Full wwPDB X-ray Structure Validation Report

May 25, 2020 – 05:34 am BST

PDB ID : 3RQG
Title : Cerebral cavernous malformation 3 (CCM3) in complex with paxillin LD4
Authors : Li, X.; Zhang, R.; Boggon, T.J.
Deposited on : 2011-04-28
Resolution : 2.50 Å (reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail wwpdb.org
A user guide is available at
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

MolProbity : 4.02b-467
Xtriage (Phenix) : 1.13
EDS : 2.11
Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac : 5.8.0158
CCP4 : 7.0.044 (Gargrove)
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) : 2.11
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

X-RAY DIFFRACTION

The reported resolution of this entry is 2.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{free}</td>
<td>130704</td>
<td>4661 (2.50-2.50)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>141614</td>
<td>5346 (2.50-2.50)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>138981</td>
<td>5231 (2.50-2.50)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>138945</td>
<td>5233 (2.50-2.50)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>127900</td>
<td>4559 (2.50-2.50)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for \geq3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions \leq5%. The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
2 Entry composition

There are 3 unique types of molecules in this entry. The entry contains 6755 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Programmed cell death protein 10.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>197</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1611 1030 273 302 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>201</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1643 1047 278 312 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>212</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1734 1101 295 328 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>203</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1660 1058 281 314 7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 8 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q9BUL8</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q9BUL8</td>
</tr>
<tr>
<td>B</td>
<td>-1</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q9BUL8</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q9BUL8</td>
</tr>
<tr>
<td>C</td>
<td>-1</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q9BUL8</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q9BUL8</td>
</tr>
<tr>
<td>D</td>
<td>-1</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q9BUL8</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q9BUL8</td>
</tr>
</tbody>
</table>

- Molecule 2 is a protein called Paxillin LD4 peptide.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>E</td>
<td>12</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>92 56 15 20 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 3 is water.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>2</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>2</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>5</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>5</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density ($RSRZ > 2$). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Programmed cell death protein 10

 Chain A:

 Chain B:

 Chain C:

 Chain D:
- Molecule 2: Paxillin LD4 peptide

Chain E:
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 21 21 21</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>62.94Å 116.16Å 124.64Å</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>90.00° 90.00° 90.00°</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>44.28 - 2.50</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>44.28 - 2.50</td>
<td>EDS</td>
</tr>
<tr>
<td>% Data completeness (in resolution range)</td>
<td>99.9 (44.28-2.50)</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>99.9 (44.28-2.50)</td>
<td>EDS</td>
</tr>
<tr>
<td>R_{merge}</td>
<td>0.11</td>
<td>Depositor</td>
</tr>
<tr>
<td>R_{sym}</td>
<td>0.11</td>
<td>Depositor</td>
</tr>
<tr>
<td>$< I/\sigma(I) >^1$</td>
<td>2.56 (at 2.51Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>REFMAC 5.5.0109</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, R_{free}</td>
<td>0.241 , 0.291</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>0.233 , 0.282</td>
<td>DCC</td>
</tr>
<tr>
<td>R_{free} test set</td>
<td>1617 reflections (5.00%)</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Wilson B-factor (Å^2)</td>
<td>62.5</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.101</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent k_{sol}(e/Å^3), B_{sol}(Å2)</td>
<td>0.32 , 48.4</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning2</td>
<td>$<</td>
<td>L</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>No twinning to report.</td>
<td>Xtriage</td>
</tr>
<tr>
<td>F_o,F_c correlation</td>
<td>0.94</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>6755</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å2)</td>
<td>84.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.94% of the height of the origin peak. No significant pseudotranslation is detected.

1. Intensities estimated from amplitudes.
2. Theoretical values of $< |L| >$, $< L^2 >$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.39</td>
<td>0/1636</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>0.38</td>
<td>0/1668</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>0.39</td>
<td>0/1760</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>0.38</td>
<td>0/1685</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>0.33</td>
<td>0/91</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.38</td>
<td>0/6840</td>
</tr>
</tbody>
</table>

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1611</td>
<td>0</td>
<td>1655</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>1643</td>
<td>0</td>
<td>1678</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1734</td>
<td>0</td>
<td>1772</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>1660</td>
<td>0</td>
<td>1700</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>92</td>
<td>0</td>
<td>92</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>6755</td>
<td>0</td>
<td>6897</td>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>
The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (50) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:33:LEU:HD11</td>
<td>1:D:58:LEU:HD11</td>
<td>1.55</td>
<td>0.88</td>
</tr>
<tr>
<td>1:A:106:LYS:HG3</td>
<td>1:A:144:THR:HG21</td>
<td>1.66</td>
<td>0.78</td>
</tr>
<tr>
<td>1:A:85:ALA:HB2</td>
<td>1:A:115:SER:HB3</td>
<td>1.71</td>
<td>0.72</td>
</tr>
<tr>
<td>1:D:59:THR:O</td>
<td>1:D:63:ILE:HG12</td>
<td>1.91</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:85:ALA:HB2</td>
<td>1:A:115:SER:CB</td>
<td>2.23</td>
<td>0.68</td>
</tr>
<tr>
<td>1:D:28:PRO:O</td>
<td>1:D:32:GLU:HG3</td>
<td>1.92</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:73:GLU:OE2</td>
<td>1:B:60:GLN:NE2</td>
<td>2.24</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:156:ASN:HB3</td>
<td>1:B:160:LEU:HD23</td>
<td>1.78</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:1:MET:HE1</td>
<td>1:C:45:ARG:HD3</td>
<td>1.80</td>
<td>0.64</td>
</tr>
<tr>
<td>1:B:11:GLU:O</td>
<td>1:B:15:THR:HG23</td>
<td>2.00</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:144:THR:O</td>
<td>1:A:148:VAL:HG23</td>
<td>2.01</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:63:ILE:HG21</td>
<td>1:D:73:GLU:HG3</td>
<td>1.85</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:33:LEU:CD1</td>
<td>1:D:58:LEU:HD11</td>
<td>2.32</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:60:GLN:HA</td>
<td>1:A:60:GLN:HE21</td>
<td>1.72</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:1:MET:HE1</td>
<td>1:C:45:ARG:CD</td>
<td>2.38</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:74:VAL:HG22</td>
<td>1:A:188:ILE:HG23</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:139:LYS:HD3</td>
<td>1:A:140:GLU:HG3</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:60:GLN:HA</td>
<td>1:C:60:GLN:HE21</td>
<td>1.76</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:127:PHE:O</td>
<td>1:B:131:ILE:HG12</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:149:PHE:HE1</td>
<td>1:A:160:LEU:HB3</td>
<td>1.78</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:0:HIS:HB1</td>
<td>1:C:2:ARG:HH12</td>
<td>1.77</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:21:PRO:HG2</td>
<td>1:B:60:GLN:HE21</td>
<td>1.82</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:1:MET:HE3</td>
<td>1:C:41:ALA:O</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:51:ALA:HB1</td>
<td>1:D:58:LEU:HD23</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:21:PRO:HG2</td>
<td>1:C:60:GLN:HB2</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:25:VAL:C</td>
<td>1:B:28:PRO:HD2</td>
<td>2.38</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:155:GLN:HG3</td>
<td>1:C:157:ARG:H</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:1:MET:HG3</td>
<td>1:C:34:GLU:HG3</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:93:ILE:HG22</td>
<td>1:C:95:ARG:H</td>
<td>1.83</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:131:ILE:HD12</td>
<td>1:B:178:LEU:HD13</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:162:HIS:O</td>
<td>1:D:166:GLU:HG2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:78:GLU:O</td>
<td>1:D:82:ARG:HG3</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:97:GLU:HG3</td>
<td>1:B:152:TYR:OH</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:109:ALA:O</td>
<td>1:C:113:ILE:HG12</td>
<td>2.19</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>195/214 (91%)</td>
<td>189 (97%)</td>
<td>5 (3%)</td>
<td>1 (0%)</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>199/214 (93%)</td>
<td>193 (97%)</td>
<td>5 (2%)</td>
<td>1 (0%)</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>210/214 (98%)</td>
<td>198 (94%)</td>
<td>10 (5%)</td>
<td>2 (1%)</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>201/214 (94%)</td>
<td>192 (96%)</td>
<td>8 (4%)</td>
<td>1 (0%)</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>10/13 (77%)</td>
<td>10 (100%)</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>815/869 (94%)</td>
<td>782 (96%)</td>
<td>28 (3%)</td>
<td>5 (1%)</td>
<td>25</td>
</tr>
</tbody>
</table>

All (5) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>153</td>
<td>GLN</td>
</tr>
</tbody>
</table>

continued on next page...
5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>179/194 (92%)</td>
<td>177 (99%)</td>
<td>2 (1%)</td>
<td>73 89</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>183/194 (94%)</td>
<td>180 (98%)</td>
<td>3 (2%)</td>
<td>62 84</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>193/194 (100%)</td>
<td>188 (97%)</td>
<td>5 (3%)</td>
<td>46 72</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>185/194 (95%)</td>
<td>180 (97%)</td>
<td>5 (3%)</td>
<td>44 71</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>10/11 (91%)</td>
<td>9 (90%)</td>
<td>1 (10%)</td>
<td>7 15</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>750/787 (95%)</td>
<td>734 (98%)</td>
<td>16 (2%)</td>
<td>53 78</td>
</tr>
</tbody>
</table>

All (16) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>36</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>188</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>39</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>120</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>153</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>39</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>53</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>83</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>102</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>113</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>20</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>120</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>154</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>157</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>210</td>
<td>THR</td>
</tr>
</tbody>
</table>

Continued on next page...
Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (12) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>E</td>
<td>269</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>42</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>60</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>147</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>155</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>75</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>163</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>37</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>60</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>42</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>55</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>60</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>195</td>
<td>ASN</td>
</tr>
</tbody>
</table>

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

There are no ligands in this entry.

5.7 Other polymers

There are no such residues in this entry.
5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ > 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q < 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ > 2</th>
<th>OWAB (Å²)</th>
<th>Q < 0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>197/214 (92%)</td>
<td>0.42</td>
<td>13 (6%)</td>
<td>35, 69, 104, 132</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>201/214 (93%)</td>
<td>0.57</td>
<td>20 (9%)</td>
<td>38, 82, 153, 201</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>212/214 (99%)</td>
<td>0.90</td>
<td>29 (13%)</td>
<td>35, 69, 172, 205</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>203/214 (94%)</td>
<td>0.87</td>
<td>31 (15%)</td>
<td>38, 80, 163, 204</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>12/13 (92%)</td>
<td>1.32</td>
<td>3 (25%)</td>
<td>121, 134, 157, 162</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>825/869 (94%)</td>
<td>0.70</td>
<td>96 (11%)</td>
<td>35, 75, 154, 205</td>
<td>0</td>
</tr>
</tbody>
</table>

All (96) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>153</td>
<td>GLN</td>
<td>8.4</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>156</td>
<td>ASN</td>
<td>7.7</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>88</td>
<td>VAL</td>
<td>7.7</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>210</td>
<td>THR</td>
<td>7.6</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>94</td>
<td>GLU</td>
<td>7.4</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>154</td>
<td>TYR</td>
<td>7.1</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>262</td>
<td>ALA</td>
<td>6.6</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>210</td>
<td>THR</td>
<td>6.5</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>92</td>
<td>MET</td>
<td>6.2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>208</td>
<td>PHE</td>
<td>6.0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>89</td>
<td>GLU</td>
<td>5.9</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>91</td>
<td>TYR</td>
<td>5.8</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>97</td>
<td>GLU</td>
<td>5.7</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>152</td>
<td>TYR</td>
<td>5.7</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>149</td>
<td>PHE</td>
<td>5.7</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>93</td>
<td>ILE</td>
<td>5.6</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>98</td>
<td>PRO</td>
<td>5.4</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>208</td>
<td>PHE</td>
<td>5.2</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>209</td>
<td>LYS</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>94</td>
<td>GLU</td>
<td>4.8</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>154</td>
<td>TYR</td>
<td>4.6</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>88</td>
<td>VAL</td>
<td>4.4</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>205</td>
<td>LEU</td>
<td>4.4</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>168</td>
<td>VAL</td>
<td>4.3</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>209</td>
<td>LYS</td>
<td>4.3</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>158</td>
<td>ARG</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>152</td>
<td>TYR</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>150</td>
<td>LYS</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>92</td>
<td>MET</td>
<td>4.1</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>100</td>
<td>PHE</td>
<td>4.0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>152</td>
<td>TYR</td>
<td>3.9</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>151</td>
<td>LYS</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>147</td>
<td>ASN</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>96</td>
<td>PRO</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>145</td>
<td>VAL</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>141</td>
<td>LEU</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>95</td>
<td>ARG</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>182</td>
<td>PHE</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>158</td>
<td>ARG</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>164</td>
<td>LYS</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>91</td>
<td>TYR</td>
<td>3.1</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>273</td>
<td>LEU</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>208</td>
<td>PHE</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>128</td>
<td>LEU</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>94</td>
<td>GLU</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>212</td>
<td>ALA</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>95</td>
<td>ARG</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>90</td>
<td>GLU</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>87</td>
<td>ASP</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>100</td>
<td>PHE</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>155</td>
<td>GLN</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>93</td>
<td>ILE</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>107</td>
<td>ALA</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>271</td>
<td>ALA</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>89</td>
<td>GLU</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>9</td>
<td>LYS</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>148</td>
<td>VAL</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>183</td>
<td>LYS</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>87</td>
<td>ASP</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>159</td>
<td>ALA</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>91</td>
<td>TYR</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Continued on next page...
6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.
6.3 Carbohydrates

There are no carbohydrates in this entry.

6.4 Ligands

There are no ligands in this entry.

6.5 Other polymers

There are no such residues in this entry.