>
<td>1.72</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>59</td>
<td>PHE</td>
<td>CB-CG</td>
<td>-7.19</td>
<td>1.39</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>290</td>
<td>ASP</td>
<td>CB-CG</td>
<td>7.14</td>
<td>1.66</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>230</td>
<td>TYR</td>
<td>CE1-CZ</td>
<td>7.11</td>
<td>1.47</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>65</td>
<td>TYR</td>
<td>CE1-CZ</td>
<td>-7.10</td>
<td>1.29</td>
<td>1.38</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>30</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>7.01</td>
<td>1.33</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>100</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>6.93</td>
<td>1.33</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>195</td>
<td>CYS</td>
<td>CB-SG</td>
<td>-6.92</td>
<td>1.70</td>
<td>1.82</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>150</td>
<td>GLU</td>
<td>CG-CF</td>
<td>6.92</td>
<td>1.62</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>146</td>
<td>TYR</td>
<td>CD2-CF</td>
<td>6.85</td>
<td>1.49</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>33</td>
<td>TYR</td>
<td>CD2-CF</td>
<td>-6.83</td>
<td>1.29</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>182</td>
<td>TRP</td>
<td>CB-CG</td>
<td>-6.81</td>
<td>1.38</td>
<td>1.50</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>299</td>
<td>GLU</td>
<td>CD-CG</td>
<td>6.79</td>
<td>1.62</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>137</td>
<td>PHE</td>
<td>CE1-CZ</td>
<td>6.79</td>
<td>1.50</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>207</td>
<td>GLU</td>
<td>CB-CG</td>
<td>-6.78</td>
<td>1.39</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>127</td>
<td>GLU</td>
<td>CG-CG</td>
<td>6.76</td>
<td>1.62</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>287</td>
<td>LYS</td>
<td>CD-CG</td>
<td>6.75</td>
<td>1.68</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>258</td>
<td>TYR</td>
<td>CD2-CF</td>
<td>6.68</td>
<td>1.49</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>264</td>
<td>PRO</td>
<td>CA-C</td>
<td>6.67</td>
<td>1.66</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>286</td>
<td>GLU</td>
<td>CG-CG</td>
<td>6.65</td>
<td>1.61</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>185</td>
<td>ARG</td>
<td>CG-CG</td>
<td>6.65</td>
<td>1.68</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>142</td>
<td>PHE</td>
<td>CE2-CZ</td>
<td>-6.64</td>
<td>1.24</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>30</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>6.63</td>
<td>1.32</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>235</td>
<td>TYR</td>
<td>CE2-CZ</td>
<td>6.53</td>
<td>1.47</td>
<td>1.38</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>199</td>
<td>CYS</td>
<td>CB-SG</td>
<td>-6.49</td>
<td>1.71</td>
<td>1.82</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>147</td>
<td>ARG</td>
<td>CZ-NH2</td>
<td>6.48</td>
<td>1.41</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>71</td>
<td>PHE</td>
<td>CB-CG</td>
<td>-6.43</td>
<td>1.40</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>80</td>
<td>PHE</td>
<td>CE1-CZ</td>
<td>6.43</td>
<td>1.49</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>229</td>
<td>SER</td>
<td>CA-CB</td>
<td>-6.42</td>
<td>1.43</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>294</td>
<td>GLU</td>
<td>CG-CG</td>
<td>6.39</td>
<td>1.61</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>207</td>
<td>GLU</td>
<td>CG-CG</td>
<td>6.35</td>
<td>1.61</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>299</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>6.30</td>
<td>1.32</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>180</td>
<td>CYS</td>
<td>CB-SG</td>
<td>-6.30</td>
<td>1.71</td>
<td>1.82</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>195</td>
<td>CYS</td>
<td>N-CA</td>
<td>-6.28</td>
<td>1.33</td>
<td>1.46</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>39</td>
<td>HIS</td>
<td>CA-CB</td>
<td>-6.27</td>
<td>1.40</td>
<td>1.53</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>135</td>
<td>TYR</td>
<td>CD1-CE1</td>
<td>-6.23</td>
<td>1.30</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>87</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>6.23</td>
<td>1.32</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>100</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>6.21</td>
<td>1.32</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>90</td>
<td>TRP</td>
<td>CE3-CF</td>
<td>6.15</td>
<td>1.49</td>
<td>1.38</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>71</td>
<td>PHE</td>
<td>CB-CG</td>
<td>-6.15</td>
<td>1.41</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>210</td>
<td>CYS</td>
<td>CB-SG</td>
<td>6.14</td>
<td>1.92</td>
<td>1.82</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>182</td>
<td>TRP</td>
<td>CB-CG</td>
<td>-6.13</td>
<td>1.39</td>
<td>1.50</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>294</td>
<td>GLU</td>
<td>CB-CG</td>
<td>6.12</td>
<td>1.63</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>147</td>
<td>ARG</td>
<td>CZ-NH2</td>
<td>6.11</td>
<td>1.41</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>58</td>
<td>VAL</td>
<td>CB-CG2</td>
<td>-6.11</td>
<td>1.40</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>100</td>
<td>GLU</td>
<td>CG-CG</td>
<td>6.10</td>
<td>1.61</td>
<td>1.51</td>
</tr>
<tr>
<td>Mol</td>
<td>Chain</td>
<td>Res</td>
<td>Type</td>
<td>Atoms</td>
<td>Z</td>
<td>Observed(Å)</td>
<td>Ideal(Å)</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>90</td>
<td>TRP</td>
<td>CB-CG</td>
<td>-6.10</td>
<td>1.39</td>
<td>1.50</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>86</td>
<td>GLU</td>
<td>CG-CD</td>
<td>6.09</td>
<td>1.61</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>32</td>
<td>GLN</td>
<td>CG-CD</td>
<td>-6.08</td>
<td>1.37</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>59</td>
<td>PHE</td>
<td>CD2-CE2</td>
<td>6.08</td>
<td>1.51</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>86</td>
<td>GLU</td>
<td>CG-CD</td>
<td>6.08</td>
<td>1.61</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>178</td>
<td>ILE</td>
<td>N-CA</td>
<td>-6.08</td>
<td>1.34</td>
<td>1.46</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>150</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>6.08</td>
<td>1.32</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>207</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>6.07</td>
<td>1.32</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>258</td>
<td>TYR</td>
<td>CE1-CZ</td>
<td>6.05</td>
<td>1.46</td>
<td>1.38</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>181</td>
<td>ALA</td>
<td>C-O</td>
<td>-6.02</td>
<td>1.11</td>
<td>1.23</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>292</td>
<td>LYS</td>
<td>CD-CE</td>
<td>6.00</td>
<td>1.66</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>26</td>
<td>PRO</td>
<td>CB-CG</td>
<td>5.94</td>
<td>1.79</td>
<td>1.50</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>50</td>
<td>ARG</td>
<td>CG-CD</td>
<td>5.94</td>
<td>1.66</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>87</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>5.91</td>
<td>1.32</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>204</td>
<td>VAL</td>
<td>CB-CG1</td>
<td>5.91</td>
<td>1.65</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>164</td>
<td>VAL</td>
<td>CB-CG1</td>
<td>-5.86</td>
<td>1.40</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>42</td>
<td>ARG</td>
<td>CD-NE</td>
<td>5.86</td>
<td>1.56</td>
<td>1.46</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>115</td>
<td>ARG</td>
<td>CG-CD</td>
<td>5.85</td>
<td>1.66</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>43</td>
<td>CYS</td>
<td>CB-SG</td>
<td>5.85</td>
<td>1.92</td>
<td>1.82</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>197</td>
<td>ALA</td>
<td>CA-CB</td>
<td>-5.83</td>
<td>1.40</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>139</td>
<td>TRP</td>
<td>CB-CG</td>
<td>-5.83</td>
<td>1.39</td>
<td>1.50</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>209</td>
<td>SER</td>
<td>CA-CB</td>
<td>-5.83</td>
<td>1.44</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>58</td>
<td>VAL</td>
<td>CB-CG2</td>
<td>5.83</td>
<td>1.65</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>116</td>
<td>ASP</td>
<td>CB-CG</td>
<td>5.83</td>
<td>1.64</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>30</td>
<td>GLU</td>
<td>CG-CD</td>
<td>5.82</td>
<td>1.60</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>225</td>
<td>PHE</td>
<td>CD1-CE1</td>
<td>5.80</td>
<td>1.50</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>26</td>
<td>PRO</td>
<td>N-CA</td>
<td>5.80</td>
<td>1.57</td>
<td>1.47</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>83</td>
<td>GLY</td>
<td>N-CA</td>
<td>5.79</td>
<td>1.54</td>
<td>1.46</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>246</td>
<td>GLY</td>
<td>C-O</td>
<td>5.79</td>
<td>1.32</td>
<td>1.23</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>296</td>
<td>PHE</td>
<td>CE2-CZ</td>
<td>5.78</td>
<td>1.48</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>158</td>
<td>VAL</td>
<td>CB-CG1</td>
<td>5.78</td>
<td>1.65</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>65</td>
<td>TYR</td>
<td>N-CA</td>
<td>5.77</td>
<td>1.57</td>
<td>1.46</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>80</td>
<td>PHE</td>
<td>CE2-CZ</td>
<td>5.74</td>
<td>1.48</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>26</td>
<td>PRO</td>
<td>CA-C</td>
<td>5.71</td>
<td>1.64</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>202</td>
<td>TYR</td>
<td>CD2-CE2</td>
<td>-5.67</td>
<td>1.30</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>128</td>
<td>GLU</td>
<td>CG-CD</td>
<td>5.67</td>
<td>1.60</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>215</td>
<td>ARG</td>
<td>N-CA</td>
<td>-5.67</td>
<td>1.35</td>
<td>1.46</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>230</td>
<td>TYR</td>
<td>CD1-CE1</td>
<td>-5.67</td>
<td>1.30</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>145</td>
<td>GLU</td>
<td>CG-CD</td>
<td>5.67</td>
<td>1.60</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>225</td>
<td>PHE</td>
<td>CE2-CZ</td>
<td>5.67</td>
<td>1.48</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>225</td>
<td>PHE</td>
<td>CD1-CE1</td>
<td>5.65</td>
<td>1.50</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>86</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>5.65</td>
<td>1.31</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>40</td>
<td>ILE</td>
<td>CA-CB</td>
<td>-5.64</td>
<td>1.41</td>
<td>1.54</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>128</td>
<td>GLU</td>
<td>CG-CG</td>
<td>5.64</td>
<td>1.60</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>235</td>
<td>TYR</td>
<td>CD2-CE2</td>
<td>5.63</td>
<td>1.47</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>210</td>
<td>CYS</td>
<td>CB-SG</td>
<td>5.61</td>
<td>1.91</td>
<td>1.82</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>147</td>
<td>ARG</td>
<td>CZ-NH1</td>
<td>5.60</td>
<td>1.40</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>211</td>
<td>GLN</td>
<td>CG-CG</td>
<td>5.56</td>
<td>1.63</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>60</td>
<td>GLY</td>
<td>C-O</td>
<td>-5.55</td>
<td>1.14</td>
<td>1.23</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>263</td>
<td>GLU</td>
<td>CG-CG</td>
<td>5.55</td>
<td>1.60</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>294</td>
<td>GLU</td>
<td>CG-CG</td>
<td>5.50</td>
<td>1.60</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>253</td>
<td>GLY</td>
<td>CA-C</td>
<td>5.49</td>
<td>1.60</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>164</td>
<td>VAL</td>
<td>CB-CG2</td>
<td>-5.47</td>
<td>1.41</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>272</td>
<td>GLU</td>
<td>CB-CG</td>
<td>5.46</td>
<td>1.62</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>128</td>
<td>GLU</td>
<td>CG-CG</td>
<td>5.46</td>
<td>1.60</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>225</td>
<td>PHE</td>
<td>CD1-CE1</td>
<td>5.45</td>
<td>1.50</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>195</td>
<td>CYS</td>
<td>CB-SG</td>
<td>-5.44</td>
<td>1.73</td>
<td>1.81</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>290</td>
<td>ASP</td>
<td>CB-CG</td>
<td>5.42</td>
<td>1.63</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>223</td>
<td>VAL</td>
<td>CA-CB</td>
<td>-5.41</td>
<td>1.43</td>
<td>1.54</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>180</td>
<td>CYS</td>
<td>N-CA</td>
<td>-5.41</td>
<td>1.35</td>
<td>1.46</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>185</td>
<td>ARG</td>
<td>CB-CG</td>
<td>5.38</td>
<td>1.67</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>164</td>
<td>VAL</td>
<td>CB-CG1</td>
<td>-5.37</td>
<td>1.41</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>244</td>
<td>LYS</td>
<td>CE-NZ</td>
<td>5.36</td>
<td>1.62</td>
<td>1.49</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>158</td>
<td>VAL</td>
<td>C-O</td>
<td>5.35</td>
<td>1.33</td>
<td>1.23</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>241</td>
<td>THR</td>
<td>CA-CB</td>
<td>5.35</td>
<td>1.67</td>
<td>1.53</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>50</td>
<td>ARG</td>
<td>CB-CG</td>
<td>5.34</td>
<td>1.67</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>299</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>5.34</td>
<td>1.31</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>123</td>
<td>PHE</td>
<td>CE2-CZ</td>
<td>5.34</td>
<td>1.47</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>147</td>
<td>ARG</td>
<td>CZ-NH1</td>
<td>5.34</td>
<td>1.40</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>299</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>5.34</td>
<td>1.31</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>163</td>
<td>LYS</td>
<td>CE-NZ</td>
<td>5.33</td>
<td>1.62</td>
<td>1.49</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>80</td>
<td>PHE</td>
<td>C-O</td>
<td>5.33</td>
<td>1.33</td>
<td>1.23</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>289</td>
<td>ASP</td>
<td>CB-CG</td>
<td>5.32</td>
<td>1.62</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>58</td>
<td>VAL</td>
<td>CB-CG2</td>
<td>5.31</td>
<td>1.64</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>65</td>
<td>TYR</td>
<td>CD2-CE2</td>
<td>-5.31</td>
<td>1.31</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>90</td>
<td>TRP</td>
<td>CA-CB</td>
<td>-5.30</td>
<td>1.42</td>
<td>1.53</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>65</td>
<td>TYR</td>
<td>CD2-CE2</td>
<td>5.30</td>
<td>1.47</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>301</td>
<td>TYR</td>
<td>C-O</td>
<td>-5.29</td>
<td>1.13</td>
<td>1.23</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>225</td>
<td>PHE</td>
<td>CB-CG</td>
<td>-5.29</td>
<td>1.42</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>115</td>
<td>ARG</td>
<td>CB-CG</td>
<td>5.28</td>
<td>1.66</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>244</td>
<td>LYS</td>
<td>CD-CE</td>
<td>5.28</td>
<td>1.64</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>109</td>
<td>TRP</td>
<td>CE3-CZ3</td>
<td>5.27</td>
<td>1.47</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>127</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>5.27</td>
<td>1.31</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>213</td>
<td>TYR</td>
<td>CD2-CE2</td>
<td>-5.27</td>
<td>1.31</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>192</td>
<td>LEU</td>
<td>CG-CG2</td>
<td>5.26</td>
<td>1.71</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>127</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>5.26</td>
<td>1.31</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>165</td>
<td>ILE</td>
<td>N-CA</td>
<td>-5.25</td>
<td>1.35</td>
<td>1.46</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>223</td>
<td>VAL</td>
<td>CB-CG2</td>
<td>5.25</td>
<td>1.63</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>215</td>
<td>ARG</td>
<td>CG-CG</td>
<td>-5.23</td>
<td>1.38</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>297</td>
<td>GLN</td>
<td>CG-CG</td>
<td>5.23</td>
<td>1.63</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>210</td>
<td>CYS</td>
<td>CB-SG</td>
<td>-5.22</td>
<td>1.73</td>
<td>1.81</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>301</td>
<td>TYR</td>
<td>CB-CG</td>
<td>5.22</td>
<td>1.59</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>92</td>
<td>ILE</td>
<td>CA-CB</td>
<td>-5.22</td>
<td>1.42</td>
<td>1.54</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>135</td>
<td>TYR</td>
<td>CG-CG1</td>
<td>-5.21</td>
<td>1.32</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>195</td>
<td>CYS</td>
<td>CB-SG</td>
<td>-5.20</td>
<td>1.73</td>
<td>1.81</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>253</td>
<td>GLY</td>
<td>C-O</td>
<td>-5.20</td>
<td>1.15</td>
<td>1.23</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>135</td>
<td>TYR</td>
<td>CG-CG2</td>
<td>5.18</td>
<td>1.45</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>294</td>
<td>GLU</td>
<td>CG-CG</td>
<td>5.18</td>
<td>1.59</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>32</td>
<td>GLN</td>
<td>CA-CB</td>
<td>-5.16</td>
<td>1.42</td>
<td>1.53</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>135</td>
<td>TYR</td>
<td>CD2-CE2</td>
<td>5.16</td>
<td>1.47</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>42</td>
<td>ARG</td>
<td>CG-CG</td>
<td>5.15</td>
<td>1.64</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>213</td>
<td>TYR</td>
<td>CG-CG2</td>
<td>-5.15</td>
<td>1.32</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>238</td>
<td>ALA</td>
<td>CA-CB</td>
<td>-5.15</td>
<td>1.41</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>146</td>
<td>TYR</td>
<td>CD2-CE2</td>
<td>5.14</td>
<td>1.47</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>98</td>
<td>ALA</td>
<td>CA-CB</td>
<td>-5.14</td>
<td>1.41</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>145</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>5.13</td>
<td>1.31</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>301</td>
<td>TYR</td>
<td>CD2-CE2</td>
<td>5.13</td>
<td>1.47</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>45</td>
<td>VAL</td>
<td>CB-CG1</td>
<td>5.12</td>
<td>1.63</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>65</td>
<td>TYR</td>
<td>CG-CG1</td>
<td>-5.12</td>
<td>1.32</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>197</td>
<td>ALA</td>
<td>CA-CB</td>
<td>-5.12</td>
<td>1.41</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>107</td>
<td>LYS</td>
<td>CD-CE</td>
<td>5.11</td>
<td>1.64</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>145</td>
<td>GLU</td>
<td>CG-CG</td>
<td>5.11</td>
<td>1.59</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>240</td>
<td>ILE</td>
<td>CB-CG2</td>
<td>-5.11</td>
<td>1.37</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>59</td>
<td>PHE</td>
<td>CE2-CZ</td>
<td>5.10</td>
<td>1.47</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>229</td>
<td>SER</td>
<td>CA-CB</td>
<td>-5.10</td>
<td>1.45</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>63</td>
<td>ALA</td>
<td>CA-CB</td>
<td>-5.10</td>
<td>1.41</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>280</td>
<td>ARG</td>
<td>CG-CG</td>
<td>5.09</td>
<td>1.64</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>284</td>
<td>LYS</td>
<td>CD-CE</td>
<td>5.09</td>
<td>1.64</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>162</td>
<td>GLN</td>
<td>CG-CG</td>
<td>5.08</td>
<td>1.62</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>137</td>
<td>PHE</td>
<td>CB-CG</td>
<td>-5.08</td>
<td>1.42</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>142</td>
<td>PHE</td>
<td>CG-CG2</td>
<td>-5.07</td>
<td>1.31</td>
<td>1.38</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>230</td>
<td>TYR</td>
<td>CE2-CZ</td>
<td>5.05</td>
<td>1.45</td>
<td>1.38</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>92</td>
<td>ILE</td>
<td>CA-CB</td>
<td>-5.05</td>
<td>1.43</td>
<td>1.54</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>100</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>5.04</td>
<td>1.31</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>223</td>
<td>VAL</td>
<td>CB-CG1</td>
<td>5.04</td>
<td>1.63</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>82</td>
<td>LYS</td>
<td>CD-CE</td>
<td>5.02</td>
<td>1.63</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>91</td>
<td>PHE</td>
<td>CE1-CZ</td>
<td>5.02</td>
<td>1.46</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>287</td>
<td>LYS</td>
<td>N-CA</td>
<td>-5.01</td>
<td>1.36</td>
<td>1.46</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>207</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>5.01</td>
<td>1.31</td>
<td>1.25</td>
</tr>
</tbody>
</table>

All (195) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>215</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-11.27</td>
<td>114.67</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>34</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>10.96</td>
<td>140.51</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>126</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-10.94</td>
<td>114.83</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>274</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>10.45</td>
<td>125.53</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>140</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-10.43</td>
<td>115.09</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>140</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>10.14</td>
<td>125.37</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>148</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>9.95</td>
<td>127.26</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>176</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-9.86</td>
<td>115.37</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>148</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-9.51</td>
<td>109.74</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>247</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>8.96</td>
<td>126.36</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>274</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-8.94</td>
<td>115.83</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>49</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>8.76</td>
<td>126.19</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>78</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>8.73</td>
<td>124.66</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>104</td>
<td>LYS</td>
<td>CD-CE-NZ</td>
<td>-8.70</td>
<td>91.70</td>
<td>111.70</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>88</td>
<td>LEU</td>
<td>CB-CG-CD2</td>
<td>-8.45</td>
<td>96.63</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>152</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>8.44</td>
<td>125.90</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>159</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>8.44</td>
<td>125.90</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>121</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>8.39</td>
<td>134.60</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>115</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-8.23</td>
<td>116.19</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>85</td>
<td>LEU</td>
<td>CB-CG-CD2</td>
<td>-8.16</td>
<td>97.13</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>195</td>
<td>CYS</td>
<td>CA-CB-SG</td>
<td>-8.09</td>
<td>99.44</td>
<td>114.00</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>49</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-8.02</td>
<td>111.09</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>148</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>7.95</td>
<td>125.46</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>215</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.94</td>
<td>116.33</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>180</td>
<td>CYS</td>
<td>CA-CB-SG</td>
<td>-7.92</td>
<td>99.75</td>
<td>114.00</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>249</td>
<td>ILE</td>
<td>CG1-CB-CG2</td>
<td>-7.79</td>
<td>94.27</td>
<td>111.40</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>115</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>7.70</td>
<td>124.15</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>198</td>
<td>LEU</td>
<td>CB-CG-CD2</td>
<td>-7.63</td>
<td>98.02</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>274</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>7.61</td>
<td>124.10</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>218</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>-7.59</td>
<td>111.47</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>232</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>-7.59</td>
<td>98.10</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>56</td>
<td>LEU</td>
<td>CB-CG-CD2</td>
<td>-7.54</td>
<td>98.18</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>187</td>
<td>LEU</td>
<td>C-N-CD</td>
<td>7.53</td>
<td>144.22</td>
<td>128.40</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>249</td>
<td>ILE</td>
<td>CG1-CB-CG2</td>
<td>-7.52</td>
<td>94.86</td>
<td>111.40</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>147</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.49</td>
<td>116.55</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>175</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.48</td>
<td>116.56</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>240</td>
<td>ILE</td>
<td>CB-CA-C</td>
<td>-7.45</td>
<td>96.70</td>
<td>111.60</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>236</td>
<td>MET</td>
<td>CG-SD-CE</td>
<td>-7.45</td>
<td>88.28</td>
<td>100.20</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>247</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>7.44</td>
<td>124.99</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>198</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>7.32</td>
<td>132.14</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>115</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>7.30</td>
<td>123.95</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>56</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>7.24</td>
<td>131.96</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>115</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-7.18</td>
<td>116.71</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>78</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>7.17</td>
<td>123.89</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>271</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>7.17</td>
<td>123.89</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>56</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>7.14</td>
<td>123.13</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>68</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>7.13</td>
<td>123.86</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>230</td>
<td>TYR</td>
<td>CZ-CE2-CD2</td>
<td>-7.11</td>
<td>113.40</td>
<td>119.80</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>176</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.10</td>
<td>116.75</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>64</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>7.07</td>
<td>123.84</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>176</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>7.05</td>
<td>123.82</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>240</td>
<td>ILE</td>
<td>CB-CG1-CD1</td>
<td>-7.04</td>
<td>94.19</td>
<td>113.90</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>110</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>7.04</td>
<td>124.63</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>119</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>7.04</td>
<td>124.64</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>243</td>
<td>LEU</td>
<td>CB-CG-CD2</td>
<td>7.03</td>
<td>122.95</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>185</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.95</td>
<td>116.83</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>175</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.90</td>
<td>123.75</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>161</td>
<td>LEU</td>
<td>CB-CG-CD2</td>
<td>-6.85</td>
<td>99.36</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>187</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>-6.84</td>
<td>99.37</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>161</td>
<td>LEU</td>
<td>CB-CG-CD2</td>
<td>-6.79</td>
<td>99.47</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>85</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>6.78</td>
<td>122.53</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>126</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.77</td>
<td>116.92</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>37</td>
<td>ILE</td>
<td>CB-CA-C</td>
<td>-6.74</td>
<td>98.13</td>
<td>111.60</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>218</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>6.73</td>
<td>124.36</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>212</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>-6.73</td>
<td>99.56</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>232</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>6.72</td>
<td>122.43</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>247</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-6.69</td>
<td>112.28</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>163</td>
<td>LYS</td>
<td>CD-CE-NZ</td>
<td>6.69</td>
<td>127.09</td>
<td>111.70</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>43</td>
<td>CYS</td>
<td>CA-CB-SG</td>
<td>-6.69</td>
<td>101.96</td>
<td>114.00</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>278</td>
<td>LYS</td>
<td>CB-CG-CD</td>
<td>-6.68</td>
<td>94.23</td>
<td>111.60</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>195</td>
<td>CYS</td>
<td>CA-CB-SG</td>
<td>-6.66</td>
<td>102.02</td>
<td>114.00</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>58</td>
<td>VAL</td>
<td>CG1-CB-CG2</td>
<td>-6.64</td>
<td>100.28</td>
<td>110.90</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>270</td>
<td>GLN</td>
<td>CB-CA-C</td>
<td>-6.62</td>
<td>97.16</td>
<td>110.40</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>295</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>6.60</td>
<td>124.24</td>
<td>118.30</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>198</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>6.56</td>
<td>130.38</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>161</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>6.50</td>
<td>122.04</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>44</td>
<td>GLY</td>
<td>N-CA-C</td>
<td>-6.48</td>
<td>96.91</td>
<td>113.10</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>97</td>
<td>ASN</td>
<td>CB-CA-C</td>
<td>-6.47</td>
<td>97.46</td>
<td>110.40</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>247</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-6.45</td>
<td>112.49</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>74</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>-6.43</td>
<td>100.50</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>148</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>6.41</td>
<td>124.07</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>236</td>
<td>MET</td>
<td>CG-SD-CE</td>
<td>-6.40</td>
<td>89.96</td>
<td>100.20</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>259</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>-6.38</td>
<td>101.18</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>295</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>6.38</td>
<td>124.04</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>67</td>
<td>GLY</td>
<td>N-CA-C</td>
<td>-6.36</td>
<td>100.18</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>236</td>
<td>MET</td>
<td>CG-SD-CE</td>
<td>6.29</td>
<td>110.26</td>
<td>100.20</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>101</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>6.26</td>
<td>129.71</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>43</td>
<td>CYS</td>
<td>CB-CA-C</td>
<td>-6.21</td>
<td>97.97</td>
<td>110.40</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>25</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.12</td>
<td>123.36</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>259</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>6.09</td>
<td>129.31</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>185</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>6.08</td>
<td>123.34</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>130</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>6.05</td>
<td>123.75</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>128</td>
<td>GLU</td>
<td>N-CA-CB</td>
<td>6.04</td>
<td>121.48</td>
<td>110.60</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>253</td>
<td>GLY</td>
<td>N-CA-C</td>
<td>-6.04</td>
<td>98.00</td>
<td>113.10</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>203</td>
<td>VAL</td>
<td>CB-CA-C</td>
<td>-5.94</td>
<td>100.11</td>
<td>111.40</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>187</td>
<td>LEU</td>
<td>CB-CG-CD2</td>
<td>-5.92</td>
<td>100.94</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>257</td>
<td>ILE</td>
<td>CB-CA-C</td>
<td>-5.90</td>
<td>99.80</td>
<td>111.60</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>115</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>5.89</td>
<td>123.25</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>221</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.88</td>
<td>128.81</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>45</td>
<td>VAL</td>
<td>CG1-CB-CG2</td>
<td>-5.86</td>
<td>101.53</td>
<td>110.90</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>148</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>-5.84</td>
<td>113.05</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>159</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.83</td>
<td>123.55</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>243</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>-5.82</td>
<td>101.11</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>282</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>-5.82</td>
<td>101.92</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>243</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>-5.81</td>
<td>101.13</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>284</td>
<td>LYS</td>
<td>CD-CE-NZ</td>
<td>5.79</td>
<td>125.03</td>
<td>111.70</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>253</td>
<td>GLY</td>
<td>N-CA-C</td>
<td>-5.79</td>
<td>98.63</td>
<td>113.10</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>131</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>-5.77</td>
<td>101.20</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>265</td>
<td>LEU</td>
<td>CB-CG-CD2</td>
<td>5.74</td>
<td>120.75</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>61</td>
<td>MET</td>
<td>CG-SD-CE</td>
<td>-5.73</td>
<td>91.04</td>
<td>100.20</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>115</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.72</td>
<td>123.16</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>210</td>
<td>CYS</td>
<td>CB-CA-C</td>
<td>-5.68</td>
<td>99.03</td>
<td>110.40</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>42</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.67</td>
<td>123.14</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>198</td>
<td>LEU</td>
<td>CB-CG-CD2</td>
<td>-5.67</td>
<td>101.36</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>41</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>-5.67</td>
<td>102.27</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>104</td>
<td>LYS</td>
<td>CD-CE-NZ</td>
<td>-5.65</td>
<td>98.70</td>
<td>111.70</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>189</td>
<td>LEU</td>
<td>N-CA-C</td>
<td>5.64</td>
<td>126.24</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>187</td>
<td>LEU</td>
<td>CB-CG-CD2</td>
<td>-5.62</td>
<td>101.44</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>199</td>
<td>CYS</td>
<td>CA-CB-SG</td>
<td>-5.61</td>
<td>103.90</td>
<td>114.00</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>119</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.61</td>
<td>123.35</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>180</td>
<td>CYS</td>
<td>CA-CB-SG</td>
<td>-5.60</td>
<td>103.92</td>
<td>114.00</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>195</td>
<td>CYS</td>
<td>CB-CA-C</td>
<td>5.59</td>
<td>121.58</td>
<td>110.40</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>280</td>
<td>ARG</td>
<td>CG-CD-NE</td>
<td>-5.57</td>
<td>100.11</td>
<td>111.80</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>215</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.57</td>
<td>123.08</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>218</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.57</td>
<td>123.31</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>73</td>
<td>LEU</td>
<td>CB-CG-CD2</td>
<td>-5.55</td>
<td>101.56</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>249</td>
<td>ILE</td>
<td>CG1-CB-CG2</td>
<td>-5.55</td>
<td>99.18</td>
<td>111.40</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>134</td>
<td>VAL</td>
<td>CB-CA-C</td>
<td>-5.55</td>
<td>100.86</td>
<td>111.40</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>284</td>
<td>LYS</td>
<td>CB-CA-C</td>
<td>5.54</td>
<td>121.47</td>
<td>110.40</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>119</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>-5.53</td>
<td>113.32</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>57</td>
<td>SER</td>
<td>CB-CA-C</td>
<td>-5.52</td>
<td>99.61</td>
<td>110.10</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>221</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>5.50</td>
<td>120.34</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>212</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>-5.49</td>
<td>101.67</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>94</td>
<td>GLY</td>
<td>C-N-CA</td>
<td>-5.48</td>
<td>108.00</td>
<td>121.70</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>102</td>
<td>SER</td>
<td>N-CA-C</td>
<td>5.47</td>
<td>125.78</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>130</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-5.46</td>
<td>113.38</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>79</td>
<td>VAL</td>
<td>CG1-CB-CG2</td>
<td>5.46</td>
<td>119.64</td>
<td>110.90</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>252</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>-5.45</td>
<td>102.76</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>148</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.45</td>
<td>123.20</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>176</td>
<td>ARG</td>
<td>CB-CA-C</td>
<td>-5.42</td>
<td>99.56</td>
<td>110.40</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>74</td>
<td>LEU</td>
<td>CB-CG-CD2</td>
<td>5.42</td>
<td>120.21</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>53</td>
<td>THR</td>
<td>C-N-CA</td>
<td>-5.40</td>
<td>110.96</td>
<td>122.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>89</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>-5.39</td>
<td>101.83</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>159</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-5.39</td>
<td>113.45</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>304</td>
<td>HIS</td>
<td>C-N-CD</td>
<td>5.37</td>
<td>139.68</td>
<td>128.40</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>203</td>
<td>VAL</td>
<td>CB-CA-C</td>
<td>-5.36</td>
<td>101.21</td>
<td>111.40</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>297</td>
<td>GLN</td>
<td>CB-CA-C</td>
<td>5.36</td>
<td>121.12</td>
<td>110.40</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>265</td>
<td>LEU</td>
<td>CB-CG-CD2</td>
<td>5.35</td>
<td>120.10</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>229</td>
<td>SER</td>
<td>CA-CB-OG</td>
<td>-5.35</td>
<td>96.76</td>
<td>111.20</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>25</td>
<td>ARG</td>
<td>C-N-CD</td>
<td>5.34</td>
<td>139.60</td>
<td>128.40</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>186</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.32</td>
<td>123.08</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>78</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-5.30</td>
<td>117.65</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>243</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>-5.30</td>
<td>103.10</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>207</td>
<td>GLU</td>
<td>CB-CA-C</td>
<td>5.30</td>
<td>121.00</td>
<td>110.40</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>161</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>5.30</td>
<td>120.00</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>154</td>
<td>SER</td>
<td>CB-CA-C</td>
<td>-5.30</td>
<td>100.04</td>
<td>110.10</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>249</td>
<td>ILE</td>
<td>CB-CA-C</td>
<td>-5.29</td>
<td>101.03</td>
<td>111.60</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>110</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.28</td>
<td>123.05</td>
<td>118.30</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>240</td>
<td>ILE</td>
<td>CG1-CB-CG2</td>
<td>-5.28</td>
<td>99.79</td>
<td>111.40</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>290</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.28</td>
<td>123.05</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>171</td>
<td>ASN</td>
<td>C-N-CD</td>
<td>5.27</td>
<td>139.47</td>
<td>128.40</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>280</td>
<td>ARG</td>
<td>O-C-N</td>
<td>5.27</td>
<td>131.13</td>
<td>122.70</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>126</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.27</td>
<td>117.67</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>110</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.26</td>
<td>123.03</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>185</td>
<td>ARG</td>
<td>CG-CD-NE</td>
<td>5.25</td>
<td>122.84</td>
<td>111.80</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>137</td>
<td>PHE</td>
<td>CG-CD2-CE2</td>
<td>5.24</td>
<td>126.56</td>
<td>120.80</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>126</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.20</td>
<td>122.90</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>202</td>
<td>TYR</td>
<td>N-CA-CB</td>
<td>-5.20</td>
<td>101.24</td>
<td>110.60</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>135</td>
<td>TYR</td>
<td>CB-CG-CD2</td>
<td>5.20</td>
<td>124.12</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>169</td>
<td>LYS</td>
<td>CD-CE-NZ</td>
<td>-5.18</td>
<td>99.78</td>
<td>111.70</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>69</td>
<td>ASP</td>
<td>N-CA-C</td>
<td>5.18</td>
<td>124.98</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>161</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>5.17</td>
<td>119.80</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>147</td>
<td>ARG</td>
<td>CB-CA-C</td>
<td>5.17</td>
<td>120.74</td>
<td>110.40</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>212</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>-5.17</td>
<td>102.21</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>68</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.16</td>
<td>117.72</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>247</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>-5.16</td>
<td>113.66</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>238</td>
<td>ALA</td>
<td>N-CA-CB</td>
<td>5.15</td>
<td>117.31</td>
<td>110.10</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>204</td>
<td>VAL</td>
<td>CA-CB-CG2</td>
<td>-5.15</td>
<td>103.17</td>
<td>110.90</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>130</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.15</td>
<td>122.93</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>196</td>
<td>HIS</td>
<td>CB-CA-C</td>
<td>-5.14</td>
<td>100.12</td>
<td>110.40</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>134</td>
<td>VAL</td>
<td>CG1-CB-CG2</td>
<td>5.14</td>
<td>119.12</td>
<td>110.90</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>180</td>
<td>CVS</td>
<td>CA-CB-SG</td>
<td>-5.13</td>
<td>104.77</td>
<td>114.00</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>119</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>-5.12</td>
<td>113.69</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>203</td>
<td>VAL</td>
<td>CB-CA-C</td>
<td>-5.12</td>
<td>101.67</td>
<td>111.40</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>198</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.09</td>
<td>127.00</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>254</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.08</td>
<td>122.88</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>186</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.08</td>
<td>122.87</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>227</td>
<td>ILE</td>
<td>CG1-CB-CG2</td>
<td>-5.07</td>
<td>100.25</td>
<td>111.40</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>42</td>
<td>ARG</td>
<td>CA-CB-CG</td>
<td>5.07</td>
<td>124.55</td>
<td>113.40</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>78</td>
<td>ARG</td>
<td>CB-CG-CD</td>
<td>5.03</td>
<td>124.69</td>
<td>111.60</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>295</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.03</td>
<td>122.83</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>244</td>
<td>LYS</td>
<td>CA-CB-CG</td>
<td>5.03</td>
<td>124.46</td>
<td>113.40</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>213</td>
<td>TYR</td>
<td>N-CA-C</td>
<td>-5.01</td>
<td>97.48</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>271</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>5.01</td>
<td>130.61</td>
<td>123.60</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

All (3) planarity outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>47</td>
<td>LYS</td>
<td>Peptide</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>217</td>
<td>GLY</td>
<td>Peptide</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>44</td>
<td>GLY</td>
<td>Peptide</td>
</tr>
</tbody>
</table>

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>2279</td>
<td>0</td>
<td>2247</td>
<td>115</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>2268</td>
<td>0</td>
<td>2235</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>2268</td>
<td>0</td>
<td>2235</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>2268</td>
<td>0</td>
<td>2235</td>
<td>93</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>2268</td>
<td>0</td>
<td>2235</td>
<td>190</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>2268</td>
<td>0</td>
<td>2235</td>
<td>162</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>62</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>13834</td>
<td>0</td>
<td>13434</td>
<td>715</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 26.

All (715) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:42:ARG:CG</td>
<td>1:C:42:ARG:CD</td>
<td>1.77</td>
<td>1.59</td>
</tr>
<tr>
<td>1:B:168:ILE:CG1</td>
<td>1:B:168:ILE:CD1</td>
<td>1.81</td>
<td>1.58</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:26:PRO:CG</td>
<td>1:B:26:PRO:CB</td>
<td>1.79</td>
<td>1.52</td>
</tr>
<tr>
<td>1:E:31:LEU:O</td>
<td>1:E:32:GLN:HG2</td>
<td>1.34</td>
<td>1.25</td>
</tr>
<tr>
<td>1:F:130:ASP:HB2</td>
<td>1:F:149:MET:HG2</td>
<td>1.23</td>
<td>1.16</td>
</tr>
<tr>
<td>1:C:153:TYR:O</td>
<td>1:C:156:GLN:HG3</td>
<td>1.46</td>
<td>1.13</td>
</tr>
<tr>
<td>1:A:115:ARG:HH1</td>
<td>1:A:115:ARG:HG3</td>
<td>1.08</td>
<td>1.10</td>
</tr>
<tr>
<td>1:E:32:GLN:O</td>
<td>1:E:34:LEU:HD12</td>
<td>1.51</td>
<td>1.10</td>
</tr>
<tr>
<td>1:B:115:ARG:HG3</td>
<td>1:B:115:ARG:HH1</td>
<td>0.96</td>
<td>1.08</td>
</tr>
<tr>
<td>1:C:192:LEU:CD1</td>
<td>1:C:192:LEU:N</td>
<td>2.26</td>
<td>0.99</td>
</tr>
<tr>
<td>1:C:257:ILE:HD11</td>
<td>1:C:265:LEU:HD13</td>
<td>1.44</td>
<td>0.99</td>
</tr>
<tr>
<td>1:E:131:LEU:O</td>
<td>1:E:132:GLY:O</td>
<td>1.81</td>
<td>0.97</td>
</tr>
<tr>
<td>1:E:30:GLU:OE2</td>
<td>1:E:34:LEU:HG</td>
<td>1.61</td>
<td>0.97</td>
</tr>
<tr>
<td>1:C:192:LEU:HD12</td>
<td>1:C:192:LEU:N</td>
<td>1.79</td>
<td>0.97</td>
</tr>
<tr>
<td>1:B:115:ARG:NH1</td>
<td>1:B:115:ARG:HG3</td>
<td>1.75</td>
<td>0.96</td>
</tr>
<tr>
<td>1:A:49:ASP:OD1</td>
<td>1:A:51:THR:OG1</td>
<td>1.83</td>
<td>0.96</td>
</tr>
<tr>
<td>1:B:280:ARG:NE</td>
<td>1:B:299:GLU:HG2</td>
<td>1.81</td>
<td>0.95</td>
</tr>
<tr>
<td>1:F:204:VAL:O</td>
<td>1:F:207:GLU:HB2</td>
<td>1.65</td>
<td>0.95</td>
</tr>
<tr>
<td>1:D:297:GLN:HE21</td>
<td>1:D:299:GLU:HB3</td>
<td>1.30</td>
<td>0.95</td>
</tr>
<tr>
<td>1:E:42:ARG:O</td>
<td>4:E:633:HOH:O</td>
<td>1.83</td>
<td>0.95</td>
</tr>
<tr>
<td>1:E:261:HIS:HA</td>
<td>1:E:264:PRO:HG2</td>
<td>1.50</td>
<td>0.92</td>
</tr>
<tr>
<td>1:A:176:ARG:HH11</td>
<td>1:A:176:ARG:HG2</td>
<td>1.34</td>
<td>0.92</td>
</tr>
<tr>
<td>1:E:31:LEU:O</td>
<td>1:E:32:GLN:CG</td>
<td>2.18</td>
<td>0.91</td>
</tr>
<tr>
<td>1:E:30:GLU:O</td>
<td>1:E:30:GLU:OE2</td>
<td>1.88</td>
<td>0.91</td>
</tr>
<tr>
<td>1:D:104:LYS:HB3</td>
<td>4:D:631:HOH:O</td>
<td>1.71</td>
<td>0.91</td>
</tr>
<tr>
<td>1:E:97:ASN:OD1</td>
<td>1:E:99:LYS:HB2</td>
<td>1.73</td>
<td>0.89</td>
</tr>
<tr>
<td>1:E:160:GLN:HE22</td>
<td>1:E:180:CYS:H</td>
<td>1.19</td>
<td>0.88</td>
</tr>
<tr>
<td>1:A:192:LEU:HD22</td>
<td>4:A:666:HOH:O</td>
<td>1.72</td>
<td>0.88</td>
</tr>
<tr>
<td>1:E:271:ARG:HD3</td>
<td>1:E:304:HIS:ND1</td>
<td>1.88</td>
<td>0.88</td>
</tr>
<tr>
<td>1:A:100:GLU:O</td>
<td>1:A:100:GLU:HG3</td>
<td>1.75</td>
<td>0.87</td>
</tr>
<tr>
<td>1:D:47:LYS:HG2</td>
<td>1:D:48:ASP:H</td>
<td>1.39</td>
<td>0.87</td>
</tr>
<tr>
<td>1:B:205:ASN:HA</td>
<td>4:B:358:HOH:O</td>
<td>1.75</td>
<td>0.86</td>
</tr>
<tr>
<td>1:B:280:ARG:CG</td>
<td>1:B:280:ARG:HH11</td>
<td>1.89</td>
<td>0.86</td>
</tr>
<tr>
<td>1:F:72:PRO:HA</td>
<td>1:F:276:PHE:CE1</td>
<td>2.10</td>
<td>0.86</td>
</tr>
<tr>
<td>1:B:280:ARG:HE</td>
<td>1:B:299:GLU:HG2</td>
<td>1.41</td>
<td>0.85</td>
</tr>
<tr>
<td>1:E:172:PRO:HB3</td>
<td>1:E:203:VAL:HG11</td>
<td>1.57</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:115:ARG:CG</td>
<td>1:B:115:ARG:HH11</td>
<td>1.86</td>
<td>0.84</td>
</tr>
<tr>
<td>1:E:30:GLU:HZ3</td>
<td>1:E:276:PHE:CZ</td>
<td>2.13</td>
<td>0.84</td>
</tr>
<tr>
<td>1:D:33:TYR:OH</td>
<td>1:D:219:MET:O</td>
<td>1.94</td>
<td>0.84</td>
</tr>
<tr>
<td>1:E:111:ALA:HA</td>
<td>1:E:115:ARG:NH2</td>
<td>1.91</td>
<td>0.84</td>
</tr>
<tr>
<td>1:A:115:ARG:NH2</td>
<td>1:A:126:ARG:O</td>
<td>2.11</td>
<td>0.84</td>
</tr>
<tr>
<td>1:A:176:ARG:NH1</td>
<td>1:A:176:ARG:HG2</td>
<td>1.91</td>
<td>0.83</td>
</tr>
<tr>
<td>1:E:301:TYR:CZ</td>
<td>1:E:303:PRO:HG3</td>
<td>2.14</td>
<td>0.83</td>
</tr>
<tr>
<td>1:D:306:THR:O</td>
<td>1:D:306:THR:HG23</td>
<td>1.81</td>
<td>0.80</td>
</tr>
<tr>
<td>1:E:111:ALA:HA</td>
<td>1:E:115:ARG:HH22</td>
<td>1.46</td>
<td>0.80</td>
</tr>
<tr>
<td>1:A:115:ARG:NH1</td>
<td>1:A:115:ARG:HG3</td>
<td>1.86</td>
<td>0.80</td>
</tr>
<tr>
<td>1:F:91:PHE:CE1</td>
<td>1:F:135:TYR:HZ</td>
<td>2.15</td>
<td>0.80</td>
</tr>
<tr>
<td>1:E:288:ILE:O</td>
<td>4:E:629:HOH:O</td>
<td>2.00</td>
<td>0.80</td>
</tr>
<tr>
<td>1:E:30:GLU:HZ3</td>
<td>1:E:276:PHE:HZ</td>
<td>1.45</td>
<td>0.80</td>
</tr>
<tr>
<td>1:E:259:LEU:O</td>
<td>1:E:262:ILE:HG12</td>
<td>1.82</td>
<td>0.79</td>
</tr>
<tr>
<td>1:C:92:ILE:HD11</td>
<td>1:C:236:MET:HE2</td>
<td>1.64</td>
<td>0.79</td>
</tr>
<tr>
<td>1:A:45:VAL:HG21</td>
<td>1:B:204:VAL:HG21</td>
<td>1.65</td>
<td>0.79</td>
</tr>
<tr>
<td>1:D:76:THR:OG1</td>
<td>1:D:268:GLN:NE2</td>
<td>2.15</td>
<td>0.78</td>
</tr>
<tr>
<td>1:E:44:GLY:O</td>
<td>1:E:56:LEU:HD22</td>
<td>1.83</td>
<td>0.78</td>
</tr>
<tr>
<td>1:D:34:LEU:HD22</td>
<td>1:D:269:LEU:HD23</td>
<td>1.65</td>
<td>0.78</td>
</tr>
<tr>
<td>1:E:43:CYS:HA</td>
<td>4:E:633:HOH:O</td>
<td>1.84</td>
<td>0.78</td>
</tr>
<tr>
<td>1:A:123:PHE:HZ</td>
<td>1:A:126:ARG:HD2</td>
<td>1.64</td>
<td>0.78</td>
</tr>
<tr>
<td>1:F:78:ARG:HD2</td>
<td>4:F:316:HOH:O</td>
<td>1.84</td>
<td>0.76</td>
</tr>
<tr>
<td>1:F:136:GLY:O</td>
<td>1:F:140:ARG:HG2</td>
<td>1.85</td>
<td>0.76</td>
</tr>
<tr>
<td>1:E:291:PHE:CD1</td>
<td>1:E:296:PHE:HZ</td>
<td>2.03</td>
<td>0.76</td>
</tr>
<tr>
<td>1:C:198:LEU:HD12</td>
<td>1:C:198:LEU:C</td>
<td>2.06</td>
<td>0.75</td>
</tr>
<tr>
<td>1:F:97:ASN:HA</td>
<td>1:F:129:GLY:O</td>
<td>1.86</td>
<td>0.75</td>
</tr>
<tr>
<td>1:F:130:ASP:HG2</td>
<td>1:F:149:MET:CG</td>
<td>2.12</td>
<td>0.75</td>
</tr>
<tr>
<td>1:E:108:ILE:N</td>
<td>1:E:110:ASP:OD2</td>
<td>2.19</td>
<td>0.75</td>
</tr>
<tr>
<td>1:A:126:ARG:HG2</td>
<td>1:A:130:ASP:HZ</td>
<td>1.67</td>
<td>0.75</td>
</tr>
<tr>
<td>1:E:192:LEU:HD13</td>
<td>1:E:192:LEU:O</td>
<td>1.87</td>
<td>0.75</td>
</tr>
<tr>
<td>1:E:274:ARG:HD2</td>
<td>1:E:304:HIS:CD2</td>
<td>2.22</td>
<td>0.74</td>
</tr>
<tr>
<td>1:F:130:ASP:CB</td>
<td>1:F:149:MET:HG2</td>
<td>2.13</td>
<td>0.74</td>
</tr>
<tr>
<td>1:A:109:TRP:HZ3</td>
<td>1:A:192:LEU:CD1</td>
<td>2.00</td>
<td>0.74</td>
</tr>
<tr>
<td>1:D:223:VAL:CA2</td>
<td>1:D:224:PRO:CD</td>
<td>2.50</td>
<td>0.74</td>
</tr>
<tr>
<td>1:F:237:ILE:O</td>
<td>1:F:241:THR:OH</td>
<td>2.05</td>
<td>0.73</td>
</tr>
<tr>
<td>1:C:132:GLY:HA2</td>
<td>1:C:146:TYR:CE2</td>
<td>2.22</td>
<td>0.73</td>
</tr>
<tr>
<td>1:D:126:ARG:CD</td>
<td>1:D:130:ASP:CB</td>
<td>2.18</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:49:ASP:C</td>
<td>1:A:51:THR:H</td>
<td>1.92</td>
<td>0.73</td>
</tr>
<tr>
<td>1:E:233:LEU:O</td>
<td>1:E:237:ILE:HG13</td>
<td>1.89</td>
<td>0.73</td>
</tr>
<tr>
<td>1:E:160:GLN:HE22</td>
<td>1:E:180:CYS:N</td>
<td>1.87</td>
<td>0.73</td>
</tr>
<tr>
<td>1:E:160:GLN:NE2</td>
<td>1:E:180:CYS:H</td>
<td>1.87</td>
<td>0.72</td>
</tr>
<tr>
<td>1:A:193:PRO:O</td>
<td>4:A:666:HOH:O</td>
<td>2.07</td>
<td>0.72</td>
</tr>
<tr>
<td>1:E:113:GLY:HA3</td>
<td>1:E:131:LEU:HD23</td>
<td>1.71</td>
<td>0.72</td>
</tr>
<tr>
<td>1:F:147:ARG:NH2</td>
<td>1:F:151:SER:OG</td>
<td>2.21</td>
<td>0.72</td>
</tr>
<tr>
<td>1:F:87:GLU:O</td>
<td>1:F:90:TRP:HB3</td>
<td>1.90</td>
<td>0.71</td>
</tr>
<tr>
<td>1:D:147:ARG:HH12</td>
<td>1:D:156:GLN:HE22</td>
<td>1.38</td>
<td>0.71</td>
</tr>
<tr>
<td>1:F:100:GLU:O</td>
<td>1:F:100:GLU:HG2</td>
<td>1.91</td>
<td>0.71</td>
</tr>
<tr>
<td>1:B:280:ARG:HG3</td>
<td>1:B:280:ARG:HH11</td>
<td>1.54</td>
<td>0.71</td>
</tr>
<tr>
<td>1:F:123:PHE:O</td>
<td>1:F:126:ARG:HB3</td>
<td>1.91</td>
<td>0.71</td>
</tr>
<tr>
<td>1:C:259:LEU:O</td>
<td>1:C:262:ILE:HG12</td>
<td>1.91</td>
<td>0.70</td>
</tr>
<tr>
<td>1:E:87:GLU:OE1</td>
<td>1:E:91:PHE:CZ</td>
<td>2.45</td>
<td>0.70</td>
</tr>
<tr>
<td>1:E:45:VAL:CG2</td>
<td>1:F:204:VAL:HG21</td>
<td>2.21</td>
<td>0.70</td>
</tr>
<tr>
<td>1:C:191:ALA:C</td>
<td>1:C:192:LEU:HD12</td>
<td>2.12</td>
<td>0.70</td>
</tr>
<tr>
<td>1:C:92:ILE:HD11</td>
<td>1:C:236:MET:CE</td>
<td>2.22</td>
<td>0.70</td>
</tr>
<tr>
<td>1:D:168:ILE:HD11</td>
<td>1:D:177:ILE:HG21</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>1:E:274:ARG:HD2</td>
<td>1:E:304:HIS:HD2</td>
<td>1.56</td>
<td>0.70</td>
</tr>
<tr>
<td>1:E:46:ARG:HH21</td>
<td>1:E:46:ARG:HG3</td>
<td>1.57</td>
<td>0.70</td>
</tr>
<tr>
<td>1:E:37:ILE:HG23</td>
<td>1:E:257:ILE:HD11</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>1:F:85:LEU:O</td>
<td>1:F:89:LEU:HD12</td>
<td>1.91</td>
<td>0.70</td>
</tr>
<tr>
<td>1:E:30:GLU:OE2</td>
<td>1:E:34:LEU:CG</td>
<td>2.40</td>
<td>0.70</td>
</tr>
<tr>
<td>1:F:92:ILE:O</td>
<td>1:F:140:ARG:NH2</td>
<td>2.24</td>
<td>0.70</td>
</tr>
<tr>
<td>1:D:198:LEU:C</td>
<td>1:D:198:LEU:HD12</td>
<td>2.12</td>
<td>0.69</td>
</tr>
<tr>
<td>1:F:33:TYR:OH</td>
<td>1:F:219:MET:O</td>
<td>2.08</td>
<td>0.69</td>
</tr>
<tr>
<td>1:B:123:PHE:HB3</td>
<td>1:B:126:ARG:HD2</td>
<td>1.72</td>
<td>0.69</td>
</tr>
<tr>
<td>1:C:99:LYS:O</td>
<td>1:C:103:SER:HB3</td>
<td>1.91</td>
<td>0.69</td>
</tr>
<tr>
<td>1:C:92:ILE:HD13</td>
<td>1:C:288:ILE:HG13</td>
<td>1.73</td>
<td>0.69</td>
</tr>
<tr>
<td>1:B:185:ARG:HG21</td>
<td>1:B:185:ARG:HG2</td>
<td>1.57</td>
<td>0.69</td>
</tr>
<tr>
<td>1:C:257:ILE:CD1</td>
<td>1:C:265:LEU:HD13</td>
<td>2.20</td>
<td>0.69</td>
</tr>
<tr>
<td>1:D:34:LEU:HD22</td>
<td>1:D:269:LEU:CD2</td>
<td>2.21</td>
<td>0.69</td>
</tr>
<tr>
<td>1:F:48:ASP:OD1</td>
<td>1:F:52:GLY:HA2</td>
<td>1.92</td>
<td>0.69</td>
</tr>
<tr>
<td>1:A:240:ILE:O</td>
<td>1:A:240:ILE:CG2</td>
<td>2.41</td>
<td>0.69</td>
</tr>
<tr>
<td>1:D:285:VAL:CG1</td>
<td>1:D:290:ASP:HB2</td>
<td>2.23</td>
<td>0.69</td>
</tr>
<tr>
<td>1:E:115:ARG:HD2</td>
<td>1:E:116:ASP:H</td>
<td>1.58</td>
<td>0.68</td>
</tr>
<tr>
<td>1:D:77:LYS:HG2</td>
<td>1:D:78:ARG:N</td>
<td>2.07</td>
<td>0.68</td>
</tr>
<tr>
<td>1:E:218:ASP:OD2</td>
<td>1:E:221:LEU:HD22</td>
<td>1.92</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:257:ILE:CG2</td>
<td>1:E:257:ILE:O</td>
<td>2.40</td>
<td>0.68</td>
</tr>
<tr>
<td>1:D:80:PHE:HE1</td>
<td>1:D:82:LYS:HB3</td>
<td>1.58</td>
<td>0.68</td>
</tr>
<tr>
<td>1:C:126:ARG:HD3</td>
<td>1:C:130:ASP:CG</td>
<td>2.13</td>
<td>0.68</td>
</tr>
<tr>
<td>1:D:297:GLN:NE2</td>
<td>1:D:299:GLU:HB3</td>
<td>2.06</td>
<td>0.68</td>
</tr>
<tr>
<td>1:D:126:ARG:HD3</td>
<td>1:D:130:ASP:CG</td>
<td>2.14</td>
<td>0.68</td>
</tr>
<tr>
<td>1:B:67:LEU:HB2</td>
<td>1:B:246:GLY:O</td>
<td>1.92</td>
<td>0.68</td>
</tr>
<tr>
<td>1:D:168:ILE:CD1</td>
<td>1:D:177:ILE:HG21</td>
<td>2.24</td>
<td>0.68</td>
</tr>
<tr>
<td>1:E:279:LEU:HD12</td>
<td>1:E:298:ILE:HD13</td>
<td>1.77</td>
<td>0.67</td>
</tr>
<tr>
<td>1:C:204:VAL:HG22</td>
<td>1:C:205:ASN:N</td>
<td>2.07</td>
<td>0.67</td>
</tr>
<tr>
<td>1:E:291:PHE:HD1</td>
<td>1:E:296:PHE:CZ</td>
<td>2.13</td>
<td>0.67</td>
</tr>
<tr>
<td>1:E:86:GLU:HB3</td>
<td>1:E:106:VAL:HG21</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>1:F:270:GLN:N</td>
<td>1:F:272:GLU:N</td>
<td>2.27</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:192:LEU:HB2</td>
<td>1:B:193:PRO:CD</td>
<td>2.24</td>
<td>0.67</td>
</tr>
<tr>
<td>1:E:294:GLU:O</td>
<td>1:E:296:PHE:N</td>
<td>2.28</td>
<td>0.67</td>
</tr>
<tr>
<td>1:E:79:VAL:O</td>
<td>1:E:81:TRP:N</td>
<td>2.28</td>
<td>0.67</td>
</tr>
<tr>
<td>1:E:280:ARG:HG2</td>
<td>1:E:299:GLU:OE1</td>
<td>1.95</td>
<td>0.66</td>
</tr>
<tr>
<td>1:E:98:ALA:HB2</td>
<td>1:E:131:LEU:HD11</td>
<td>1.76</td>
<td>0.66</td>
</tr>
<tr>
<td>1:D:198:LEU:C</td>
<td>1:D:198:LEU:CD1</td>
<td>2.64</td>
<td>0.66</td>
</tr>
<tr>
<td>1:D:43:CYS:SG</td>
<td>1:D:43:CYS:O</td>
<td>2.53</td>
<td>0.65</td>
</tr>
<tr>
<td>1:D:46:ARG:HA</td>
<td>1:D:55:THR:O</td>
<td>1.97</td>
<td>0.65</td>
</tr>
<tr>
<td>1:E:257:ILE:HG22</td>
<td>1:E:257:ILE:O</td>
<td>1.97</td>
<td>0.65</td>
</tr>
<tr>
<td>1:D:80:PHE:CE1</td>
<td>1:D:82:LYS:HB3</td>
<td>2.31</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:153:TYR:O</td>
<td>1:C:156:GLN:CG</td>
<td>2.35</td>
<td>0.65</td>
</tr>
<tr>
<td>1:E:113:GLY:HA3</td>
<td>1:E:131:LEU:CD2</td>
<td>2.26</td>
<td>0.65</td>
</tr>
<tr>
<td>1:D:58:VAL:O</td>
<td>1:D:58:VAL:HG12</td>
<td>1.98</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:50:ARG:HA</td>
<td>4:A:675:HOH:O</td>
<td>1.98</td>
<td>0.64</td>
</tr>
<tr>
<td>1:E:223:VAL:O</td>
<td>1:E:227:ILE:HG13</td>
<td>1.98</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:102:SER:O</td>
<td>1:C:104:LYS:N</td>
<td>2.28</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:192:LEU:H</td>
<td>1:C:192:LEU:CD1</td>
<td>2.07</td>
<td>0.64</td>
</tr>
<tr>
<td>1:E:130:ASP:OD2</td>
<td>1:E:149:MET:HB3</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>1:F:88:LEU:CD2</td>
<td>1:F:92:ILE:HD11</td>
<td>2.27</td>
<td>0.64</td>
</tr>
<tr>
<td>1:F:274:ARG:HD3</td>
<td>1:F:302:ASN:O</td>
<td>1.96</td>
<td>0.64</td>
</tr>
<tr>
<td>1:E:78:ARG:HG3</td>
<td>1:E:79:VAL:H</td>
<td>1.63</td>
<td>0.63</td>
</tr>
<tr>
<td>1:D:77:LYS:HG2</td>
<td>1:D:78:ARG:H</td>
<td>1.63</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:132:GLY:HA3</td>
<td>1:E:189:LEU:O</td>
<td>1.98</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:99:LYS:NZ</td>
<td>1:B:128:GLU:HG3</td>
<td>2.14</td>
<td>0.63</td>
</tr>
<tr>
<td>1:F:233:LEU:O</td>
<td>1:F:233:LEU:CD1</td>
<td>2.43</td>
<td>0.62</td>
</tr>
<tr>
<td>1:E:82:LYS:O</td>
<td>1:E:86:GLU:HB2</td>
<td>1.99</td>
<td>0.62</td>
</tr>
<tr>
<td>1:F:294:GLU:C</td>
<td>1:F:296:PHE:H</td>
<td>2.01</td>
<td>0.62</td>
</tr>
<tr>
<td>1:E:214:GLN:OE1</td>
<td>1:E:250:HIS:HE1</td>
<td>1.83</td>
<td>0.62</td>
</tr>
<tr>
<td>1:E:223:VAL:HB</td>
<td>1:E:224:PRO:HD3</td>
<td>1.82</td>
<td>0.62</td>
</tr>
<tr>
<td>1:E:201:PHE:HD1</td>
<td>1:E:296:PHE:HZ</td>
<td>1.46</td>
<td>0.62</td>
</tr>
<tr>
<td>1:E:98:ALA:HB1</td>
<td>1:E:109:TRP:O</td>
<td>1.99</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:174:ASP:OD1</td>
<td>1:C:176:ARG:HB2</td>
<td>2.01</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:147:ARG:NH1</td>
<td>1:D:156:GLN:HE22</td>
<td>1.96</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:259:LEU:O</td>
<td>1:D:262:ILE:HD11</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:E:37:ILE:HG23</td>
<td>1:E:257:ILE:CD1</td>
<td>2.30</td>
<td>0.61</td>
</tr>
<tr>
<td>1:E:114:SER:OG</td>
<td>1:E:115:ARG:N</td>
<td>2.30</td>
<td>0.61</td>
</tr>
<tr>
<td>1:F:32:GLN:NE2</td>
<td>1:F:64:ARG:O</td>
<td>2.32</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:78:ARG:HH11</td>
<td>1:C:78:ARG:CG</td>
<td>2.14</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:139:TRP:CD2</td>
<td>1:D:179:MET:HE1</td>
<td>2.35</td>
<td>0.60</td>
</tr>
<tr>
<td>1:E:254:ASP:OD2</td>
<td>1:F:175:ARG:HD3</td>
<td>2.00</td>
<td>0.60</td>
</tr>
<tr>
<td>1:E:302:ASN:N</td>
<td>1:E:303:PRO:HD3</td>
<td>2.16</td>
<td>0.60</td>
</tr>
<tr>
<td>1:E:301:TYR:CE2</td>
<td>1:E:303:PRO:HG3</td>
<td>2.37</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:52:GLY:O</td>
<td>4:C:628:HOH:O</td>
<td>2.17</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:32:GLN:O</td>
<td>1:A:36:GLN:HG3</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:239:HIS:HD1</td>
<td>1:C:281:ILE:HD13</td>
<td>1.66</td>
<td>0.60</td>
</tr>
<tr>
<td>1:D:294:GLU:H</td>
<td>1:D:294:GLU:CD</td>
<td>2.05</td>
<td>0.60</td>
</tr>
<tr>
<td>1:E:219:MET:HB2</td>
<td>1:E:257:ILE:HG13</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:E:192:LEU:HD13</td>
<td>1:E:192:LEU:C</td>
<td>2.21</td>
<td>0.60</td>
</tr>
<tr>
<td>1:F:279:LEU:HD12</td>
<td>1:F:298:ILE:CD1</td>
<td>2.29</td>
<td>0.60</td>
</tr>
<tr>
<td>1:F:80:PHE:HE2</td>
<td>1:F:106:VAL:HG13</td>
<td>1.66</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:198:LEU:CD1</td>
<td>1:C:198:LEU:C</td>
<td>2.70</td>
<td>0.60</td>
</tr>
<tr>
<td>1:D:240:ILE:O</td>
<td>1:D:240:ILE:HG22</td>
<td>2.01</td>
<td>0.60</td>
</tr>
<tr>
<td>1:F:88:LEU:C</td>
<td>1:F:88:LEU:HD23</td>
<td>2.21</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:176:ARG:HH11</td>
<td>1:A:176:ARG:CG</td>
<td>2.07</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:206:SER:HA</td>
<td>1:A:243:LEU:CD2</td>
<td>2.32</td>
<td>0.59</td>
</tr>
<tr>
<td>1:F:301:TYR:O</td>
<td>1:F:303:PRO:HD3</td>
<td>2.01</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:192:LEU:HB2</td>
<td>1:B:193:PRO:HD3</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:E:81:TRP:CH2</td>
<td>1:E:232:LEU:HD22</td>
<td>2.37</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:97:ASN:OD1</td>
<td>1:F:149:MET:SD</td>
<td>2.61</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:306:THR:O</td>
<td>1:D:306:THR:CG2</td>
<td>2.50</td>
<td>0.59</td>
</tr>
<tr>
<td>1:E:46:ARG:HG3</td>
<td>1:E:46:ARG:NH2</td>
<td>2.18</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:100:GLU:HG3</td>
<td>1:D:100:GLU:O</td>
<td>2.01</td>
<td>0.59</td>
</tr>
<tr>
<td>1:F:229:SER:O</td>
<td>1:F:232:LEU:HB3</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:85:LEU:HD11</td>
<td>1:D:296:PHE:CD1</td>
<td>2.38</td>
<td>0.59</td>
</tr>
<tr>
<td>1:E:211:GLN:HG3</td>
<td>1:E:249:ILE:HB</td>
<td>1.85</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:198:LEU:C</td>
<td>1:A:198:LEU:CD1</td>
<td>2.68</td>
<td>0.58</td>
</tr>
<tr>
<td>1:E:240:ILE:HD11</td>
<td>1:E:291:PHE:CE2</td>
<td>2.38</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:147:ARG:HH12</td>
<td>1:A:156:GLN:HE22</td>
<td>1.51</td>
<td>0.58</td>
</tr>
<tr>
<td>1:C:66:SER:O</td>
<td>1:C:67:LEU:HD23</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:292:LYS:O</td>
<td>1:A:293:ALA:C</td>
<td>2.41</td>
<td>0.58</td>
</tr>
<tr>
<td>1:E:84:VAL:O</td>
<td>1:E:85:LEU:C</td>
<td>2.40</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:92:ILE:CD1</td>
<td>1:A:236:MET:HE1</td>
<td>2.34</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:257:ILE:HD11</td>
<td>1:C:265:LEU:CD1</td>
<td>2.29</td>
<td>0.57</td>
</tr>
<tr>
<td>1:F:97:ASN:HD22</td>
<td>1:F:100:GLU:H</td>
<td>1.52</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:192:LEU:HD13</td>
<td>1:C:192:LEU:N</td>
<td>2.16</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:46:ARG:C</td>
<td>1:A:48:ASP:H</td>
<td>2.08</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:192:LEU:H</td>
<td>1:C:192:LEU:HD13</td>
<td>1.69</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:176:ARG:HD2</td>
<td>1:B:215:ARG:NH1</td>
<td>2.18</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:252:LEU:HD13</td>
<td>1:D:255:ALA:HB2</td>
<td>1.85</td>
<td>0.57</td>
</tr>
<tr>
<td>1:E:259:LEU:C</td>
<td>1:E:261:HIS:H</td>
<td>2.08</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:214:GLN:OE1</td>
<td>1:C:250:HIS:HE1</td>
<td>1.86</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:259:LEU:O</td>
<td>1:F:262:ILE:HG13</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:143:GLY:O</td>
<td>1:F:144:ALA:C</td>
<td>2.39</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:115:ARG:HD2</td>
<td>1:E:116:ASP:N</td>
<td>2.20</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:259:LEU:O</td>
<td>1:A:262:ILE:HG13</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:88:LEU:HD11</td>
<td>1:E:233:LEU:HB2</td>
<td>1.86</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:291:PHE:CD1</td>
<td>1:E:296:PHE:CZ</td>
<td>2.86</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:198:LEU:O</td>
<td>1:A:198:LEU:HD12</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:215:ARG:NH1</td>
<td>1:F:175:ARG:O</td>
<td>2.39</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:74:LEU:HD12</td>
<td>1:D:224:PRO:HB3</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:282:LEU:HD11</td>
<td>1:E:297:GLN:OE1</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:69:ASP:O</td>
<td>1:F:278:LYS:HG3</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:164:VAL:HG22</td>
<td>1:B:177:ILE:HG22</td>
<td>1.88</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:E:618:PO4:O2</td>
<td>3:E:628:BME:H21</td>
<td>2.05</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:87:GLU:O</td>
<td>1:C:88:LEU:C</td>
<td>2.41</td>
<td>0.55</td>
</tr>
<tr>
<td>1:E:271:ARG:HH1</td>
<td>1:E:304:HIS:HB2</td>
<td>1.71</td>
<td>0.55</td>
</tr>
<tr>
<td>1:E:32:GLN:HH2</td>
<td>1:E:64:ARG:H</td>
<td>1.71</td>
<td>0.55</td>
</tr>
<tr>
<td>1:F:207:GLU:OE1</td>
<td>1:F:207:GLU:HA</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:92:ILE:CD1</td>
<td>1:C:236:MET:CE</td>
<td>2.84</td>
<td>0.55</td>
</tr>
<tr>
<td>1:F:244:LYS:HE2</td>
<td>1:F:244:LYS:N</td>
<td>2.22</td>
<td>0.55</td>
</tr>
<tr>
<td>1:E:76:THR:HB</td>
<td>1:E:268:GLN:NE2</td>
<td>2.22</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:244:LYS:HE2</td>
<td>1:F:244:LYS:H</td>
<td>1.72</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:72:PRO:HA</td>
<td>1:F:276:PHE:CD1</td>
<td>2.41</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:263:GLU:CB</td>
<td>1:A:264:PRO:HD3</td>
<td>2.37</td>
<td>0.54</td>
</tr>
<tr>
<td>4:A:664:HOH:O</td>
<td>1:B:163:LYS:HE2</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:87:GLU:OE1</td>
<td>1:E:91:PHE:HZ</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:101:LEU:HA</td>
<td>1:F:104:LYS:HG3</td>
<td>1.88</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:80:PHE:HD2</td>
<td>1:F:83:GLY:HA3</td>
<td>1.71</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:135:TYR:O</td>
<td>1:C:136:GLY:C</td>
<td>2.42</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:206:SER:O</td>
<td>1:D:244:LYS:HG3</td>
<td>2.06</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:116:ASP:O</td>
<td>1:E:120:SER:HB3</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:39:HIS:O</td>
<td>1:F:40:ILE:C</td>
<td>2.43</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:197:ALA:O</td>
<td>1:A:198:LEU:HB3</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:102:SER:C</td>
<td>1:C:104:LYS:H</td>
<td>2.11</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:79:VAL:O</td>
<td>1:C:81:TRP:N</td>
<td>2.38</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:271:ARG:NH1</td>
<td>1:E:304:HIS:HB3</td>
<td>2.22</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:198:LEU:C</td>
<td>1:E:198:LEU:HD12</td>
<td>2.28</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:134:VAL:HG12</td>
<td>1:F:190:MET:HE3</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:240:ILE:O</td>
<td>1:A:240:ILE:HG2</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:37:ILE:O</td>
<td>1:F:37:ILE:HG2</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:72:PRO:HG2</td>
<td>1:C:72:PRO:O</td>
<td>2.06</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:263:GLU:N</td>
<td>1:E:264:PRO:HD2</td>
<td>2.23</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:88:LEU:O</td>
<td>1:F:91:PHE:HB2</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:139:TRP:CE2</td>
<td>1:D:179:MET:CE</td>
<td>2.91</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:194:PRO:O</td>
<td>1:E:215:ARG:NE</td>
<td>2.33</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:30:GLU:O</td>
<td>1:E:34:LEU:HG</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:176:ARG:NH1</td>
<td>4:A:627:HOH:O</td>
<td>2.40</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:73:LEU:HB3</td>
<td>1:D:277:PRO:HG2</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:97:ASN:HB3</td>
<td>1:D:100:GLU:HB3</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:239:HIS:ND1</td>
<td>1:C:281:ILE:HD13</td>
<td>2.22</td>
<td>0.53</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:36:GLN:O</td>
<td>1:D:40:ILE:HG13</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:102:SER:HB3</td>
<td>1:E:106:VAL:O</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:130:ASP:CG</td>
<td>1:E:149:MET:HB3</td>
<td>2.29</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:66:SER:OG</td>
<td>1:E:68:ARG:HG3</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:221:LEU:HD21</td>
<td>1:B:261:HIS:CE1</td>
<td>2.43</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:103:SER:OG</td>
<td>1:C:103:SER:O</td>
<td>2.25</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:175:ARG:NH2</td>
<td>2:E:619:PO4:O2</td>
<td>2.41</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:159:ASP:OD2</td>
<td>1:F:162:GLN:HB2</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:232:LEU:O</td>
<td>1:E:236:MET:HG3</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:72:PRO:CA</td>
<td>1:F:276:PHE:CE1</td>
<td>2.88</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:204:VAL:CG2</td>
<td>1:C:205:ASN:N</td>
<td>2.71</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:206:SER:HA</td>
<td>1:E:243:LEU:HD22</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:60:GLY:O</td>
<td>1:E:61:MET:HG2</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:259:LEU:O</td>
<td>1:B:262:ILE:HG13</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:263:GLU:O</td>
<td>1:C:264:PRO:C</td>
<td>2.47</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:47:LYS:HG2</td>
<td>1:D:48:ASP:N</td>
<td>2.18</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:178:ILE:CG2</td>
<td>1:E:179:MET:N</td>
<td>2.72</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:298:ILE:CG2</td>
<td>1:E:301:TYR:HB2</td>
<td>2.39</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:102:SER:HB2</td>
<td>1:A:110:ASP:OD1</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:206:SER:HA</td>
<td>1:A:243:LEU:HD22</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:36:GLN:O</td>
<td>1:A:40:ILE:HG13</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:290:ASP:N</td>
<td>4:E:629:HOH:O</td>
<td>2.42</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:35:GLY:HA2</td>
<td>1:A:38:GLN:HG3</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:198:LEU:O</td>
<td>1:D:198:LEU:HD12</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:306:THR:HB</td>
<td>4:A:671:HOH:O</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:78:ARG:HG2</td>
<td>1:C:78:ARG:HH11</td>
<td>1.74</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:225:PHE:O</td>
<td>1:F:228:ALA:HB3</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:80:PHE:CD2</td>
<td>1:F:83:GLY:HA3</td>
<td>2.45</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:33:TYR:O</td>
<td>1:A:37:ILE:HG13</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:31:LEU:C</td>
<td>1:E:32:GLN:HG2</td>
<td>2.23</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:280:ARG:HG3</td>
<td>1:B:280:ARG:NH1</td>
<td>2.23</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:283:ARG:HH11</td>
<td>1:C:283:ARG:CB</td>
<td>2.23</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:257:ILE:CD1</td>
<td>1:C:265:LEU:CD1</td>
<td>2.86</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:124:SER:C</td>
<td>1:E:126:ARG:H</td>
<td>2.14</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:78:ARG:NH1</td>
<td>1:C:78:ARG:CG</td>
<td>2.71</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:67:LEU:HB2</td>
<td>1:E:246:GLY:O</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:139:TRP:CE2</td>
<td>1:D:179:MET:HE3</td>
<td>2.46</td>
<td>0.51</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:207:GLU:HG2</td>
<td>1:E:244:LYS:HG3</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:32:GLN:O</td>
<td>1:B:36:GLN:HG3</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:223:VAL:HA</td>
<td>1:C:226:ASN:HD22</td>
<td>1.74</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:227:ILE:HD11</td>
<td>1:C:250:HIS:CD2</td>
<td>2.45</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:135:TYR:O</td>
<td>1:E:136:GLY:C</td>
<td>2.49</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:227:ILE:N</td>
<td>1:C:227:ILE:HD13</td>
<td>2.25</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:102:SER:CA</td>
<td>1:E:106:VAL:O</td>
<td>2.59</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:97:ASN:OD1</td>
<td>1:E:99:LYS:CB</td>
<td>2.53</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:133:PRO:CB</td>
<td>1:A:137:PHE:CD2</td>
<td>2.94</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:174:ASP:OD1</td>
<td>1:D:176:ARG:HG2</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:44:GLY:HA2</td>
<td>1:A:58:VAL:HG23</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:34:LEU:HD22</td>
<td>1:B:269:LEU:HD23</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:109:TRP:CE3</td>
<td>1:E:131:LEU:HD13</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:232:LEU:O</td>
<td>1:E:232:LEU:HD12</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:33:TYR:O</td>
<td>1:E:34:LEU:C</td>
<td>2.49</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:79:VAL:O</td>
<td>1:F:81:TRP:N</td>
<td>2.44</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:102:SER:O</td>
<td>1:A:107:LYS:NZ</td>
<td>2.32</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:257:ILE:HG22</td>
<td>1:D:258:TYR:O</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:177:ILE:HG21</td>
<td>1:F:201:PHE:HB2</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:114:SER:OG</td>
<td>1:E:115:ARG:NE</td>
<td>2.45</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:133:PRO:HB3</td>
<td>1:E:146:TYR:CD1</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:289:ASP:C</td>
<td>4:E:629:HOH:O</td>
<td>2.49</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:78:ARG:HG3</td>
<td>1:E:79:VAL:N</td>
<td>2.26</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:90:TRP:NE1</td>
<td>1:E:95:SER:OG</td>
<td>2.43</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:285:VAL:HG12</td>
<td>1:F:286:GLU:N</td>
<td>2.27</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:274:ARG:O</td>
<td>1:E:275:PRO:C</td>
<td>2.48</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:138:GLN:O</td>
<td>1:F:142:PHE:HB2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:80:PHE:O</td>
<td>1:F:83:GLY:N</td>
<td>2.43</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:279:LEU:CD1</td>
<td>1:F:298:ILE:HD12</td>
<td>2.35</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:274:ARG:HE</td>
<td>1:D:304:HIS:CD2</td>
<td>2.29</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:42:ARG:HB2</td>
<td>1:F:42:ARG:HH11</td>
<td>1.76</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:281:ILE:H</td>
<td>1:A:281:ILE:HD12</td>
<td>1.75</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:88:LEU:O</td>
<td>1:B:92:ILE:HG12</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:164:VAL:O</td>
<td>1:C:168:ILE:HG13</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:221:LEU:O</td>
<td>1:D:224:PRO:HD2</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:282:LEU:HD12</td>
<td>1:D:294:GLU:O</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:235:TYR:CD1</td>
<td>1:B:279:LEU:HD23</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:66:SER:HA</td>
<td>1:E:247:ASP:OD1</td>
<td>2.12</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:279:LEU:CD1</td>
<td>1:A:298:ILE:HD13</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:168:ILE:CD1</td>
<td>1:B:168:ILE:CB</td>
<td>2.79</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:174:ASP:OD1</td>
<td>1:F:176:ARG:HD2</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:86:GLU:HG2</td>
<td>1:A:104:LYS:HB2</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:204:VAL:HG22</td>
<td>1:C:205:ASN:H</td>
<td>1.76</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:192:LEU:HD13</td>
<td>1:D:637:HOH:O</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:56:LEU:HD13</td>
<td>1:A:259:LEU:CD2</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:49:ASP:C</td>
<td>1:A:51:THR:N</td>
<td>2.64</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:40:ILE:O</td>
<td>1:B:40:ILE:HG22</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:102:SER:CB</td>
<td>1:E:106:VAL:O</td>
<td>2.61</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:263:GLU:N</td>
<td>1:D:264:PRO:HD2</td>
<td>2.28</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:292:LYS:C</td>
<td>1:E:294:GLU:H</td>
<td>2.16</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:263:GLU:HB2</td>
<td>1:A:264:PRO:HD3</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:32:GLN:HG3</td>
<td>1:E:64:ARG:N</td>
<td>2.27</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:171:ASN:O</td>
<td>1:A:172:PRO:C</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:215:ARG:HG3</td>
<td>1:D:216:SER:N</td>
<td>2.28</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:175:ARG:HG2</td>
<td>1:F:254:ASP:OD2</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:81:TRP:CE2</td>
<td>1:B:298:ILE:HG13</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:33:TYR:OH</td>
<td>1:B:219:MET:O</td>
<td>2.21</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:127:GLU:H</td>
<td>1:C:127:GLU:CD</td>
<td>2.16</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:133:PRO:HB3</td>
<td>1:A:137:PHE:CD2</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:112:ASN:HA</td>
<td>1:C:117:PHE:CD2</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:240:ILE:O</td>
<td>1:C:240:ILE:HG22</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:164:VAL:HG22</td>
<td>1:B:177:ILE:CG2</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:272:GLU:HA</td>
<td>1:E:273:PRO:HD2</td>
<td>1.51</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:28:HIS:HB3</td>
<td>1:F:31:LEU:HD11</td>
<td>1.94</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:126:ARG:HG2</td>
<td>1:D:130:ASP:HB3</td>
<td>1.94</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:126:ARG:CG</td>
<td>1:D:130:ASP:HB3</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:99:LYS:HZ1</td>
<td>1:B:128:GLU:HG3</td>
<td>1.77</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:131:LEU:C</td>
<td>1:E:132:GLY:O</td>
<td>2.51</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:133:PRO:HG2</td>
<td>1:E:186:ASP:HB3</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:298:ILE:HG22</td>
<td>1:E:301:TYR:HB2</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:88:LEU:O</td>
<td>1:E:92:ILE:HG13</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:32:GLN:HB3</td>
<td>1:E:63:ALA:HB1</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:228:ALA:O</td>
<td>1:F:229:SER:C</td>
<td>2.51</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:303:PRO:O</td>
<td>1:E:304:HIS:O</td>
<td>2.31</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:44:GLY:HA2</td>
<td>1:F:58:VAL:HG23</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:169:LYS:HG3</td>
<td>1:C:241:THR:HG22</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:160:GLN:O</td>
<td>1:E:164:VAL:HG23</td>
<td>2.14</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Continued on next page...
### Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:E:233:LEU:O | 1:E:237:ILE:CG1 | 2.60 | 0.48
1:E:200:GLN:N | 1:E:211:GLN:O | 2.40 | 0.48
1:E:214:GLN:HB3 | 1:E:252:LEU:HD23 | 1.96 | 0.48
1:B:214:GLN:HB3 | 1:B:252:LEU:HD23 | 1.95 | 0.48
1:C:90:TRP:NE1 | 1:C:95:SER:OG | 2.46 | 0.48
1:B:185:ARG:CG | 1:B:185:ARG:HH21 | 2.25 | 0.47
1:C:182:TRP:CZ2 | 1:C:187:LEU:HD11 | 2.49 | 0.47
1:E:202:TYR:CD1 | 1:F:59:PHE:CD2 | 3.02 | 0.47
1:C:30:GLU:OE1 | 1:C:76:THR:HG23 | 2.14 | 0.47
1:D:151:SER:HB2 | 1:D:153:TYR:CZ | 2.49 | 0.47
1:F:294:GLU:C | 1:F:296:PHE:N | 2.66 | 0.47
1:B:100:GLU:HG3 | 1:B:100:GLU:O | 2.13 | 0.47
1:B:183:ASN:C | 1:B:183:ASN:OD1 | 2.52 | 0.47
1:C:240:ILE:CG2 | 1:C:240:ILE:O | 2.62 | 0.47
1:D:217:GLY:HA3 | 1:D:252:LEU:HD21 | 1.95 | 0.47
1:E:192:LEU:CD1 | 1:E:192:LEU:C | 2.82 | 0.47
1:E:289:ASP:OD1 | 1:E:289:ASP:N | 2.41 | 0.47
2:E:618:PO4:O2 | 3:E:628:BME:C2 | 2.63 | 0.47
1:B:68:ARG:HG3 | 1:B:68:ARG:NH1 | 2.28 | 0.47
1:C:257:ILE:O | 1:C:257:ILE:CG2 | 2.63 | 0.47
1:E:304:PRO:O | 1:E:304:HIS:C | 2.51 | 0.47
1:A:262:ILE:O | 1:A:266:LYS:HB2 | 2.15 | 0.47
1:E:126:ARG:HD3 | 1:E:130:ASP:OD1 | 2.15 | 0.47
1:E:265:LEU:HD12 | 1:E:268:GLN:HB2 | 1.96 | 0.47
1:F:80:PHE:CE2 | 1:F:106:VAL:HG13 | 2.48 | 0.47
1:B:267:ILE:O | 1:B:270:GLN:HB2 | 2.13 | 0.47
1:A:43:CYS:O | 1:A:44:GLY:C | 2.49 | 0.47
1:C:262:ILE:O | 1:C:263:GLU:C | 2.52 | 0.47
1:F:133:PRO:HD2 | 1:F:190:MET:HG2 | 1.95 | 0.47

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:187:LEU:N</td>
<td>1:D:188:PRO:CD</td>
<td>2.77</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:127:GLU:O</td>
<td>1:C:128:GLU:C</td>
<td>2.53</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:32:GLN:O</td>
<td>1:D:36:GLN:HG3</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:292:LYS:C</td>
<td>1:E:294:GLU:N</td>
<td>2.68</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:132:GLY:HA3</td>
<td>1:E:190:MET:HA</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:211:GLN:HG3</td>
<td>1:E:249:ILE:O</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:301:TYR:CE1</td>
<td>1:E:303:PRO:HG3</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:115:ARG:O</td>
<td>1:A:116:ASP:C</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:121:LEU:HD12</td>
<td>1:C:123:PHE:CE2</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:141:HIS:O</td>
<td>1:C:142:PHE:C</td>
<td>2.54</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:240:ILE:HD11</td>
<td>1:E:288:ILE:HD12</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:267:ILE:C</td>
<td>1:F:269:LEU:N</td>
<td>2.68</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:153:TYR:O</td>
<td>1:A:154:SER:C</td>
<td>2.54</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:257:ILE:HG22</td>
<td>1:A:258:TYR:O</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:94:GLY:C</td>
<td>1:E:95:SER:O</td>
<td>2.52</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:45:VAL:HG23</td>
<td>1:F:204:VAL:HG21</td>
<td>1.94</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:286:GLU:HG3</td>
<td>1:E:286:GLU:H</td>
<td>1.66</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:204:VAL:O</td>
<td>1:F:207:GLU:CB</td>
<td>2.52</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:107:LYS:HD2</td>
<td>1:A:110:ASP:OD2</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:204:VAL:CG2</td>
<td>1:C:205:ASN:H</td>
<td>2.29</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:126:ARG:HD2</td>
<td>1:D:130:ASP:HB3</td>
<td>1.93</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:206:SER:HA</td>
<td>1:D:243:LEU:HD22</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:196:HIS:HB3</td>
<td>1:D:212:LEU:HD11</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:60:GLY:O</td>
<td>1:E:61:MET:CG</td>
<td>2.62</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:96:THR:HG21</td>
<td>1:F:146:TYR:OH</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:182:TRP:CZ2</td>
<td>1:A:187:LEU:HD11</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:199:CYS:HA</td>
<td>1:A:211:GLN:O</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:177:ILE:CG2</td>
<td>1:F:201:PHE:HB2</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:282:LEU:O</td>
<td>1:F:283:ARG:CB</td>
<td>2.63</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:158:VAL:HG12</td>
<td>1:A:159:ASP:N</td>
<td>2.29</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:141:HIS:O</td>
<td>1:B:142:PHE:C</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:277:PRO:HG3</td>
<td>1:D:301:TYR:CD1</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:144:ALA:H</td>
<td>1:F:157:GLY:HA3</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:279:LEU:HD13</td>
<td>1:A:298:ILE:CD1</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:217:GLY:HA2</td>
<td>3:C:626:BME:H22</td>
<td>1.98</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:171:ASN:ND2</td>
<td>1:E:174:ASP:HB2</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:107:LYS:O</td>
<td>1:E:108:ILE:HG23</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:82:LYS:O</td>
<td>1:B:86:GLU:HB2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:43:CYS:C</td>
<td>1:A:44:GLY:O</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:279:LEU:HB2</td>
<td>1:A:298:ILE:CD1</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:223:VAL:N</td>
<td>1:D:224:PRO:HD3</td>
<td>2.27</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:33:TYR:HA</td>
<td>1:E:36:GLN:HB2</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:74:LEU:HD12</td>
<td>1:A:224:PRO:HB3</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:102:SER:HB2</td>
<td>1:C:110:ASP:OD1</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:271:ARG:NH1</td>
<td>1:E:304:HIS:CB</td>
<td>2.78</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:287:LYS:O</td>
<td>1:A:290:ASP:HB3</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:178:ILE:HG22</td>
<td>1:E:179:MET:N</td>
<td>2.31</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:279:LEU:CD1</td>
<td>1:E:298:ILE:HD13</td>
<td>2.45</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:276:PHE:HA</td>
<td>1:D:277:PRO:HD2</td>
<td>1.42</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:261:HIS:CA</td>
<td>1:E:264:PRO:HG2</td>
<td>2.34</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:141:HIS:O</td>
<td>1:A:142:PHE:C</td>
<td>2.55</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:267:ILE:O</td>
<td>1:A:270:GLN:HG3</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:53:THR:HG22</td>
<td>1:C:54:GLY:N</td>
<td>2.31</td>
<td>0.45</td>
</tr>
<tr>
<td>1:F:30:GLU:C</td>
<td>1:F:32:GLN:N</td>
<td>2.68</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:121:LEU:CD1</td>
<td>1:C:123:PHE:CE2</td>
<td>3.00</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:46:ARG:HA</td>
<td>1:C:55:THR:O</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:66:SER:C</td>
<td>1:C:67:LEU:HD23</td>
<td>2.37</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:81:TRP:CG</td>
<td>1:D:81:TRP:O</td>
<td>2.66</td>
<td>0.45</td>
</tr>
<tr>
<td>1:F:119:ASP:OD1</td>
<td>1:F:124:SER:HB3</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:68:ARG:O</td>
<td>1:A:69:ASP:HB2</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:50:ARG:HG2</td>
<td>1:C:50:ARG:NH1</td>
<td>2.32</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:192:LEU:O</td>
<td>1:E:192:LEU:CD1</td>
<td>2.60</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:86:GLU:HG2</td>
<td>1:A:104:LYS:CB</td>
<td>2.47</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:212:LEU:HD22</td>
<td>1:C:230:TYR:CD2</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:38:GLN:O</td>
<td>1:D:42:ARG:HB2</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:260:ASN:OD1</td>
<td>1:E:260:ASN:N</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:78:ARG:CG</td>
<td>1:E:79:VAL:N</td>
<td>2.80</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:301:TYR:CZ</td>
<td>1:F:303:PRO:HG3</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:33:TYR:O</td>
<td>1:D:37:ILE:HG12</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:239:HIS:HE2</td>
<td>1:E:284:LYS:HA</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:282:LEU:O</td>
<td>1:F:283:ARG:HB2</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:268:GLN:O</td>
<td>1:D:271:ARG:HB2</td>
<td>2.16</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:283:ARG:HB2</td>
<td>1:D:284:LYS:H</td>
<td>1.44</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:271:ARG:O</td>
<td>1:E:273:PRO:HD2</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:168:ILE:CD1</td>
<td>1:D:177:ILE:HD13</td>
<td>2.46</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:34:LEU:O</td>
<td>1:F:37:ILE:N</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:139:TRP:CD2</td>
<td>1:D:179:MET:CE</td>
<td>3.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:223:VAL:O</td>
<td>1:D:227:ILE:HG12</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:195:CYS:O</td>
<td>1:E:214:GLN:HA</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:222:GLY:C</td>
<td>1:D:224:PRO:HD2</td>
<td>2.38</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:57:SER:O</td>
<td>1:D:58:VAL:HG23</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:46:ARG:C</td>
<td>1:A:48:ASP:N</td>
<td>2.70</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:126:ARG:CD</td>
<td>1:D:130:ASP:CB</td>
<td>2.93</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:43:CYS:O</td>
<td>1:F:44:GLY:O</td>
<td>2.35</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:78:ARG:NH2</td>
<td>4:A:618:HOH:O</td>
<td>2.47</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:162:GLN:NE2</td>
<td>1:B:166:ASP:OD2</td>
<td>2.46</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:259:LEU:O</td>
<td>1:E:261:HIS:N</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:30:GLU:O</td>
<td>1:F:30:GLU:HG2</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:30:GLU:OE2</td>
<td>1:C:75:THR:N</td>
<td>2.36</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:236:MET:CE</td>
<td>1:D:291:PHE:CD2</td>
<td>3.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:67:LEU:HD21</td>
<td>1:D:248:PHE:HB3</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:239:HIS:ND1</td>
<td>1:E:281:ILE:HG13</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:162:GLN:O</td>
<td>1:F:165:ILE:HG12</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:206:SER:HA</td>
<td>1:F:243:LEU:HD23</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:223:VAL:HG13</td>
<td>1:A:250:HIS:CE1</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:223:VAL:O</td>
<td>1:B:224:PRO:C</td>
<td>2.57</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:86:GLU:HG2</td>
<td>1:D:104:LYS:HB2</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:126:ARG:HD3</td>
<td>1:D:130:ASP:CB</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:100:GLU:O</td>
<td>1:F:100:GLU:CG</td>
<td>2.65</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:279:LEU:CD1</td>
<td>1:F:298:ILE:CD1</td>
<td>2.95</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:23:LEU:O</td>
<td>1:B:37:ILE:N</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:277:PRO:HG3</td>
<td>1:D:301:TYR:HD1</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:288:ILE:HD12</td>
<td>1:F:291:PHE:CE2</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:126:ARG:HG2</td>
<td>1:A:130:ASP:CB</td>
<td>2.42</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:244:LYS:HA</td>
<td>1:A:245:PRO:HD3</td>
<td>1.87</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:102:SER:HA</td>
<td>1:B:106:VAL:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:80:PHE:O</td>
<td>1:C:81:TRP:C</td>
<td>2.56</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:114:SER:O</td>
<td>1:E:118:LEU:HG</td>
<td>2.17</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:161:LEU:HD12</td>
<td>1:F:161:LEU:HA</td>
<td>1.73</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:215:ARG:NH1</td>
<td>1:F:215:ARG:HG3</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:125:THR:O</td>
<td>1:B:125:THR:HG23</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:187:LEU:HA</td>
<td>1:B:187:LEU:HD23</td>
<td>1.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:280:ARG:HG2</td>
<td>1:B:280:ARG:HH11</td>
<td>1.77</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:68:ARG:HG3</td>
<td>1:B:68:ARG:HG11</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:218:ASP:H</td>
<td>3:C:626:BME:C2</td>
<td>2.31</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:46:ARG:HH11</td>
<td>1:E:259:LEU:HD11</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:270:GLN:HG2</td>
<td>1:A:270:GLN:H</td>
<td>1.12</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:78:ARG:NH1</td>
<td>4:A:618:HOH:O</td>
<td>2.24</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:60:GLY:C</td>
<td>1:E:61:MET:CG</td>
<td>2.86</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:97:ASN:ND2</td>
<td>1:F:100:GLU:H</td>
<td>2.14</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:139:TRP:CD2</td>
<td>1:F:179:MET:HE1</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:105:GLY:HA2</td>
<td>1:A:107:LYS:H3</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:278:LYS:HD3</td>
<td>1:D:299:GLU:OE2</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:211:GLN:HA</td>
<td>1:A:249:ILE:O</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:236:MET:HE3</td>
<td>1:A:236:MET:HB3</td>
<td>1.81</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:48:ASP:O</td>
<td>1:A:54:GLY:HA2</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:262:ILE:O</td>
<td>1:E:262:ILE:HG12</td>
<td>1.65</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:87:GLU:O</td>
<td>1:E:88:LEU:C</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:294:GLU:C</td>
<td>1:E:296:PHE:H</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:124:SER:OG</td>
<td>1:C:125:THR:N</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:212:LEU:HD12</td>
<td>1:A:212:LEU:HA</td>
<td>1.77</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:271:ARG:HD3</td>
<td>1:A:304:LYS:CG</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:168:ILE:O</td>
<td>1:C:168:ILE:HG22</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:274:ARG:O</td>
<td>1:E:275:PRO:O</td>
<td>2.36</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:196:LYS:CD2</td>
<td>1:A:212:LEU:HD21</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:184:PRO:HD2</td>
<td>1:F:142:PHE:CE2</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:271:ARG:HD3</td>
<td>1:E:304:LYS:CG</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:92:ILE:O</td>
<td>1:E:140:ARG:NH1</td>
<td>2.51</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:133:PRO:HB3</td>
<td>1:A:137:PHE:CE2</td>
<td>2.53</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:64:ARG:NH1</td>
<td>1:B:60:GLY:O</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:192:LEU:H</td>
<td>1:B:192:LEU:HD13</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:102:SER:HA</td>
<td>1:E:106:VAL:O</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:99:LYS:HA</td>
<td>1:E:99:LYS:HD3</td>
<td>1.72</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:263:GLU:CB</td>
<td>1:A:264:PRO:CD</td>
<td>2.98</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:112:ASN:O</td>
<td>1:C:117:PHE:HD2</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:37:ILE:HG22</td>
<td>1:C:41:LEU:HD12</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:37:ILE:HG23</td>
<td>1:B:37:ILE:HD12</td>
<td>1.68</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:167:THR:O</td>
<td>1:D:168:Ile:C</td>
<td>2.57</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:214:GLN:OE1</td>
<td>1:C:250:HI1:CE1</td>
<td>2.70</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:77:LYS:O</td>
<td>1:C:78:ARG:C</td>
<td>2.58</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:236:MET:HE2</td>
<td>1:E:288:Ile:HD11</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:135:TYR:HH</td>
<td>1:F:196:HI1:HD1</td>
<td>1.66</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:30:GLU:C</td>
<td>1:F:32:GLN:H</td>
<td>2.23</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:115:ARG:CG</td>
<td>1:A:115:ARG:NH1</td>
<td>2.64</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:184:PRO:HD2</td>
<td>1:B:142:PHE:CE2</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:198:LEU:HD12</td>
<td>1:B:198:LEU:C</td>
<td>2.40</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:81:TRP:O</td>
<td>1:C:82:LYS:C</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:205:ASN:O</td>
<td>1:A:206:SER:HB2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:178:Ile:CG2</td>
<td>1:B:179:MET:N</td>
<td>2.82</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:81:TRP:O</td>
<td>1:C:84:VAL:HB</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:187:LEU:N</td>
<td>1:E:188:PRO:HD2</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:259:LEU:C</td>
<td>1:E:261:HIS:N</td>
<td>2.73</td>
<td>0.42</td>
</tr>
<tr>
<td>2:E:619:PO4:O4</td>
<td>1:F:215:ARG:NH1</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:133:PRO:HG2</td>
<td>1:B:186:ASP:HB3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:46:ARG:HB3</td>
<td>1:B:46:ARG:NH2</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:152:ASP:OD1</td>
<td>1:C:154:SER:HB2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:203:VAL:HA</td>
<td>1:E:207:GLU:O</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:196:HIS:HB3</td>
<td>1:B:212:LEU:HD11</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:41:LEU:HA</td>
<td>1:D:56:LEU:HD22</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:31:LEU:O</td>
<td>1:F:35:GLY:N</td>
<td>2.37</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:134:VAL:O</td>
<td>1:B:135:TYR:C</td>
<td>2.57</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:177:Ile:CG2</td>
<td>1:C:201:PHE:HB2</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:202:TYR:CD2</td>
<td>1:B:202:TYR:C</td>
<td>2.93</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:147:ARG:HH12</td>
<td>1:D:156:GLN:NE2</td>
<td>2.11</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:37:ILE:H</td>
<td>1:D:37:ILE:HG12</td>
<td>1.60</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:252:LEU:HD13</td>
<td>1:E:255:ALA:HB2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:200:GLN:NE2</td>
<td>1:F:213:TYR:OH</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:206:SER:HA</td>
<td>1:B:243:LEU:HD22</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:265:LEU:HA</td>
<td>1:D:265:LEU:HD23</td>
<td>1.91</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:199:CYS:HA</td>
<td>1:E:211:GLN:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:210:CYS:O</td>
<td>1:E:248:PHE:HA</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:82:LYS:O</td>
<td>1:E:86:GLU:CB</td>
<td>2.65</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:222:GLY:HA3</td>
<td>3:C:626:BME:H21</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:274:ARG:H</td>
<td>1:C:274:ARG:HG3</td>
<td>1.64</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:30:GLU:OE1</td>
<td>1:D:76:THR:HG23</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:206:SER:HA</td>
<td>1:E:243:LEU:CD2</td>
<td>2.50</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:139:TRP:CE3</td>
<td>1:D:179:MET:HE1</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:31:LEU:O</td>
<td>1:D:35:GLY:N</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:279:LEU:HB2</td>
<td>1:A:298:ILE:HD13</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:115:ARG:HD2</td>
<td>1:C:115:ARG:HH11</td>
<td>1.61</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:72:PRO:CG</td>
<td>1:C:72:PRO:O</td>
<td>2.65</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:252:LEU:HD12</td>
<td>4:D:635:HOH:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:199:CYS:HB3</td>
<td>1:E:212:LEU:HD12</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:91:PHE:CD1</td>
<td>1:F:135:TYR:HB2</td>
<td>2.52</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:283:ARG:HH11</td>
<td>1:A:283:ARG:HB2</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:90:TRP:HE1</td>
<td>1:A:95:SER:HG</td>
<td>1.68</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:258:TYR:HB2</td>
<td>1:E:261:His:CD2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:72:PRO:C</td>
<td>1:F:276:PHE:CE1</td>
<td>2.94</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:105:GLY:HA2</td>
<td>1:A:107:LYS:NZ</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:185:ARG:NH2</td>
<td>1:B:185:ARG:HG2</td>
<td>2.30</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:194:PRO:O</td>
<td>1:C:215:ARG:NE</td>
<td>2.45</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:77:LYS:HB2</td>
<td>1:C:268:GLN:NE2</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:260:ASN:N</td>
<td>1:B:260:ASN:OD1</td>
<td>2.48</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:183:ASN:OD1</td>
<td>1:C:183:ASN:C</td>
<td>2.58</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:185:ARG:O</td>
<td>1:C:188:PRO:HD2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:85:LEU:CD1</td>
<td>1:C:296:PHE:CD1</td>
<td>3.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:222:GLY:O</td>
<td>1:B:223:VAL:C</td>
<td>2.60</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:142:PHE:HB2</td>
<td>1:C:160:GLN:HE21</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:139:TRP:CE2</td>
<td>1:D:179:MET:HE1</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:169:LYS:HG3</td>
<td>1:E:241:THR:HG22</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:266:LYS:HB2</td>
<td>1:E:266:LYS:HE3</td>
<td>1.84</td>
<td>0.41</td>
</tr>
<tr>
<td>2:E:619:PO4:O4</td>
<td>1:F:215:ARG:NH2</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:304:His:HA</td>
<td>1:F:305:PRO:HD3</td>
<td>1.79</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:37:ILE:CG2</td>
<td>1:F:37:ILE:O</td>
<td>2.68</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:50:ARG:HB3</td>
<td>1:F:50:ARG:HE</td>
<td>1.58</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:168:ILE:HD13</td>
<td>1:D:177:ILE:HG21</td>
<td>1.99</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:121:LEU:HB2</td>
<td>1:E:123:PHE:CE1</td>
<td>2.57</td>
<td>0.40</td>
</tr>
<tr>
<td>1:E:196:HIS:HB3</td>
<td>1:E:212:LEU:HD11</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:139:TRP:CD2</td>
<td>1:F:179:MET:CE</td>
<td>3.05</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:54:GLY:C</td>
<td>1:F:55:THR:CG2</td>
<td>2.90</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:197:ALA:O</td>
<td>1:B:198:LEU:HB3</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:257:ILE:HG21</td>
<td>1:C:257:ILE:HD13</td>
<td>1.76</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:254:ASP:OD2</td>
<td>1:F:175:ARG:CD</td>
<td>2.67</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:169:LYS:HG3</td>
<td>1:F:241:THR:HG22</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:283:ARG:C</td>
<td>1:F:284:LYS:HG2</td>
<td>2.42</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:277:PRO:HG3</td>
<td>1:F:301:TYR:HA</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:259:LEU:C</td>
<td>1:B:261:HIS:N</td>
<td>2.74</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:39:HIS:CE1</td>
<td>1:C:43:CYS:SG</td>
<td>3.14</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:169:LYS:HB3</td>
<td>1:B:169:LYS:HE2</td>
<td>1.80</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:223:VAL:O</td>
<td>1:B:227:ILE:HG12</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:92:ILE:O</td>
<td>1:D:92:ILE:HG22</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:301:TYR:CE1</td>
<td>1:F:303:PRO:HG3</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:192:LEU:CD1</td>
<td>1:B:192:LEU:N</td>
<td>2.84</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:254:ASP:C</td>
<td>1:C:254:ASP:OD1</td>
<td>2.60</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:50:ARG:HG3</td>
<td>1:D:50:ARG:H</td>
<td>1.71</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.

5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>280/313 (90%)</td>
<td>251 (90%)</td>
<td>21 (8%)</td>
<td>8 (3%)</td>
<td>5 11</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>279/313 (89%)</td>
<td>254 (91%)</td>
<td>20 (7%)</td>
<td>5 (2%)</td>
<td>9 21</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>279/313 (89%)</td>
<td>239 (86%)</td>
<td>32 (12%)</td>
<td>8 (3%)</td>
<td>5 11</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>279/313 (89%)</td>
<td>235 (84%)</td>
<td>32 (12%)</td>
<td>12 (4%)</td>
<td>3 5</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>279/313 (89%)</td>
<td>210 (75%)</td>
<td>41 (15%)</td>
<td>28 (10%)</td>
<td>0 0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>279/313 (89%)</td>
<td>208 (75%)</td>
<td>49 (18%)</td>
<td>22 (8%)</td>
<td>1 1</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1675/1878 (89%)</td>
<td>1397 (83%)</td>
<td>195 (12%)</td>
<td>83 (5%)</td>
<td>2 4</td>
</tr>
</tbody>
</table>

All (83) Ramachandran outliers are listed below:
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>49</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>50</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>53</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>103</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>69</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>155</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>31</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>32</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>34</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>41</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>80</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>101</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>102</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>114</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>132</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>134</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>144</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>295</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>127</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>134</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>154</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>240</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>271</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>277</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>283</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>80</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>293</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>80</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>154</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>191</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>29</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>33</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>154</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>260</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>277</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>80</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>149</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>150</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>260</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>301</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>305</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>136</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>135</td>
<td>TYR</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>277</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>277</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>294</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>189</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>220</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>273</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>275</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>304</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>174</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>261</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>191</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>268</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>128</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>29</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>144</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>154</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>202</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>128</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>177</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>222</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>239</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>268</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>275</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>72</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>102</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>305</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>147</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>205</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>47</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>273</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>110</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>125</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>293</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>277</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>108</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>84</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>83</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>277</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>157</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>60</td>
<td>GLY</td>
</tr>
</tbody>
</table>
5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>246/271 (91%)</td>
<td>217 (88%)</td>
<td>29 (12%)</td>
<td>6 12</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>245/271 (90%)</td>
<td>221 (90%)</td>
<td>24 (10%)</td>
<td>9 19</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>245/271 (90%)</td>
<td>216 (88%)</td>
<td>29 (12%)</td>
<td>6 12</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>245/271 (90%)</td>
<td>208 (85%)</td>
<td>37 (15%)</td>
<td>3 7</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>245/271 (90%)</td>
<td>193 (79%)</td>
<td>52 (21%)</td>
<td>1 2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>245/271 (90%)</td>
<td>191 (78%)</td>
<td>54 (22%)</td>
<td>1 2</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1471/1626 (90%)</td>
<td>1246 (85%)</td>
<td>225 (15%)</td>
<td>3 7</td>
</tr>
</tbody>
</table>

All (225) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>25</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>31</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>38</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>50</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>51</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>56</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>72</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>93</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>104</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>108</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>114</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>115</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>125</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>126</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>127</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>147</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>148</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>151</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>176</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>192</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>198</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>202</td>
<td>TYR</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>263</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>270</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>279</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>281</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>283</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>284</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>298</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>40</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>50</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>56</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>57</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>82</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>86</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>103</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>108</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>115</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>125</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>164</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>174</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>185</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>192</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>198</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>202</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>206</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>216</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>260</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>263</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>280</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>282</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>288</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>289</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>38</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>42</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>69</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>78</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>95</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>103</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>108</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>115</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>147</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>151</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>154</td>
<td>SER</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>156</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>163</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>176</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>178</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>179</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>185</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>192</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>198</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>216</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>221</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>227</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>240</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>257</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>272</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>281</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>283</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>294</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>306</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>37</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>38</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>41</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>46</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>50</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>51</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>56</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>68</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>70</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>75</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>77</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>100</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>102</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>108</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>115</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>120</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>127</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>147</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>150</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>163</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>169</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>175</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>176</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>185</td>
<td>ARG</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>192</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>198</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>204</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>209</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>232</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>240</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>244</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>252</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>266</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>280</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>284</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>299</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>302</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>30</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>34</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>40</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>41</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>42</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>45</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>46</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>50</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>53</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>68</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>74</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>76</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>88</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>93</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>96</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>99</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>104</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>107</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>112</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>115</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>121</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>124</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>125</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>145</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>147</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>148</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>151</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>156</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>165</td>
<td>ILE</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>168</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>176</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>187</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>192</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>198</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>221</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>237</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>241</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>257</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>262</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>265</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>267</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>278</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>280</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>281</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>283</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>284</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>286</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>289</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>294</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>299</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>302</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>306</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>31</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>42</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>48</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>53</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>69</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>76</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>78</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>87</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>96</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>101</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>102</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>106</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>116</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>117</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>120</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>124</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>125</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>128</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>140</td>
<td>ARG</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>147</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>149</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>151</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>154</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>162</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>165</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>176</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>178</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>180</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>185</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>187</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>198</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>204</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>205</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>206</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>221</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>233</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>239</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>243</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>244</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>247</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>252</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>259</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>262</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>267</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>269</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>272</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>278</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>281</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>284</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>286</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>287</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>292</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>295</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>298</td>
<td>ILE</td>
</tr>
</tbody>
</table>

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (36) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>38</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>141</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>160</td>
<td>GLN</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>171</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>302</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>196</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>250</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>297</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>302</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>36</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>39</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>226</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>250</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>268</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>38</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>156</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>162</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>270</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>297</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>302</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>156</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>160</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>196</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>200</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>226</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>250</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>261</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>302</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>97</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>112</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>156</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>171</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>214</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>261</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>270</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>302</td>
<td>ASN</td>
</tr>
</tbody>
</table>

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.
5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

7 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>2</td>
<td>PO4</td>
<td>A</td>
<td>615</td>
<td>-</td>
<td>4,4,4</td>
<td>0.67</td>
</tr>
<tr>
<td>2</td>
<td>PO4</td>
<td>C</td>
<td>616</td>
<td>-</td>
<td>4,4,4</td>
<td>1.12</td>
</tr>
<tr>
<td>3</td>
<td>BME</td>
<td>C</td>
<td>626</td>
<td>-</td>
<td>3,3,3</td>
<td>0.63</td>
</tr>
<tr>
<td>2</td>
<td>PO4</td>
<td>D</td>
<td>617</td>
<td>-</td>
<td>4,4,4</td>
<td>1.02</td>
</tr>
<tr>
<td>2</td>
<td>PO4</td>
<td>E</td>
<td>618</td>
<td>-</td>
<td>4,4,4</td>
<td>0.54</td>
</tr>
<tr>
<td>2</td>
<td>PO4</td>
<td>E</td>
<td>619</td>
<td>-</td>
<td>4,4,4</td>
<td>0.68</td>
</tr>
<tr>
<td>3</td>
<td>BME</td>
<td>E</td>
<td>628</td>
<td>-</td>
<td>3,3,3</td>
<td>0.19</td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>PO4</td>
<td>A</td>
<td>615</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>PO4</td>
<td>C</td>
<td>616</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>BME</td>
<td>C</td>
<td>626</td>
<td>-</td>
<td>-</td>
<td>0/1/1/1</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>PO4</td>
<td>D</td>
<td>617</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>PO4</td>
<td>E</td>
<td>618</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>PO4</td>
<td>E</td>
<td>619</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>BME</td>
<td>E</td>
<td>628</td>
<td>-</td>
<td>-</td>
<td>0/1/1/1</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

There are no bond length outliers.

All (3) bond angle outliers are listed below:
There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

4 monomers are involved in 8 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>626</td>
<td>BME</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>618</td>
<td>PO4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>619</td>
<td>PO4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>628</td>
<td>BME</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ > 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q < 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>$<\text{RSRZ}>$</th>
<th>#RSRZ > 2</th>
<th>OWAB (Å^2)</th>
<th>Q < 0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>282/313 (90%)</td>
<td>-0.57</td>
<td>2 (0%)</td>
<td>87, 88</td>
<td>5, 26, 51, 82</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>281/313 (89%)</td>
<td>-0.69</td>
<td>1 (0%)</td>
<td>92, 93</td>
<td>3, 21, 48, 58</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>281/313 (89%)</td>
<td>-0.56</td>
<td>0</td>
<td>100, 100</td>
<td>9, 33, 56, 65</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>281/313 (89%)</td>
<td>-0.39</td>
<td>2 (0%)</td>
<td>87, 88</td>
<td>13, 40, 70, 93</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>281/313 (89%)</td>
<td>0.20</td>
<td>11 (3%)</td>
<td>39, 37</td>
<td>29, 60, 99, 108</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>281/313 (89%)</td>
<td>0.44</td>
<td>22 (7%)</td>
<td>13, 11</td>
<td>30, 76, 102, 114</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1687/1878 (89%)</td>
<td>-0.26</td>
<td>38 (2%)</td>
<td>60, 59</td>
<td>3, 39, 91, 114</td>
</tr>
</tbody>
</table>

All (38) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>31</td>
<td>LEU</td>
<td>5.0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>147</td>
<td>ARG</td>
<td>4.0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>51</td>
<td>THR</td>
<td>3.9</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>53</td>
<td>THR</td>
<td>3.9</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>26</td>
<td>PRO</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>29</td>
<td>GLY</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>306</td>
<td>THR</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>107</td>
<td>LYS</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>52</td>
<td>GLY</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>27</td>
<td>PRO</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>51</td>
<td>THR</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>50</td>
<td>ARG</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>305</td>
<td>PRO</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>269</td>
<td>LEU</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>52</td>
<td>GLY</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>54</td>
<td>GLY</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>152</td>
<td>ASP</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>157</td>
<td>GLY</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>275</td>
<td>PRO</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Continued on next page...
6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates

There are no carbohydrates in this entry.

6.4 Ligands

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q<0.9’ lists the number of atoms with occupancy less than 0.9.

```
<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>B-factors(Å²)</th>
<th>Q&lt;0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>BME</td>
<td>E</td>
<td>628</td>
<td>4/4</td>
<td>0.76</td>
<td>0.23</td>
<td>71,78,82,89</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>BME</td>
<td>C</td>
<td>626</td>
<td>4/4</td>
<td>0.84</td>
<td>0.22</td>
<td>45,47,50,58</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>PO4</td>
<td>E</td>
<td>618</td>
<td>5/5</td>
<td>0.95</td>
<td>0.11</td>
<td>98,99,100,102</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>PO4</td>
<td>D</td>
<td>617</td>
<td>5/5</td>
<td>0.97</td>
<td>0.14</td>
<td>70,72,74,76</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RCC</th>
<th>RSR</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>PO4</td>
<td>E</td>
<td>619</td>
<td>5/5</td>
<td>0.98</td>
<td>0.10</td>
<td>75,77,79,80</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>PO4</td>
<td>C</td>
<td>616</td>
<td>5/5</td>
<td>0.99</td>
<td>0.13</td>
<td>31,33,40,43</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>PO4</td>
<td>A</td>
<td>615</td>
<td>5/5</td>
<td>0.99</td>
<td>0.10</td>
<td>36,38,40,42</td>
<td>0</td>
</tr>
</tbody>
</table>

6.5 Other polymers

There are no such residues in this entry.