

Oct 15, 2024 - 09:21 am BST

PDB ID	:	8S8E
EMDB ID	:	EMD-19802
Title	:	Structure of a yeast 48S-AUC preinitiation complex in closed conformation
		(model py48S-AUC-3.1)
Authors	:	Villamayor-Belinchon, L.; Sharma, P.; Llacer, J.L.; Hussain, T.
Deposited on	:	2024-03-06
Resolution	:	3.85 Å(reported)
This is	a F	Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.85 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	EM structures
Metric	$(\# { m Entries})$	$(\# {\rm Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	2	1798	8% 64% 35%	
2	А	254	86%	14%
3	В	255	9%87%	• 12%
4	С	259	85%	15%
5	Е	261	100%	
6	G	236	96%	••
7	Н	190	96%	• •
8	Ι	201	9% 94%	6%

Continue	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
9	J	188	95%	• •
10	L	156	99%	
11	Ν	151	99%	•
12	0	137	93%	• 6%
13	V	87	100%	
14	W	130	98%	••
15	Х	145	99%	·
16	Y	135	99%	·
17	a	119	86%	14%
18	b	82	98%	••
19	е	63	95%	5%
20	h	25	88%	
21	D	237	<u>5%</u> 95%	•
22	F	227	9%	9%
23	Κ	106	5% 91%	9%
24	М	134	48%	13%
25	Р	142	82% • 1	8%
26	Q	143	97%	••
27	R	136	93%	••••
28	S	146	<mark>6%</mark> 97%	•••
29	Т	144	99%	
30	U	117	91%	9%
31	Z	108	71% • 28%	
32	с	67	93%	•••
33	d	56	98%	•

Mol	Chain	Length		Qualit	y of chain			
34	f	150	21%			51%		
35	g	326	8%	9	98%		·	
36	i	153	46%	46%				
37	3	49	37% 24%	29%		47%		
38	1	75	29%	%		33%	9%	
39	j	304		79% 86%			•• 12%	
40	k	527		89% 89%			• 11%	
41	1	285	8%		92%			
42	0	964	47%			53%		
43	р	812		67% 67%		3:	3%	

2 Entry composition (i)

There are 48 unique types of molecules in this entry. The entry contains 94182 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 18S ribosomal RNA.

Mol	Chain	Residues		1	AltConf	Trace			
1	2	1798	Total 38190	C 17073	N 6722	O 12597	Р 1798	0	0

• Molecule 2 is a protein called Small ribosomal subunit protein uS2.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	А	219	Total 1702	C 1085	N 299	0 316	${ m S} { m 2}$	0	0

• Molecule 3 is a protein called Small ribosomal subunit protein eS1.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	В	225	Total 1796	C 1135	N 330	0 328	${ m S} { m 3}$	0	0

• Molecule 4 is a protein called Small ribosomal subunit protein uS5.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	С	220	Total 1648	C 1053	N 291	O 300	${S \atop 4}$	0	0

• Molecule 5 is a protein called 40S ribosomal protein S4.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	Е	260	Total 2078	C 1322	N 393	O 359	$\frac{S}{4}$	0	0

• Molecule 6 is a protein called Small ribosomal subunit protein eS6.

Mol	Chain	Residues		Ate	AltConf	Trace			
6	G	230	Total 1832	C 1146	N 352	O 330	S 4	0	0

• Molecule 7 is a protein called 40S ribosomal protein S7.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
7	Н	184	Total 1483	C 950	N 270	O 263	0	0

• Molecule 8 is a protein called 40S ribosomal protein S8.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	Ι	188	Total 1489	C 923	N 300	O 265	S 1	0	0

• Molecule 9 is a protein called KLLA0E23673p.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	J	182	Total 1471	C 929	N 287	0 254	S 1	0	0

• Molecule 10 is a protein called KLLA0A10483p.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	L	155	Total 1248	C 798	N 237	0 210	${ m S} { m 3}$	0	0

• Molecule 11 is a protein called KLLA0F18040p.

Mol	Chain	Residues		At	oms		AltConf	Trace	
11	N	151	Total 1195	C 761	N 224	O 207	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called Small ribosomal subunit protein uS11.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	Ο	129	Total 955	C 585	N 191	0 176	${ m S} { m 3}$	0	0

• Molecule 13 is a protein called 40S ribosomal protein S21.

Mol	Chain	Residues		At	oms		AltConf	Trace	
13	V	87	Total 687	C 424	N 126	0 135	${S \over 2}$	0	0

• Molecule 14 is a protein called Small ribosomal subunit protein uS8.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	W	129	Total 1021	C 651	N 187	0 180	${ m S} { m 3}$	0	0

• Molecule 15 is a protein called KLLA0B11231p.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	v	144	Total	С	Ν	Ο	S	0	0
10	Λ	144	1119	708	218	191	2	0	0

• Molecule 16 is a protein called 40S ribosomal protein S24.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
16	Y	134	Total 1061	C 665	N 207	O 189	0	0

• Molecule 17 is a protein called 40S ribosomal protein S26.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	a	102	Total 797	C 492	N 168	0 132	${ m S}{ m 5}$	0	0

• Molecule 18 is a protein called 40S ribosomal protein S27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	b	81	Total 609	C 379	N 112	0 113	${ m S}{ m 5}$	0	0

• Molecule 19 is a protein called 40S ribosomal protein S30.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
19	е	60	Total	С	Ν	0	S	0	0
	-	••	472	295	96	80	1	Ĵ	Ŭ

• Molecule 20 is a protein called 40S ribosomal protein L41-A.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
20	h	25	Total 233	C 142	N 63	O 27	${f S}$ 1	0	0

• Molecule 21 is a protein called 40S ribosomal protein S3.

Mol	Chain	Residues		At	AltConf	Trace			
21	D	227	Total 1774	C 1126	N 320	O 323	${ m S}{ m 5}$	0	0

• Molecule 22 is a protein called KLLA0D10659p.

Mol	Chain	Residues		At	AltConf	Trace			
22	F	206	Total 1609	C 1008	N 298	O 300	${ m S} { m 3}$	0	0

• Molecule 23 is a protein called KLLA0B08173p.

Mol	Chain	Residues		At	AltConf	Trace			
23	K	96	Total 809	C 533	N 129	0 146	S 1	0	0

• Molecule 24 is a protein called 40S ribosomal protein S12.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
24	М	117	Total 885	C 553	N 161	0 171	0	0

• Molecule 25 is a protein called KLLA0F07843p.

Mol	Chain	Residues		At	AltConf	Trace			
25	Р	117	Total 923	C 592	N 165	0 161	${ m S}{ m 5}$	0	0

• Molecule 26 is a protein called Small ribosomal subunit protein uS9.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
26	Q	141	Total 1105	C 709	N 204	O 192	0	0

• Molecule 27 is a protein called KLLA0B01474p.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	R	130	Total 1033	C 643	N 194	0 193	${ m S} { m 3}$	0	0

• Molecule 28 is a protein called KLLA0B01562p.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	S	145	Total 1189	C 739	N 239	O 209	${ m S} { m 2}$	0	0

• Molecule 29 is a protein called KLLA0A07194p.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
29	Т	143	Total 1110	C 693	N 210	O 207	0	0

• Molecule 30 is a protein called Small ribosomal subunit protein uS10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	U	106	Total 845	C 540	N 152	0 152	S 1	0	0

• Molecule 31 is a protein called 40S ribosomal protein S25.

Mol	Chain	Residues		At	AltConf	Trace			
31	Z	78	Total 594	C 376	N 111	O 106	S 1	0	0

• Molecule 32 is a protein called Small ribosomal subunit protein eS28.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
32	с	64	Total 499	C 308	N 99	0 91	S 1	0	0

• Molecule 33 is a protein called Small ribosomal subunit protein uS14.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
22	d	55	Total	С	Ν	Ο	\mathbf{S}	0	0
- 55	u	- 55	461	289	93	78	1	0	0

• Molecule 34 is a protein called Small ribosomal subunit protein eS31.

Mol	Chain	Residues		Ate	AltConf	Trace			
34	f	74	Total 584	C 374	N 111	O 95	${f S}$ 4	0	0

• Molecule 35 is a protein called KLLA0E12277p.

Mol	Chain	Residues		At	AltConf	Trace			
35	g	320	Total 2469	C 1561	N 432	0 471	${f S}{5}$	0	0

• Molecule 36 is a protein called Eukaryotic translation initiation factor 1A.

Mol	Chain	Residues		At	AltConf	Trace			
36	i	102	Total 820	C 506	N 158	0 151	${f S}{5}$	0	0

• Molecule 37 is a RNA chain called mRNA (5'-R(P*AP*AP*U)-3').

Mol	Chain	Residues		At	oms		AltConf	Trace	
37	3	26	Total 536	C 242	N 84	0 184	Р 26	0	0

• Molecule 38 is a RNA chain called Met-tRNAi.

Mol	Chain	Residues		A	AltConf	Trace			
38	1	75	Total 1639	С 734	N 298	0 531	Р 76	0	0

• Molecule 39 is a protein called Eukaryotic translation initiation factor 2 subunit alpha.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	j	267	Total 2139	C 1366	N 355	O 407	S 11	0	0

• Molecule 40 is a protein called Eukaryotic translation initiation factor 2 subunit gamma.

Mol	Chain	Residues		At	AltConf	Trace			
40	k	470	Total 3596	C 2279	N 633	O 666	S 18	0	0

• Molecule 41 is a protein called Eukaryotic translation initiation factor 2 subunit beta.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
41	1	23	Total 190	C 124	N 32	0 34	0	0

• Molecule 42 is a protein called Eukaryotic translation initiation factor 3 subunit A.

Mol	Chain	Residues		Ate	AltConf	Trace			
42	О	451	Total 3683	C 2366	N 619	O 691	${f S}$ 7	0	0

• Molecule 43 is a protein called Eukaryotic translation initiation factor 3 subunit C.

Mol	Chain	Residues	Atoms				AltConf	Trace	
43	р	544	Total 4442	C 2845	N 736	0 849	S 12	0	0

• Molecule 44 is MAGNESIUM ION (three-letter code: MG) (formula: Mg) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
44	2	113	Total Mg 113 113	0
44	Т	1	Total Mg 1 1	0
44	i	1	Total Mg 1 1	0
44	k	1	Total Mg 1 1	0

• Molecule 45 is ZINC ION (three-letter code: ZN) (formula: Zn) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
45	a	1	Total Zn 1 1	0
45	b	1	Total Zn 1 1	0
45	f	1	Total Zn 1 1	0

• Molecule 46 is PHOSPHOMETHYLPHOSPHONIC ACID GUANYLATE ESTER (threeletter code: GCP) (formula: C₁₁H₁₈N₅O₁₃P₃) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms					AltConf
46	k	1	Total	С	Ν	Ο	Р	Ο
40	К	1	32	11	5	13	3	0

• Molecule 47 is METHIONINE (three-letter code: MET) (formula: $C_5H_{11}NO_2S$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms					AltConf
47	k	1	Total 8	С 5	N 1	0 1	S 1	0

• Molecule 48 is water.

Mol	Chain	Residues	Atoms	AltConf
48	2	3	Total O 3 3	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 18S ribosomal RNA

• Molecule 4: Small ribosomal subunit protein uS5

Chain C:	85%	15%
MET SER SER ALA GLN GLN GLN GLN GLN CLN	PALA PALA ARG GLY PHE CLY CLY CLY ARG GLY ARG GLY ARG CLY ARG CLY ARG CLY ARG CLY ARG CLY ARG CLY ARG CLY ARG CLY ARG CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	LYS LEU LEU
• Molecule 5:	40S ribosomal protein S4	
Chain E:	100%	
MET A2 G193 A266 A267 Q268 H259		
• Molecule 6:	Small ribosomal subunit protein eS6	
Chain G:	96%	
M1 E21 B37 D37 D43	L68 R92 C93 C93 C93 C16 C1163 C1164 C1163	
• Molecule 7:	40S ribosomal protein S7	
Chain H:	4%96%	
MET SER ASP 44 P4 810 911 412	N29 B33 B35 D37 L38 R39 A40 K44 S45 S45 S45 C53 C53 C53 C53 C53 C53 C53 C53 C53 C5	q160 H161 1162 D163 S187 G1U THR HIS
• Molecule 8:	40S ribosomal protein S8	
Chain I:	94%	6%
MET G2 G122 K123 LYS LYS LYS ASN THR THR	ALA GLU GLU GLU GLU GLU FIHR T1HR K138 K138 K138 K138 K144 K143 K144 A145 A145 A146 A146 A146 A146 A146 A146 A146 A146	
• Molecule 9:	KLLA0E23673p	
Chain J:	95%	
MET P2 D63 V101 V122 K160	T161 S162 S162 A179 G181 G181 GLU GLU GLU GLU	
• Molecule 10	: KLLA0A10483p	
Chain L:	99%	••
MEIT S2 E4 E4 K26 A27 A27	R29 K30 R167 R146 R146 A145 A145 A145 A145 A145 A145 A145 A145	
	PROTEIN DATA BANK	

• Molecule 11	: KLLA0F18040p	
Chain N:	99%	•
M1 S29 N105 A148 L149 V150	M151	
• Molecule 12	: Small ribosomal subunit protein uS11	
Chain O:	93% • 6	%
MET AIA ASN VAL VAL GLN ALA LYS D9 N10	8114 L1137	
• Molecule 13	: 40S ribosomal protein S21	
Chain V:	100%	-
M1 E64		
• Molecule 14	: Small ribosomal subunit protein uS8	
Chain W:	98%	
MET T 2 K43 Y130		
• Molecule 15	: KLLA0B11231p	
Chain X:	99%	·
MET G2 R144 S145		
• Molecule 16	: 40S ribosomal protein S24	
Chain Y:	99%	·
MET S2 R132 A133 A134 D135		
• Molecule 17	: 40S ribosomal protein S26	
Chain a:	86% 14%	-

• Molecule 24: 40S ribosomal protein S12

• Molecule 40: Eukaryotic translation initiation factor 2 subunit gamma

SER TILE ANN CONSTRUCTION CONST

• Molecule 42: Eukaryotic translation initiation factor 3 subunit A

LYS GLY GLY ARG

• Molecule 43: Eukaryotic translation initiation factor 3 subunit C

 4781

 0782

 8731

 1784

 17785

 17785

 8733

 17785

 8733

 8739

 8739

 8739

 8739

 8739

 8730

 8730

 8730

 8730

 8730

 9744

 8730

 8730

 9740

 9740

 9740

 9740

 9750

 9750

 9750

 9750

 9750

 9750

 9750

 9750

 9750

 9750

 9750

 9750

 9750

 9750

 9750

 9750

 9750

 9750

 9750

 9750

 9750

 9750

 9750

 9750

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	34495	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	30	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	3500	Depositor
Magnification	59000	Depositor
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	0.427	Depositor
Minimum map value	-0.192	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.021	Depositor
Recommended contour level	0.07	Depositor
Map size (Å)	402.0, 402.0, 402.0	wwPDB
Map dimensions	300, 300, 300	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.34, 1.34, 1.34	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, 7MG, 1MA, MG, H2U, B8N, T6A, RIA, M2G, GCP, 5MC, 1MG, 2MG, MA6, PSU

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	nd lengths	Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	2	0.61	0/42410	0.92	46/66079~(0.1%)	
2	А	0.37	0/1742	0.59	0/2383	
3	В	0.32	0/1820	0.56	0/2448	
4	С	0.39	0/1678	0.61	0/2277	
5	Ε	0.38	0/2122	0.63	0/2861	
6	G	0.31	0/1855	0.56	1/2479~(0.0%)	
7	Н	0.31	0/1507	0.57	0/2028	
8	Ι	0.34	0/1515	0.60	0/2029	
9	J	0.39	0/1495	0.69	0/2001	
10	L	0.41	0/1276	0.57	0/1718	
11	Ν	0.36	0/1218	0.57	0/1638	
12	0	0.34	0/966	0.64	0/1297	
13	V	0.39	0/696	0.61	0/938	
14	W	0.42	0/1039	0.62	0/1399	
15	Х	0.38	0/1137	0.62	0/1516	
16	Y	0.34	0/1075	0.59	0/1433	
17	a	0.36	0/810	0.63	0/1087	
18	b	0.31	0/619	0.56	0/837	
19	е	0.32	0/480	0.63	0/640	
20	h	0.27	0/234	0.75	0/300	
21	D	0.34	0/1800	0.57	0/2421	
22	F	0.35	0/1628	0.57	0/2198	
23	Κ	0.37	0/831	0.51	0/1123	
24	М	0.31	0/891	0.59	0/1201	
25	Р	0.35	0/942	0.63	0/1269	
26	Q	0.39	0/1125	0.63	0/1510	
27	R	0.35	0/1044	0.64	0/1402	
28	S	0.36	$0/1\overline{208}$	0.63	$0/1\overline{624}$	
29	Т	0.34	0/1129	0.55	0/1520	
30	U	0.35	0/857	0.58	0/1158	
31	Ζ	0.31	0/603	0.61	0/814	
32	с	0.35	0/501	0.70	0/673	

Mal	Chain	Bo	nd lengths	E	Bond angles
		RMSZ	# Z > 5	RMSZ	# Z > 5
33	d	0.39	0/473	0.65	0/629
34	f	0.30	0/597	0.60	0/795
35	g	0.33	0/2523	0.56	0/3434
36	i	0.30	0/828	0.58	0/1099
37	3	0.34	0/595	0.75	0/920
38	1	0.48	1/1529~(0.1%)	0.94	4/2376~(0.2%)
39	j	0.30	0/2171	0.55	0/2924
40	k	0.26	0/3657	0.52	0/4946
41	1	0.25	0/194	0.51	0/263
42	0	0.26	0/3755	0.52	0/5074
43	р	0.26	0/4525	0.48	0/6120
All	All	0.47	1/99100~(0.0%)	0.76	$51/142881 \ (0.0\%)$

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
38	1	1	А	OP3-P	-10.70	1.48	1.61

All (51) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	2	1362	U	N1-C2-O2	8.24	128.56	122.80
1	2	1782	С	N3-C2-O2	-7.87	116.39	121.90
1	2	1	U	C2-N1-C1'	7.68	126.92	117.70
1	2	1362	U	N3-C2-O2	-7.50	116.95	122.20
1	2	1	U	N1-C2-O2	7.38	127.97	122.80
1	2	1499	С	N3-C2-O2	-7.31	116.78	121.90
1	2	1362	U	C2-N1-C1'	7.26	126.41	117.70
1	2	1623	С	N3-C2-O2	-6.84	117.11	121.90
1	2	1673	С	N3-C2-O2	-6.81	117.13	121.90
1	2	1256	U	C2-N1-C1'	6.76	125.81	117.70
1	2	1782	С	C6-N1-C2	-6.71	117.61	120.30
1	2	275	С	C2-N1-C1'	-6.70	111.43	118.80
1	2	1781	С	N1-C2-O2	6.58	122.85	118.90
1	2	1	U	N3-C2-O2	-6.55	117.62	122.20
1	2	1498	С	C2-N1-C1'	6.49	125.94	118.80
1	2	1498	С	N1-C2-O2	6.38	122.73	118.90
1	2	1387	С	C2-N1-C1'	6.26	125.69	118.80
1	2	275	С	C6-N1-C1'	6.17	128.21	120.80
1	2	1623	С	C6-N1-C2	-6.11	117.86	120.30
1	2	700	С	N1-C2-O2	6.11	122.56	118.90
1	2	1499	С	C6-N1-C2	-6.07	117.87	120.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	2	789	U	C4-C5-C6	6.00	123.30	119.70
1	2	1279	С	N3-C2-O2	-5.80	117.84	121.90
1	2	1797	U	OP2-P-O3'	5.60	117.52	105.20
1	2	717	С	C2-N1-C1'	5.60	124.96	118.80
1	2	1781	С	C2-N1-C1'	5.58	124.94	118.80
1	2	582	С	C2-N1-C1'	5.58	124.93	118.80
1	2	13	С	C2-N1-C1'	5.57	124.93	118.80
1	2	274	С	N3-C2-O2	-5.48	118.07	121.90
1	2	1292	U	N3-C2-O2	-5.35	118.45	122.20
1	2	760	А	C6-N1-C2	-5.35	115.39	118.60
1	2	1455	С	C2-N1-C1'	5.34	124.68	118.80
1	2	1060	U	C2-N1-C1'	5.33	124.09	117.70
1	2	1498	С	C6-N1-C1'	-5.30	114.44	120.80
1	2	686	С	O4'-C1'-N1	5.29	112.44	108.20
1	2	828	А	P-O3'-C3'	5.28	126.04	119.70
1	2	700	С	C2-N1-C1'	5.26	124.59	118.80
1	2	885	U	C2-N1-C1'	5.25	124.00	117.70
1	2	478	С	C2-N3-C4	-5.24	117.28	119.90
1	2	1781	С	C6-N1-C1'	-5.18	114.58	120.80
1	2	1623	С	N1-C2-N3	5.16	122.81	119.20
6	G	68	LEU	CA-CB-CG	5.14	127.13	115.30
38	1	56	С	N3-C2-O2	-5.13	118.31	121.90
38	1	74	С	OP2-P-O3'	5.13	116.49	105.20
1	2	1555	U	C2-N1-C1'	-5.10	111.58	117.70
1	2	1571	А	OP2-P-O3'	5.05	116.31	105.20
1	2	1776	G	N1-C6-O6	-5.04	116.87	119.90
38	1	56	С	N1-C2-O2	5.04	121.92	118.90
1	2	222	U	<u>OP2-</u> P-O3'	5.02	116.24	105.20
38	1	74	С	P-O3'-C3'	5.01	125.72	119.70
1	2	1782	С	N1-C2-N3	5.00	122.70	119.20

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
2	А	217/254~(85%)	187~(86%)	29~(13%)	1 (0%)	25 60
3	В	221/255~(87%)	196 (89%)	22 (10%)	3~(1%)	9 39
4	С	218/259~(84%)	201 (92%)	16 (7%)	1 (0%)	25 60
5	Е	258/261~(99%)	233 (90%)	25 (10%)	0	100 100
6	G	228/236~(97%)	212 (93%)	16 (7%)	0	100 100
7	Н	182/190~(96%)	158 (87%)	23 (13%)	1 (0%)	25 60
8	Ι	184/201~(92%)	165 (90%)	19 (10%)	0	100 100
9	J	180/188~(96%)	154 (86%)	24 (13%)	2 (1%)	12 45
10	L	153/156~(98%)	137 (90%)	16 (10%)	0	100 100
11	Ν	149/151~(99%)	139 (93%)	10 (7%)	0	100 100
12	Ο	127/137~(93%)	107 (84%)	20 (16%)	0	100 100
13	V	85/87~(98%)	75 (88%)	10 (12%)	0	100 100
14	W	127/130~(98%)	117 (92%)	10 (8%)	0	100 100
15	Х	142/145~(98%)	117 (82%)	25~(18%)	0	100 100
16	Y	132/135~(98%)	118 (89%)	14 (11%)	0	100 100
17	a	100/119~(84%)	80 (80%)	20 (20%)	0	100 100
18	b	79/82~(96%)	64 (81%)	15~(19%)	0	100 100
19	е	58/63~(92%)	49 (84%)	9~(16%)	0	100 100
20	h	23/25~(92%)	23 (100%)	0	0	100 100
21	D	225/237~(95%)	211 (94%)	13 (6%)	1 (0%)	30 65
22	F	204/227 (90%)	172 (84%)	30 (15%)	2 (1%)	13 46
23	К	94/106~(89%)	81 (86%)	13 (14%)	0	100 100
24	М	113/134~(84%)	90 (80%)	21 (19%)	2 (2%)	7 35
25	Р	115/142 (81%)	98 (85%)	16 (14%)	1 (1%)	14 48
26	Q	$\overline{139/143}\ (97\%)$	127 (91%)	12 (9%)	0	100 100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
27	R	128/136~(94%)	108 (84%)	17~(13%)	3(2%)	5	32
28	S	143/146~(98%)	121 (85%)	20 (14%)	2 (1%)	9	39
29	Т	141/144 (98%)	132 (94%)	9~(6%)	0	100	100
30	U	104/117~(89%)	94 (90%)	10 (10%)	0	100	100
31	Z	76/108 (70%)	68 (90%)	8 (10%)	0	100	100
32	с	62/67~(92%)	58 (94%)	4 (6%)	0	100	100
33	d	53/56~(95%)	50 (94%)	3 (6%)	0	100	100
34	f	72/150~(48%)	55 (76%)	17 (24%)	0	100	100
35	g	314/326~(96%)	287 (91%)	27 (9%)	0	100	100
36	i	98/153~(64%)	90 (92%)	8 (8%)	0	100	100
39	j	263/304 (86%)	233 (89%)	28 (11%)	2 (1%)	16	51
40	k	468/527~(89%)	433 (92%)	32 (7%)	3 (1%)	22	57
41	1	21/285~(7%)	20 (95%)	1 (5%)	0	100	100
42	О	445/964 (46%)	421 (95%)	24 (5%)	0	100	100
43	р	542/812~(67%)	505 (93%)	37 (7%)	0	100	100
All	All	6683/8358 ($80%$)	5986 (90%)	673 (10%)	24 (0%)	32	65

All (24) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
24	М	122	GLN
28	S	92	VAL
39	j	41	ASN
40	k	130	ASP
3	В	3	VAL
4	С	45	LYS
9	J	101	VAL
22	F	129	GLN
27	R	92	ASP
3	В	221	PRO
24	М	121	THR
40	k	507	LYS
22	F	128	ASP
27	R	97	ASN
27	R	99	VAL
3	В	55	LYS
7	Н	163	ASP

Continued from previous page...

Mol	Chain	Res	Type
9	J	122	VAL
25	Р	50	SER
28	S	91	ASP
39	j	7	ARG
21	D	220	PRO
40	k	126	VAL
2	А	158	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	А	180/211~(85%)	180 (100%)	0	100	100
3	В	202/228~(89%)	202 (100%)	0	100	100
4	С	177/203~(87%)	177 (100%)	0	100	100
5	Ε	223/224~(100%)	223 (100%)	0	100	100
6	G	192/200~(96%)	190 (99%)	2 (1%)	73	81
7	Н	164/170~(96%)	164 (100%)	0	100	100
8	Ι	147/159~(92%)	147 (100%)	0	100	100
9	J	153/158~(97%)	151 (99%)	2(1%)	65	76
10	L	136/137~(99%)	135~(99%)	1 (1%)	81	86
11	Ν	128/128~(100%)	127~(99%)	1 (1%)	79	84
12	Ο	97/104~(93%)	96~(99%)	1 (1%)	73	81
13	V	73/73~(100%)	73~(100%)	0	100	100
14	W	110/111~(99%)	109 (99%)	1 (1%)	75	83
15	Х	119/120~(99%)	119 (100%)	0	100	100
16	Y	108/109~(99%)	108 (100%)	0	100	100
17	a	83/100 (83%)	83 (100%)	0	100	100
18	b	71/72~(99%)	70 (99%)	1 (1%)	62	75
19	е	51/55~(93%)	51 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
20	h	23/23~(100%)	23~(100%)	0	100	100
21	D	188/196~(96%)	188 (100%)	0	100	100
22	F	174/194~(90%)	174 (100%)	0	100	100
23	Κ	88/96~(92%)	88 (100%)	0	100	100
24	М	93/109~(85%)	90~(97%)	3 (3%)	34	57
25	Р	99/119~(83%)	99 (100%)	0	100	100
26	Q	117/119~(98%)	115 (98%)	2(2%)	56	72
27	R	116/124 (94%)	114 (98%)	2(2%)	56	72
28	S	127/129~(98%)	125~(98%)	2(2%)	58	73
29	Т	117/118 (99%)	116 (99%)	1 (1%)	75	83
30	U	96/107~(90%)	96 (100%)	0	100	100
31	Z	59/88~(67%)	58 (98%)	1 (2%)	56	72
32	с	55/59~(93%)	53~(96%)	2 (4%)	30	54
33	d	47/48~(98%)	47 (100%)	0	100	100
34	f	60/133~(45%)	60 (100%)	0	100	100
35	g	264/272~(97%)	263 (100%)	1 (0%)	89	91
36	i	85/130 (65%)	85 (100%)	0	100	100
39	j	239/274~(87%)	233~(98%)	6 (2%)	42	63
40	k	393/449~(88%)	393 (100%)	0	100	100
41	1	22/246~(9%)	22 (100%)	0	100	100
42	0	406/846~(48%)	405 (100%)	1 (0%)	92	94
43	р	506/749~(68%)	502 (99%)	4 (1%)	79	84
All	All	5788/7190 (80%)	5754 (99%)	34 (1%)	82	88

All (34) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
6	G	31	ARG
6	G	92	ARG
9	J	161	THR
9	J	162	SER
10	L	67	ARG
11	Ν	105	ASN
12	0	114	ARG

Mol	Chain	Res	Type
14	W	43	LYS
18	b	29	ARG
24	М	96	LYS
24	М	97	ILE
24	М	104	ARG
26	Q	42	GLU
26	Q	68	LYS
27	R	72	LYS
27	R	97	ASN
28	S	90	LYS
28	S	92	VAL
29	Т	17	ASN
31	Ζ	52	LYS
32	с	64	ARG
32	с	67	ARG
35	g	318	ARG
39	j	7	ARG
39	j	41	ASN
39	j	42	ILE
39	j	97	LYS
39	j	99	GLU
39	j	101	LYS
42	0	41	ARG
43	р	582	GLN
43	р	583	GLN
43	р	587	ARG
43	р	606	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (29) such sidechains are listed below:

Mol	Chain	Res	Type
3	В	124	ASN
3	В	149	GLN
3	В	194	ASN
3	В	209	ASN
3	В	232	HIS
5	Е	98	ASN
5	Е	201	HIS
7	Н	5	GLN
8	Ι	111	GLN
9	J	38	ASN
9	J	142	ASN

Mol	Chain	Res	Type
10	L	8	GLN
10	L	14	GLN
13	V	74	GLN
16	Y	22	GLN
21	D	162	GLN
22	F	118	HIS
23	К	29	GLN
23	Κ	39	ASN
26	Q	83	GLN
26	Q	100	GLN
28	S	75	ASN
28	S	103	ASN
30	U	20	HIS
32	с	27	GLN
36	i	88	GLN
40	k	415	GLN
40	k	465	ASN
42	0	285	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	2	1795/1798~(99%)	620 (34%)	24 (1%)
37	3	25/49~(51%)	14 (56%)	0
38	1	71/75~(94%)	24 (33%)	4(5%)
All	All	1891/1922~(98%)	658 (34%)	28 (1%)

All (658) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	2	2	А
1	2	3	U
1	2	4	С
1	2	13	С
1	2	17	С
1	2	25	С
1	2	26	А
1	2	27	U
1	2	34	G
1	2	43	А
1	2	47	А

Mol	Chain	\mathbf{Res}	Type
1	2	50	С
1	2	57	G
1	2	63	G
1	2	68	А
1	2	69	G
1	2	72	А
1	2	73	U
1	2	74	U
1	2	75	U
1	2	76	А
1	2	77	U
1	2	78	А
1	2	79	С
1	2	81	G
1	2	104	А
1	2	114	С
1	2	115	G
1	2	116	U
1	2	119	А
1	2	120	PSU
1	2	121	U
1	2	124	А
1	2	127	G
1	2	128	U
1	2	129	U
1	2	130	С
1	2	131	С
1	2	132	U
1	2	135	А
1	2	136	С
1	2	137	U
1	2	139	С
1	2	140	А
1	2	146	А
1	2	152	G
1	2	155	А
1	2	158	U
1	2	159	С
1	2	160	U
1	2	161	A
1	2	165	С
1	2	167	А

Mol	Chain	Res	Type
1	2	171	С
1	2	173	U
1	2	176	U
1	2	177	U
1	2	178	A
1	2	187	A
1	2	190	С
1	2	191	U
1	2	192	U
1	2	194	G
1	2	195	G
1	2	196	А
1	2	214	А
1	2	217	A
1	2	218	А
1	2	220	A
1	2	223	С
1	2	226	U
1	2	227	G
1	2	228	U
1	2	231	U
1	2	232	С
1	2	234	G
1	2	235	А
1	2	237	U
1	2	238	С
1	2	239	С
1	2	240	U
1	2	248	U
1	2	249	С
1	2	256	A
1	2	259	U
1	2	260	U
1	2	264	A
1	2	271	U
1	2	274	С
1	2	275	С
1	2	276	U
1	2	278	G
1	2	279	U
1	2	280	G
1	2	286	G

Mol	Chain	\mathbf{Res}	Type
1	2	289	G
1	2	290	G
1	2	298	А
1	2	300	А
1	2	301	U
1	2	307	С
1	2	308	С
1	2	311	А
1	2	312	U
1	2	313	С
1	2	315	А
1	2	318	U
1	2	319	U
1	2	321	G
1	2	332	А
1	2	336	G
1	2	337	С
1	2	342	С
1	2	359	A
1	2	360	C
1	2	389	G
1	2	390	A
1	2	399	A
1	2	400	A
1	2	401	C
1	2	403	G
1	2	411	А
1	2	412	U
1	2	415	A
1	2	416	A
1	2	418	G
1	2	$42\overline{2}$	G
1	2	423	С
1	2	$42\overline{4}$	A
1	2	425	G
1	2	427	A
1	2	433	G
1	2	434	С
1	2	436	A
1	2	438	U
1	2	439	U
1	2	440	А

Mol	Chain	Res	Type
1	2	443	С
1	2	444	А
1	2	447	С
1	2	453	U
1	2	454	С
1	2	459	А
1	2	467	А
1	2	468	С
1	2	470	А
1	2	471	U
1	2	473	А
1	2	474	А
1	2	476	A
1	2	478	С
1	2	479	G
1	2	481	U
1	2	482	А
1	2	483	С
1	2	486	G
1	2	488	С
1	2	489	С
1	2	490	С
1	2	491	А
1	2	492	U
1	2	493	U
1	2	495	G
1	2	496	G
1	2	497	G
1	2	499	С
1	2	501	U
1	2	502	G
1	2	505	A
1	2	506	U
1	2	507	U
1	2	513	G
1	2	516	U
1	2	518	С
1	2	519	A
1	2	526	A
1	2	533	A
1	2	535	С
1	2	537	A

Mol	Chain	Res	Type
1	2	539	G
1	2	540	А
1	2	541	А
1	2	542	С
1	2	544	А
1	2	547	G
1	2	553	С
1	2	557	U
1	2	558	С
1	2	564	С
1	2	567	G
1	2	577	U
1	2	578	А
1	2	583	С
1	2	584	А
1	2	593	A
1	2	594	G
1	2	605	А
1	2	609	G
1	2	610	U
1	2	614	А
1	2	618	А
1	2	619	А
1	2	622	А
1	2	623	G
1	2	637	U
1	2	638	U
1	2	641	G
1	2	644	С
1	2	647	G
1	2	649	U
1	2	650	G
1	2	652	С
1	2	653	С
1	2	657	С
1	2	661	C
1	2	662	U
1	2	663	U
1	2	664	U
1	2	671	C
1	2	672	G
1	2	675	С

Mol	Chain	Res	Type
1	2	679	U
1	2	680	U
1	2	681	U
1	2	684	А
1	2	685	А
1	2	686	С
1	2	687	С
1	2	688	G
1	2	692	С
1	2	694	U
1	2	695	U
1	2	696	С
1	2	697	С
1	2	701	U
1	2	702	G
1	2	704	С
1	2	709	С
1	2	710	U
1	2	711	G
1	2	712	U
1	2	714	С
1	2	715	U
1	2	717	C
1	2	718	U
1	2	719	U
1	2	720	G
1	2	721	U
1	2	722	G
1	2	727	С
1	2	731	С
1	2	732	G
1	2	733	A
1	2	734	A
1	2	736	С
1	2	738	G
1	2	739	G
1	2	741	С
1	2	742	U
1	2	743	U
1	2	745	U
1	2	$75\overline{3}$	A
1	2	755	А

Mol	Chain	Res	Type
1	2	765	G
1	2	766	PSU
1	2	767	U
1	2	771	А
1	2	774	А
1	2	778	G
1	2	779	А
1	2	780	А
1	2	781	А
1	2	782	G
1	2	783	С
1	2	788	А
1	2	789	U
1	2	792	А
1	2	793	U
1	2	794	U
1	2	802	А
1	2	805	А
1	2	809	G
1	2	811	А
1	2	813	А
1	2	814	G
1	2	819	U
1	2	820	U
1	2	821	U
1	2	822	G
1	2	823	G
1	2	826	С
1	2	827	U
1	2	828	A
1	2	829	U
1	2	832	U
1	2	835	U
1	2	836	G
1	2	837	G
1	2	838	U
1	2	840	U
1	2	845	G
1	2	852	G
1	2	855	A
1	2	859	U
1	2	862	А

Mol	Chain	Res	Type
1	2	864	А
1	2	866	G
1	2	872	U
1	2	875	G
1	2	885	U
1	2	887	U
1	2	895	U
1	2	897	А
1	2	898	G
1	2	905	А
1	2	911	U
1	2	912	G
1	2	913	G
1	2	915	U
1	2	916	U
1	2	917	U
1	2	918	А
1	2	919	U
1	2	920	U
1	2	930	С
1	2	932	А
1	2	934	U
1	2	941	G
1	2	944	U
1	2	950	А
1	2	958	U
1	2	959	U
1	2	965	А
1	2	969	A
1	2	972	A
1	2	981	U
1	2	982	А
1	2	985	G
1	2	986	G
1	2	987	A
1	2	990	G
1	2	991	A
1	2	992	A
1	2	993	G
1	2	996	G
1	2	1002	A
1	2	1008	U

Mol	Chain	Res	Type
1	2	1015	С
1	2	1017	U
1	2	1018	А
1	2	1024	А
1	2	1025	А
1	2	1026	А
1	2	1027	С
1	2	1030	U
1	2	1031	G
1	2	1038	А
1	2	1039	G
1	2	1041	G
1	2	1042	А
1	2	1049	G
1	2	1050	G
1	2	1051	U
1	2	1052	G
1	2	1054	U
1	2	1055	U
1	2	1056	U
1	2	1057	U
1	2	1058	С
1	2	1059	U
1	2	1062	U
1	2	1069	С
1	2	1075	А
1	2	1081	С
1	2	1082	G
1	2	1083	А
1	2	1084	G
1	2	1085	A
1	2	1086	А
1	2	1091	A
1	2	1092	A
1	2	1095	С
1	2	1096	U
1	2	1097	U
1	2	1099	G
1	2	1103	U
1	2	1104	С
1	2	1110	G
1	2	1112	A

Mol	Chain	Res	Type
1	2	1113	G
1	2	1125	G
1	2	1134	U
1	2	1137	А
1	2	1142	А
1	2	1149	G
1	2	1150	А
1	2	1155	С
1	2	1157	С
1	2	1158	С
1	2	1163	G
1	2	1166	G
1	2	1184	U
1	2	1189	С
1	2	1193	А
1	2	1198	G
1	2	1199	G
1	2	1200	G
1	2	1205	U
1	2	1207	А
1	2	1211	G
1	2	1213	U
1	2	1216	А
1	2	1217	G
1	2	1224	U
1	2	1228	G
1	2	1230	U
1	2	1236	G
1	2	1237	А
1	2	1240	G
1	2	1241	A
1	2	1243	A
1	2	1244	G
1	2	1245	С
1	2	1246	U
1	2	1247	С
1	2	1249	U
1	2	1250	U
1	2	1251	С
1	2	1254	G
1	2	1255	A
1	2	1259	U

Mol	Chain	Res	Type
1	2	1260	G
1	2	1268	U
1	2	1269	G
1	2	1272	G
1	2	1273	С
1	2	1275	U
1	2	1279	С
1	2	1284	U
1	2	1287	G
1	2	1289	PSU
1	2	1292	U
1	2	1296	G
1	2	1297	U
1	2	1298	G
1	2	1306	U
1	2	1307	G
1	2	1313	U
1	2	1314	U
1	2	1315	G
1	2	1317	G
1	2	1319	U
1	2	1320	А
1	2	1321	А
1	2	1323	G
1	2	1324	А
1	2	1332	С
1	2	1336	А
1	2	1337	С
1	2	1339	U
1	2	1343	A
1	2	1344	А
1	2	1345	A
1	2	1347	А
1	2	1353	G
1	2	1359	А
1	2	1360	С
1	2	1361	U
1	2	1362	U
1	2	1363	G
1	2	1364	С
1	2	1366	G
1	2	1369	U

Mol	Chain	Res	Type
1	2	1370	G
1	2	1380	А
1	2	1383	G
1	2	1388	U
1	2	1390	U
1	2	1394	U
1	2	1396	U
1	2	1397	С
1	2	1398	А
1	2	1400	G
1	2	1401	С
1	2	1407	G
1	2	1408	А
1	2	1409	A
1	2	1411	U
1	2	1412	U
1	2	1413	U
1	2	1417	G
1	2	1418	С
1	2	1425	А
1	2	1426	2MG
1	2	1429	С
1	2	1431	G
1	2	1434	А
1	2	1442	А
1	2	1443	G
1	2	1444	А
1	2	1457	С
1	2	1458	А
1	2	1464	G
1	2	1467	А
1	2	1469	А
1	2	1471	U
1	2	1476	G
1	2	1479	С
1	2	1481	A
1	2	1482	G
1	2	1483	С
1	2	1484	G
1	2	1488	A
1	2	1489	С
1	2	1490	А

Mol	Chain	Res	Type
1	2	1491	А
1	2	1494	U
1	2	1499	С
1	2	1504	G
1	2	1510	G
1	2	1512	U
1	2	1513	А
1	2	1514	А
1	2	1518	U
1	2	1519	G
1	2	1521	G
1	2	1522	А
1	2	1523	А
1	2	1532	G
1	2	1534	G
1	2	1535	С
1	2	1538	G
1	2	1540	G
1	2	1544	G
1	2	1555	U
1	2	1557	А
1	2	1558	U
1	2	1566	С
1	2	1567	А
1	2	1572	G
1	2	1573	7MG
1	2	1581	А
1	2	1588	G
1	2	1595	А
1	2	1597	С
1	2	1598	A
1	2	1599	G
1	2	1602	U
1	2	1603	G
1	2	1608	G
1	2	1614	G
1	2	1617	С
1	2	1620	G
1	2	1632	С
1	2	1633	А
1	2	1637	5MC
1	2	1640	G

Mol	Chain	Res	Type
1	2	1646	А
1	2	1653	А
1	2	1654	U
1	2	1655	U
1	2	1656	G
1	2	1662	С
1	2	1678	G
1	2	1679	А
1	2	1680	U
1	2	1685	U
1	2	1686	U
1	2	1687	А
1	2	1688	G
1	2	1691	А
1	2	1692	А
1	2	1693	G
1	2	1694	G
1	2	1695	G
1	2	1696	G
1	2	1697	G
1	2	1698	С
1	2	1700	А
1	2	1702	U
1	2	1703	С
1	2	1705	А
1	2	1706	U
1	2	1707	С
1	2	1708	U
1	2	1709	С
1	2	1710	А
1	2	1711	G
1	2	1712	А
1	2	1713	G
1	2	1715	G
1	2	1719	A
1	2	1724	G
1	2	1725	G
1	2	1728	A
1	2	1729	A
1	2	1730	A
1	2	1735	G
1	2	1740	U

Mol	Chain	Res	Type
1	2	1742	А
1	2	1743	G
1	2	1748	А
1	2	1750	U
1	2	1753	А
1	2	1754	А
1	2	1755	G
1	2	1758	G
1	2	1763	А
1	2	1764	А
1	2	1766	G
1	2	1767	U
1	2	1768	U
1	2	1778	G
1	2	1781	С
1	2	1787	G
1	2	1790	G
1	2	1791	G
1	2	1792	А
1	2	1794	С
1	2	1798	А
37	3	16	U
37	3	18	U
37	3	20	А
37	3	22	U
37	3	24	U
37	3	26	А
37	3	32	U
37	3	33	С
37	3	34	U
37	3	35	С
37	3	36	U
37	3	37	U
37	3	38	C
37	3	40	С
38	1	4	G
38	1	8	U
38	1	9	1MG
38	1	13	C
38	1	14	A
38	1	15	G
38	1	16	H2U

Mol	Chain	Res	Type
38	1	19	G
38	1	20	А
38	1	21	А
38	1	22	G
38	1	41	С
38	1	44	А
38	1	46	7MG
38	1	47	H2U
38	1	48	5MC
38	1	49	5MC
38	1	52	G
38	1	59	А
38	1	60	А
38	1	61	С
38	1	74	С
38	1	75	С
38	1	76	А

All (28) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	2	74	U
1	2	78	А
1	2	216	А
1	2	239	С
1	2	277	U
1	2	279	U
1	2	649	U
1	2	670	G
1	2	686	С
1	2	695	U
1	2	700	С
1	2	828	А
1	2	1198	G
1	2	1204	С
1	2	1206	С
1	2	1343	А
1	2	1430	U
1	2	1470	С
1	2	1513	А
1	2	1566	С
1	2	1571	А

Continued from previous page...

Mol	Chain	Res	Type
1	2	1613	С
1	2	1765	G
1	2	1797	U
38	1	8	U
38	1	43	G
38	1	48	5MC
38	1	74	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

23 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Dog	Link	B	ond leng	gths	Bond angles		
WIOI	туре	Ullaili	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
1	2MG	2	1426	1,44	$18,\!26,\!27$	2.34	7 (38%)	16,38,41	1.47	4 (25%)
38	2MG	1	10	38	18,26,27	2.50	7 (38%)	16,38,41	1.33	3 (18%)
1	PSU	2	1289	1	18,21,22	4.09	7 (38%)	22,30,33	1.83	5 (22%)
38	H2U	1	16	38	18,21,22	3.03	4 (22%)	21,30,33	2.00	5 (23%)
1	5MC	2	1637	1	18,22,23	3.43	7 (38%)	26,32,35	0.96	2 (7%)
38	1MG	1	9	38	18,26,27	2.98	6 (33%)	19,39,42	1.53	<mark>3 (15%)</mark>
1	2MG	2	1570	1	18,26,27	2.43	7 (38%)	16,38,41	1.42	4 (25%)
38	M2G	1	26	38	20,27,28	3.70	8 (40%)	22,40,43	1.64	5 (22%)
38	7MG	1	46	38	22,26,27	<mark>3.76</mark>	10 (45%)	29,39,42	1.96	8 (27%)
38	RIA	1	64	38	31,38,39	5.08	13 (41%)	39,57,60	2.08	5 (12%)
1	MA6	2	1780	1	18,26,27	1.09	2 (11%)	19,38,41	3.42	2 (10%)
38	H2U	1	47	38	18,21,22	<mark>3.12</mark>	4 (22%)	21,30,33	1.88	4 (19%)
38	5MC	1	49	38	18,22,23	<mark>3.64</mark>	7 (38%)	26,32,35	1.02	1 (3%)
1	PSU	2	766	1	18,21,22	4.11	8 (44%)	22,30,33	2.07	5 (22%)
1	PSU	2	465	1,44	18,21,22	4.09	7 (38%)	22,30,33	1.75	4 (18%)
1	7MG	2	1573	1	$22,\!26,\!27$	3.62	10 (45%)	29,39,42	2.06	9 (31%)
1	PSU	2	120	1	18,21,22	4.19	7 (38%)	22,30,33	1.76	5 (22%)

Mal	Turne	Chain	Dec	Tink	В	ond leng	gths	Bond angles			
1VIOI	туре	Unam	nes	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
38	5MC	1	48	38	18,22,23	<mark>3.53</mark>	7 (38%)	26,32,35	1.16	2 (7%)	
38	T6A	1	37	38	27,34,35	2.10	7 (25%)	29,49,52	2.14	6 (20%)	
1	PSU	2	998	1	18,21,22	4.19	8 (44%)	22,30,33	1.85	5 (22%)	
1	B8N	2	1190	1	24,29,30	3.01	7 (29%)	29,42,45	1.82	8 (27%)	
38	1MA	1	58	38	16,25,26	4.30	4 (25%)	18,37,40	1.69	3 (16%)	
1	5MC	2	1006	1	18,22,23	<mark>3.29</mark>	7 (38%)	26,32,35	1.34	3 (11%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	2MG	2	1426	1,44	-	0/5/27/28	0/3/3/3
38	$2 \mathrm{MG}$	1	10	38	-	2/5/27/28	0/3/3/3
1	PSU	2	1289	1	-	2/7/25/26	0/2/2/2
38	H2U	1	16	38	-	2/7/38/39	0/2/2/2
1	5MC	2	1637	1	-	2/7/25/26	0/2/2/2
38	1MG	1	9	38	-	3/3/25/26	0/3/3/3
1	2MG	2	1570	1	-	0/5/27/28	0/3/3/3
38	M2G	1	26	38	-	1/7/29/30	0/3/3/3
38	7MG	1	46	38	-	2/7/37/38	0/3/3/3
38	RIA	1	64	38	-	3/13/51/52	0/4/4/4
1	MA6	2	1780	1	-	7/7/29/30	0/3/3/3
38	H2U	1	47	38	-	5/7/38/39	0/2/2/2
38	5MC	1	49	38	-	3/7/25/26	0/2/2/2
1	PSU	2	766	1	-	2/7/25/26	0/2/2/2
1	PSU	2	465	1,44	-	2/7/25/26	0/2/2/2
1	$7 \mathrm{MG}$	2	1573	1	-	2/7/37/38	0/3/3/3
1	PSU	2	120	1	-	2/7/25/26	0/2/2/2
38	5MC	1	48	38	-	3/7/25/26	0/2/2/2
38	T6A	1	37	38	-	6/19/41/42	0/3/3/3
1	PSU	2	998	1	-	4/7/25/26	0/2/2/2
1	B8N	2	1190	1	-	4/16/34/35	0/2/2/2
38	1MA	1	58	38	-	0/3/25/26	0/3/3/3
1	5MC	2	1006	1	-	0/7/25/26	0/2/2/2

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
38	1	64	RIA	C1'-C2'	-16.22	1.32	1.52
38	1	64	RIA	O4'-C1A	15.87	1.63	1.41
38	1	58	1MA	C2-N3	15.49	1.47	1.29
38	1	26	M2G	C2-N3	12.81	1.46	1.30
1	2	120	PSU	C6-C5	10.87	1.48	1.35
1	2	998	PSU	C6-C5	10.74	1.47	1.35
1	2	465	PSU	C6-C5	10.74	1.47	1.35
38	1	64	RIA	O1'-C1'	10.68	1.60	1.41
1	2	766	PSU	C6-C5	10.41	1.47	1.35
1	2	1289	PSU	C6-C5	10.34	1.47	1.35
38	1	46	7MG	C8-N9	9.67	1.51	1.46
38	1	47	H2U	C2-N1	9.67	1.49	1.35
1	2	1573	7MG	C8-N9	9.40	1.51	1.46
38	1	16	H2U	C2-N1	9.38	1.49	1.35
38	1	49	5MC	C6-C5	9.36	1.50	1.34
1	2	998	PSU	C2-N1	9.25	1.49	1.36
1	2	120	PSU	C2-N1	9.23	1.49	1.36
1	2	766	PSU	C2-N1	9.22	1.49	1.36
1	2	1289	PSU	C2-N1	9.12	1.49	1.36
1	2	465	PSU	C2-N1	8.93	1.48	1.36
38	1	48	5MC	C6-C5	8.92	1.49	1.34
38	1	9	1MG	C2-N2	8.88	1.50	1.34
1	2	1637	5MC	C6-C5	8.66	1.48	1.34
1	2	1006	5MC	C6-C5	8.07	1.47	1.34
1	2	1190	B8N	C6-N1	7.94	1.56	1.36
38	1	46	7MG	C5-N7	7.74	1.44	1.35
1	2	1190	B8N	C4-N3	-7.68	1.26	1.40
1	2	998	PSU	C2-N3	7.28	1.50	1.37
1	2	120	PSU	C2-N3	7.22	1.49	1.37
1	2	1289	PSU	C2-N3	7.20	1.49	1.37
1	2	766	PSU	C2-N3	7.13	1.49	1.37
1	2	465	PSU	C2-N3	6.92	1.49	1.37
38	1	64	RIA	O1'-C4'	-6.75	1.29	1.45
1	2	1573	7MG	C5-N7	6.72	1.43	1.35
38	1	48	5MC	C4-N3	6.59	1.45	1.34
38	1	47	H2U	C2-N3	6.54	1.49	1.38
38	1	49	5MC	C4-N3	6.52	1.45	1.34
38	1	37	T6A	C10-N11	6.39	1.49	1.35
1	2	1637	$5\overline{\mathrm{MC}}$	C4-N3	6.35	1.44	1.34
38	1	16	H2U	C2-N3	6.31	1.49	1.38
1	2	1006	5MC	C4-N3	6.22	1.44	1.34
38	1	49	5MC	C2-N3	6.12	1.48	1.36

All (161) bond length outliers are listed below:

0 0 1 0 0 0	ieaea ji en	· p· ccvc	rao pago.				
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	$\operatorname{Ideal}(\operatorname{\AA})$
38	1	48	5MC	C2-N3	6.09	1.48	1.36
38	1	26	M2G	C2-N2	5.95	1.46	1.35
1	2	1006	5MC	C2-N3	5.95	1.48	1.36
1	2	1573	7MG	C2-N3	5.94	1.47	1.33
38	1	64	RIA	O4'-C4A	-5.89	1.31	1.45
1	2	1637	5MC	C2-N3	5.88	1.48	1.36
38	1	46	7MG	C2-N3	5.73	1.47	1.33
38	1	10	2MG	C2-N2	5.60	1.45	1.33
38	1	46	7MG	C4-N3	5.45	1.47	1.34
38	1	9	1MG	C2-N3	5.43	1.44	1.34
1	2	1573	7MG	C4-N3	5.41	1.47	1.34
1	2	1190	B8N	C2-N1	5.37	1.55	1.39
1	2	1570	2MG	C2-N2	5.30	1.45	1.33
38	1	58	1MA	C2-N1	5.26	1.45	1.35
38	1	37	T6A	C10-N6	5.21	1.48	1.37
1	2	120	PSU	C6-N1	5.16	1.44	1.36
38	1	10	2MG	C4-N3	5.15	1.49	1.37
1	2	465	PSU	C6-N1	5.08	1.44	1.36
1	2	1289	PSU	C6-N1	5.08	1.44	1.36
1	2	1573	7MG	C4-N9	5.07	1.43	1.37
1	2	998	PSU	C6-N1	5.06	1.44	1.36
38	1	47	H2U	C4-N3	5.01	1.46	1.37
1	2	1426	2MG	C2-N2	4.99	1.44	1.33
1	2	766	PSU	C6-N1	4.95	1.44	1.36
38	1	46	7MG	C4-N9	4.94	1.43	1.37
1	2	1190	B8N	C6-C5	4.88	1.41	1.34
38	1	16	H2U	C4-N3	4.87	1.45	1.37
38	1	26	M2G	C4-N3	4.82	1.49	1.37
1	2	1570	2MG	C4-N3	4.79	1.49	1.37
38	1	46	7MG	C2-N2	4.77	1.45	1.34
38	1	9	1MG	C4-N3	4.69	1.48	1.37
38	1	10	2MG	C2-N1	4.68	1.44	1.36
1	2	1573	7MG	C2-N2	4.65	1.45	1.34
38	1	49	5MC	C6-N1	4.65	1.46	1.38
1	2	1190	B8N	C1'-C5	-4.63	1.39	1.50
1	2	1570	2MG	C2-N1	4.59	1.44	1.36
1	2	1426	2MG	C2-N1	4.49	1.43	1.36
$\overline{38}$	1	49	5MC	C2-N1	4.44	1.49	1.40
1	2	$14\overline{26}$	2MG	C4-N3	4.44	1.48	1.37
38	1	49	5MC	C4-N4	4.39	1.45	1.34
38	1	48	5MC	C6-N1	4.36	1.45	1.38
1	2	1637	5MC	C6-N1	4.28	1.45	1.38

			as pager		-		T 1 (8)
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(A)
38	1	64	RIA	C6-N6	4.24	1.49	1.34
38	1	48	5MC	C2-N1	4.20	1.49	1.40
38	1	48	5MC	C4-N4	4.20	1.45	1.34
1	2	1637	5MC	C4-N4	4.18	1.45	1.34
1	2	1006	5MC	C4-N4	4.06	1.44	1.34
38	1	37	T6A	C6-N6	4.06	1.43	1.36
38	1	58	1MA	C4-N3	3.99	1.49	1.37
1	2	1006	5MC	C2-N1	3.94	1.48	1.40
38	1	26	M2G	C6-N1	3.92	1.43	1.37
1	2	1637	5MC	C2-N1	3.86	1.48	1.40
38	1	46	7MG	C2-N1	3.81	1.47	1.37
38	1	9	1MG	O6-C6	-3.80	1.15	1.22
1	2	120	PSU	C4-N3	3.71	1.45	1.38
1	2	1006	5MC	C6-N1	3.66	1.44	1.38
1	2	998	PSU	C4-N3	3.65	1.45	1.38
1	2	465	PSU	C4-N3	3.58	1.45	1.38
1	2	1573	7MG	C2-N1	3.55	1.46	1.37
1	2	1289	PSU	C4-N3	3.55	1.45	1.38
1	2	766	PSU	C4-N3	3.53	1.45	1.38
1	2	1570	2MG	C6-N1	3.50	1.43	1.37
38	1	46	7MG	C5-C6	3.38	1.52	1.43
38	1	64	RIA	O3A-C3A	-3.38	1.35	1.43
38	1	10	2MG	C6-N1	3.35	1.42	1.37
38	1	26	M2G	C5-C6	3.29	1.54	1.47
38	1	46	7MG	C6-N1	3.26	1.44	1.38
38	1	26	M2G	C2-N1	3.26	1.44	1.36
38	1	64	RIA	O2'-C2'	3.14	1.50	1.43
1	2	1573	7MG	C5-C6	3.13	1.51	1.43
38	1	64	RIA	O2A-C2A	3.02	1.51	1.43
1	2	1006	5MC	O2-C2	-2.95	1.18	1.23
1	2	1637	5MC	O2-C2	-2.95	1.18	1.23
38	1	10	2MG	C5-C6	2.92	1.53	1.47
1	2	1426	2MG	C6-N1	2.91	1.42	1.37
1	2	1570	2MG	C5-C6	2.89	1.53	1.47
1	2	1573	7MG	C6-N1	2.88	1.44	1.38
1	2	1289	PSU	04-C4	-2.87	1.18	1.23
1	2	1780	MA6	C5-C4	-2.80	1.33	1.40
1	2	998	PSU	04-C4	-2.79	1.18	1.23
38	1	48	5MC	02-C2	-2.76	1.18	1.23
1	2	1573	7MG	O6-C6	-2.74	1.18	1.23
38	1	49	5MC	O2-C2	-2.72	1.18	1.23
1	2	766	PSU	04-C4	-2.71	1.18	1.23

001000		<i>v</i> preced	as page.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	2	1426	2MG	C5-C6	2.71	1.52	1.47
1	2	766	PSU	O4'-C1'	-2.70	1.40	1.43
1	2	1426	2MG	C5-C4	-2.69	1.36	1.43
38	1	64	RIA	C2-N3	2.67	1.36	1.32
1	2	465	PSU	O4-C4	-2.65	1.18	1.23
38	1	46	7MG	O6-C6	-2.62	1.18	1.23
1	2	120	PSU	O4-C4	-2.62	1.18	1.23
1	2	1426	2MG	O6-C6	-2.56	1.18	1.23
1	2	1570	2MG	C5-C4	-2.55	1.36	1.43
38	1	64	RIA	O3'-C3'	-2.54	1.37	1.43
38	1	26	M2G	C5-C4	-2.53	1.36	1.43
38	1	16	H2U	O2-C2	-2.51	1.18	1.23
38	1	10	2MG	C5-C4	-2.46	1.36	1.43
1	2	465	PSU	O2-C2	-2.42	1.18	1.23
1	2	1780	MA6	C2-N3	2.41	1.36	1.32
38	1	37	T6A	C5-C4	-2.38	1.34	1.40
38	1	64	RIA	P'-O5'	2.37	1.67	1.60
38	1	47	H2U	O2-C2	-2.36	1.18	1.23
1	2	1190	B8N	O2-C2	-2.35	1.18	1.22
1	2	998	PSU	O4'-C1'	-2.32	1.40	1.43
1	2	766	PSU	O2-C2	-2.29	1.18	1.23
38	1	10	2MG	O6-C6	-2.29	1.18	1.23
38	1	37	T6A	ODA-C13	2.27	1.29	1.22
38	1	9	1MG	C5-C4	-2.27	1.37	1.43
1	2	120	PSU	O2-C2	-2.24	1.18	1.23
1	2	1570	2MG	O6-C6	-2.24	1.18	1.23
1	2	1289	PSU	O2-C2	-2.23	1.18	1.23
38	1	58	1MA	CM1-N1	-2.18	1.42	1.46
38	1	26	M2G	O6-C6	-2.16	1.18	1.23
1	2	998	PSU	O2-C2	-2.16	1.18	1.23
38	1	37	T6A	O10-C10	-2.14	1.18	1.23
38	1	9	1MG	C5-C6	2.08	1.53	1.47
38	1	37	T6A	C2-N3	2.07	1.35	1.32
1	2	1190	B8N	O4-C4	-2.03	1.18	1.23
38	1	64	RIA	C2-N1	2.02	1.37	1.33

All (101) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	2	1780	MA6	N1-C6-N6	-13.70	102.64	117.06
38	1	64	RIA	C5-C6-N6	8.03	132.55	120.35
38	1	16	H2U	C4-N3-C2	-6.78	120.16	125.79

α \cdot \cdot \cdot	C		
Continued	from	previous	page
	0	1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
38	1	47	H2U	C4-N3-C2	-6.38	120.50	125.79
38	1	64	RIA	N3-C2-N1	-5.66	119.83	128.68
38	1	37	T6A	N3-C2-N1	-5.58	119.95	128.68
1	2	1780	MA6	N3-C2-N1	-5.47	120.12	128.68
38	1	64	RIA	N6-C6-N1	-5.44	107.28	118.57
1	2	1573	7MG	C5-C6-N1	5.08	119.94	110.99
1	2	766	PSU	C4-N3-C2	-5.05	119.06	126.34
1	2	1190	B8N	C5-C4-N3	5.00	125.44	116.17
38	1	58	1MA	N1-C2-N3	-4.93	120.27	126.02
38	1	46	7MG	C5-C6-N1	4.92	119.66	110.99
38	1	37	T6A	C2-N1-C6	4.78	120.69	116.59
1	2	1289	PSU	C4-N3-C2	-4.71	119.56	126.34
1	2	998	PSU	C4-N3-C2	-4.58	119.73	126.34
38	1	37	T6A	N6-C10-N11	4.57	120.14	113.76
38	1	26	M2G	N1-C2-N2	4.55	121.91	118.04
1	2	766	PSU	N1-C2-N3	4.52	120.25	115.13
1	2	1006	5MC	C5-C6-N1	-4.49	118.72	123.34
1	2	1190	B8N	C4-N3-C2	-4.43	119.86	125.46
38	1	9	1MG	C5-C6-N1	4.34	120.42	113.90
1	2	465	PSU	C4-N3-C2	-4.33	120.10	126.34
1	2	120	PSU	C4-N3-C2	-4.30	120.14	126.34
1	2	1573	7MG	C5-C4-N3	-4.22	120.08	128.13
38	1	46	7MG	C2-N3-C4	4.20	119.77	112.30
1	2	1573	7MG	C2-N3-C4	4.14	119.67	112.30
1	2	465	PSU	N1-C2-N3	4.13	119.81	115.13
1	2	1289	PSU	N1-C2-N3	4.10	119.78	115.13
1	2	998	PSU	N1-C2-N3	4.10	119.77	115.13
38	1	58	1MA	C5-C6-N1	4.03	119.90	113.90
1	2	120	PSU	N1-C2-N3	4.01	119.67	115.13
38	1	48	5MC	C5-C6-N1	-3.94	119.28	123.34
38	1	64	RIA	C1'-O2A-C2A	-3.89	108.34	117.96
38	1	37	T6A	C12-N11-C10	3.88	128.40	121.94
1	2	766	PSU	C6-C5-C4	3.79	120.84	118.20
38	1	46	7MG	C5-C4-N3	-3.75	120.99	128.13
38	1	37	T6A	O10-C10-N6	-3.54	117.64	123.62
38	1	10	2MG	C5-C6-N1	3.52	120.17	113.95
38	1	37	T6A	N6-C6-N1	3.42	123.30	118.72
38	1	26	M2G	C5-C6-N1	3.41	119.98	113.95
1	2	1426	2MG	C5-C6-N1	3.39	119.94	113.95
1	2	1573	7MG	C4-C5-N7	3.38	110.22	105.53
1	2	1570	2MG	C5-C6-N1	3.33	119.83	113.95
1	2	465	PSU	C6-N1-C2	-3.27	119.34	122.68

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	2	1426	2MG	CM2-N2-C2	-3.26	116.67	123.86
1	2	998	PSU	C6-N1-C2	-3.25	119.36	122.68
1	2	1190	B8N	N3-C2-N1	3.25	121.35	116.76
38	1	16	H2U	N3-C2-N1	3.19	120.02	116.65
38	1	49	5MC	C5-C6-N1	-3.16	120.09	123.34
1	2	1573	7MG	C5-C4-N9	3.15	110.44	106.35
1	2	1573	7MG	C2-N1-C6	-3.10	119.45	125.10
38	1	46	7MG	C4-C5-N7	3.09	109.82	105.53
1	2	120	PSU	C6-N1-C2	-3.09	119.52	122.68
38	1	46	7MG	C5-C4-N9	3.06	110.32	106.35
1	2	1637	5MC	C5-C6-N1	-3.05	120.20	123.34
1	2	766	PSU	C6-N1-C2	-2.92	119.69	122.68
38	1	46	7MG	O6-C6-C5	-2.91	120.40	127.54
1	2	1289	PSU	C6-N1-C2	-2.91	119.71	122.68
1	2	1573	7MG	O6-C6-C5	-2.87	120.49	127.54
38	1	47	H2U	C5-C6-N1	2.87	121.06	111.61
38	1	47	H2U	N3-C2-N1	2.86	119.68	116.65
1	2	1190	B8N	C31-N3-C4	2.86	121.53	117.31
38	1	16	H2U	C5-C4-N3	2.84	119.84	116.65
38	1	47	H2U	C5-C4-N3	2.83	119.83	116.65
38	1	26	M2G	C2-N1-C6	-2.83	119.02	123.71
1	2	1006	5MC	CM5-C5-C6	-2.78	119.14	122.85
38	1	9	1MG	C8-N7-C5	2.77	108.26	102.99
1	2	998	PSU	O2-C2-N1	-2.73	119.78	122.79
1	2	766	PSU	O2-C2-N1	-2.73	119.78	122.79
38	1	46	7MG	C2-N1-C6	-2.72	120.14	125.10
38	1	58	1MA	C8-N7-C5	2.72	108.17	102.99
1	2	1573	7MG	N9-C4-N3	2.68	129.48	125.47
1	2	1289	PSU	O2-C2-N1	-2.67	119.85	122.79
38	1	26	M2G	C8-N7-C5	2.64	108.02	102.99
38	1	16	H2U	C5-C6-N1	2.63	120.26	111.61
1	2	120	PSU	C6-C5-C4	2.62	120.03	118.20
1	2	1289	PSU	C6-C5-C4	2.59	120.01	118.20
38	1	16	H2U	O2-C2-N1	-2.58	119.87	123.11
1	2	1570	2MG	C8-N7-C5	2.48	107.72	102.99
38	1	10	2MG	C8-N7-C5	2.47	107.70	102.99
1	2	120	PSU	O2-C2-N1	-2.47	120.07	122.79
1	2	1190	B8N	O4-C4-N3	-2.44	115.83	119.98
1	2	465	PSU	O2-C2-N1	-2.44	120.11	122.79
1	2	1426	2MG	C8-N7-C5	2.43	107.62	102.99
38	1	9	1MG	O6-C6-C5	-2.42	119.91	124.19
1	2	1573	7MG	N9-C8-N7	2.39	106.79	103.38

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	2	1570	2MG	CM2-N2-C2	-2.35	118.67	123.86
38	1	26	M2G	O6-C6-C5	-2.33	119.82	124.37
1	2	1570	2MG	O6-C6-C5	-2.32	119.84	124.37
38	1	10	2MG	O6-C6-C5	-2.28	119.93	124.37
1	2	1190	B8N	O4'-C1'-C2'	2.22	108.28	105.14
1	2	1637	5MC	CM5-C5-C6	-2.22	119.88	122.85
38	1	46	7MG	N9-C4-N3	2.15	128.69	125.47
1	2	1426	2MG	O6-C6-C5	-2.14	120.19	124.37
1	2	998	PSU	C6-C5-C4	2.12	119.68	118.20
1	2	1190	B8N	O2-C2-N3	-2.10	119.08	121.99
38	1	64	RIA	O2A-C1'-C2'	2.09	112.29	107.96
1	2	1190	B8N	O36-C34-C33	2.04	120.34	113.38
38	1	48	5MC	C5-C4-N4	-2.04	118.43	121.48
1	2	1006	5MC	C5-C4-N4	-2.01	118.48	121.48

There are no chirality outliers.

All	(57)) torsion	outliers	are	listed	below:
-----	------	-----------	----------	-----	--------	--------

Mol	Chain	Res	Type	Atoms
1	2	120	PSU	C3'-C4'-C5'-O5'
1	2	120	PSU	O4'-C4'-C5'-O5'
1	2	766	PSU	C3'-C4'-C5'-O5'
1	2	1190	B8N	O4'-C4'-C5'-O5'
1	2	1780	MA6	O4'-C4'-C5'-O5'
1	2	1780	MA6	C5-C6-N6-C9
1	2	1780	MA6	C5-C6-N6-C10
1	2	1780	MA6	N1-C6-N6-C9
1	2	1780	MA6	N1-C6-N6-C10
38	1	9	1MG	O4'-C4'-C5'-O5'
38	1	9	1MG	C3'-C4'-C5'-O5'
38	1	16	H2U	C4'-C5'-O5'-P
38	1	37	T6A	C14-C12-N11-C10
38	1	37	T6A	C13-C12-C14-O14
38	1	37	T6A	C13-C12-C14-C15
38	1	47	H2U	O4'-C4'-C5'-O5'
38	1	47	H2U	C3'-C4'-C5'-O5'
38	1	48	5MC	C4'-C5'-O5'-P
38	1	49	5MC	O4'-C4'-C5'-O5'
1	2	766	PSU	O4'-C4'-C5'-O5'
1	2	1190	B8N	C3'-C4'-C5'-O5'
1	2	1637	5MC	O4'-C4'-C5'-O5'
1	2	1780	MA6	C3'-C4'-C5'-O5'

EMD-19802, 8S8E	
-----------------	--

Conti	nucu jion	i previe	<i>hus puye.</i>	••
Mol	Chain	Res	Type	Atoms
38	1	49	5MC	C3'-C4'-C5'-O5'
1	2	1573	7MG	O4'-C4'-C5'-O5'
1	2	1573	7MG	C3'-C4'-C5'-O5'
1	2	1637	5MC	C3'-C4'-C5'-O5'
1	2	465	PSU	O4'-C4'-C5'-O5'
1	2	998	PSU	O4'-C4'-C5'-O5'
38	1	10	2MG	O4'-C4'-C5'-O5'
38	1	48	5MC	O4'-C4'-C5'-O5'
38	1	46	7MG	C4'-C5'-O5'-P
38	1	47	H2U	C4'-C5'-O5'-P
38	1	64	RIA	C4A-C5A-O5A-P
38	1	37	T6A	N11-C12-C14-C15
1	2	998	PSU	C3'-C4'-C5'-O5'
38	1	26	M2G	C3'-C4'-C5'-O5'
1	2	1780	MA6	C4'-C5'-O5'-P
38	1	9	1MG	C4'-C5'-O5'-P
38	1	46	7MG	C3'-C4'-C5'-O5'
38	1	64	RIA	C4'-C5'-O5'-P'
1	2	1289	PSU	C3'-C4'-C5'-O5'
38	1	37	T6A	C13-C12-N11-C10
38	1	47	H2U	C2'-C1'-N1-C6
1	2	998	PSU	O4'-C1'-C5-C4
1	2	1190	B8N	O4'-C1'-C5-C4
1	2	465	PSU	C3'-C4'-C5'-O5'
38	1	10	2MG	C3'-C4'-C5'-O5'
1	2	1190	B8N	N34-C33-C34-O36
38	1	16	H2U	C2'-C1'-N1-C6
38	1	47	H2U	C2'-C1'-N1-C2
38	1	48	5MC	C3'-C4'-C5'-O5'
38	1	37	T6A	N11-C12-C13-ODA
1	2	1289	PSU	O4'-C4'-C5'-O5'
1	2	998	PSU	O4'-C1'-C5-C6
38	1	64	RIA	C2'-C1'-O2A-C2A
38	1	49	5MC	C4'-C5'-O5'-P

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 121 ligands modelled in this entry, 119 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Trune	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Dec	T in la	Bond lengths			Bond angles		
Moi Type	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	$\begin{array}{c c} \text{RMSZ} & \# Z > 2\\ \hline 0.52 & 0 \end{array}$									
47	MET	k	603	-	6,7,8	0.49	0	2,7,9	0.52	0								
46	GCP	k	601	-	27,34,34	4.78	10 (37%)	34,54,54	1.66	7 (20%)								

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
47	MET	k	603	-	-	1/5/6/8	-
46	GCP	k	601	-	-	3/15/38/38	0/3/3/3

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
46	k	601	GCP	C2'-C1'	-15.27	1.30	1.53
46	k	601	GCP	O4'-C1'	14.94	1.61	1.41
46	k	601	GCP	PB-O3A	6.22	1.65	1.58
46	k	601	GCP	O4'-C4'	-6.21	1.31	1.45
46	k	601	GCP	C2-N2	5.91	1.45	1.33
46	k	601	GCP	O2'-C2'	2.98	1.50	1.43
46	k	601	GCP	O3'-C3'	-2.89	1.36	1.43
46	k	601	GCP	C5-C4	-2.62	1.34	1.40
46	k	601	GCP	O6-C6	-2.25	1.18	1.24
46	k	601	GCP	PB-O2B	-2.15	1.51	1.56

All (10) bond length outliers are listed below:

All (7) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
46	k	601	GCP	N3-C2-N1	-5.33	120.12	127.22

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
46	k	601	GCP	C2-N3-C4	4.07	120.01	115.36
46	k	601	GCP	C5-C6-N1	-2.69	119.75	123.43
46	k	601	GCP	PB-O3A-PA	-2.68	124.06	132.56
46	k	601	GCP	C2-N1-C6	2.63	120.10	115.93
46	k	601	GCP	N2-C2-N3	2.23	121.43	117.79
46	k	601	GCP	C3'-C2'-C1'	2.02	104.02	100.98

There are no chirality outliers.

All (4) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
46	k	601	GCP	C5'-O5'-PA-O3A
46	k	601	GCP	C5'-O5'-PA-O2A
46	k	601	GCP	C5'-O5'-PA-O1A
47	k	603	MET	C-CA-CB-CG

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks		
38	1	3		

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	1	64:RIA	O3'	65:G	Р	9.12
1	1	63:G	O3'	64:RIA	Р	4.29
1	1	16:H2U	O3'	18:G	Р	4.10

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-19802. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 150

Y Index: 150

Z Index: 150

6.2.2 Raw map

X Index: 150

Y Index: 150

Z Index: 150

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 152

Z Index: 147

6.3.2 Raw map

X Index: 152

Y Index: 198

Z Index: 146

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.07. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{19802}_{msk}_{1.map}$ (i) 6.6.1

Х

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 666 nm^3 ; this corresponds to an approximate mass of 601 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.260 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.260 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

Bosolution ostimato $(\hat{\lambda})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.85	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	5.29	9.23	5.98

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 5.29 differs from the reported value 3.85 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-19802 and PDB model 8S8E. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.07 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.07).

9.4 Atom inclusion (i)

At the recommended contour level, 61% of all backbone atoms, 66% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.07) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.6640	0.3470
1	0.5800	0.2250
2	0.8660	0.3830
3	0.3360	0.2790
А	0.7460	0.3960
В	0.6940	0.4000
С	0.7670	0.4320
D	0.7040	0.4140
Е	0.7840	0.4330
F	0.7250	0.3990
G	0.7440	0.3630
Н	0.6330	0.3740
Ι	0.7390	0.3990
J	0.7720	0.4190
Κ	0.7500	0.3760
L	0.7110	0.4220
М	0.3650	0.2660
Ν	0.7750	0.4140
О	0.7660	0.4020
Р	0.7680	0.3720
Q	0.8010	0.4170
R	0.6540	0.3790
\mathbf{S}	0.7550	0.3790
Т	0.7980	0.3850
U	0.6610	0.3820
V	0.7980	0.4090
W	0.7910	0.4380
Х	0.7710	0.4530
Y	0.7920	0.3990
Z	0.5530	0.3290
a	0.7740	0.4550
b	0.5810	0.4100
с	0.7040	0.4260
d	0.8260	0.4330
е	0.6270	0.3880

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
f	0.4990	0.2860
g	0.7090	0.3660
h	0.1560	0.2870
i	0.3120	0.3800
j	0.1340	0.1730
k	0.0220	0.0870
1	0.0110	0.0520
0	0.0210	0.1460
р	0.0280	0.1400

