

Full wwPDB X-ray Structure Validation Report (i)

Aug 28, 2024 – 08:11 pm BST

PDB ID	:	8S3A
Title	:	Crystal structure of Medicago truncatula glutamate dehydrogenase 2 in com-
		plex with 2,6-pyridinedicarboxylic acid and NAD
Authors	:	Grzechowiak, M.; Ruszkowski, M.
Deposited on	:	2024-02-19
Resolution	:	1.85 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	3.0
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.002 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.38.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.85 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	Similar resolution
Metric	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	164625	3097 (1.86-1.86)
Clashscore	180529	3359(1.86-1.86)
Ramachandran outliers	177936	3335 (1.86-1.86)
Sidechain outliers	177891	3335 (1.86-1.86)
RSRZ outliers	164620	3097 (1.86-1.86)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	414	93%	5% ••
1	В	414	93%	5%•
1	С	414	2% 92%	7% •
1	D	414	87%	9% ••
1	Е	414	96%	•

Continued from previous page...

Mol	Chain	Length	Quality of chain
1	F	414	97% •

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
9	PG4	F	605	-	-	Х	-

2 Entry composition (i)

There are 10 unique types of molecules in this entry. The entry contains 20309 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	410	Total	С	Ν	Ο	\mathbf{S}	0	0	0
		410	3126	1973	548	590	15	0	0	0
1	р	400	Total	С	Ν	0	S	0	1	0
	D	409	3128	1975	549	589	15	0		0
1		410	Total	С	Ν	0	S	0	0	0
1			3126	1973	548	590	15			
1	П	405	Total	С	Ν	0	S	0	1	0
	D	405	3101	1958	543	585	15	0		
1	F	419	Total	С	Ν	0	S	0	1	0
1		412	3150	1987	554	593	16	0	1	0
1	1 E	419	Total	С	Ν	Ο	S	0	0	0
	Г	415	3164	1994	557	597	16	0		

• Molecule 1 is a protein called Glutamate dehydrogenase.

There are 18 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	-2	SER	-	expression tag	UNP G7JYL4
А	-1	ASN	-	expression tag	UNP G7JYL4
А	0	ALA	-	expression tag	UNP G7JYL4
В	-2	SER	-	expression tag	UNP G7JYL4
В	-1	ASN	-	expression tag	UNP G7JYL4
В	0	ALA	-	expression tag	UNP G7JYL4
С	-2	SER	-	expression tag	UNP G7JYL4
С	-1	ASN	-	expression tag	UNP G7JYL4
С	0	ALA	-	expression tag	UNP G7JYL4
D	-2	SER	-	expression tag	UNP G7JYL4
D	-1	ASN	-	expression tag	UNP G7JYL4
D	0	ALA	-	expression tag	UNP G7JYL4
Е	-2	SER	-	expression tag	UNP G7JYL4
Е	-1	ASN	-	expression tag	UNP G7JYL4
Е	0	ALA	-	expression tag	UNP G7JYL4
F	-2	SER	-	expression tag	UNP G7JYL4
F	-1	ASN	-	expression tag	UNP G7JYL4

Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
F	0	ALA	-	expression tag	UNP G7JYL4

• Molecule 2 is (4S)-2-METHYL-2,4-PENTANEDIOL (three-letter code: MPD) (formula: $C_6H_{14}O_2$).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf
2	А	1	Total 8	$\begin{array}{c} \mathrm{C} \\ \mathrm{6} \end{array}$	O 2	0	0

• Molecule 3 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula: $C_2H_6O_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total C O 4 2 2	0	0
3	А	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0
3	А	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0
3	А	1	$\begin{array}{c ccc} -4 & 2 & 2 \\ \hline Total & C & O \\ 4 & 2 & 2 \\ \end{array}$	0	0
3	А	1	$\begin{array}{c cccc} T & 2 & 2 \\ \hline Total & C & O \\ 4 & 2 & 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	В	1	Total C O 4 2 2	0	0
3	В	1	TotalCO422	0	0
3	В	1	TotalCO422	0	0
3	С	1	Total C O 4 2 2	0	0
3	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	D	1	Total C O 4 2 2	0	0
3	D	1	Total C O 4 2 2	0	0
3	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	Е	1	TotalCO422	0	0
3	Е	1	TotalCO422	0	0
3	Е	1	TotalCO422	0	0
3	Е	1	$\begin{array}{c c} \hline Total & C & O \\ \hline 4 & 2 & 2 \end{array}$	0	0
3	F	1	$\begin{array}{c c} \hline & - & - \\ \hline & Total & C & O \\ \hline & 4 & 2 & 2 \end{array}$	0	0
3	F	1	$\begin{array}{ccc} - & - \\ & - \\$	0	0
3	F	1	$\begin{array}{c cccc} \hline Total & C & O \\ \hline 4 & 2 & 2 \end{array}$	0	0

• Molecule 4 is DI(HYDROXYETHYL)ETHER (three-letter code: PEG) (formula: $C_4H_{10}O_3$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 7 & 4 & 3 \end{array}$	0	0

• Molecule 5 is NICOTINAMIDE-ADENINE-DINUCLEOTIDE (three-letter code: NAD) (formula: $C_{21}H_{27}N_7O_{14}P_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf		
F	Λ	1	Total	С	Ν	Ο	Р	0	0
5	A	1	44	21	7	14	2	0	0

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf
L.	D	1	Total	С	Ν	Ο	Р	0	0
5	D	1	44	21	7	14	2	0	0
5	C	1	Total	С	Ν	Ο	Р	0	0
5	U	1	44	21	7	14	2	0	0
5	Л	1	Total	С	Ν	Ο	Р	0	0
5	D	1	44	21	7	14	2	0	0
5	F	1	Total	С	Ν	Ο	Р	0	0
5	Ľ	1	44	21	7	14	2	0	0
5	F	1	Total	С	Ν	Ο	Р	0	0
0	Ľ	1	44	21	7	14	2	0	

Continued from previous page...

• Molecule 6 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	2	Total Na 2 2	0	0
6	В	1	Total Na 1 1	0	0
6	С	2	Total Na 2 2	0	0
6	D	1	Total Na 1 1	0	0
6	Е	1	Total Na 1 1	0	0
6	F	1	Total Na 1 1	0	0

• Molecule 7 is PYRIDINE-2,6-DICARBOXYLIC ACID (three-letter code: PDC) (formula: C₇H₅NO₄) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
7	E	1	Total	С	Ν	0	0	0
•		Ť	12	7	1	4	0	0
7	F	1	Total	\mathbf{C}	Ν	Ο	0	0
'	T,	L	12	7	1	4	0	0

• Molecule 8 is TRIETHYLENE GLYCOL (three-letter code: PGE) (formula: $C_6H_{14}O_4$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	Ε	1	Total C O 10 6 4	0	0

• Molecule 9 is TETRAETHYLENE GLYCOL (three-letter code: PG4) (formula: $C_8H_{18}O_5$).

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	
9	F	1	Total 13	C 8	O 5	0	0

• Molecule 10 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
10	А	187	Total O 187 187	0	0
10	В	149	Total O 149 149	0	0
10	С	151	Total O 151 151	0	0
10	D	107	Total O 107 107	0	0
10	Ε	236	Total O 236 236	0	0
10	F	262	Total O 262 262	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Glutamate dehydrogenase

A310 C247 H313 C247 H313 L254 P314 L254 P315 L254 P316 L254 P317 L254 P318 L255 P319 L256 P311 L254 P312 L255 P320 A358 L323 A356 L325 A356 L325 A356 L332 A356 L332 C361 K326 L263 L332 C361 K326 L263 L332 C361 L332 C361 L332 L263 L332 L274 L332 L274 L332 L274 L332 L274 L332 L274 L333 L274 L334 L275 L335 L274 L336 L274 L338</t

• Molecule 1: Glutamate dehydrogenase

Chain E: 96%

Chain F: 97%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	84.79Å 157.03Å 94.88Å	Depositor
a, b, c, α , β , γ	90.00° 99.59° 90.00°	Depositor
Bosolution(A)	46.52 - 1.85	Depositor
Resolution (A)	46.52 - 1.85	EDS
% Data completeness	99.8 (46.52-1.85)	Depositor
(in resolution range)	$99.8 \ (46.52 \text{-} 1.85)$	EDS
R_{merge}	0.09	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.57 (at 1.86 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.18.1_3865	Depositor
B B.	0.157 , 0.199	Depositor
II, II, <i>free</i>	0.164 , 0.203	DCC
R_{free} test set	205677 reflections $(0.96%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	30.8	Xtriage
Anisotropy	0.529	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.32 , 41.4	EDS
L-test for $twinning^2$	$ < L >=0.50, < L^2>=0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
$\boxed{ F_o, F_c \text{ correlation} }$	0.97	EDS
Total number of atoms	20309	wwPDB-VP
Average B, all atoms $(Å^2)$	43.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.15% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAD, PGE, EDO, MPD, PG4, NA, PDC, PEG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.50	0/3188	0.62	0/4316	
1	В	0.47	0/3191	0.60	0/4320	
1	С	0.51	0/3188	0.61	0/4316	
1	D	0.48	0/3163	0.61	0/4281	
1	Е	0.55	0/3212	0.66	0/4347	
1	F	0.56	0/3226	0.65	0/4366	
All	All	0.51	0/19168	0.63	0/25946	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3126	0	3110	11	0
1	В	3128	0	3110	10	0
1	С	3126	0	3110	15	0
1	D	3101	0	3084	22	0
1	Е	3150	0	3139	7	0
1	F	3164	0	3149	14	0
2	А	8	0	14	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	А	20	0	30	0	0
3	В	16	0	24	0	0
3	С	8	0	12	1	0
3	D	12	0	18	0	0
3	Е	20	0	30	0	0
3	F	12	0	18	0	0
4	А	7	0	10	1	0
5	А	44	0	26	0	0
5	В	44	0	26	0	0
5	С	44	0	26	0	0
5	D	44	0	26	4	0
5	Е	44	0	26	0	0
5	F	44	0	26	0	0
6	А	2	0	0	0	0
6	В	1	0	0	0	0
6	С	2	0	0	0	0
6	D	1	0	0	0	0
6	Ε	1	0	0	0	0
6	F	1	0	0	0	0
7	Ε	12	0	3	0	0
7	F	12	0	3	0	0
8	Ε	10	0	14	0	0
9	F	13	0	18	9	0
10	А	187	0	0	1	0
10	В	149	0	0	0	0
10	С	151	0	0	3	0
10	D	107	0	0	0	0
10	Е	236	0	0	2	0
10	F	262	0	0	2	0
All	All	20309	0	19052	76	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (76) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:F:202:LYS:HE2	9:F:605:PG4:H12	1.59	0.83
1:F:202:LYS:NZ	9:F:605:PG4:H51	1.96	0.80
1:F:202:LYS:HZ2	9:F:605:PG4:H51	1.57	0.68
1:F:202:LYS:HZ3	9:F:605:PG4:H32	1.61	0.65

A 4 1	A + 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:F:202:LYS:CE	9:F:605:PG4:H12	2.27	0.64
1:F:202:LYS:HZ3	9:F:605:PG4:H51	1.67	0.59
1:C:190:VAL:HG21	1:C:224:ALA:HB3	1.86	0.57
1:A:134:ILE:CG2	1:A:352:ILE:HD11	2.35	0.57
1:C:134:ILE:CG2	1:C:352:ILE:HD11	2.34	0.57
1:D:134:ILE:CG2	1:D:352[A]:ILE:HD11	2.35	0.56
1:F:202:LYS:NZ	9:F:605:PG4:H32	2.21	0.54
1:C:134:ILE:HG21	1:C:352:ILE:HD11	1.89	0.54
1:B:286:ILE:HG22	1:B:288:CYS:SG	2.48	0.53
1:D:283:ASP:N	1:D:283:ASP:OD1	2.41	0.53
1:F:57:GLN:HB3	1:F:65:MET:SD	2.49	0.53
1:D:189:VAL:O	1:D:193:THR:HG23	2.08	0.52
1:C:26:LYS:HE3	1:D:50:SER:HB2	1.91	0.52
1:A:57:GLN:HB3	1:A:65:MET:SD	2.50	0.51
1:D:302:VAL:O	1:D:302:VAL:HG13	2.10	0.51
1:D:57:GLN:HB3	1:D:65:MET:SD	2.50	0.51
1:C:66:LYS:HE3	1:C:344:SER:OG	2.10	0.51
1:E:360:GLU:HG2	10:E:1245:HOH:O	2.11	0.51
1:D:213:GLY:HA2	5:D:501:NAD:H1B	1.93	0.50
1:D:323:LEU:O	1:D:324:SER:CB	2.59	0.50
1:C:312:ASN:ND2	10:C:604:HOH:O	2.45	0.50
1:A:8:ASN:O	1:A:12:GLN:HG2	2.12	0.49
1:A:190:VAL:HG21	1:A:224:ALA:HB3	1.94	0.49
1:D:236:SER:OG	1:D:277:LEU:HD13	2.12	0.49
1:D:273:ASN:OD1	1:D:275:ASN:HB3	2.13	0.48
1:F:136:ARG:HG3	1:F:136:ARG:HH11	1.78	0.48
1:C:57:GLN:HB3	1:C:65:MET:SD	2.54	0.48
1:B:318:ASP:N	1:B:318:ASP:OD1	2.48	0.47
1:D:279:VAL:HG23	1:D:301:ASP:O	2.15	0.47
1:D:381:CYS:O	1:D:385:ASN:N	2.46	0.47
1:C:286:ILE:HG22	1:C:288:CYS:SG	2.55	0.46
1:B:171:LYS:O	1:B:181:ARG:NH1	2.42	0.46
1:D:322:ILE:O	1:D:325:LYS:HB3	2.16	0.46
1:B:134:ILE:CG2	1:B:352:ILE:HD11	2.47	0.45
1:D:279:VAL:HG22	1:D:279:VAL:O	2.17	0.45
1:E:68:GLY:H	1:E:102:LYS:NZ	2.15	0.45
1:C:65:MET:HB3	1:C:101:ALA:HB2	1.99	0.45
1:A:332:PRO:HG3	1:A:389:ARG:HA	1.99	0.45
1:E:231:LYS:NZ	10:E:1204:HOH:O	2.49	0.44
1:A:295:ASN:OD1	1:A:297:GLU:HG2	2.17	0.44
1:F:202:LYS:NZ	9:F:605:PG4:H12	2.33	0.44

Continued from previous page...

	the c	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:F:202:LYS:HZ3	9:F:605:PG4:H12	1.83	0.44
1:D:259:GLY:O	1:D:261:GLY:N	2.50	0.44
1:F:300:ASN:ND2	10:F:701:HOH:O	2.21	0.44
4:A:603:PEG:H32	10:A:748:HOH:O	2.17	0.44
1:C:182:GLU:HG2	10:C:695:HOH:O	2.17	0.44
1:E:207:MET:HB2	1:E:209:PHE:CE1	2.52	0.44
1:C:130:ASP:OD1	1:C:130:ASP:N	2.50	0.44
1:C:347:GLU:OE1	10:C:601:HOH:O	2.21	0.44
1:A:354:GLY:HA3	1:F:352:ILE:HD11	2.00	0.44
1:A:316:ASP:C	1:A:316:ASP:OD1	2.57	0.43
1:D:322:ILE:O	1:D:325:LYS:N	2.50	0.43
1:B:313:HIS:N	1:B:314:PRO:HD3	2.33	0.43
1:B:182:GLU:H	1:B:182:GLU:CD	2.22	0.43
1:B:296:LYS:HD2	1:B:318:ASP:OD2	2.18	0.43
1:B:163[A]:HIS:HD2	1:E:64:PRO:HD3	1.83	0.42
1:A:286:ILE:HG22	1:A:288:CYS:SG	2.59	0.42
1:D:134:ILE:HG21	1:D:352[A]:ILE:HD11	2.01	0.42
1:A:276:ASP:N	1:A:276:ASP:OD1	2.51	0.42
1:A:372:LYS:HB3	1:A:372:LYS:HE3	1.94	0.42
1:D:288:CYS:O	5:D:501:NAD:H51N	2.20	0.42
1:C:149:THR:OG1	3:C:502:EDO:H11	2.19	0.42
1:C:59:ASP:O	1:C:99:GLY:HA3	2.20	0.42
1:C:72:HIS:CG	1:C:73:PRO:HD2	2.55	0.41
1:F:372:LYS:HE3	10:F:740:HOH:O	2.21	0.41
1:B:75:VAL:O	1:B:75:VAL:HG23	2.20	0.41
1:D:215:GLY:HA3	5:D:501:NAD:O5B	2.21	0.41
1:E:57:GLN:HB3	1:E:65:MET:SD	2.61	0.41
1:B:163[A]:HIS:CD2	1:E:64:PRO:HD3	2.56	0.40
1:D:254:LEU:O	1:D:257:LYS:N	2.53	0.40
1:D:238:ILE:HG12	5:D:501:NAD:C8A	2.51	0.40
1:D:291:GLY:HA2	1:D:314:PRO:HA	2.03	0.40

Continued from previous page..

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	408/414~(99%)	398~(98%)	10 (2%)	0	100 100
1	В	408/414~(99%)	391 (96%)	16 (4%)	1 (0%)	44 32
1	С	408/414 (99%)	397~(97%)	11 (3%)	0	100 100
1	D	404/414 (98%)	382 (95%)	19 (5%)	3 (1%)	19 8
1	Е	411/414~(99%)	402 (98%)	9(2%)	0	100 100
1	F	413/414 (100%)	401 (97%)	12 (3%)	0	100 100
All	All	2452/2484~(99%)	2371 (97%)	77 (3%)	4 (0%)	44 32

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	D	324	SER
1	В	249	ASP
1	D	260	ASN
1	D	322	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	329/332~(99%)	321~(98%)	8 (2%)	44 29
1	В	329/332~(99%)	320~(97%)	9(3%)	40 25
1	С	329/332~(99%)	319~(97%)	10 (3%)	36 21
1	D	327/332~(98%)	311~(95%)	16 (5%)	21 8
1	Ε	331/332~(100%)	327~(99%)	4 (1%)	67 59
1	F	333/332~(100%)	328~(98%)	5 (2%)	60 50
All	All	1978/1992~(99%)	1926 (97%)	52 (3%)	41 26

All (52) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	65	MET
1	А	267	SER
1	А	276	ASP
1	А	277	LEU
1	А	281	ASP
1	А	297	GLU
1	А	313	HIS
1	А	318	ASP
1	В	4	LEU
1	В	16	ARG
1	В	65	MET
1	В	182	GLU
1	В	262	SER
1	В	267	SER
1	В	320	ASP
1	В	378	LYS
1	В	380	ASN
1	С	4	LEU
1	С	8	ASN
1	С	65	MET
1	С	79	GLU
1	С	102	LYS
1	С	243	SER
1	С	281	ASP
1	С	290	LEU
1	С	296	LYS
1	С	380	ASN
1	D	74	GLU
1	D	81	ASN
1	D	136	ARG
1	D	207	MET
1	D	237	ASP
1	D	238	ILE
1	D	270	ASP
1	D	281	ASP
1	D	283	ASP
1	D	297	GLU
1	D	298	ASN
1	D	301	ASP
1	D	303	LYS
1	D	320	ASP
1	D	325	LYS
1	D	402	ARG

Mol	Chain	Res	Type
1	Е	90	LYS
1	Е	174	ASP
1	Е	380	ASN
1	Е	393	PHE
1	F	-1	ASN
1	F	297	GLU
1	F	325	LYS
1	F	380	ASN
1	F	393	PHE

Continued from previous page...

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 42 ligands modelled in this entry, 8 are monoatomic - leaving 34 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type Chair	Chain	Chain	Chain	Chain	Chain	Dog	Tink	Bo	ond leng	$_{\rm sths}$	B	ond ang	les
	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2				
5	NAD	С	501	-	42,48,48	0.74	1 (2%)	50,73,73	0.95	5 (10%)			

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	$_{\rm sths}$	B	ond ang	les
IVIOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	EDO	А	605	-	3,3,3	0.49	0	2,2,2	0.33	0
3	EDO	Е	1104	-	3,3,3	0.54	0	2,2,2	0.45	0
5	NAD	В	501	-	42,48,48	0.79	1 (2%)	50,73,73	0.88	<mark>3 (6%)</mark>
3	EDO	В	505	-	3,3,3	0.34	0	2,2,2	0.96	0
3	EDO	А	602	-	3,3,3	0.43	0	2,2,2	0.70	0
7	PDC	Е	1102	-	12,12,12	1.10	0	16,16,16	1.13	1 (6%)
2	MPD	А	601	-	7,7,7	0.30	0	9,10,10	1.27	1 (11%)
3	EDO	F	604	-	3,3,3	0.56	0	2,2,2	0.23	0
5	NAD	Е	1108	-	42,48,48	0.64	0	50,73,73	0.96	3 (6%)
3	EDO	F	603	-	3,3,3	0.53	0	2,2,2	0.45	0
5	NAD	А	608	-	42,48,48	0.76	1 (2%)	50,73,73	0.99	3 (6%)
5	NAD	F	606	-	42,48,48	0.72	1 (2%)	50,73,73	0.98	2 (4%)
7	PDC	F	601	-	12,12,12	0.97	0	16,16,16	0.97	0
3	EDO	А	606	-	3,3,3	0.42	0	2,2,2	0.25	0
3	EDO	D	503	-	3,3,3	0.45	0	2,2,2	0.31	0
3	EDO	В	504	-	3,3,3	0.48	0	2,2,2	0.28	0
3	EDO	F	602	-	3,3,3	0.52	0	2,2,2	0.42	0
3	EDO	D	502	-	3, 3, 3	0.53	0	2,2,2	0.26	0
3	EDO	Е	1101	-	3,3,3	0.60	0	2,2,2	0.10	0
3	EDO	А	607	-	3,3,3	0.56	0	2,2,2	0.25	0
3	EDO	С	502	-	$3,\!3,\!3$	0.48	0	$2,\!2,\!2$	0.47	0
3	EDO	А	604	-	3, 3, 3	0.52	0	$2,\!2,\!2$	0.41	0
9	PG4	F	605	-	$12,\!12,\!12$	0.19	0	11,11,11	0.17	0
5	NAD	D	501	-	42,48,48	0.80	1 (2%)	50,73,73	0.95	3 (6%)
3	EDO	В	502	-	3,3,3	0.62	0	2,2,2	0.37	0
3	EDO	Е	1107	-	3,3,3	0.49	0	2,2,2	0.64	0
3	EDO	В	503	-	3,3,3	0.48	0	2,2,2	0.29	0
3	EDO	Е	1106	-	3,3,3	0.70	0	2,2,2	0.30	0
3	EDO	Е	1103	-	3,3,3	0.44	0	2,2,2	1.29	0
4	PEG	А	603	6	$6,\!6,\!6$	0.30	0	$5,\!5,\!5$	0.18	0
3	EDO	D	504	-	3,3,3	0.44	0	2,2,2	0.55	0
3	EDO	С	503	-	3,3,3	0.55	0	2,2,2	0.28	0
8	PGE	Е	1105	-	9,9,9	0.41	0	8,8,8	0.48	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	NAD	С	501	-	-	1/26/62/62	0/5/5/5
					(Y 1. 1	

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	EDO	А	605	-	-	1/1/1/1	-
3	EDO	Е	1104	-	-	1/1/1/1	-
5	NAD	В	501	-	-	1/26/62/62	0/5/5/5
3	EDO	В	505	-	-	1/1/1/1	-
3	EDO	А	602	-	-	0/1/1/1	-
7	PDC	Е	1102	-	-	8/8/8/8	0/1/1/1
2	MPD	А	601	-	-	0/5/5/5	-
3	EDO	F	604	-	-	0/1/1/1	-
5	NAD	Е	1108	-	-	4/26/62/62	0/5/5/5
3	EDO	F	603	-	-	1/1/1/1	-
5	NAD	А	608	-	-	1/26/62/62	0/5/5/5
5	NAD	F	606	-	-	3/26/62/62	0/5/5/5
7	PDC	F	601	-	-	8/8/8/8	0/1/1/1
3	EDO	А	606	-	-	1/1/1/1	-
3	EDO	D	503	-	-	0/1/1/1	-
3	EDO	В	504	-	-	1/1/1/1	-
3	EDO	F	602	-	-	0/1/1/1	-
3	EDO	D	502	-	-	0/1/1/1	-
3	EDO	Е	1101	-	-	1/1/1/1	-
3	EDO	А	607	-	-	1/1/1/1	-
3	EDO	С	502	-	-	0/1/1/1	-
3	EDO	А	604	-	-	0/1/1/1	-
9	PG4	F	605	-	-	4/10/10/10	-
5	NAD	D	501	-	-	2/26/62/62	0/5/5/5
3	EDO	В	502	-	-	1/1/1/1	-
3	EDO	Е	1107	-	-	1/1/1/1	-
3	EDO	В	503	-	-	0/1/1/1	-
3	EDO	Е	1106	-	-	1/1/1/1	-
3	EDO	Е	1103	-	-	0/1/1/1	-
4	PEG	А	603	6	-	0/4/4/4	-
3	EDO	D	504	-	-	0/1/1/1	-
3	EDO	C	503	-	-	0/1/1/1	-
8	PGE	E	1105	-	-	5/7/7/7	-

Continued from previous page...

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
5	D	501	NAD	C2N-N1N	3.28	1.39	1.35
5	В	501	NAD	C2N-N1N	2.99	1.38	1.35
5	С	501	NAD	C2N-N1N	2.83	1.38	1.35
5	А	608	NAD	C2N-N1N	2.49	1.38	1.35

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
5	F	606	NAD	C2N-N1N	2.42	1.37	1.35

All (21) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	D	501	NAD	O4D-C1D-C2D	-3.42	101.93	106.93
5	Е	1108	NAD	O4D-C1D-C2D	-3.23	102.21	106.93
5	А	608	NAD	C6N-N1N-C2N	-3.23	119.03	121.97
2	А	601	MPD	CM-C2-C1	-3.19	103.93	110.57
5	F	606	NAD	O4D-C1D-C2D	-3.10	102.39	106.93
5	D	501	NAD	C6N-N1N-C2N	-2.92	119.31	121.97
5	F	606	NAD	C6N-N1N-C2N	-2.84	119.38	121.97
5	В	501	NAD	C6N-N1N-C2N	-2.80	119.42	121.97
5	Е	1108	NAD	C6N-N1N-C2N	-2.75	119.47	121.97
5	С	501	NAD	O4D-C1D-C2D	-2.58	103.16	106.93
5	В	501	NAD	O4B-C1B-C2B	-2.48	103.30	106.93
5	В	501	NAD	C5A-C6A-N6A	2.34	123.90	120.35
5	С	501	NAD	C6N-N1N-C2N	-2.31	119.87	121.97
5	С	501	NAD	C3D-C2D-C1D	-2.23	97.62	100.98
5	С	501	NAD	C3B-C2B-C1B	-2.23	97.63	100.98
5	С	501	NAD	C5A-C6A-N6A	2.18	123.66	120.35
7	Е	1102	PDC	O4-C8-C6	2.17	119.62	114.69
5	А	608	NAD	C5A-C6A-N6A	2.13	123.59	120.35
5	D	501	NAD	C5A-C6A-N6A	2.12	123.57	120.35
5	А	608	NAD	O2D-C2D-C3D	-2.10	105.02	111.82
5	Е	1108	NAD	C5A-C6A-N6A	2.10	123.54	120.35

There are no chirality outliers.

All (48) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
5	Е	1108	NAD	O4D-C1D-N1N-C2N
5	F	606	NAD	O4D-C1D-N1N-C2N
7	Е	1102	PDC	N1-C2-C7-O1
7	Ε	1102	PDC	N1-C2-C7-O2
7	Е	1102	PDC	C3-C2-C7-O1
7	Ε	1102	PDC	C3-C2-C7-O2
7	F	601	PDC	N1-C2-C7-O1
7	F	601	PDC	N1-C2-C7-O2
7	F	601	PDC	C3-C2-C7-O1
7	F	601	PDC	C3-C2-C7-O2
9	F	605	PG4	O3-C5-C6-O4

	3	1	1 5	
Mol	Chain	Res	Type	Atoms
8	Е	1105	PGE	O2-C3-C4-O3
7	Е	1102	PDC	C5-C6-C8-O3
8	Е	1105	PGE	O1-C1-C2-O2
3	А	606	EDO	O1-C1-C2-O2
3	А	607	EDO	O1-C1-C2-O2
3	В	504	EDO	O1-C1-C2-O2
8	Е	1105	PGE	O3-C5-C6-O4
7	Е	1102	PDC	N1-C6-C8-O3
7	Е	1102	PDC	C5-C6-C8-O4
3	А	605	EDO	O1-C1-C2-O2
7	Е	1102	PDC	N1-C6-C8-O4
9	F	605	PG4	O4-C7-C8-O5
9	F	605	PG4	C5-C6-O4-C7
8	Е	1105	PGE	C3-C4-O3-C5
8	Е	1105	PGE	C1-C2-O2-C3
3	В	505	EDO	O1-C1-C2-O2
3	Е	1104	EDO	O1-C1-C2-O2
9	F	605	PG4	O1-C1-C2-O2
3	Е	1107	EDO	O1-C1-C2-O2
3	F	603	EDO	O1-C1-C2-O2
3	Е	1101	EDO	O1-C1-C2-O2
7	F	601	PDC	C5-C6-C8-O3
7	F	601	PDC	C5-C6-C8-O4
3	В	502	EDO	O1-C1-C2-O2
5	Е	1108	NAD	C2D-C1D-N1N-C6N
5	F	606	NAD	C2D-C1D-N1N-C6N
5	А	608	NAD	O4B-C4B-C5B-O5B
5	В	501	NAD	O4B-C4B-C5B-O5B
5	D	501	NAD	O4B-C4B-C5B-O5B
5	Е	1108	NAD	O4B-C4B-C5B-O5B
5	D	501	NAD	C5B-O5B-PA-O1A
5	Е	1108	NAD	C5B-O5B-PA-O1A
5	С	501	NAD	O4B-C4B-C5B-O5B
5	F	606	NAD	O4B-C4B-C5B-O5B
3	Е	1106	EDO	O1-C1-C2-O2
7	F	601	PDC	N1-C6-C8-O3
7	F	601	PDC	N1-C6-C8-O4

Continued from previous page...

There are no ring outliers.

4 monomers are involved in 15 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	С	502	EDO	1	0
9	F	605	PG4	9	0
5	D	501	NAD	4	0
4	А	603	PEG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient must be highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<rsrz></rsrz>	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	410/414~(99%)	0.00	2 (0%) 87 89	24, 36, 61, 90	0
1	В	409/414~(98%)	0.51	47 (11%) 11 10	16, 46, 99, 123	1 (0%)
1	С	410/414~(99%)	0.30	7 (1%) 69 72	27, 42, 69, 92	0
1	D	405/414~(97%)	0.86	77 (19%) 4 3	13, 49, 108, 128	1 (0%)
1	Е	412/414~(99%)	-0.22	1 (0%) 92 93	15, 34, 50, 81	1 (0%)
1	F	413/414 (99%)	-0.29	0 100 100	15, 32, 47, 85	2(0%)
All	All	2459/2484 (98%)	0.19	134 (5%) 32 34	13, 37, 86, 128	5 (0%)

All (134) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	D	241	ALA	5.2
1	В	4	LEU	5.2
1	D	278	LEU	4.9
1	D	302	VAL	4.9
1	D	319	ALA	4.6
1	D	266	PHE	4.5
1	D	299	ALA	4.1
1	D	322	ILE	3.9
1	D	323	LEU	3.7
1	D	210	ALA	3.7
1	D	304	ALA	3.6
1	D	294	LEU	3.6
1	D	238	ILE	3.6
1	D	271	ALA	3.6
1	D	277	LEU	3.6
1	В	328	VAL	3.6
1	D	290	LEU	3.5
1	D	279	VAL	3.4
1	D	263	LEU	3.4

Continued from previous page...

 Mol
 Chain
 Res
 Type
 RSRZ
 Image: Continued from previous page...

1	D	211	ILE	3.4
1	D	325	LYS	3.4
1	D	328	VAL	3.3
1	D	235	VAL	3.3
1	В	271	ALA	3.3
1	В	3	ALA	3.3
1	D	200	TYR	3.3
1	В	285	LEU	3.2
1	D	285	LEU	3.2
1	D	248	ILE	3.2
1	В	293	VAL	3.1
1	А	3	ALA	3.1
1	Е	0	ALA	3.1
1	D	274	PRO	3.1
1	D	236	SER	3.1
1	D	208	THR	3.1
1	D	288	CYS	3.1
1	D	232	VAL	3.1
1	В	290	LEU	3.0
1	D	242	ILE	3.0
1	D	308	ILE	3.0
1	В	291	GLY	3.0
1	В	278	LEU	3.0
1	D	298	ASN	3.0
1	В	277	LEU	3.0
1	D	300	ASN	3.0
1	D	245	PRO	2.9
1	D	7	THR	2.9
1	В	204	ILE	2.9
1	D	284	VAL	2.9
1	D	293	VAL	2.9
1	В	327	GLY	2.9
1	В	253	LEU	2.9
1	В	304	ALA	2.9
1	D	234	ALA	2.8
1	D	310	ALA	2.8
1	В	214	PHE	2.7
1	D	209	PHE	2.7
1	В	230	GLY	2.7
1	В	242	ILE	2.7
1	В	282	CYS	2.7
1	D	289	ALA	2.7

\mathcal{C}	ontinued	from	previous	page	

Continued from previous page						
Mol	Chain	Res	Type	RSRZ		
1	D	197	PHE	2.7		
1	D	214	PHE	2.7		
1	В	235	VAL	2.7		
1	С	7	THR	2.7		
1	В	197	PHE	2.6		
1	D	327	GLY	2.6		
1	D	276	ASP	2.6		
1	D	233	VAL	2.6		
1	В	294	LEU	2.6		
1	D	306	PHE	2.6		
1	D	286	ILE	2.6		
1	D	307	ILE	2.6		
1	D	329	ILE	2.6		
1	В	254	LEU	2.5		
1	D	280	HIS	2.5		
1	В	238	ILE	2.5		
1	D	297	GLU	2.5		
1	D	213	GLY	2.4		
1	D	218	GLY	2.4		
1	В	307	ILE	2.4		
1	В	200	TYR	2.4		
1	D	215	GLY	2.4		
1	D	331	LEU	2.4		
1	D	313	HIS	2.4		
1	D	301	ASP	2.4		
1	D	268	GLY	2.4		
1	D	243	SER	2.3		
1	В	226	PHE	2.3		
1	С	266	PHE	2.3		
1	D	239	ASN	2.3		
1	D	314	PRO	2.3		
1	В	284	VAL	2.3		
1	D	282	CYS	2.3		
1	С	4	LEU	2.3		
1	D	253	LEU	2.3		
1	В	310	ALA	2.3		
1	D	258	ALA	2.3		
1	D	272	MET	2.3		
1	В	248	ILE	2.2		
1	В	233	VAL	2.2		
1	В	210	ALA	2.2		
1	D	261	GLY	2.2		

Mol	Chain	Res	Type	RSRZ	
1	D	244	ASN	2.2	
1	В	266	PHE	2.2	
1	В	306	PHE	2.2	
1	D	292	GLY	2.2	
1	D	260	ASN	2.2	
1	В	211	ILE	2.2	
1	В	308	ILE	2.2	
1	В	302	VAL	2.2	
1	В	241	ALA	2.2	
1	В	209	PHE	2.1	
1	В	274	PRO	2.1	
1	В	232	VAL	2.1	
1	В	289	ALA	2.1	
1	D	250	ILE	2.1	
1	D	246	ASN	2.1	
1	D	273	ASN	2.1	
1	С	276	ASP	2.1	
1	D	317	PRO	2.1	
1	D	330	ILE	2.1	
1	В	313	HIS	2.0	
1	D	256	HIS	2.0	
1	В	192	ALA	2.0	
1	С	290	LEU	2.0	
1	D	315	THR	2.0	
1	С	409	TRP	2.0	
1	А	411	ALA	2.0	
1	В	75	VAL	2.0	
1	В	251	ALA	2.0	
1	В	279	VAL	2.0	
1	В	287	PRO	2.0	
1	С	3	ALA	2.0	

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
3	EDO	Е	1106	4/4	0.66	0.20	44,53,55,60	0
4	PEG	А	603	7/7	0.71	0.17	53,55,59,64	0
3	EDO	В	505	4/4	0.76	0.17	49,49,51,53	0
3	EDO	С	503	4/4	0.76	0.15	53,54,58,65	0
3	EDO	D	502	4/4	0.77	0.15	52,56,58,60	0
3	EDO	D	504	4/4	0.77	0.16	46,48,52,54	0
3	EDO	Е	1103	4/4	0.78	0.16	45,50,50,51	0
3	EDO	А	606	4/4	0.78	0.15	46,50,52,65	0
3	EDO	В	503	4/4	0.78	0.13	56,59,62,62	0
5	NAD	D	501	44/44	0.78	0.14	$51,\!65,\!95,\!98$	44
3	EDO	F	604	4/4	0.79	0.14	48,54,59,60	0
9	PG4	F	605	13/13	0.79	0.14	50,54,60,61	0
3	EDO	А	607	4/4	0.80	0.13	$56,\!57,\!58,\!64$	0
3	EDO	F	602	4/4	0.80	0.13	37,43,50,57	0
3	EDO	А	604	4/4	0.82	0.13	54,56,57,58	0
3	EDO	Е	1101	4/4	0.82	0.13	$55,\!57,\!58,\!61$	0
3	EDO	В	502	4/4	0.82	0.16	45,47,48,55	0
2	MPD	А	601	8/8	0.83	0.17	50,52,58,65	0
3	EDO	Е	1107	4/4	0.84	0.14	50,50,51,53	0
5	NAD	В	501	44/44	0.85	0.11	55,67,81,83	0
3	EDO	В	504	4/4	0.86	0.14	42,43,48,56	0
6	NA	С	505	1/1	0.87	0.10	57,57,57,57	0
8	PGE	Е	1105	10/10	0.87	0.11	41,50,57,61	0
3	EDO	Е	1104	4/4	0.87	0.11	38,42,46,55	0
3	EDO	А	605	4/4	0.88	0.12	43,46,48,49	0
3	EDO	F	603	4/4	0.88	0.12	39,39,57,59	0
3	EDO	D	503	4/4	0.88	0.14	43,44,47,60	0
3	EDO	А	602	4/4	0.90	0.12	38,43,46,51	0
3	EDO	С	502	4/4	0.90	0.12	$35,\!47,\!50,\!57$	0
5	NAD	С	501	44/44	0.92	0.09	$36,\!45,\!51,\!55$	44
6	NA	В	506	1/1	0.94	0.07	32,32,32,32	0
6	NA	А	610	1/1	0.95	0.06	58, 58, 58, 58	0
5	NAD	А	608	44/44	0.96	0.07	30,39,45,47	0
6	NA	D	505	1/1	0.96	0.05	34,34,34,34	0
6	NA	A	609	1/1	0.96	0.11	35,35,35,35	0
6	NA	С	504	1/1	0.96	0.07	35,35,35,35	0
7	PDC	E	1102	12/12	0.97	0.05	25,28,31,31	0

Jerre Jerre Frederick Frederick								
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
5	NAD	Е	1108	44/44	0.98	0.04	24,29,34,36	0
7	PDC	F	601	12/12	0.98	0.04	$23,\!25,\!28,\!29$	0
5	NAD	F	606	44/44	0.98	0.05	22,27,33,36	0
6	NA	Е	1109	1/1	0.98	0.06	31,31,31,31	0
6	NA	F	607	1/1	0.99	0.07	30,30,30,30	0

Continued from previous page...

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

