

Sep 28, 2024 - 06:30 PM EDT

PDB ID	:	7SC7
EMDB ID	:	EMD-25028
Title	:	Synechocystis PCC 6803 Phycobilisome core from up-down rod conformation
Authors	:	Sauer, P.V.; Sutter, M.; Dominguez-Martin, M.A.; Kirst, H.; Kerfeld, C.A.
Deposited on	:	2021-09-27
Resolution	:	2.80 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113 2022 3 0 CSD ac543bc (2022)
Mogui	•	2022.3.0, OSD as 343 De (2022)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (#Entries)	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	AA	161	81%	17%	••
1	AC	161	79%	19%	••
1	AH	161	80%	19%	·
1	AJ	161	89%	10%	•
1	AN	161	77%	22%	••
1	AP	161	90%	9%	•
1	AR	161	91%	99	% •
1	AV	161	81%	17%	

Mol	Chain	Length	Quality of chain	
1	AX	161	86%	13% ••
1	AZ	161	89%	11% •
1	BH	161	84%	15% •
1	BJ	161	• 84%	14% ••
1	BO	161	76%	22% ••
1	BQ	161	85%	14% ••
1	BU	161	87%	12% •
1	BW	161	91%	9% •
1	BY	161	85%	14% ••
1	CB	161	80%	20% •
1	CD	161	84%	14% ••
1	CF	161	88%	11% ••
1	CP	161	83%	15% ••
1	CR	161	78%	20% ••••
1	CT	161	88%	11% •
1	CW	161	85%	14% ••
1	CY	161	83%	16% ••
1	DA	161	81%	19% •
1	DG	161	73%	25% ••
1	DI	161	86%	13% ••
1	DK	161	80%	19% ••
1	DN	161	81%	17% ••
1	DP	161	85%	14%
1	DR	161	82%	17% •
2	AB	161	80%	19% •

Mol	Chain	Length	Quality of chain	
2	AD	161	84%	16%
2	AF	161	77%	22% •
2	AI	161	89%	11%
2	AL	161	84%	16%
2	AO	161	87%	13%
2	AQ	161	91%	9%
2	AS	161	86%	14%
2	AU	161	87%	13%
2	AW	161	80%	20% •
2	AY	161	83%	17%
2	BI	161	86%	14%
2	BK	161	90%	10%
2	BM	161	80%	20% •
2	BP	161	89%	11%
2	BS	161	83%	16% •
2	BV	161	88%	12%
2	BX	161	92%	8%
2	BZ	161	87%	13%
2	CC	161	85%	15%
2	CE	161	81%	19%
2	CG	161	900/	149/
2	CO	161	00%	14%
2	<u> </u>	101	84%	16%
	CD CD	101	89%	11%
2		101	85%	15%
2	CX	161	79%	20% •

Mol	Chain	Length	Quality of chain	
2	CZ	161	84%	16% •
2	DB	161	91%	9%
2	DH	161	86%	14%
2	DJ	161	86%	14%
2	DL	161	89%	11%
2	DO	161	80%	20% •
2	DQ	161	• 76%	22% •
2	DS	161	84%	16%
3	AE	161	83%	16% ••
3	BL	161	83%	17% •
4	AK	169	88%	12%
4	BR	169	82%	18%
5	BA	67	• 72%	27% •
5	BB	67	6%	33%
5	CI	67	● 76%	22% •
5	CJ	67	81%	19%
5	DD	67	81%	19%
5	DU	67	79%	21%
6	BD	896	77%	18% 5%
6	CL	896	78%	17% 5%
7	BF	249	18% • 77%	
7	CN	249	19% • 77%	
7	DE	249	• 17% • 78%	
7	DF	249	18% • 78%	
7	DV	249	18% • 78%	

Mol	Chain	Length	Quality of chain
7	DW	249	18% • 78%
8	BG	121	26% • 70%
8	СО	121	22% 7% 70%

2 Entry composition (i)

There are 9 unique types of molecules in this entry. The entry contains 107930 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			AltConf	Trace
1	ΛΛ	160	Total	С	Ν	Ο	S	0	0
	AA	100	1210	754	207	242	$\overline{7}$	0	0
1		160	Total	С	Ν	0	S	0	0
	AC	100	1210	754	207	242	7	0	0
1	۸Ц	160	Total	С	Ν	0	S	0	0
1	АП	100	1210	754	207	242	7	0	0
1	ΔΤ	160	Total	С	Ν	0	\mathbf{S}	0	0
	$\Lambda 0$	100	1210	754	207	242	7	0	0
1	ΔN	160	Total	С	Ν	0	\mathbf{S}	0	0
	AN	100	1210	754	207	242	7	0	0
1	ΔP	160	Total	С	Ν	0	\mathbf{S}	0	0
	Π	100	1210	754	207	242	7	0	0
1	ΔB	160	Total	С	Ν	Ο	\mathbf{S}	0	0
	лц	100	1210	754	207	242	7	0	0
1	ΔV	160	Total	С	Ν	Ο	\mathbf{S}	0	0
1	ΛV	100	1210	754	207	242	7	0	0
1	ΔX	160	Total	С	Ν	Ο	\mathbf{S}	0	0
1	1111	100	1210	754	207	242	7		0
1	ΔZ	160	Total	С	Ν	Ο	\mathbf{S}	0	0
	112	100	1210	754	207	242	7	0	0
1	BH	160	Total	С	Ν	Ο	\mathbf{S}	0	0
1	DII	100	1210	754	207	242	7	0	0
1	BI	160	Total	С	Ν	0	\mathbf{S}	0	0
1	D0	100	1210	754	207	242	7	0	0
1	BO	160	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
1	DO	100	1210	754	207	242	7	0	0
1	BO	160	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
1	Ъą	100	1210	754	207	242	7	0	0
1	BU	160	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	DU	100	1210	754	207	242	7	0	0
1	BW	160	Total	C	Ν	Ο	S	0	
	D 11	100	1210	754	207	242	7	0	
1	BV	160	Total	C	Ν	Ο	S	0	
I BY	100	1210	754	207	242	7			

• Molecule 1 is a protein called Allophycocyanin alpha chain.

Mol	Chain	Residues		At	oms			AltConf	Trace				
1	CD	160	Total	С	Ν	Ο	S	0	0				
1	UD	100	1210	754	207	242	7	0	0				
1	CD	160	Total	С	Ν	0	S	0	0				
1	CD	100	1210	754	207	242	7	0	0				
1	CE	160	Total	С	Ν	0	S	0	0				
1	UГ	100	1210	754	207	242	$\overline{7}$	0	0				
1	CD	160	Total	С	Ν	0	S	0	0				
1	UI	100	1210	754	207	242	$\overline{7}$	0	0				
1	CP	CP	160	Total	С	Ν	0	\mathbf{S}	0	0			
1	UII	100	1210	754	207	242	7	0	0				
1	СТ	160	Total	С	Ν	Ο	S	0	0				
1		100	1210	754	207	242	7	0	0				
1	CW	CW	CW	CW	1 CW	160	Total	С	Ν	0	S	0	0
1			100	1210	754	207	242	7	0	0			
1	CV	CV	CY	160	Total	С	Ν	0	S	0	0		
1	U I	100	1210	754	207	242	7	0	0				
1	DA	DA	160	Total	С	Ν	Ο	\mathbf{S}	0	0			
1	DA	100	1210	754	207	242	7	0	0				
1	DC	DC	DC	DC	DC	160	Total	С	Ν	Ο	S	0	0
1	DG	100	1210	754	207	242	7	0	0				
1	ות	160	Total	С	Ν	Ο	\mathbf{S}	0	0				
1	DI	100	1210	754	207	242	7	0	0				
1	DK	160	Total	С	Ν	Ο	\mathbf{S}	0	0				
1	DR	100	1210	754	207	242	7	0	0				
1	DN	160	Total	С	Ν	Ο	\mathbf{S}	0	0				
1	DN	100	1210	754	207	242	7	0	0				
1	ПР	160	Total	С	Ν	0	S	0	0				
1		100	1210	754	207	242	7		0				
1	DB	160	Total	С	Ν	0	S	0	0				
1	DR	100	1210	754	207	242	7		0				

• Molecule 2 is a protein called Allophycocyanin beta chain.

Mol	Chain	Residues		At	oms	AltConf	Trace				
	161	Total	С	Ν	Ο	\mathbf{S}	0	0			
	AD	101	1206	757	202	240	$\overline{7}$	0	U		
9	AD	AD	AD	161	Total	С	Ν	0	S	0	0
				AD	AD 101	1206	757	202	240	$\overline{7}$	0
0	٨F	1.61	Total	С	Ν	0	S	0	0		
	АГ	101	1206	757	202	240	7	0	0		
2	ΛТ	161	Total	С	Ν	0	S	0	0		
2	AI	101	1206	757	202	240	$\overline{7}$		U		

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf	Trace	
0	АТ	161	Total	С	Ν	0	S	0	0	
	AL	101	1206	757	202	240	7	0	0	
0	10	161	Total	С	Ν	0	S	0	0	
	AU	101	1206	757	202	240	7	0	0	
0	10	161	Total	С	Ν	0	S	0	0	
	лų	101	1206	757	202	240	7	0	0	
2	٨C	٨S	161	Total	С	Ν	0	\mathbf{S}	0	0
2	лы	101	1206	757	202	240	7	0	0	
2	ΔΤΙ	161	Total	С	Ν	Ο	\mathbf{S}	0	0	
2	ло	101	1206	757	202	240	7	0	0	
2	Δ₩	161	Total	С	Ν	Ο	\mathbf{S}	0	0	
	11.00	101	1206	757	202	240	7	0	0	
2	ΔV	161	Total	С	Ν	Ο	\mathbf{S}	0	0	
		101	1206	757	202	240	7	0	0	
2	BI	161	Total	С	Ν	Ο	\mathbf{S}	0	0	
		101	1206	757	202	240	7	0	0	
2	BK	161	Total	С	Ν	Ο	\mathbf{S}	0	0	
		101	1206	757	202	240	7	Ŭ		
2	BM	161	Total	С	Ν	Ο	\mathbf{S}	0	0	
		101	1206	757	202	240	7	Ŭ		
2	BP	161	Total	С	Ν	0	S	0	0	
		101	1206	757	202	240	7	Ŭ		
2	BS	161	Total	С	Ν	0	S	0	0	
			1206	757	202	240	7			
2	BV	161	Total	С	Ν	0	S	0	0	
		_	1206	757	202	240	7	_	_	
2	BX	161	Total	C	N	0	S	0	0	
			1206	757	202	240	<u>'7</u>			
2	BZ	161	Total	C	N	0	S	0	0	
			1206	757	202	240	7 			
2	CC	161	Total	C	N	0	S	0	0	
			1206	757	202	240	-7 			
2	CE	161	Total	C	N	0	S	0	0	
			1206	$\frac{101}{C}$	202	240	(
2	CG	161	10tal	U 757	IN 202	0	ם 7	0	0	
			1200 Tutul	$\frac{101}{C}$	202 N	240	(C			
2	CQ	161	10tal	U 757	1N 202	0	ם 7	0	0	
	-		1200 Tet 1	101	202 NT	240	<u>(</u>			
2	CS	161	10tal	757	1N 202	0	ם 7	0	0	
			1200 Tetal	<u>101</u>	202 N	240				
2	CU	161	10tal	U 757	IN 202	0	ם ק	0	0	
			1206	101	202	240	1			

Mol	Chain	Residues	_	At	oms			AltConf	Trace
2	CX	161	Total	С	Ν	Ο	\mathbf{S}	0	0
2	UA	101	1206	757	202	240	7	0	0
2	CZ	161	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		101	1206	757	202	240	7	0	0
2	DB	161	Total	С	Ν	Ο	\mathbf{S}	0	0
		101	1206	757	202	240	7	0	0
2	рн	161	Total	С	Ν	Ο	\mathbf{S}	0	0
		101	1206	757	202	240	7	0	0
2	DI	161	Total	С	Ν	Ο	\mathbf{S}	0	0
	D	101	1206	757	202	240	7	0	0
2	DL	161	Total	С	Ν	Ο	\mathbf{S}	0	0
		101	1206	757	202	240	7	Ŭ	
2	DO	161	Total	С	Ν	Ο	\mathbf{S}	0	0
		101	1206	757	202	240	7	Ŭ	
2	DO	161	Total	С	Ν	Ο	\mathbf{S}	0	0
	Ъų	101	1206	757	202	240	7	0	0
2	DS	161	Total	С	Ν	Ο	\mathbf{S}	0	0
		101	1206	757	202	240	7		

• Molecule 3 is a protein called Allophycocyanin subunit alpha-B.

Mol	Chain	Residues	Atoms					AltConf	Trace	
3	٨F	160	Total	С	Ν	Ο	S	0	0	
Joint Joint	AĽ	100	1254	797	212	241	4	0	0	
2	BI	160	Total	С	Ν	0	S	0	0	
ა	BL	BL I	100	1254	797	212	241	4	0	0

• Molecule 4 is a protein called Allophycocyanin subunit beta-18.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	AK	169	Total	C 825	N 220	0 250	S 0	0	0
			1522	020	229	239	9		
4	BB	169	Total	С	IN	O	S	0	0
4	DR	BR 109	1322	825	229	259	9	0	0

• Molecule 5 is a protein called Phycobilisome 7.8 kDa linker polypeptide, allophycocyanin-as sociated, core.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	ΒΛ	67	Total	С	Ν	Ο	\mathbf{S}	0	0
0	DA	07	546	343	104	94	5	0	0

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
5	BB	67	Total	С	Ν	Ο	S	0	0
5	DD	07	546	343	104	94	5	0	0
5	CI	67	Total	С	Ν	Ο	S	0	0
5	UI	07	546	343	104	94	5	0	0
5	CI	67	Total	С	Ν	Ο	S	0	0
5	CJ	07	546	343	104	94	5	0	0
5	מת	67	Total	С	Ν	Ο	S	0	0
5		07	546	343	104	94	5	0	0
5	DU	67	Total	С	Ν	Ο	S	0	0
5	DU	07	546	343	104	94	5	0	U

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
BA	36	TRP	SER	conflict	UNP Q01950
BB	36	TRP	SER	conflict	UNP Q01950
CI	36	TRP	SER	conflict	UNP Q01950
CJ	36	TRP	SER	conflict	UNP Q01950
DD	36	TRP	SER	conflict	UNP Q01950
DU	36	TRP	SER	conflict	UNP Q01950

• Molecule 6 is a protein called Phycobiliprotein ApcE.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	BD	850	Total 6761	C 4299	N 1183	O 1262	S 17	0	0
6	CL	850	Total 6761	C 4299	N 1183	O 1262	S 17	0	0

• Molecule 7 is a protein called Phycobilisome rod-core linker polypeptide CpcG.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
7	BE	57	Total	С	Ν	Ο	S	0	0
1	DI	51	451	282	87	80	2	0	0
7	CN	57	Total	С	Ν	Ο	S	0	0
1	UN	57	451	282	87	80	2	0	0
7	DE	54	Total	С	Ν	Ο	S	0	0
1	DE	- 54	426	266	83	75	2	0	0
7	DE	54	Total	С	Ν	Ο	S	0	0
1	Dr	- 54	426	266	83	75	2	0	0
7	DV	5.4	Total	С	Ν	Ο	S	0	0
'			426	266	83	75	2		U

Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf	Trace
7	DW	54	Total 426	C 266	N 83	O 75	${ m S} { m 2}$	0	0

• Molecule 8 is a protein called Sll1873 protein.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
8	BG	36	Total 277	C 172	N 55	O 49	${f S}$ 1	0	0
8	СО	36	Total 277	C 172	N 55	0 49	S 1	0	0

• Molecule 9 is PHYCOCYANOBILIN (three-letter code: CYC) (formula: $C_{33}H_{40}N_4O_6$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
0	ΛΛ	1	Total C N O	0
9	лл	1	43 33 4 6	0
Q	ΔB	1	Total C N O	0
3	AD	T	43 33 4 6	0
Q	AC	1	Total C N O	0
3	ΛU	T	43 33 4 6	0
0		1	Total C N O	0
5	AD .	1	43 33 4 6	0
Q	ΔE	1	Total C N O	0
5		1	43 33 4 6	0
9	АН	1	Total C N O	0
5	1111	1	43 33 4 6	0

Continued from previous page...

Mol	Chain	Residues	A	Aton	ns		AltConf
0	АТ	1	Total	С	Ν	Ο	0
9	AI	1	43	33	4	6	0
0	ΛΤ	1	Total	С	Ν	Ο	0
9	AJ	1	43	33	4	6	0
Q	ΔK	1	Total	С	Ν	Ο	0
3	лп	1	43	33	4	6	0
9	AT.	1	Total	\mathbf{C}	Ν	Ο	0
5		Ĩ	43	33	4	6	0
9	AN	1	Total	С	Ν	Ο	0
5	1111	Ĩ	43	33	4	6	0
9		1	Total	С	Ν	Ο	0
5	110	1	43	33	4	6	0
9	ΔP	1	Total	С	Ν	Ο	0
3	Π	T	43	33	4	6	0
0	10	1	Total	С	Ν	Ο	0
9	лQ	1	43	33	4	6	0
0	٨D	1	Total	С	Ν	Ο	0
9	An	1	43	33	4	6	0
0	ΔΤΤ	1	Total	С	Ν	0	0
9	AU	1	43	33	4	6	0
0	A V /	1	Total	С	Ν	Ο	0
9	AV	1	43	33	4	6	0
0	4117	1	Total	С	Ν	Ο	0
9	Aw	1	43	33	4	6	0
0	٨v	1	Total	С	Ν	0	0
9	АЛ	1	43	33	4	6	0
0	۸V	1	Total	С	Ν	Ο	0
9	AI	1	43	33	4	6	0
0	٨7	1	Total	С	Ν	Ο	0
3	ΛL	1	43	33	4	6	0
0	BΛ	1	Total	С	Ν	Ο	0
3	DA	1	43	33	4	6	0
0	ВD	1	Total	С	Ν	0	0
9	DD	1	43	33	4	6	0
0	ВD	1	Total	С	Ν	0	0
9	DD	1	43	33	4	6	0
0	ВП	1	Total	С	Ν	0	0
9		L	43	33	4	6	U
0	DI	1	Total	С	Ν	0	0
9	DI	1	43	33	4	6	U
0	рī	1	Total	С	Ν	0	0
9	DJ	1	43	33	4	6	U

Continued from previous page...

Mol	Chain	Residues	Atoms				AltConf
0	DV	1	Total	С	Ν	0	0
9	BK	1	43	33	4	6	0
0	זת	1	Total	С	Ν	Ο	0
9	БГ	1	43	33	4	6	0
0	DO	1	Total	С	Ν	Ο	0
9	вО	1	43	33	4	6	0
0	חח	1	Total	С	Ν	Ο	0
9	DF	L	43	33	4	6	0
0	DO	1	Total	С	Ν	Ο	0
9	ЪQ	L	43	33	4	6	0
0	DD	1	Total	С	Ν	Ο	0
9	DR	L	43	33	4	6	0
0	DC	1	Total	С	Ν	Ο	0
9	DS	L	43	33	4	6	0
0	DII	1	Total	С	Ν	Ο	0
9	DU	L	43	33	4	6	0
0	$\mathbf{P}V$	1	Total	С	Ν	0	0
9	DV	L	43	33	4	6	0
0	DW	1	Total	С	Ν	Ο	0
9	DW	1	43	33	4	6	0
0	BX	1	Total	С	Ν	0	0
9	DA	T	43	33	4	6	0
0	BV	1	Total	С	Ν	Ο	0
9	DI	T	43	33	4	6	0
Q	CB	1	Total	С	Ν	Ο	0
3	СD	T	43	33	4	6	0
Q	CC	1	Total	С	Ν	0	0
5	00	I	43	33	4	6	0
Q	CD	1	Total	С	Ν	Ο	0
3	UD	T	43	33	4	6	0
Q	CE	1	Total	С	Ν	Ο	0
5	ΟĽ	I	43	33	4	6	0
Q	CF	1	Total	С	Ν	Ο	0
		T	43	33	4	6	0
Q	CG	1	Total	С	Ν	Ο	0
		1	43	33	4	6	0
Q	CI	1	Total	С	Ν	Ο	0
		1	43	33	4	6	0
Q	CL	1	Total	\mathbf{C}	Ν	Ο	0
5		1	43	33	4	6	0
Q	CL	1	Total	\mathbf{C}	Ν	Ο	0
5		L T	43	33	4	6	

Continued from previous page...

Mol	Chain	Residues	Atoms				AltConf
0	CD	1	Total	С	Ν	0	0
9	CP	1	43	33	4	6	0
0	CO	1	Total	С	Ν	0	0
9	CQ	1	43	33	4	6	0
0	CD	1	Total	С	Ν	0	0
9	UN	L	43	33	4	6	0
0	CS	1	Total	С	Ν	0	0
3	00	T	43	33	4	6	0
Q	СТ	1	Total	С	Ν	Ο	0
5		I	43	33	4	6	0
Q	CU	1	Total	С	Ν	Ο	0
5	00	I	43	33	4	6	0
Q	CW	1	Total	С	Ν	Ο	0
5	0.11	I	43	33	4	6	0
Q	CX	1	Total	С	Ν	Ο	0
		T	43	33	4	6	0
Q	CY	1	Total	С	Ν	Ο	0
5		T	43	33	4	6	0
Q	CZ	1	Total	С	Ν	Ο	0
5	02	I	43	33	4	6	0
Q	DA	1	Total	С	Ν	Ο	0
	DI	T	43	33	4	6	0
Q	DB	1	Total	С	Ν	Ο	0
		1	43	33	4	6	0
Q	DG	1	Total	С	Ν	Ο	0
	DG	T	43	33	4	6	0
9	DH	1	Total	С	Ν	Ο	0
		1	43	33	4	6	0
9	DI	1	Total	С	Ν	Ο	0
		-	43	33	4	6	Ŭ
9	D.I	1	Total	С	Ν	Ο	0
		T	43	33	4	6	Ŭ
9	DK	1	Total	С	Ν	Ο	0
		-	43	33	4	6	Ŭ
9	DL	1	Total	С	Ν	Ο	0
		*	43	33	4	6	
9	DN	1	Total	С	Ν	0	0
		*	43	33	4	6	
9	DO	1	Total	С	Ν	Ο	0
		*	43	33	4	6	
9	DP	1	Total	С	Ν	Ο	0
			43	33	4	6	

Continued from previous page...

Mol	Chain	Residues	Atoms			AltConf	
0	DO	1	Total	С	Ν	Ο	0
9	DQ	1	43	33	4	6	0
0	סח	1	Total	С	Ν	Ο	0
9	DR	1	43	33	4	6	0
0	DC	1	Total	С	Ν	Ο	0
9	00		43	33	4	6	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Allophycocyanin alpha chain

8

• Molecule 1: Allophycocyanin alpha chain Chain BJ: 84% 14% MET S2 I3 75 T5 • Molecule 1: Allophycocyanin alpha chain Chain BO: 76% 22% • Molecule 1: Allophycocyanin alpha chain Chain BQ: 85% 14% MET S • Molecule 1: Allophycocyanin alpha chain Chain BU: 87% 12% • Molecule 1: Allophycocyanin alpha chain Chain BW: 91% 9% MET • Molecule 1: Allophycocyanin alpha chain Chain BY: 85% 14% • Molecule 1: Allophycocyanin alpha chain Chain CB: 80% 20%

MET 13 13 14 15 15 12 12 12 12	P20 P20 P20 P20 P20 P20 P20 P20 P20 P20	A146 S150	F153 K159	M160
3161				
• Molecule 1:	Allophycocyanin alpha chain			
Chain CD:	84%	14%	••	
MET 82 81 812 813 815 816 816 819	V30 V30 V30 R62 R62 R63 R63 R63 R63 C31 L91 C31 C31 C31 C31 C31 C31 C31 C31 C32 C32 C32 C32 C32 C32 C32 C32 C32 C32	21012		
• Molecule 1:	Allophycocyanin alpha chain			
Chain CF:	88%	11%	•••	
MET 82 816 717 123 L23 R36 R36	669 1884 1966 1968 1968 1968 197 197 197 197 197 197 197 197 197 197			
• Molecule 1:	Allophycocyanin alpha chain			
Chain CP:	83% 1	5%	•••	
MET 82 E14 A15 R16 P20 G21 E22	L123 L124 R25 R25 R26 F29 R27 R27 R28 R29 R30 R95 R90 R95 R90 R95 R90 R95 R90 R95 R90 R95 R90 R95 R95 R95 R95 R95 R95 R95 R95 R95 R95			
• Molecule 1:	Allophycocyanin alpha chain			
Chain CR:	78% 20%	5	•••	
MET 82 81 819 819 820 621 621 622 122	D34 D34 N25 N25 N25 N25 N25 N25 N25 N25 N26 N26 N26 N26 N27 N25 N26 N26 N117 N111 N111 N111 N111 N111 N111 N111 N111 N111	0128 0128	E135	S143
0144 S161				
• Molecule 1:	Allophycocyanin alpha chain			
Chain CT:	88%	11%	·	
MET 82 813 813 815 815 815 815 815 815 815	K27 K27 K28 K29 K30 G60 G60 G10 G100 C100 C100 C100 C100 C100 C100			
• Molecule 1:	Allophycocyanin alpha chain			
Chain CW:	85%	14%		

 \bullet Molecule 1: Allophycocyanin alpha chain

• Molecule 1: Allophycocyanin alpha chain

Chain DP:	85%	14% •
MET S2 D12 T16 R16 V51 K52	R62 P63 P64 P63 P64 P63 P63 P64 P64 P64 P64 P64 P64 P64 P64 P64 P64	
• Molecule 1:	Allophycocyanin alpha chain	
Chain DR:	82%	17% •
MET 82 K6 D12 R16 L23	E41 E41 E41 E55 E45 E45 E45 M77 M77 M77 M77 M77 M77 M77 E83 E83 E83 E14 E114 E114 E114 E114 E114 E114 E114	L140 S150 F153 S161
• Molecule 2:	Allophycocyanin beta chain	
Chain AB:	80%	19% •
M1 15 19 19 12 12 12 127 127	V38 150 V52 V52 V55 V55 V55 V55 V55 V55 V73 V73 V73 V73 V73 V73 V73 V73 V73 V73	L153 D154 1155 L155 L160 S161
• Molecule 2:	Allophycocyanin beta chain	
Chain AD:	84%	16%
M1 Q2 D3 F6 K28 V38 T44	A48 A55 A55 B59 B59 B59 C174 C174 C174 C174 C174 C174 C174 C174	S161
• Molecule 2:	Allophycocyanin beta chain	
Chain AF:	77%	22% •
M1 D3 F1 K17 K17 K26 K26	R31 F31 F33 F33 F33 F33 F33 F33 F33 F33 F	L109 N110 K113 N117 V127 1130 1130
V136 D144 E148 L153 1156	1919 1919	
• Molecule 2:	Allophycocyanin beta chain	
Chain AI:	89%	11%
M1 415 616 K17 L27 L27 V56 V56	D64 P64 Y87 Y87 Y105 L109 T126 L109 C155 C155 C155 C155 C155 C155 C155 C15	
• Molecule 2:	Allophycocyanin beta chain	
Chain AL:	84%	16%
M1 02 03 15 15 616 615 616 717	V38 V56 V56 V56 V61 V61 V65 V65 V65 V65 V65 V65 V65 V65 V65 V65	
	PROTEIN DATA BANK	

• Molecule 2: Allophycocyanin beta chain Chain AO: 87% 13% • Molecule 2: Allophycocyanin beta chain Chain AQ: 91% 9% • Molecule 2: Allophycocyanin beta chain Chain AS: 86% 14% • Molecule 2: Allophycocyanin beta chain Chain AU: 87% 13% • Molecule 2: Allophycocyanin beta chain Chain AW: 80% 20% • Molecule 2: Allophycocyanin beta chain Chain AY: 83% 17% M72 Y73 T74 G70 Y6: S6: R7 R7 2 <mark>2</mark> • Molecule 2: Allophycocyanin beta chain Chain BI: 86% 14%

• Molecule 2: Allophycocyanin beta chain

Chain BZ:	87%	13%
M1 G34 V65 V65	609 872 872 872 876 876 876 876 876 816 816 1126 8161 1126 8161 1156 8161	
• Molecule	2: Allophycocyanin beta chain	
Chain CC:	85%	15%
M1 Q2 D3 G16 R37	A40 N47 N47 N47 N47 N47 N46 N42 N429 N429 N429 N429 N429 N429 N429	
• Molecule	2: Allophycocyanin beta chain	
Chain CE:	81%	19%
M1 Q2 D3 K2 K2 B	No 14 14 14 14 14 14 14 14 14 14 14 14 14	C157 S161
• Molecule	2: Allophycocyanin beta chain	
Chain CG:	86%	14%
M1 A12 Q15 G16 K17 Y18	L13 V38 V36 L60 M2 M2 M2 M75 T74 T75 T77 R77 R107 V121 P122 R83 R83 R83 R83 R83 R83 R83 R83 R107 V121 P122 R135 C81 L109 C129 C120 C120 C120 C120 C120 C120 C120 C120	
• Molecule	2: Allophycocyanin beta chain	
Chain CQ:	84%	16%
M1 119 151	V664 V665 R67 R67 R67 R67 R67 r74 r74 r74 r74 r14 r103 r100 r100 r100 r100 r100 r100 r100	
• Molecule	2: Allophycocyanin beta chain	
Chain CS:	89%	11%
M1 G34 A48 A48	V85 150 166 166 166 166 112 112 112 112 112 112	
• Molecule	2: Allophycocyanin beta chain	
Chain CU:	85%	15%
M1 E35 L36 R39 V65	670 N71 773 773 773 774 176 176 176 185 103 1103 1103 1112 1130 1112 1130 1112 1130 11130 1130	

• Molecule 2: Allophycocyanin beta chain

Chain CX:	79%	20% •
M1 A12 Q15 G16 K17 K28	151 166 166 166 174 174 173 174 173 174 174 194 1104 1104 1104 1104 1104 1104 1106 1106	V136 T137 D144 D144 L153 D154 V155 T156 C157 L160
S161		
• Molecule 2:	Allophycocyanin beta chain	
Chain CZ:	84%	16% •
M1 Q2 G16 G16 K17 L27 G34 G34	V38 V38 V38 V38 V38 V73 V73 T75 T74 T16 D100 D105 D100 D105 D105 D105 D105 D105	<mark>8.161</mark>
• Molecule 2:	Allophycocyanin beta chain	
Chain DB:	91%	9%
M1 V38 N47 L60 D64	R67 174 C81 189 113 1138 1138 1138 1138 1138 1138	
• Molecule 2:	Allophycocyanin beta chain	
Chain DH:	86%	14%
M1 Q2 D3 A7 G34 M47 N47	151 164 164 174 174 174 174 189 189 197 197 1103 1104 1104 1104 1104 1105 1115 1156 1155 1156 1156 1156	
• Molecule 2:	Allophycocyanin beta chain	
Chain DJ:	86%	14%
M1 Q15 V38 V38 I 44 A8	List List List V65 M72 M73 T74 M72 T74 M72 F106 L119 L119 L119 L119 L119 A129 A131 A132 A131 A133 A133 A133 A133 A133	
• Molecule 2:	Allophycocyanin beta chain	
Chain DL:	89%	11%
M1 Q2 M1 0 E3 5 V3 8 V3 8 E5 4	D64 D64 V65 R67 R67 T74 T74 T103 T103 T103 D144 D144 D144 D148 D146 D146 D146	
• Molecule 2:	Allophycocyanin beta chain	
Chain DO:	80%	20% •
M1 127 833 833 833 833 833 833 833 833 833 83	V56 A57 L60 L61 V7 853 863 863 863 863 863 863 110 110 110 110 110 110 110 110 110 11	1121 122 125 1126 1126 1128 1130 1130 114 1130

• Molecule 2: Allophycocyanin beta chain

• Molecule 5: Phycobilisome 7.8 kDa linker polypeptide, allophycocyanin-associated, core

• Molecule 5: Phycobilisome 7.8 kDa linker polypeptide, allophycocyanin-associated, core

• Molecule 5: Phycobilisome 7.8 kDa linker polypeptide, allophycocyanin-associated, core

• Molecule 5: Phycobilisome 7.8 kDa linker polypeptide, allophycocyanin-associated, core

• Molecule 5: Phycobilisome 7.8 kDa linker polypeptide, allophycocyanin-associated, core

• Molecule 5: Phycobilisome 7.8 kDa linker polypeptide, allophycocyanin-associated, core

 \bullet Molecule 6: Phycobili
protein ApcE

 Chain BF:
 18%
 77%

 18%
 77%

 18%
 77%

 18%
 77%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

 18%
 18%

• Molecule 7: Phycobilisome rod-core linker polypeptide CpcG

Chain DV: 18%

MET ALA ALA LEU PRO LEU ASN ALA PRO PRO SLN GLN	ASN VAL VAL GLU GLU GLU GLU GLU CLU CLU CLU CLU VAL VAL VAL THR THR THR THR THR THR THR THR THR THR	SER SER ASP ASP ASP ASP ASS ASS ASS ASS ASS ASS
ASP ARG GLU CTU CTU LEU CLU CLU CLU ARG ASN CLY CLY	GLN TILE TILE VAL ARG ARG ARG ARG CLV VAL LEU ULEU CLEU CLEU CLEU CLEU CLEU CLEU	ASN TYR ASN ASN ASN ASN VAL CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS
GLU LYS LYS TLE TLE TLE SER TLE VAL VAL ALA ALA CLY GLY	TYR GLN GLN LEU TLE ASP ASP LEU ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	TYR TYR ARG ARG ARG ARG ARG CLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
TYR ASP ALA ALA ALA ARG ARG CLN LLU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	11.E VAL 12.E 12.04 12.	
• Molecule 7: Phy	ycobilisome rod-core linker polype	eptide CpcG
Chain DW: 1	8% •	78%
MET ALA ALA LEU PRO LEU IEU ASN ALA PRO PRO CLN GLN	ASN AAG VAL AAG CLU VAL CLY CLY CLU CLU CLU CLU CLU CLU CLU VAL CLY VAL CLY VAL CLY VAL CLY VAL CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	SER SER SER SER MET MSP MSP MSP MSP MSP MLA MLA MLA MLA MLA MLA MLA MLA MLA MLA
ASP ARG GLU CYS CYS CYS CYS GLU GLU CSER ARG ARG ARG ARG	GLN TLE TLE VAL ARG ARG ARC ARC ARC CLFU CLEU CLEU CLEU CLEU ARG ARG ARG ARG ARG CLY CLU CLU CLU CLU	ASN SER ASN ASN ASN ASN VAL ARG GLU CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS
GLU LYS LYS TRP ALA ALA TRP SER TLE VAL VAL THR LYS GLY	TYR GLN GLN GLN GLN LLEU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	TYR GLN ARG ARG ARG ARG ASN ASN GLU GLU CLEU CLU CLU CLEU ASN ARG GLU ASN ARG ARG ASN ARG ASN ARG ASN ARG ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN
TYR ASP ALA ALA HIS ARG ARG ARG GLN CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	11.12 11.12 11.11 12.11 12.11 12.12 12.15 12.23 822.4 12.24	
• Molecule 8: Sll1	1873 protein	
Chain BG:	26% •	70%
MET LEU LYS LYS LYS CLY GLY ALA LYS CLY CLY CYS TYR	VAL VAL ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	PRIA VALA VALA CLU CLV CLYS PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO
ALA ALA PRO PRO VAL VAL GLU GLU PRO ALA SER SEA ALA VAL	ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA	
• Molecule 8: Sll1	1873 protein	
Chain CO:	22% 7%	70%
MET LEU LYS LYS LYS LEU PHE CYS LYS CLV GLU PHE	VAL GEN GEN GEN GEN ASP PRO GEN ALA ALA ALA ALA ALA ALA ALA VAL VAL VAL	PALA PALA VALA CLU CLV CLV PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO
ALA ALA ALA ALA ALA VAL CLU THR PRO SER ALA ALA ALA VAL	ALA ALA ALA ALA ALA ALA AVAL AVAL AVAL	R115 VAL LYS ARG

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	202719	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	600	Depositor
Maximum defocus (nm)	1800	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	2.268	Depositor
Minimum map value	-0.884	Depositor
Average map value	0.045	Depositor
Map value standard deviation	0.159	Depositor
Recommended contour level	0.215	Depositor
Map size (Å)	223.65, 324.44998, 435.74997	wwPDB
Map dimensions	213, 309, 415	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	$1.05, 1.05, \overline{1.05}$	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CYC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles		
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	AA	0.28	0/1225	0.59	0/1652	
1	AC	0.32	0/1225	0.69	2/1652~(0.1%)	
1	AH	0.29	0/1225	0.57	0/1652	
1	AJ	0.28	0/1225	0.52	0/1652	
1	AN	0.31	0/1225	0.63	0/1652	
1	AP	0.28	0/1225	0.53	0/1652	
1	AR	0.28	0/1225	0.57	1/1652~(0.1%)	
1	AV	0.29	0/1225	0.58	0/1652	
1	AX	0.28	0/1225	0.60	1/1652~(0.1%)	
1	AZ	0.27	0/1225	0.57	0/1652	
1	BH	0.28	0/1225	0.62	1/1652~(0.1%)	
1	BJ	0.30	0/1225	0.64	0/1652	
1	BO	0.29	0/1225	0.60	0/1652	
1	BQ	0.28	0/1225	0.53	0/1652	
1	BU	0.28	0/1225	0.57	1/1652~(0.1%)	
1	BW	0.29	0/1225	0.56	0/1652	
1	BY	0.29	0/1225	0.55	0/1652	
1	CB	0.28	0/1225	0.58	0/1652	
1	CD	0.28	0/1225	0.59	1/1652~(0.1%)	
1	CF	0.31	0/1225	0.60	0/1652	
1	CP	0.31	0/1225	0.62	1/1652~(0.1%)	
1	CR	0.30	0/1225	0.65	2/1652~(0.1%)	
1	CT	0.29	0/1225	0.55	0/1652	
1	CW	0.31	0/1225	0.65	1/1652~(0.1%)	
1	CY	0.29	0/1225	0.57	0/1652	
1	DA	0.30	0/1225	0.60	1/1652~(0.1%)	
1	DG	0.30	0/1225	0.65	1/1652~(0.1%)	
1	DI	0.28	0/1225	0.58	0/1652	
1	DK	0.29	0/1225	0.59	1/1652~(0.1%)	
1	DN	0.33	$0/1\overline{225}$	0.66	1/1652~(0.1%)	
1	DP	0.29	0/1225	0.61	$0/1\overline{652}$	
1	DR	0.29	0/1225	0.55	0/1652	

Mal	Chain	Bond lengths		Bond angles		
NIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
2	AB	0.27	0/1220	0.55	0/1650	
2	AD	0.29	0/1220	0.57	0/1650	
2	AF	0.28	0/1220	0.54	0/1650	
2	AI	0.29	0/1220	0.51	0/1650	
2	AL	0.30	0/1220	0.54	0/1650	
2	AO	0.28	0/1220	0.51	0/1650	
2	AQ	0.28	0/1220	0.53	0/1650	
2	AS	0.27	0/1220	0.52	0/1650	
2	AU	0.29	0/1220	0.61	0/1650	
2	AW	0.25	0/1220	0.51	0/1650	
2	AY	0.27	0/1220	0.54	0/1650	
2	BI	0.28	0/1220	0.57	0/1650	
2	BK	0.30	0/1220	0.56	0/1650	
2	BM	0.27	0/1220	0.61	1/1650~(0.1%)	
2	BP	0.28	0/1220	0.53	0/1650	
2	BS	0.28	0/1220	0.58	1/1650~(0.1%)	
2	BV	0.28	0/1220	0.51	0/1650	
2	BX	0.27	0/1220	0.50	0/1650	
2	BZ	0.27	0/1220	0.51	0/1650	
2	CC	0.30	0/1220	0.60	0/1650	
2	CE	0.28	0/1220	0.55	0/1650	
2	CG	0.28	0/1220	0.56	1/1650~(0.1%)	
2	CQ	0.28	0/1220	0.56	0/1650	
2	CS	0.27	0/1220	0.51	0/1650	
2	CU	0.27	0/1220	0.53	0/1650	
2	CX	0.28	0/1220	0.60	0/1650	
2	CZ	0.30	0/1220	0.60	1/1650~(0.1%)	
2	DB	0.28	0/1220	0.58	0/1650	
2	DH	0.27	0/1220	0.57	0/1650	
2	DJ	0.28	0/1220	0.52	0/1650	
2	DL	0.27	0/1220	0.52	0/1650	
2	DO	0.28	0/1220	0.62	1/1650~(0.1%)	
2	DQ	0.27	0/1220	0.55	0/1650	
2	DS	0.27	0/1220	0.56	0/1650	
3	AE	0.30	0/1277	0.59	0/1730	
3	BL	0.30	0/1277	0.59	0/1730	
4	AK	0.29	0/1341	0.54	0/1813	
4	BR	0.27	0/1341	0.55	0/1813	
5	BA	0.28	0/555	0.63	0/743	
5	BB	0.26	0/555	0.62	0/743	
5	CI	0.27	0/555	0.65	0/743	
5	CJ	0.28	0/555	0.62	0/743	
5	DD	0.27	0/555	0.60	0/743	

Mol Chain		Bond lengths		Bond angles		
	RMSZ	# Z > 5	RMSZ	# Z > 5		
5	DU	0.28	0/555	0.66	1/743~(0.1%)	
6	BD	0.29	0/6907	0.56	1/9337~(0.0%)	
6	CL	0.29	0/6907	0.58	1/9337~(0.0%)	
7	BF	0.25	0/459	0.56	0/620	
7	CN	0.27	0/459	0.55	0/620	
7	DE	0.28	0/434	0.63	0/587	
7	DF	0.28	0/434	0.60	0/587	
7	DV	0.29	0/434	0.61	0/587	
7	DW	0.30	0/434	0.59	0/587	
8	BG	0.30	0/283	0.60	0/381	
8	CO	0.27	0/283	0.60	0/381	
All	All	0.29	0/106280	0.57	23/143532~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	BJ	0	1

There are no bond length outliers.

All (23) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	BM	9	ILE	CG1-CB-CG2	-9.15 91.27		111.40
1	CD	154	ASP	CB-CG-OD1	7.36	124.92	118.30
1	BH	58	LEU	CA-CB-CG	6.82	130.98	115.30
2	DO	27	LEU	CA-CB-CG	6.51	130.28	115.30
1	DK	140	LEU	CA-CB-CG	6.48	130.20	115.30
1	BU	140	LEU	CA-CB-CG	6.33	129.85	115.30
1	CP	24	ASP	CB-CG-OD1	6.30	123.97	118.30
1	AR	154	ASP	CB-CG-OD1	5.91	123.61	118.30
1	CR	114	GLU	CA-CB-CG	5.90	126.37	113.40
6	CL	532	VAL	CA-CB-CG1	5.78	119.57	110.90
1	DN	23	LEU	CA-CB-CG	5.76	128.54	115.30
1	DG	154	ASP	CB-CG-OD1	5.68	123.41	118.30
5	DU	22	LEU	CA-CB-CG	5.62	128.22	115.30
1	CR	120	GLY	C-N-CA	5.54	135.56	121.70
1	AX	60	GLN	CA-CB-CG	5.54	125.58	113.40
2	BS	54	GLU	CA-CB-CG	5.14	124.70	113.40
1	CW	154	ASP	CB-CG-OD1	5.14	122.92	118.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	AC	132	GLU	CA-CB-CG	5.13	124.69	113.40
1	DA	82	LEU	CA-CB-CG	3-CG 5.10 127.03		115.30
1	AC	132	GLU	N-CA-CB	5.09	119.77	110.60
2	CZ	154	ASP	CB-CG-OD1	5.08	122.88	118.30
6	BD	751	LEU	CB-CG-CD1	5.03	119.55	111.00
2	CG	135	GLU	CA-CB-CG	5.01	124.43	113.40

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group	
1	BJ	108	GLY	Peptide	

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	AA	1210	0	1210	19	0
1	AC	1210	0	1210	22	0
1	AH	1210	0	1210	19	0
1	AJ	1210	0	1210	13	0
1	AN	1210	0	1210	28	0
1	AP	1210	0	1210	10	0
1	AR	1210	0	1211	10	0
1	AV	1210	0	1210	23	0
1	AX	1210	0	1210	19	0
1	AZ	1210	0	1210	14	0
1	BH	1210	0	1210	17	0
1	BJ	1210	0	1210	17	0
1	BO	1210	0	1210	26	0
1	BQ	1210	0	1210	15	0
1	BU	1210	0	1210	17	0
1	BW	1210	0	1210	9	0
1	BY	1210	0	1210	17	0
1	CB	1210	0	1210	23	0
1	CD	1210	0	1210	21	0
1	CF	1210	0	1210	15	0

Conti	Continuea from previous page					
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	CP	1210	0	1210	20	0
1	CR	1210	0	1210	22	0
1	CT	1210	0	1210	13	0
1	CW	1210	0	1210	17	0
1	CY	1210	0	1210	17	0
1	DA	1210	0	1210	19	0
1	DG	1210	0	1210	30	0
1	DI	1210	0	1210	17	0
1	DK	1210	0	1210	20	0
1	DN	1210	0	1210	23	0
1	DP	1210	0	1210	16	0
1	DR	1210	0	1210	18	0
2	AB	1206	0	1218	21	0
2	AD	1206	0	1218	20	0
2	AF	1206	0	1218	25	0
2	AI	1206	0	1218	16	0
2	AL	1206	0	1218	20	0
2	AO	1206	0	1218	17	0
2	AQ	1206	0	1218	12	0
2	AS	1206	0	1218	16	0
2	AU	1206	0	1218	14	0
2	AW	1206	0	1218	24	0
2	AY	1206	0	1218	25	0
2	BI	1206	0	1218	17	0
2	BK	1206	0	1218	9	0
2	BM	1206	0	1218	20	0
2	BP	1206	0	1218	14	0
2	BS	1206	0	1218	19	0
2	BV	1206	0	1218	18	0
2	BX	1206	0	1218	10	0
2	BZ	1206	0	1218	18	0
2	CC	1206	0	1218	16	0
2	CE	1206	0	1218	19	0
2	CG	1206	0	1218	17	0
2	CQ	1206	0	1218	20	0
2	CS	1206	0	1218	13	0
2	CU	1206	0	1218	17	0
2	CX	1206	0	1218	24	0
2	CZ	1206	0	1218	16	0
2	DB	1206	0	1218	12	0
2	DH	1206	0	1218	19	0
2	DJ	1206	0	1218	16	0

 α ntia d fa

Conti Mol	nuea fron	Non H	page	H(addad)	Clashes	Symm Clashes
		INOII-П			Clashes	Symm-Clasnes
2	DL	1200	0	1218	12	0
	DO	1200	0	1218	24	0
		1200	0	1218	20	0
		1200	0	1218	<u>21</u>	0
3	AE DI	1204	0	1250	18	0
3	BL	1254	0	1250	18	0
4	AK	1322	0	1311	10	0
4	BR	1322	0	1311	24	0
5	BA	540	0	568	13	0
5	BB	546	0	568	17	0
5	CI	546	0	568	12	0
5	CJ	546	0	568	9	0
5	DD	546	0	568	10	0
5	DU	546	0	568	10	0
6	BD	6761	0	6739	100	0
6	CL	6761	0	6739	98	0
7	BF	451	0	465	8	0
7	CN	451	0	465	5	0
7	DE	426	0	437	10	0
7	DF	426	0	437	5	0
7	DV	426	0	437	9	0
7	DW	426	0	437	7	0
8	BG	277	0	283	3	0
8	CO	277	0	283	8	0
9	AA	43	0	37	2	0
9	AB	43	0	37	2	0
9	AC	43	0	37	3	0
9	AD	43	0	37	3	0
9	AE	43	0	37	2	0
9	AH	43	0	37	0	0
9	AI	43	0	37	2	0
9	AJ	43	0	37	1	0
9	AK	43	0	37	0	0
9	AL	43	0	37	4	0
9	AN	43	0	37	3	0
9	AO	43	0	37	2	0
9	AP	43	0	37	2	0
9	AQ	43	0	37	3	0
9	AR	43	0	38	1	0
9	AU	43	0	37	3	0
9	AV	43	0	37	3	0
9	AW	43	0	37	6	0

MoiChainNon-HH(model)H(added)ClashesSymm-Clashes9AX430 37 409AZ430 37 409BA430 37 409BA430 37 209BD86074609BH430 37 309BJ430 37 109BL430 37 109BB430 37 109BC430 37 209BP430 37 209BR430 37 209BR430 37 209BR430 37 209BW430 37 209BV430 37 209BV430 37 309BY430 37 309BY430 37 409BY430 37 409C430 37 309C430 37 309C430 37 20	Conti	Continuea from previous page					
9 AX 43 0 37 4 0 9 AZ 43 0 37 7 0 9 BA 43 0 37 4 0 9 BD 86 0 74 6 0 9 BH 43 0 37 3 0 9 BH 43 0 37 6 0 9 BL 43 0 37 1 0 9 BL 43 0 37 1 0 9 BC 43 0 37 3 0 9 BQ 43 0 37 3 0 9 BQ 43 0 37 2 0 9 BU 43 0 37 2 0 9 BV 43 0 37 3 0 9	Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
9 AY 43 0 37 7 0 9 BA 43 0 37 4 0 9 BA 43 0 37 2 0 9 BD 86 0 74 6 0 9 BH 43 0 37 3 0 9 BI 43 0 37 2 0 9 BL 43 0 37 1 0 9 BC 43 0 37 1 0 9 BQ 43 0 37 3 0 9 BQ 43 0 37 3 0 9 BV 43 0 37 3 0 9 BV 43 0 37 3 0 9 BV 43 0 37 3 0 9	9	AX	43	0	37	4	0
9 AZ 43 0 37 4 0 9 BD 86 0 74 6 0 9 BI 43 0 37 3 0 9 BI 43 0 37 6 0 9 BJ 43 0 37 1 0 9 BK 43 0 37 1 0 9 BC 43 0 37 1 0 9 BQ 43 0 37 1 0 9 BQ 43 0 37 2 0 9 BR 43 0 37 2 0 9 BV 43 0 37 2 0 9 BV 43 0 37 2 0 9 BV 43 0 37 4 0 9	9	AY	43	0	37	7	0
9 BA 43 0 37 2 0 9 BD 86 0 74 6 0 9 BH 43 0 37 3 0 9 BI 43 0 37 2 0 9 BJ 43 0 37 1 0 9 BC 43 0 37 1 0 9 BO 43 0 37 2 0 9 BQ 43 0 37 2 0 9 BQ 43 0 37 2 0 9 BS 43 0 37 2 0 9 BV 43 0 37 2 0 9 BV 43 0 37 3 0 9 BV 43 0 37 3 0 9	9	AZ	43	0	37	4	0
9 BD 86 0 74 6 0 9 BI 43 0 37 3 0 9 BJ 43 0 37 6 0 9 BJ 43 0 37 1 0 9 BK 43 0 37 1 0 9 BC 43 0 37 2 0 9 BQ 43 0 37 2 0 9 BQ 43 0 37 2 0 9 BQ 43 0 37 2 0 9 BV 43 0 37 3 0 9 BV 43 0 37 3 0 9 BV 43 0 37 3 0 9 CC 43 0 37 3 0 9	9	BA	43	0	37	2	0
9 BH 43 0 37 3 0 9 BJ 43 0 37 6 0 9 BJ 43 0 37 1 0 9 BK 43 0 37 1 0 9 BC 43 0 37 2 0 9 BP 43 0 37 3 0 9 BQ 43 0 37 1 0 9 BR 43 0 37 2 0 9 BR 43 0 37 2 0 9 BV 43 0 37 3 0 9 BV 43 0 37 3 0 9 BX 43 0 37 3 0 9 CC 43 0 37 3 0 9	9	BD	86	0	74	6	0
9 BI 43 0 37 6 0 9 BJ 43 0 37 1 0 9 BL 43 0 37 1 0 9 BL 43 0 37 1 0 9 BQ 43 0 37 3 0 9 BQ 43 0 37 1 0 9 BR 43 0 37 2 0 9 BS 43 0 37 4 0 9 BU 43 0 37 2 0 9 BV 43 0 37 3 0 9 BV 43 0 37 3 0 9 BX 43 0 37 3 0 9 CB 43 0 37 3 0 9	9	BH	43	0	37	3	0
9 BJ 43 0 37 2 0 9 BK 43 0 37 1 0 9 BC 43 0 37 1 0 9 BO 43 0 37 2 0 9 BP 43 0 37 3 0 9 BR 43 0 37 2 0 9 BR 43 0 37 4 0 9 BU 43 0 37 2 0 9 BV 43 0 37 3 0 9 BV 43 0 37 3 0 9 BX 43 0 37 3 0 9 CB 43 0 37 3 0 9 CC 43 0 37 3 0 9	9	BI	43	0	37	6	0
9 BK 43 0 37 1 0 9 BO 43 0 37 1 0 9 BO 43 0 37 2 0 9 BP 43 0 37 3 0 9 BQ 43 0 37 1 0 9 BR 43 0 37 2 0 9 BV 43 0 37 2 0 9 BV 43 0 37 3 0 9 BW 43 0 37 3 0 9 BY 43 0 37 3 0 9 BY 43 0 37 3 0 9 CC 43 0 37 3 0 9 CE 43 0 37 3 0 9	9	BJ	43	0	37	2	0
9 BL 43 0 37 1 0 9 BO 43 0 37 2 0 9 BQ 43 0 37 3 0 9 BQ 43 0 37 1 0 9 BR 43 0 37 2 0 9 BK 43 0 37 2 0 9 BV 43 0 37 2 0 9 BV 43 0 37 2 0 9 BV 43 0 37 3 0 9 BY 43 0 37 3 0 9 CB 43 0 37 3 0 9 CC 43 0 37 3 0 9 CE 43 0 37 2 0 9	9	BK	43	0	37	1	0
9 BO 43 0 37 2 0 9 BP 43 0 37 3 0 9 BQ 43 0 37 1 0 9 BR 43 0 37 2 0 9 BS 43 0 37 2 0 9 BU 43 0 37 2 0 9 BV 43 0 37 3 0 9 BV 43 0 37 3 0 9 BY 43 0 37 3 0 9 BY 43 0 37 3 0 9 CE 43 0 37 3 0 9 CE 43 0 37 3 0 9 CE 43 0 37 2 0 9	9	BL	43	0	37	1	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	BO	43	0	37	2	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	BP	43	0	37	3	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	BQ	43	0	37	1	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	BR	43	0	37	2	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	BS	43	0	37	4	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	BU	43	0	37	2	0
9 BW 43 0 37 2 0 9 BX 43 0 37 4 0 9 BY 43 0 37 3 0 9 CB 43 0 37 2 0 9 CC 43 0 37 4 0 9 CC 43 0 37 3 0 9 CE 43 0 37 3 0 9 CE 43 0 37 3 0 9 CF 43 0 37 2 0 9 CG 43 0 37 2 0 9 CL 86 0 74 6 0 9 CQ 43 0 37 3 0 9 CR 43 0 37 5 0 9	9	BV	43	0	37	3	0
9 BX 43 0 37 4 0 9 BY 43 0 37 3 0 9 CB 43 0 37 2 0 9 CC 43 0 37 4 0 9 CD 43 0 37 3 0 9 CE 43 0 37 3 0 9 CE 43 0 37 3 0 9 CF 43 0 37 2 0 9 CG 43 0 37 2 0 9 CL 86 0 74 6 0 9 CQ 43 0 37 1 0 9 CQ 43 0 37 2 0 9 CX 43 0 37 4 0 9	9	BW	43	0	37	2	0
9 BY 43 0 37 3 0 9 CB 43 0 37 2 0 9 CC 43 0 37 4 0 9 CD 43 0 37 3 0 9 CE 43 0 37 3 0 9 CE 43 0 37 3 0 9 CF 43 0 37 2 0 9 CG 43 0 37 2 0 9 CI 43 0 37 2 0 9 CL 86 0 74 6 0 9 CQ 43 0 37 3 0 9 CR 43 0 37 5 0 9 CK 43 0 37 7 0 9	9	BX	43	0	37	4	0
9 CB 43 0 37 2 0 9 CC 43 0 37 4 0 9 CD 43 0 37 3 0 9 CE 43 0 37 3 0 9 CE 43 0 37 2 0 9 CG 43 0 37 2 0 9 CG 43 0 37 2 0 9 CI 43 0 37 2 0 9 CL 86 0 74 6 0 9 CQ 43 0 37 3 0 9 CR 43 0 37 2 0 9 CR 43 0 37 4 0 9 CU 43 0 37 7 0	9	BY	43	0	37	3	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	CB	43	0	37	2	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	CC	43	0	37	4	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	CD	43	0	37	3	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	CE	43	0	37	3	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	CF	43	0	37	2	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	CG	43	0	37	4	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	CI	43	0	37	2	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	CL	86	0	74	6	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	CP	43	0	37	1	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	CQ	43	0	37	3	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	CR	43	0	37	2	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	CS	43	0	37	5	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	CT	43	0	37	4	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	CU	43	0	37	6	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	CW	43	0	37	2	0
9 CY 43 0 37 1 0 9 CZ 43 0 37 1 0 9 DA 43 0 37 2 0 9 DA 43 0 37 5 0 9 DB 43 0 37 4 0 9 DG 43 0 37 1 0	9	CX	43	0	37	7	0
9 CZ 43 0 37 1 0 9 DA 43 0 37 2 0 9 DB 43 0 37 5 0 9 DB 43 0 37 4 0 9 DG 43 0 37 4 0 9 DH 43 0 37 1 0	9	CY	43	0	37	1	0
9 DA 43 0 37 2 0 9 DB 43 0 37 5 0 9 DG 43 0 37 4 0 9 DG 43 0 37 1 0	9	CZ	43	0	37	1	0
9 DB 43 0 37 5 0 9 DG 43 0 37 4 0 9 DH 43 0 37 1 0	9	DA	43	0	37	2	0
9 DG 43 0 37 4 0 9 DH 43 0 37 1 0	9	DB	43	0	37	5	0
9 DH 43 0 37 1 0	9	DG	43	0	37	4	0
	9	DH	43	0	37	1	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
9	DI	43	0	37	1	0
9	DJ	43	0	37	1	0
9	DK	43	0	37	3	0
9	DL	43	0	37	5	0
9	DN	43	0	37	6	0
9	DO	43	0	37	4	0
9	DP	43	0	37	0	0
9	DQ	43	0	37	4	0
9	DR	43	0	37	2	0
9	DS	43	0	37	5	0
All	All	107930	0	108050	1357	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (1357) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:BB:40:GLN:O	5:BB:44:MET:HB2	1.87	0.75
6:CL:548:ARG:O	6:CL:552:GLY:HA2	1.87	0.72
1:CF:83:ARG:HH22	9:CF:200:CYC:HBA2	1.55	0.71
6:BD:548:ARG:O	6:BD:552:GLY:HA2	1.90	0.70
3:BL:2:SER:N	3:BL:5:SER:HG	1.89	0.70
3:AE:138:LEU:HD13	3:AE:146:ALA:HB1	1.74	0.69
1:AN:2:SER:N	1:AN:5:THR:HG1	1.92	0.67
6:CL:447:TYR:HB2	6:CL:451:ASN:HD22	1.60	0.67
2:BZ:126:THR:HG22	9:CL:901:CYC:H3C	1.77	0.66
1:CP:105:GLU:HA	1:CP:109:LEU:HB2	1.77	0.66
2:DH:119:LEU:HD13	9:DH:200:CYC:HBD1	1.78	0.66
6:BD:666:GLN:O	6:BD:670:ALA:HB3	1.96	0.65
1:AR:105:GLU:HA	1:AR:109:LEU:HB2	1.77	0.65
6:CL:267:TYR:HB3	6:CL:281:VAL:HG22	1.79	0.65
1:DN:126:VAL:HB	9:DN:200:CYC:HMC1	1.78	0.65
2:CG:134:LYS:HZ1	2:CG:154:ASP:HB3	1.61	0.65
2:CE:134:LYS:HZ1	2:CE:154:ASP:HB3	1.62	0.65
1:AR:2:SER:N	1:AR:5:THR:HG1	1.95	0.65
1:CR:114:GLU:HA	1:CR:117:ARG:HB2	1.80	0.64
2:AU:74:THR:HB	2:AU:77:ARG:HG3	1.78	0.64
1:BY:105:GLU:HA	1:BY:109:LEU:HB2	1.79	0.64
4:BR:84:ARG:HD3	6:CL:254:PRO:HD3	1.79	0.64
5:BA:7:THR:HB	5:BA:52:LYS:HB3	1.80	0.63

Atom-1	Atom_2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
6:CL:701:ARG:HH12	2:DQ:69:GLY:HA3	1.63	0.63
6:BD:195:THR:HG22	9:BD:902:CYC:H2C	1.81	0.63
2:CQ:130:ILE:HG23	2:CQ:153:LEU:HD12	1.81	0.62
1:AA:3:ILE:HD11	1:AH:25:ARG:HH11	1.65	0.62
1:BQ:105:GLU:HA	1:BQ:109:LEU:HB2	1.81	0.62
1:AV:30:VAL:HG21	2:AW:34:GLY:HA3	1.82	0.62
1:CB:64:ASP:HB2	1:CT:60:GLN:HE22	1.64	0.62
1:DG:4:VAL:HG12	1:DG:26:ILE:HD12	1.81	0.62
5:CI:7:THR:HG23	5:CI:28:THR:HG22	1.81	0.62
9:DR:200:CYC:HMA1	9:DR:200:CYC:HB	1.65	0.62
1:DG:150:SER:O	1:DG:154:ASP:HB2	1.99	0.62
1:BY:39:ILE:HD13	1:BY:149:ALA:HB2	1.82	0.62
1:AX:117:ARG:HH22	6:BD:557:GLU:HG2	1.65	0.61
1:BU:145:ASP:N	1:BU:145:ASP:OD1	2.32	0.61
9:CC:200:CYC:HMA1	9:CC:200:CYC:HB	1.64	0.61
6:BD:177:VAL:HG21	6:BD:260:ALA:HB2	1.82	0.61
6:BD:244:PRO:HG2	6:BD:248:ILE:HD13	1.83	0.61
2:BK:3:ASP:H	2:BK:6:THR:HB	1.65	0.61
6:BD:253:LEU:HB2	6:BD:405:ALA:HB2	1.80	0.61
2:AS:71:ASN:HD22	2:AS:122:PRO:HD3	1.66	0.61
6:BD:823:ASN:HD22	9:CX:200:CYC:HBA1	1.65	0.61
2:CU:126:THR:HG22	9:CU:200:CYC:H3C	1.83	0.60
6:CL:177:VAL:HG21	6:CL:260:ALA:HB2	1.82	0.60
9:CP:200:CYC:HMA1	9:CP:200:CYC:HB	1.66	0.60
2:BS:90:ARG:NH1	6:CL:32:ASP:OD1	2.35	0.60
6:CL:666:GLN:O	6:CL:670:ALA:HB3	2.01	0.60
3:BL:105:GLU:HA	3:BL:109:LEU:HB2	1.82	0.60
2:AI:126:THR:HG22	9:AI:200:CYC:H3C	1.83	0.60
2:CX:102:SER:O	2:CX:106:GLU:HB2	2.02	0.60
9:CT:200:CYC:HMA1	9:CT:200:CYC:HB	1.67	0.60
2:AU:105:ASP:HA	2:AU:109:LEU:HB2	1.83	0.60
6:BD:806:LYS:HD2	6:BD:872:LEU:HG	1.83	0.60
1:BU:25:ARG:HD2	1:CB:25:ARG:HD3	1.83	0.60
2:BK:105:ASP:HA	2:BK:109:LEU:HB2	1.83	0.59
1:CR:25:ARG:HH22	1:DA:25:ARG:HD2	1.67	0.59
9:CY:200:CYC:HMA1	9:CY:200:CYC:HB	1.66	0.59
2:DS:103:ILE:HG13	2:DS:107:ARG:HD2	1.84	0.59
1:CY:58:LEU:HD22	1:CY:129:SER:HB2	1.83	0.59
1:CD:154:ASP:HA	1:CD:157:ILE:HG12	1.84	0.59
1:BY:23:LEU:HD12	2:BZ:38:VAL:HG13	1.83	0.59
1:CB:12:ASP:OD2	2:CC:107:ARG:NH1	2.36	0.59

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
2:AI:64:ASP:ODI	2:AI:64:ASP:N	2.35	0.59
2:AY:130:1LE:HG23	2:AY:153:LEU:HD12	1.84	0.59
1:BO:20:PRO:HA	1:BO:23:LEU:HB2	1.84	0.59
4:AK:84:ARG:HD3	6:BD:254:PRO:HD3	1.84	0.58
1:DP:62:ARG:NH1	1:DP:64:ASP:OD2	2.35	0.58
2:BS:84:ASP:OD2	9:BS:200:CYC:ND	2.35	0.58
5:BB:5:ARG:HB2	5:BB:56:ALA:HB2	1.83	0.58
1:BU:90:ARG:NH2	2:BZ:73:TYR:OH	2.34	0.58
2:CG:56:VAL:HG12	2:CG:60:LEU:HD12	1.84	0.58
2:DH:47:ASN:OD1	1:DN:131:ARG:NH1	2.36	0.58
1:AV:150:SER:HA	1:AV:153:PHE:HB2	1.85	0.58
6:BD:33:ARG:NH1	6:BD:36:GLU:OE1	2.35	0.58
2:DS:106:GLU:HG3	2:DS:107:ARG:HG3	1.84	0.58
2:AS:126:THR:HG22	9:BD:901:CYC:H3C	1.85	0.58
2:BM:77:ARG:HG2	9:CI:200:CYC:HAD1	1.85	0.58
2:AD:126:THR:HG23	9:AD:200:CYC:HBC3	1.86	0.58
2:AQ:126:THR:HG23	9:AQ:200:CYC:HBC3	1.85	0.58
1:BW:105:GLU:HA	1:BW:109:LEU:HB2	1.84	0.58
6:CL:754:TYR:OH	2:DS:83:ARG:NH1	2.37	0.58
1:DK:27:LYS:NZ	2:DL:35:GLU:OE1	2.34	0.58
1:DN:83:ARG:NH1	9:DN:200:CYC:O2A	2.37	0.58
1:AC:109:LEU:HG	1:AC:159:LYS:HG2	1.86	0.58
1:AH:154:ASP:HA	1:AH:157:ILE:HG12	1.85	0.58
1:CR:30:VAL:HG21	2:CS:34:GLY:HA3	1.85	0.58
1:DG:16:ARG:HG3	1:DN:159:LYS:HE2	1.86	0.58
2:DQ:130:ILE:HG23	2:DQ:153:LEU:HD12	1.86	0.58
5:BA:9:CYS:HA	5:BA:25:THR:O	2.04	0.57
9:BS:200:CYC:HAA1	6:CL:424:PHE:HZ	1.69	0.57
1:CY:105:GLU:OE2	1:CY:159:LYS:NZ	2.36	0.57
1:DN:105:GLU:HA	1:DN:109:LEU:HB2	1.85	0.57
9:AL:200:CYC:HAA1	6:BD:424:PHE:HZ	1.69	0.57
2:AU:103:ILE:O	2:AU:107:ARG:HB3	2.04	0.57
7:DE:213:GLY:O	2:DS:67:ARG:NH1	2.37	0.57
1:DN:130:VAL:HG13	1:DN:157:ILE:HG22	1.84	0.57
2:BV:122:PRO:HB2	2:BV:125:SER:HB2	1.86	0.57
2:CZ:105:ASP:HA	2:CZ:109:LEU:HB2	1.86	0.57
7:DF:224:SER:OG	1:DP:52:LYS:NZ	2.38	0.57
1:DR:57:ARG:HH22	1:DR:135:GLU:HG2	1.69	0.57
6:BD:59:THR:O	6:BD:63:ASN:ND2	2.38	0.57
1:CD:119:LEU:HD12	9:CD:200:CYC:HBD1	1.85	0.57
1:CF:134:LYS:HE2	1:CF:150:SER:HB2	1.86	0.57

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
2:CE:74:THR:HB	2:CE:77:ARG:HD3	1.86	0.57
2:AI:105:ASP:HA	2:AI:109:LEU:HB2	1.87	0.57
1:BY:64:ASP:OD1	1:BY:64:ASP:N	2.38	0.57
1:CF:23:LEU:HD22	2:CG:38:VAL:HG13	1.87	0.57
1:CF:36:ARG:NH1	1:CF:96:VAL:O	2.37	0.57
2:CE:44:ILE:O	2:CE:48:ALA:HB2	2.05	0.57
2:AI:155:TYR:OH	2:AQ:113:LYS:NZ	2.37	0.57
2:AL:106:GLU:HG3	2:AL:107:ARG:HG2	1.87	0.57
2:AD:44:ILE:O	2:AD:48:ALA:HB2	2.04	0.56
6:BD:203:ARG:NH1	6:BD:225:ASP:OD1	2.37	0.56
1:DG:85:MET:SD	1:DG:129:SER:OG	2.62	0.56
5:DU:42:ARG:NH1	5:DU:46:MET:SD	2.77	0.56
5:CI:40:GLN:OE1	9:CI:200:CYC:NB	2.36	0.56
1:CY:150:SER:O	1:CY:154:ASP:HB2	2.05	0.56
2:DL:119:LEU:HD13	9:DL:200:CYC:HBD1	1.86	0.56
1:DR:105:GLU:HA	1:DR:109:LEU:HB2	1.86	0.56
1:BU:105:GLU:HA	1:BU:109:LEU:HB2	1.87	0.56
5:CJ:39:GLU:OE1	6:CL:576:ARG:NH2	2.38	0.56
6:CL:2:SER:OG	6:CL:3:VAL:N	2.38	0.56
1:BH:36:ARG:NH2	1:BH:97:VAL:O	2.38	0.56
1:BO:105:GLU:HA	1:BO:109:LEU:HB2	1.86	0.56
2:CX:119:LEU:HD13	9:CX:200:CYC:HBD1	1.88	0.56
1:DG:105:GLU:HA	1:DG:109:LEU:HB2	1.86	0.56
1:AC:12:ASP:OD2	2:AD:107:ARG:NH1	2.39	0.56
3:AE:95:GLY:HA3	3:AE:104:ILE:HD11	1.88	0.56
2:AL:113:LYS:NZ	2:AS:155:TYR:OH	2.38	0.56
1:DA:105:GLU:HA	1:DA:109:LEU:HB2	1.87	0.56
2:AB:56:VAL:HG12	2:AB:60:LEU:HD12	1.88	0.56
1:AP:23:LEU:HD12	2:AQ:38:VAL:HG13	1.88	0.56
2:CU:119:LEU:HD13	9:CU:200:CYC:HBD1	1.88	0.56
1:DG:18:LEU:HD23	1:DG:22:GLU:HB3	1.88	0.56
2:AI:61:LEU:O	6:BD:682:ARG:NH1	2.38	0.56
1:AN:58:LEU:HD22	1:AN:129:SER:HB2	1.88	0.56
9:BD:902:CYC:HB	9:BD:902:CYC:HMA1	1.70	0.56
2:DO:71:ASN:HD22	2:DO:122:PRO:HD3	1.71	0.55
2:BM:130:ILE:HG23	2:BM:153:LEU:HD12	1.88	0.55
4:BR:22:ASN:OD1	2:BV:147:LYS:NZ	2.39	0.55
5:CJ:10:VAL:HG12	5:CJ:48:GLY:HA3	1.88	0.55
1:DN:107:ILE:HG23	2:DS:74:THR:HG22	1.88	0.55
6:CL:400:GLY:O	6:CL:406:GLN:NE2	2.39	0.55
2:AI:109:LEU:HD13	2:AI:159:GLY:HA3	1.88	0.55

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:CC:119:LEU:HD13	9:CC:200:CYC:HBD1	1.87	0.55
2:DB:126:THR:HG22	9:DB:200:CYC:H3C	1.88	0.55
1:AV:12:ASP:OD2	2:AW:107:ARG:NH1	2.39	0.55
2:CX:144:ASP:OD1	2:CX:144:ASP:N	2.40	0.55
1:DR:6:LYS:NZ	1:DR:100:ASP:OD2	2.40	0.55
6:BD:400:GLY:O	6:BD:406:GLN:NE2	2.39	0.55
2:BM:153:LEU:HD13	2:BM:156:ILE:HD12	1.89	0.55
1:CR:23:LEU:HD22	1:CR:26:ILE:HD12	1.89	0.55
1:DA:12:ASP:OD2	2:DB:107:ARG:NH1	2.40	0.55
2:AL:3:ASP:H	2:AL:6:THR:HG1	1.54	0.55
2:AU:2:GLN:OE1	2:AU:10:ASN:ND2	2.39	0.55
4:BR:74:TYR:OH	6:CL:161:ARG:NH2	2.40	0.55
1:CD:12:ASP:OD2	2:CE:107:ARG:NH1	2.40	0.55
6:CL:515:LEU:HB2	6:CL:652:ASP:HB2	1.88	0.55
1:CP:23:LEU:HD12	2:CQ:38:VAL:HG13	1.88	0.55
2:BI:112:LEU:HD21	9:BI:200:CYC:HMB3	1.89	0.55
1:CP:25:ARG:HD3	1:CW:25:ARG:HD2	1.89	0.55
9:DA:200:CYC:HB	9:DA:200:CYC:HMA1	1.71	0.55
9:AU:200:CYC:HMA1	9:AU:200:CYC:HB	1.72	0.55
1:CB:142:SER:O	1:CB:146:ALA:N	2.40	0.55
1:CD:16:ARG:HH21	1:CD:19:SER:HB3	1.72	0.55
6:CL:31:GLN:OE1	6:CL:33:ARG:NH1	2.40	0.55
1:CW:119:LEU:HD12	9:CW:200:CYC:HBD1	1.89	0.55
3:AE:66:ARG:NH2	3:AE:72:ALA:O	2.41	0.54
1:BU:113:ARG:HH21	1:CD:117:ARG:HD3	1.72	0.54
5:CJ:6:ILE:HG22	5:CJ:53:VAL:HG23	1.88	0.54
1:CW:126:VAL:HG23	9:CW:200:CYC:HBC3	1.88	0.54
1:CY:23:LEU:HG	2:CZ:38:VAL:HG13	1.88	0.54
2:DJ:119:LEU:HD13	9:DJ:200:CYC:HBD1	1.88	0.54
2:AW:2:GLN:OE1	2:AW:10:ASN:ND2	2.40	0.54
1:AZ:113:ARG:NH1	1:AZ:160:MET:O	2.39	0.54
1:BU:58:LEU:HD22	1:BU:129:SER:HB2	1.90	0.54
6:CL:612:ARG:HH21	6:CL:614:THR:HA	1.71	0.54
6:CL:824:GLN:OE1	2:DO:83:ARG:NH1	2.39	0.54
2:CX:130:ILE:HG23	2:CX:153:LEU:HD12	1.89	0.54
7:DF:215:PRO:HG3	1:DP:83:ARG:HE	1.72	0.54
2:AW:1:MET:N	5:BB:67:ALA:O	2.40	0.54
2:AW:73:TYR:OH	1:AX:90:ARG:NH2	2.40	0.54
1:BU:106:GLU:O	2:BZ:76:ARG:NH1	2.41	0.54
2:CE:73:TYR:OH	1:CF:90:ARG:NH2	2.41	0.54
6:CL:253:LEU:HB2	6:CL:405:ALA:HB2	1.90	0.54

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:DQ:73:TYR:OH	1:DR:90:ARG:NH2	2.41	0.54
2:CX:73:TYR:OH	1:CY:90:ARG:NH2	2.40	0.54
1:AV:105:GLU:HA	1:AV:109:LEU:HB2	1.88	0.54
1:AC:154:ASP:HA	1:AC:157:ILE:HG12	1.90	0.54
6:BD:701:ARG:NH2	2:CZ:64:ASP:OD1	2.41	0.54
1:CB:12:ASP:O	5:CJ:45:LYS:NZ	2.40	0.54
1:DA:6:LYS:NZ	1:DA:100:ASP:OD2	2.41	0.54
3:AE:104:ILE:HG22	3:AE:109:LEU:HD23	1.89	0.54
2:AF:22:ALA:O	2:AF:26:LYS:NZ	2.37	0.54
1:DK:137:ALA:O	1:DK:141:MET:HB3	2.08	0.54
1:AN:105:GLU:HA	1:AN:109:LEU:HB2	1.90	0.54
2:AU:1:MET:HG3	2:AU:103:ILE:HB	1.89	0.54
2:CG:107:ARG:O	5:CJ:20:ARG:NH1	2.41	0.54
1:DP:90:ARG:NH1	2:DQ:16:GLY:O	2.39	0.54
1:AJ:105:GLU:HA	1:AJ:109:LEU:HB2	1.89	0.53
4:AK:123:PRO:HB2	4:AK:126:PRO:HD2	1.90	0.53
1:CB:41:GLU:HA	1:CB:44:THR:HG22	1.90	0.53
1:CB:90:ARG:NH2	2:CG:73:TYR:OH	2.41	0.53
6:CL:612:ARG:NH2	6:CL:619:GLU:OE1	2.39	0.53
9:BP:200:CYC:O2A	6:CL:358:ARG:NH1	2.38	0.53
5:CI:43:ILE:HG21	5:CI:50:ILE:HG23	1.90	0.53
1:AA:50:ILE:HD13	1:AA:136:VAL:HG12	1.89	0.53
2:BV:83:ARG:NH1	9:BV:200:CYC:O2A	2.39	0.53
1:CF:36:ARG:NH2	1:CF:152:TYR:OH	2.41	0.53
1:AV:104:ILE:HG22	1:AV:109:LEU:HG	1.89	0.53
6:BD:2:SER:OG	6:BD:3:VAL:N	2.41	0.53
6:BD:85:LEU:HG	6:BD:153:LEU:HD21	1.89	0.53
1:BO:103:PRO:HA	1:BO:106:GLU:HG2	1.90	0.53
2:DO:119:LEU:HD13	9:DO:200:CYC:HBD1	1.89	0.53
2:AI:107:ARG:NH1	6:BD:334:PHE:O	2.42	0.53
2:AY:110:ASN:HA	6:BD:523:LYS:HD3	1.91	0.53
6:BD:740:ARG:NH2	6:BD:750:ASP:OD2	2.42	0.53
2:BX:117:ASN:O	6:CL:467:ARG:NH2	2.42	0.53
6:CL:894:VAL:O	2:DO:77:ARG:NH2	2.41	0.53
3:AE:114:GLU:HA	3:AE:117:ASN:HB2	1.91	0.53
3:BL:23:LEU:HD22	2:BM:38:VAL:HG13	1.89	0.53
2:BS:94:TYR:OH	6:CL:33:ARG:O	2.26	0.53
6:CL:455:GLU:HG3	6:CL:664:GLY:HA3	1.91	0.53
1:CP:76:GLU:HG3	7:DW:247:PRO:HD3	1.89	0.53
2:CS:73:TYR:OH	1:CT:90:ARG:NH2	2.41	0.53
1:DR:128:GLN:NE2	1:DR:132:GLU:OE2	2.42	0.53

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:AC:41:GLU:HA	1:AC:44:THR:HG22	1.91	0.53
2:AD:74:THR:HB	2:AD:77:ARG:HD3	1.90	0.53
2:AI:15:GLN:OE1	2:AI:17:LYS:NZ	2.41	0.53
1:CR:20:PRO:HA	1:CR:23:LEU:HB2	1.90	0.53
9:AE:200:CYC:HMA1	9:AE:200:CYC:HB	1.73	0.53
4:AK:70:SER:OG	8:BG:101:ARG:NH2	2.40	0.53
6:BD:273:LEU:HD22	6:BD:277:GLU:HG3	1.91	0.53
2:BP:64:ASP:OD1	2:BV:124:SER:OG	2.24	0.53
1:CY:38:ARG:NH1	1:CY:145:ASP:OD2	2.41	0.53
1:DI:143:SER:OG	1:DI:144:ASP:N	2.41	0.53
1:AX:52:LYS:NZ	7:BF:240:ILE:O	2.42	0.53
1:AZ:119:LEU:HD12	9:AZ:200:CYC:HBD1	1.91	0.53
2:BZ:119:LEU:HD12	9:CL:901:CYC:HBD1	1.91	0.53
6:CL:436:GLN:NE2	6:CL:440:PRO:O	2.42	0.53
5:DD:2:ARG:HG2	5:DD:55:LEU:HD11	1.90	0.53
2:AO:122:PRO:HB2	2:AO:125:SER:HB2	1.90	0.53
5:CJ:19:GLN:OE1	6:CL:514:ARG:NH1	2.42	0.53
1:AH:150:SER:HA	1:AH:153:PHE:HB2	1.90	0.52
4:AK:114:ARG:NH1	4:AK:166:GLU:OE1	2.42	0.52
6:BD:875:LYS:NZ	6:BD:882:GLU:OE2	2.42	0.52
1:BO:52:LYS:HE2	7:CN:203:PHE:HB3	1.90	0.52
4:BR:123:PRO:HB2	4:BR:126:PRO:HD2	1.90	0.52
2:BS:147:LYS:HE3	8:CO:90:SER:HB3	1.90	0.52
2:BX:126:THR:HG23	9:BX:200:CYC:HBC3	1.91	0.52
5:CI:42:ARG:NH2	6:CL:383:SER:O	2.40	0.52
1:CR:128:GLN:OE1	1:CR:131:ARG:NH1	2.41	0.52
2:AB:74:THR:HG22	1:AC:107:ILE:HG23	1.90	0.52
6:BD:267:TYR:HB3	6:BD:281:VAL:HG22	1.90	0.52
2:CX:74:THR:HG22	1:CY:107:ILE:HG23	1.90	0.52
1:DI:95:GLY:HA3	1:DI:104:ILE:HD11	1.90	0.52
2:DJ:74:THR:HG22	1:DK:107:ILE:HG23	1.89	0.52
2:AY:2:GLN:OE1	2:AY:10:ASN:ND2	2.42	0.52
6:BD:576:ARG:HH12	6:BD:641:ASP:HA	1.75	0.52
1:CD:105:GLU:HA	1:CD:109:LEU:HB2	1.90	0.52
2:DJ:65:VAL:HG12	2:DJ:72:MET:HB2	1.90	0.52
2:AL:90:ARG:NH1	6:BD:32:ASP:OD1	2.36	0.52
4:BR:44:ILE:HG21	4:BR:94:SER:HB2	1.91	0.52
2:CC:37:ARG:NH2	2:CC:148:GLU:OE2	2.43	0.52
1:CR:66:VAL:HG23	7:DV:233:PRO:HG2	1.90	0.52
2:CX:15:GLN:HE22	2:CX:17:LYS:HB2	1.75	0.52
7:DF:211:THR:O	7:DF:217:ASN:ND2	2.39	0.52

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:DK:29:PHE:HE1	1:DK:99:GLY:HA3	1.74	0.52
6:BD:476:PHE:O	6:BD:617:ARG:NH1	2.43	0.52
1:BU:84:ASP:OD2	9:BU:200:CYC:ND	2.43	0.52
2:BV:1:MET:N	6:CL:479:ASP:OD2	2.42	0.52
2:BX:83:ARG:NH2	9:BX:200:CYC:O2A	2.43	0.52
6:CL:290:PHE:O	6:CL:292:ARG:NH1	2.43	0.52
2:CX:51:ILE:HG23	2:CX:136:VAL:HB	1.92	0.52
1:AH:105:GLU:HA	1:AH:109:LEU:HB2	1.90	0.52
2:AI:107:ARG:NH2	6:BD:339:ASN:OD1	2.42	0.52
6:BD:455:GLU:HG3	6:BD:664:GLY:HA3	1.92	0.52
6:BD:567:GLN:OE1	6:BD:581:ARG:NH1	2.41	0.52
6:BD:877:THR:HG22	6:BD:878:LYS:HG3	1.91	0.52
1:BO:150:SER:HA	1:BO:153:PHE:HB2	1.91	0.52
2:CE:126:THR:HG22	9:CE:200:CYC:H3C	1.90	0.52
6:CL:850:GLU:OE2	5:DU:42:ARG:NH2	2.43	0.52
5:DU:14:THR:HG23	5:DU:15:ARG:HG3	1.91	0.52
1:AH:32:GLY:O	1:AH:36:ARG:NH1	2.42	0.52
6:BD:782:GLY:HA3	6:BD:835:ILE:HG21	1.91	0.52
2:BI:119:LEU:HD11	9:BI:200:CYC:HAA2	1.92	0.52
1:CW:52:LYS:NZ	7:DV:224:SER:OG	2.43	0.52
2:DQ:57:ALA:HA	2:DQ:61:LEU:HD13	1.91	0.52
1:DR:12:ASP:OD2	2:DS:107:ARG:NH1	2.43	0.52
1:AP:144:ASP:OD1	1:AP:144:ASP:N	2.43	0.52
1:AV:64:ASP:N	1:AV:64:ASP:OD1	2.43	0.52
2:AY:73:TYR:OH	1:AZ:90:ARG:NH2	2.43	0.52
2:BM:2:GLN:O	2:BM:102:SER:OG	2.28	0.52
2:BP:107:ARG:NH2	6:CL:339:ASN:OD1	2.38	0.52
2:DQ:37:ARG:NH2	2:DQ:148:GLU:OE2	2.42	0.52
2:AY:71:ASN:HD22	2:AY:122:PRO:HD3	1.74	0.52
6:BD:697:VAL:HG23	2:CZ:67:ARG:HB3	1.92	0.52
1:BJ:5:THR:OG1	2:BK:3:ASP:OD2	2.28	0.52
2:BM:3:ASP:N	2:BM:6:THR:OG1	2.43	0.52
4:BR:161:THR:O	4:BR:165:SER:CB	2.58	0.52
6:CL:295:THR:HG22	6:CL:301:SER:HB2	1.91	0.52
2:CX:51:ILE:HG21	2:CX:137:THR:HG23	1.92	0.52
2:CZ:111:GLY:O	2:CZ:115:THR:OG1	2.25	0.52
7:DE:238:GLN:HA	1:DI:52:LYS:HD2	1.90	0.52
1:DK:109:LEU:HD13	1:DK:112:VAL:HG11	1.92	0.52
3:BL:39:ILE:HD12	3:BL:141:LEU:HD21	1.92	0.51
1:CD:36:ARG:HH21	1:CD:96:VAL:HA	1.75	0.51
2:DH:64:ASP:OD1	2:DH:64:ASP:N	2.43	0.51

A + 1		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:DN:5:THR:HA	1:DN:8:ILE:HG22	1.93	0.51
2:AF:110:ASN:HD21	5:BA:49:LYS:HA	1.74	0.51
1:AZ:12:ASP:O	5:BB:45:LYS:NZ	2.43	0.51
6:BD:711:ASN:OD1	6:BD:716:ARG:NH2	2.43	0.51
7:BF:241:ASN:O	7:BF:245:SER:OG	2.28	0.51
1:BO:154:ASP:HA	1:BO:157:ILE:HB	1.91	0.51
6:CL:567:GLN:OE1	6:CL:581:ARG:NH1	2.40	0.51
2:DB:119:LEU:HD13	9:DB:200:CYC:HBD1	1.91	0.51
7:DE:223:ARG:NE	1:DN:75:GLU:OE2	2.43	0.51
1:AJ:26:ILE:HG22	4:AK:38:ILE:HD11	1.91	0.51
2:AO:1:MET:N	6:BD:479:ASP:OD2	2.44	0.51
2:DO:126:THR:HG22	9:DO:200:CYC:H3C	1.91	0.51
1:AC:150:SER:HA	1:AC:153:PHE:HB2	1.93	0.51
1:AN:83:ARG:NH1	9:AN:200:CYC:O2A	2.44	0.51
1:AN:106:GLU:O	2:AS:76:ARG:NH1	2.42	0.51
1:BO:32:GLY:O	1:BO:36:ARG:NH1	2.44	0.51
6:CL:756:ILE:HG21	1:DN:159:LYS:HG3	1.92	0.51
6:CL:540:GLN:OE1	6:CL:544:ARG:NH1	2.43	0.51
1:CP:58:LEU:HD22	1:CP:129:SER:HB2	1.91	0.51
1:DK:6:LYS:NZ	1:DK:100:ASP:OD2	2.44	0.51
6:BD:540:GLN:NE2	6:BD:569:GLU:OE2	2.44	0.51
3:BL:95:GLY:HA3	3:BL:104:ILE:HD11	1.92	0.51
8:CO:103:PRO:HB3	8:CO:107:LEU:HD12	1.93	0.51
1:DA:114:GLU:HG3	1:DA:117:ARG:HH12	1.76	0.51
7:DF:219:LEU:HD13	7:DF:223:ARG:HH21	1.76	0.51
2:DL:126:THR:HG22	9:DL:200:CYC:H3C	1.91	0.51
2:DQ:56:VAL:HG22	2:DQ:60:LEU:HD12	1.91	0.51
1:AA:104:ILE:HG22	1:AA:109:LEU:HB2	1.93	0.51
1:AC:102:THR:HG23	6:BD:276:LEU:HG	1.93	0.51
1:AN:110:VAL:HG13	2:AS:76:ARG:HB3	1.91	0.51
6:CL:155:ASP:OD2	9:CL:902:CYC:NC	2.43	0.51
2:DH:74:THR:HG22	1:DI:107:ILE:HG23	1.92	0.51
2:DS:37:ARG:NH1	2:DS:96:MET:O	2.38	0.51
1:AA:118:SER:O	2:AF:53:LYS:NZ	2.42	0.51
2:AF:51:ILE:HA	2:AF:136:VAL:HG11	1.93	0.51
1:AV:5:THR:OG1	2:AW:3:ASP:OD2	2.29	0.51
1:AX:105:GLU:HA	1:AX:109:LEU:HB3	1.91	0.51
6:BD:756:ILE:HG21	1:CW:159:LYS:HG3	1.91	0.51
2:CG:109:LEU:HD13	2:CG:159:GLY:HA3	1.93	0.51
9:CL:902:CYC:HMA1	9:CL:902:CYC:HB	1.75	0.51
1:CT:105:GLU:HA	1:CT:109:LEU:HB2	1.93	0.51

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:BI:106:GLU:HB2	5:CI:57:THR:HG23	1.92	0.51
1:CB:5:THR:OG1	2:CC:3:ASP:OD2	2.28	0.51
1:CY:72:ALA:HA	1:CY:77:MET:HB3	1.93	0.51
2:CZ:144:ASP:OD1	2:CZ:144:ASP:N	2.44	0.51
2:DQ:84:ASP:OD2	9:DQ:200:CYC:ND	2.44	0.51
1:AH:95:GLY:HA3	1:AH:104:ILE:HD11	1.93	0.51
2:AW:106:GLU:HG2	5:BB:57:THR:HB	1.93	0.51
6:BD:399:ARG:NH1	6:BD:404:GLU:OE2	2.44	0.51
1:BY:30:VAL:HG21	2:BZ:34:GLY:HA3	1.92	0.51
1:CP:107:ILE:HG23	2:CU:74:THR:HG22	1.93	0.51
2:DJ:106:GLU:HG2	2:DJ:107:ARG:HG3	1.93	0.51
1:DR:114:GLU:HG3	1:DR:117:ARG:HH12	1.75	0.51
1:BU:16:ARG:O	2:BV:94:TYR:OH	2.29	0.50
1:DA:85:MET:SD	1:DA:129:SER:OG	2.69	0.50
1:AA:36:ARG:NH1	1:AA:148:GLU:OE2	2.42	0.50
2:AF:37:ARG:NH2	2:AF:148:GLU:OE2	2.44	0.50
1:AH:47:ARG:NH2	7:BF:207:GLU:OE2	2.44	0.50
1:AN:85:MET:SD	1:AN:129:SER:OG	2.61	0.50
2:CS:107:ARG:O	5:DD:20:ARG:NH1	2.43	0.50
2:CX:110:ASN:OD1	2:CX:110:ASN:N	2.39	0.50
7:DE:210:LEU:HD13	7:DE:216:MET:HB3	1.93	0.50
2:DO:56:VAL:HG12	2:DO:61:LEU:HD13	1.93	0.50
1:AA:5:THR:OG1	2:AB:1:MET:SD	2.70	0.50
1:AA:16:ARG:NH1	1:AA:17:TYR:O	2.45	0.50
2:CZ:15:GLN:HG3	2:CZ:17:LYS:HG2	1.92	0.50
1:AA:5:THR:HA	1:AA:8:ILE:HG12	1.94	0.50
2:AD:134:LYS:NZ	2:AD:150:GLY:O	2.44	0.50
2:AO:75:THR:HG21	1:AP:112:VAL:HG23	1.94	0.50
2:AW:104:LEU:HD22	2:AW:156:ILE:HD12	1.92	0.50
2:BI:73:TYR:OH	1:BJ:90:ARG:NH2	2.39	0.50
1:BY:56:ASP:O	1:BY:60:GLN:NE2	2.45	0.50
2:CG:83:ARG:NH1	9:CG:200:CYC:O2A	2.45	0.50
2:DS:41:ALA:HB2	2:DS:97:LEU:HD21	1.93	0.50
3:AE:8:ILE:HD11	2:AF:97:LEU:HD22	1.92	0.50
1:AJ:16:ARG:NH1	1:AJ:17:TYR:O	2.43	0.50
6:BD:845:LEU:HG	5:DD:42:ARG:HD2	1.92	0.50
1:DN:72:ALA:HA	1:DN:77:MET:HB3	1.93	0.50
1:AH:105:GLU:OE1	1:AH:159:LYS:NZ	2.44	0.50
2:AO:119:LEU:HD22	9:AO:200:CYC:HBD1	1.94	0.50
5:CI:24:ASN:ND2	6:CL:393:GLU:OE2	2.42	0.50
1:CR:62:ARG:NH2	1:CR:64:ASP:OD2	2.44	0.50

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:DG:2:SER:OG	2:DH:3:ASP:OD2	2.26	0.50
1:DK:4:VAL:HG22	1:DK:26:ILE:HD12	1.94	0.50
1:AX:29:PHE:O	1:AX:36:ARG:NH1	2.45	0.50
6:BD:278:LYS:HD3	6:BD:310:ARG:HG2	1.92	0.50
6:BD:747:PHE:O	6:BD:749:ARG:NH1	2.45	0.50
1:BO:83:ARG:NH1	9:BO:200:CYC:O2A	2.43	0.50
1:CD:30:VAL:HG21	2:CE:34:GLY:HA3	1.94	0.50
9:DN:200:CYC:HBB2	2:DS:75:THR:HG23	1.93	0.50
3:AE:91:LEU:HD11	9:AE:200:CYC:HBB1	1.93	0.50
5:BA:9:CYS:HB2	5:BA:26:TYR:HD1	1.76	0.50
6:CL:782:GLY:HA3	6:CL:835:ILE:HG21	1.93	0.50
1:CP:90:ARG:NH2	2:CU:73:TYR:OH	2.45	0.50
2:CQ:126:THR:HG22	9:CQ:200:CYC:H3C	1.94	0.50
1:CR:57:ARG:NH1	1:CR:135:GLU:OE2	2.44	0.50
1:AJ:23:LEU:HD12	4:AK:38:ILE:HG23	1.94	0.50
1:AN:71:ASN:ND2	1:AN:119:LEU:O	2.45	0.50
6:BD:154:ARG:NH2	9:BD:902:CYC:O2A	2.44	0.50
1:BO:23:LEU:HD12	2:BP:38:VAL:HG13	1.93	0.50
1:BY:141:MET:HB2	1:BY:146:ALA:HB2	1.94	0.50
2:BZ:153:LEU:HD23	2:BZ:156:ILE:HD12	1.93	0.50
1:CD:16:ARG:O	2:CE:94:TYR:OH	2.29	0.50
6:CL:657:GLU:OE2	6:CL:668:ARG:NH2	2.44	0.50
2:AD:76:ARG:HB3	3:AE:110:ILE:HG23	1.93	0.49
2:AF:107:ARG:HA	5:BA:44:MET:HB3	1.94	0.49
1:AN:2:SER:N	1:AN:5:THR:OG1	2.45	0.49
1:BJ:82:LEU:HD13	1:BJ:85:MET:HG3	1.94	0.49
3:BL:6:GLN:O	3:BL:10:GLN:NE2	2.45	0.49
1:BO:80:THR:HG21	2:BS:62:TYR:HE1	1.76	0.49
2:BV:75:THR:HG21	1:BW:112:VAL:HG23	1.94	0.49
1:CW:142:SER:O	1:CW:146:ALA:N	2.41	0.49
1:AC:65:ILE:HA	1:AC:70:GLY:HA3	1.94	0.49
1:AN:37:LEU:HD21	2:AO:27:LEU:HD12	1.92	0.49
1:BH:119:LEU:HD12	9:BH:200:CYC:HBD1	1.93	0.49
3:BL:66:ARG:NH1	3:BL:72:ALA:O	2.45	0.49
2:BX:44:ILE:HD11	2:BX:137:THR:HG23	1.94	0.49
1:CB:134:LYS:HD3	1:CB:153:PHE:HB3	1.94	0.49
7:CN:241:ASN:O	7:CN:245:SER:OG	2.30	0.49
2:CU:144:ASP:N	2:CU:144:ASP:OD1	2.45	0.49
2:CX:91:TYR:HE2	9:CX:200:CYC:HBB1	1.77	0.49
2:CZ:2:GLN:NE2	2:CZ:100:ASP:OD2	2.45	0.49
9:DK:200:CYC:HB	9:DK:200:CYC:HMA1	1.76	0.49

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:DO:103:ILE:O	2:DO:107:ARG:HB2	2.12	0.49
1:AA:4:VAL:HG22	1:AA:26:ILE:HD12	1.95	0.49
2:AB:119:LEU:HD11	9:AB:200:CYC:HAA2	1.94	0.49
2:AL:144:ASP:OD1	2:AL:144:ASP:N	2.43	0.49
2:AW:105:ASP:HA	2:AW:109:LEU:HB2	1.93	0.49
6:BD:843:GLU:OE2	6:BD:857:ARG:NH2	2.44	0.49
1:BO:4:VAL:HG22	1:BO:26:ILE:HD12	1.95	0.49
4:BR:97:LEU:HD21	4:BR:153:ILE:HA	1.95	0.49
2:CE:1:MET:N	5:CJ:67:ALA:O	2.43	0.49
2:CX:126:THR:HG22	9:CX:200:CYC:H3C	1.94	0.49
1:AH:41:GLU:HA	1:AH:44:THR:HG22	1.95	0.49
2:AO:64:ASP:HA	2:AO:67:ARG:HB2	1.95	0.49
1:BJ:113:ARG:NH2	1:BJ:161:SER:OXT	2.45	0.49
1:CF:16:ARG:NH1	1:CF:17:TYR:O	2.43	0.49
1:CT:16:ARG:O	2:CU:94:TYR:OH	2.29	0.49
1:AJ:85:MET:HG3	9:AJ:200:CYC:HBC1	1.95	0.49
2:AL:106:GLU:O	2:AL:110:ASN:ND2	2.45	0.49
2:AW:8:VAL:HG13	2:AW:23:ALA:HB1	1.93	0.49
2:BP:61:LEU:O	6:CL:682:ARG:NH1	2.37	0.49
1:CD:50:ILE:HD11	1:CD:140:LEU:HD22	1.93	0.49
6:CL:361:VAL:HG11	6:CL:431:ILE:HB	1.94	0.49
1:CY:16:ARG:O	2:CZ:94:TYR:OH	2.29	0.49
1:DI:14:GLU:HG3	1:DI:16:ARG:HG3	1.94	0.49
2:AB:50:THR:HA	2:AB:53:LYS:HG2	1.95	0.49
3:AE:36:ARG:NH2	3:AE:152:TYR:OH	2.45	0.49
2:BV:76:ARG:NH1	1:BW:106:GLU:O	2.43	0.49
1:CR:36:ARG:HA	1:CR:39:ILE:HD12	1.95	0.49
2:DQ:109:LEU:HD13	2:DQ:112:LEU:HD23	1.95	0.49
3:AE:12:ASP:OD2	2:AF:107:ARG:NH1	2.45	0.49
1:BO:16:ARG:O	2:BP:94:TYR:OH	2.28	0.49
6:CL:137:ARG:HH11	6:CL:138:PRO:HD2	1.77	0.49
1:CY:30:VAL:HG21	2:CZ:34:GLY:HA3	1.94	0.49
2:DB:144:ASP:OD1	2:DB:144:ASP:N	2.46	0.49
1:DG:25:ARG:HD3	1:DN:25:ARG:HG3	1.94	0.49
1:DR:150:SER:HA	1:DR:153:PHE:HB2	1.94	0.49
9:AI:200:CYC:HB	9:AI:200:CYC:HMA1	1.78	0.49
2:AO:112:LEU:HD13	9:AO:200:CYC:HMB3	1.95	0.49
6:BD:692:VAL:HG12	6:BD:696:GLN:HE21	1.77	0.49
2:BX:105:ASP:OD1	6:CL:671:ARG:NH1	2.45	0.49
1:AH:80:THR:HG21	2:AL:62:TYR:HE1	1.77	0.49
2:AL:94:TYR:OH	6:BD:33:ARG:O	2.28	0.49

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:BO:16:ARG:NH1	1:BO:17:TYR:O	2.46	0.49
9:BP:200:CYC:HMA1	9:BP:200:CYC:HB	1.78	0.49
1:BU:131:ARG:HH22	2:CC:47:ASN:HB3	1.78	0.49
2:CE:3:ASP:O	2:CE:7:ALA:HB2	2.12	0.49
6:CL:823:ASN:ND2	9:DO:200:CYC:O2A	2.43	0.49
2:CU:65:VAL:HG12	2:CU:72:MET:HB2	1.95	0.49
1:DG:113:ARG:NH2	1:DG:161:SER:O	2.43	0.49
2:DH:64:ASP:HA	2:DH:67:ARG:HB2	1.94	0.49
2:DQ:111:GLY:O	2:DQ:115:THR:OG1	2.28	0.49
1:AZ:3:ILE:HG12	1:AZ:25:ARG:CZ	2.43	0.48
6:BD:676:ARG:HB2	6:BD:679:ILE:HG12	1.95	0.48
1:BH:84:ASP:OD2	9:BH:200:CYC:ND	2.46	0.48
1:BU:87:TYR:HB3	9:BU:200:CYC:HBB3	1.95	0.48
9:BX:200:CYC:HMA1	9:BX:200:CYC:HB	1.78	0.48
1:DI:19:SER:OG	1:DI:22:GLU:OE1	2.31	0.48
2:DJ:107:ARG:O	5:DU:20:ARG:NH1	2.46	0.48
1:AH:20:PRO:HA	1:AH:23:LEU:HB2	1.94	0.48
1:AX:76:GLU:HB3	7:BF:247:PRO:HG3	1.94	0.48
4:BR:161:THR:O	4:BR:165:SER:HB2	2.13	0.48
1:DG:6:LYS:O	1:DG:10:ASN:ND2	2.46	0.48
2:AL:83:ARG:NH2	2:AL:84:ASP:OD1	2.46	0.48
1:AN:102:THR:HA	1:AN:105:GLU:HG2	1.95	0.48
2:AU:94:TYR:OH	1:AZ:16:ARG:O	2.29	0.48
5:BB:38:ARG:NH1	6:BD:637:GLU:OE1	2.46	0.48
1:CB:113:ARG:NH1	1:CB:160:MET:O	2.45	0.48
2:CG:60:LEU:HD13	2:CG:72:MET:HE1	1.95	0.48
6:CL:795:TYR:HB3	6:CL:799:LYS:HB3	1.95	0.48
6:CL:876:LEU:HD23	9:DS:200:CYC:HMA1	1.95	0.48
2:CU:35:GLU:OE2	2:CU:39:ARG:NH2	2.46	0.48
1:CW:16:ARG:O	2:CX:94:TYR:OH	2.31	0.48
2:DJ:73:TYR:OH	1:DK:90:ARG:NH2	2.46	0.48
2:DJ:87:TYR:OH	5:DU:19:GLN:O	2.25	0.48
1:AJ:16:ARG:O	4:AK:95:TYR:OH	2.28	0.48
2:AS:107:ARG:NH1	6:BD:593:TRP:O	2.45	0.48
1:BH:113:ARG:NH2	1:BH:161:SER:O	2.45	0.48
2:BS:56:VAL:HG23	2:BS:60:LEU:HD12	1.96	0.48
2:CX:154:ASP:HA	2:CX:157:CYS:HB2	1.95	0.48
2:DL:103:ILE:HG13	2:DL:107:ARG:HD3	1.94	0.48
9:DN:200:CYC:HMA1	9:DN:200:CYC:HB	1.78	0.48
1:AA:25:ARG:HH12	1:AH:29:PHE:HB2	1.77	0.48
1:AJ:109:LEU:HD13	1:AJ:159:LYS:HG3	1.96	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:AU:124:SER:O	2:AU:128:GLN:NE2	2.45	0.48
4:BR:3:ASP:OD1	4:BR:3:ASP:N	2.38	0.48
1:CD:64:ASP:OD1	1:CD:64:ASP:N	2.47	0.48
2:CG:109:LEU:O	6:CL:523:LYS:NZ	2.47	0.48
6:CL:487:ARG:NE	6:CL:657:GLU:OE1	2.43	0.48
7:CN:206:GLN:HA	7:CN:209:LYS:HD3	1.94	0.48
1:CP:20:PRO:HA	1:CP:23:LEU:HB2	1.94	0.48
2:AF:3:ASP:N	2:AF:6:THR:OG1	2.47	0.48
1:AV:119:LEU:HD12	9:AV:200:CYC:HBD1	1.93	0.48
8:BG:97:ASN:OD1	8:BG:97:ASN:N	2.44	0.48
8:BG:103:PRO:HB3	8:BG:107:LEU:HD12	1.96	0.48
2:BM:95:ALA:HB2	2:BM:104:LEU:HD23	1.96	0.48
2:BM:109:LEU:HD13	2:BM:159:GLY:HA3	1.95	0.48
1:DK:44:THR:OG1	1:DK:47:ARG:NH1	2.46	0.48
2:CS:65:VAL:HG12	2:CS:72:MET:HB2	1.96	0.48
2:CZ:124:SER:HB2	2:DQ:124:SER:H	1.77	0.48
1:DA:3:ILE:HD11	1:DA:25:ARG:HH21	1.77	0.48
2:AD:3:ASP:H	2:AD:6:THR:HB	1.79	0.48
2:AL:84:ASP:OD2	9:AL:200:CYC:ND	2.38	0.48
6:BD:270:LYS:HB2	6:BD:273:LEU:HG	1.96	0.48
1:BY:16:ARG:O	2:BZ:94:TYR:OH	2.30	0.48
1:DG:38:ARG:NH1	1:DG:145:ASP:OD2	2.47	0.48
1:DI:20:PRO:HA	1:DI:23:LEU:HB2	1.94	0.48
1:DK:36:ARG:HA	1:DK:39:ILE:HD12	1.95	0.48
1:DR:128:GLN:OE1	1:DR:131:ARG:NH1	2.47	0.48
2:AF:39:ARG:HH12	1:CB:143:SER:H	1.62	0.48
1:AX:66:VAL:HG13	7:BF:233:PRO:HG2	1.96	0.48
4:BR:166:GLU:OE2	2:BZ:71:ASN:ND2	2.47	0.48
1:CF:113:ARG:NH1	1:CF:160:MET:O	2.46	0.48
1:AJ:12:ASP:OD2	4:AK:108:ARG:NH1	2.41	0.48
6:BD:361:VAL:HG11	6:BD:431:ILE:HB	1.95	0.48
1:BQ:12:ASP:OD1	4:BR:91:ARG:NH1	2.43	0.48
6:CL:476:PHE:O	6:CL:617:ARG:NH1	2.47	0.48
2:CQ:64:ASP:OD1	2:CQ:64:ASP:N	2.46	0.48
2:CX:130:ILE:HA	2:CX:133:ILE:HD12	1.94	0.48
1:DA:87:TYR:HD1	1:DA:90:ARG:HH12	1.60	0.48
9:DK:200:CYC:HBC2	9:DK:200:CYC:H2C	1.70	0.48
2:DL:153:LEU:HD23	2:DL:156:ILE:HD12	1.96	0.48
1:DN:95:GLY:HA3	1:DN:104:ILE:HD11	1.95	0.48
2:DQ:74:THR:O	2:DQ:77:ARG:N	2.47	0.48
2:AW:77:ARG:HG3	9:AW:200:CYC:HAD1	1.95	0.47

	A 4 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
6:BD:239:LYS:N	6:BD:253:LEU:O	2.47	0.47
1:BU:102:THR:HA	1:BU:105:GLU:HG2	1.96	0.47
2:CE:154:ASP:HA	2:CE:157:CYS:HB2	1.96	0.47
6:CL:154:ARG:O	6:CL:158:TRP:HB2	2.14	0.47
6:CL:273:LEU:O	6:CL:278:LYS:NZ	2.38	0.47
1:DG:150:SER:O	1:DG:154:ASP:CB	2.62	0.47
7:DW:211:THR:OG1	7:DW:212:ALA:N	2.46	0.47
2:AF:104:LEU:HD12	2:AF:156:ILE:HD11	1.96	0.47
1:AN:16:ARG:O	2:AO:94:TYR:OH	2.32	0.47
9:BI:200:CYC:HAA1	6:CL:311:ASN:HB3	1.96	0.47
4:BR:64:PRO:HB2	8:CO:105:PRO:HG2	1.95	0.47
5:CI:19:GLN:NE2	6:CL:237:ALA:O	2.47	0.47
2:DH:51:ILE:HD13	2:DH:89:LEU:HD21	1.96	0.47
1:DR:72:ALA:HA	1:DR:77:MET:HB3	1.95	0.47
7:DV:222:ALA:HA	7:DV:225:ILE:HD12	1.96	0.47
1:AN:87:TYR:HB3	9:AN:200:CYC:HBB3	1.96	0.47
2:AW:150:GLY:HA2	2:AW:153:LEU:HB2	1.94	0.47
5:BA:29:LYS:HZ1	6:BD:318:GLU:H	1.61	0.47
2:CC:83:ARG:NH1	9:CC:200:CYC:O2A	2.47	0.47
1:CY:142:SER:O	1:CY:146:ALA:N	2.43	0.47
2:DO:130:ILE:HG23	2:DO:153:LEU:HD22	1.95	0.47
1:DP:95:GLY:HA3	1:DP:104:ILE:HD11	1.96	0.47
2:DS:65:VAL:HG22	2:DS:72:MET:HB2	1.96	0.47
1:AX:4:VAL:HG12	1:AX:26:ILE:HG12	1.97	0.47
1:AX:84:ASP:OD2	9:AX:200:CYC:ND	2.37	0.47
1:CB:150:SER:HA	1:CB:153:PHE:HB2	1.96	0.47
2:CX:77:ARG:HD2	9:CX:200:CYC:HMD1	1.97	0.47
2:DJ:37:ARG:NH1	2:DJ:96:MET:O	2.43	0.47
2:DO:71:ASN:ND2	2:DO:120:GLY:O	2.47	0.47
5:BA:43:ILE:HG21	5:BA:50:ILE:HG23	1.96	0.47
1:BJ:154:ASP:HA	1:BJ:157:ILE:HD12	1.95	0.47
2:BP:104:LEU:HD11	2:BP:152:TYR:HB3	1.96	0.47
2:BP:107:ARG:NH1	6:CL:334:PHE:O	2.47	0.47
2:BS:16:GLY:O	6:CL:161:ARG:NH1	2.47	0.47
2:BS:20:ASP:OD1	2:BS:20:ASP:N	2.48	0.47
6:CL:131:PRO:HD2	6:CL:200:GLN:HB3	1.95	0.47
6:CL:273:LEU:HD22	6:CL:277:GLU:HG3	1.95	0.47
9:CX:200:CYC:HB	9:CX:200:CYC:HMA1	1.79	0.47
2:DJ:44:ILE:O	2:DJ:48:ALA:HB2	2.14	0.47
2:DQ:85:LEU:HD23	2:DQ:88:TYR:HD2	1.79	0.47
2:BV:83:ARG:NH1	6:CL:490:ALA:O	2.47	0.47

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
5:CI:10:VAL:HG22	5:CI:43:ILE:HG23	1.96	0.47
6:CL:549:GLN:NE2	6:CL:608:ARG:O	2.34	0.47
2:CU:110:ASN:HD21	5:DD:44:MET:HG2	1.79	0.47
1:DN:132:GLU:HA	1:DN:135:GLU:HG2	1.97	0.47
5:DU:20:ARG:O	5:DU:23:GLN:NE2	2.48	0.47
2:AB:22:ALA:O	2:AB:26:LYS:NZ	2.48	0.47
2:AI:102:SER:O	2:AI:106:GLU:HB2	2.15	0.47
2:AO:71:ASN:HD22	2:AO:122:PRO:HD3	1.79	0.47
2:AQ:50:THR:HA	2:AQ:53:LYS:HG2	1.95	0.47
2:AS:119:LEU:HD12	9:BD:901:CYC:HBD1	1.96	0.47
1:AV:109:LEU:HD13	1:AV:159:LYS:HG2	1.96	0.47
2:AW:37:ARG:NH1	2:AW:148:GLU:OE2	2.47	0.47
6:BD:318:GLU:OE2	6:BD:321:ARG:NE	2.47	0.47
6:BD:406:GLN:OE1	6:BD:414:GLN:NE2	2.40	0.47
1:BH:37:LEU:HD11	2:BI:27:LEU:HD23	1.95	0.47
3:BL:80:GLN:OE1	3:BL:83:ARG:NH2	2.47	0.47
1:BO:38:ARG:NH1	1:BO:145:ASP:OD2	2.47	0.47
2:BS:113:LYS:NZ	2:BZ:105:ASP:OD2	2.47	0.47
1:CF:16:ARG:O	2:CG:94:TYR:OH	2.32	0.47
2:CQ:154:ASP:HA	2:CQ:157:CYS:HB2	1.96	0.47
1:CT:27:LYS:HZ3	2:CU:35:GLU:HA	1.78	0.47
2:DO:56:VAL:HG13	2:DO:60:LEU:HB2	1.96	0.47
2:DO:153:LEU:HD23	2:DO:156:ILE:HD12	1.97	0.47
2:AS:54:GLU:O	2:AS:58:LYS:HB2	2.14	0.47
1:AX:83:ARG:HH22	9:AX:200:CYC:HBA2	1.80	0.47
1:AZ:87:TYR:HB3	9:AZ:200:CYC:HBB3	1.95	0.47
2:CC:91:TYR:HE2	9:CC:200:CYC:HBB1	1.80	0.47
6:CL:279:ASN:OD1	6:CL:310:ARG:NH1	2.48	0.47
1:CW:107:ILE:HG23	2:DB:74:THR:HG22	1.97	0.47
7:DE:227:PRO:HB2	1:DN:66:VAL:HG21	1.97	0.47
2:AB:153:LEU:HD23	2:AB:156:ILE:HD12	1.96	0.47
2:AD:89:LEU:HD12	2:AD:133:ILE:HD11	1.97	0.47
1:AH:16:ARG:O	2:AI:94:TYR:OH	2.30	0.47
2:AQ:122:PRO:HB2	2:AQ:125:SER:HB2	1.97	0.47
6:BD:772:ILE:HG22	5:DD:30:LEU:HB2	1.97	0.47
1:BQ:26:ILE:HG22	4:BR:38:ILE:HD11	1.96	0.47
9:BS:200:CYC:O2A	6:CL:298:TYR:OH	2.33	0.47
1:BW:113:ARG:NH1	1:BW:160:MET:O	2.43	0.47
2:CC:105:ASP:HA	2:CC:109:LEU:HB2	1.97	0.47
1:CF:97:VAL:HG21	2:CG:19:LEU:HD12	1.96	0.47
1:CR:143:SER:OG	1:CR:144:ASP:N	2.46	0.47

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:AH:97:VAL:HG22	2:AI:27:LEU:HD22	1.97	0.47
4:AK:162:ARG:NH2	2:AO:100:ASP:OD2	2.48	0.47
2:AU:74:THR:HG23	1:AV:107:ILE:HA	1.95	0.47
2:AU:111:GLY:HA3	5:BB:50:ILE:HD11	1.96	0.47
1:BW:24:ASP:HA	1:BW:27:LYS:HG2	1.95	0.47
1:CP:29:PHE:HB2	1:CW:25:ARG:HH21	1.80	0.47
2:DQ:36:LEU:HD21	2:DQ:145:ALA:HA	1.97	0.47
1:AN:90:ARG:NH1	2:AO:13:ASP:OD1	2.43	0.46
1:AN:137:ALA:O	1:AN:141:MET:HB3	2.14	0.46
6:BD:444:GLN:NE2	6:BD:472:ARG:O	2.46	0.46
1:BH:16:ARG:O	2:BI:94:TYR:OH	2.33	0.46
2:BS:36:LEU:HD12	8:CO:85:GLN:HE21	1.80	0.46
2:CX:104:LEU:HD13	2:CX:156:ILE:HG13	1.96	0.46
1:CY:52:LYS:HG3	7:DW:225:ILE:HD11	1.97	0.46
1:CY:137:ALA:O	1:CY:141:MET:HB2	2.15	0.46
2:AQ:109:LEU:HD13	2:AQ:159:GLY:HA3	1.97	0.46
7:BF:199:GLU:OE1	7:BF:202:ARG:NH2	2.48	0.46
2:CX:12:ALA:HA	2:CX:15:GLN:HE21	1.81	0.46
1:DR:41:GLU:HG2	2:DS:24:MET:HE2	1.97	0.46
1:DR:85:MET:SD	1:DR:129:SER:OG	2.73	0.46
1:AN:145:ASP:HA	1:AN:148:GLU:HG2	1.98	0.46
2:AQ:144:ASP:N	2:AQ:144:ASP:OD1	2.42	0.46
6:BD:801:ILE:HD12	6:BD:822:TYR:HB3	1.98	0.46
2:BI:126:THR:HG22	9:BI:200:CYC:H3C	1.96	0.46
2:BP:37:ARG:HH21	2:BP:99:GLY:HA2	1.81	0.46
1:BQ:150:SER:HA	1:BQ:153:PHE:HB2	1.97	0.46
2:BS:83:ARG:NH2	2:BS:84:ASP:OD1	2.47	0.46
7:DE:202:ARG:HH21	7:DE:206:GLN:HG2	1.81	0.46
2:DO:91:TYR:OH	2:DO:107:ARG:NH2	2.48	0.46
1:AN:84:ASP:OD2	9:AN:200:CYC:ND	2.48	0.46
2:AO:113:LYS:HB3	6:BD:439:ARG:HH21	1.80	0.46
7:BF:214:ASN:O	7:BF:217:ASN:ND2	2.42	0.46
2:DH:102:SER:O	2:DH:106:GLU:HB2	2.15	0.46
2:DH:104:LEU:HD23	2:DH:155:TYR:HD2	1.80	0.46
2:AB:5:ILE:O	2:AB:9:ILE:HB	2.15	0.46
2:AF:83:ARG:HH22	9:BA:200:CYC:HBA2	1.80	0.46
2:AQ:115:THR:HG23	6:BD:461:ILE:HG13	1.97	0.46
2:AS:60:LEU:HD11	2:AS:129:ALA:HB2	1.98	0.46
6:BD:597:TYR:HB3	6:BD:600:LYS:HD2	1.98	0.46
6:BD:666:GLN:O	6:BD:670:ALA:CB	2.63	0.46
1:BJ:105:GLU:OE2	1:BJ:159:LYS:NZ	2.48	0.46

A + a 1	At and D	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:AN:117:ARG:HH22	1:AV:117:ARG:HH21	1.64	0.46
1:CF:84:ASP:OD2	9:CF:200:CYC:ND	2.39	0.46
1:CR:63:PRO:HD2	1:CW:69:GLY:HA3	1.98	0.46
2:CS:74:THR:HG22	1:CT:107:ILE:HG23	1.96	0.46
1:CW:57:ARG:NH1	1:CW:135:GLU:OE2	2.48	0.46
2:DO:57:ALA:HA	2:DO:61:LEU:HB2	1.98	0.46
2:AL:38:VAL:HG13	6:BD:40:LEU:HD22	1.96	0.46
1:AP:95:GLY:HA3	1:AP:104:ILE:HD11	1.97	0.46
1:BH:3:ILE:HD11	1:BO:25:ARG:HD2	1.97	0.46
1:CB:137:ALA:O	1:CB:141:MET:HB3	2.16	0.46
1:CD:105:GLU:OE2	1:CD:159:LYS:NZ	2.48	0.46
5:DD:2:ARG:HG3	5:DD:58:GLY:HA3	1.97	0.46
1:AN:57:ARG:HH12	1:AN:135:GLU:HB2	1.81	0.46
2:AW:2:GLN:O	2:AW:102:SER:OG	2.33	0.46
6:BD:549:GLN:NE2	6:BD:608:ARG:O	2.36	0.46
6:CL:576:ARG:HH12	6:CL:641:ASP:HA	1.80	0.46
1:CP:95:GLY:HA3	1:CP:104:ILE:HD11	1.97	0.46
1:CT:59:PHE:HE1	9:CT:200:CYC:HBC1	1.81	0.46
1:DG:65:ILE:HG21	9:DG:200:CYC:H2C	1.96	0.46
2:DH:3:ASP:O	2:DH:7:ALA:HB2	2.16	0.46
2:DO:122:PRO:HB2	2:DO:125:SER:HB3	1.97	0.46
2:AU:103:ILE:O	2:AU:107:ARG:CB	2.64	0.46
1:BH:25:ARG:HG3	1:BO:25:ARG:HH21	1.80	0.46
2:BI:61:LEU:HD22	9:BJ:200:CYC:HAA1	1.97	0.46
3:BL:104:ILE:HG21	3:BL:156:ILE:HD11	1.98	0.46
1:BY:12:ASP:OD1	2:BZ:90:ARG:NH1	2.43	0.46
1:CB:95:GLY:HA3	1:CB:104:ILE:HD11	1.98	0.46
1:DK:16:ARG:O	2:DL:94:TYR:OH	2.32	0.46
2:DS:144:ASP:N	2:DS:144:ASP:OD1	2.46	0.46
7:DW:219:LEU:HD21	7:DW:223:ARG:HH21	1.81	0.46
2:AF:55:ALA:O	2:AF:59:SER:OG	2.28	0.46
1:AN:114:GLU:HA	1:AN:117:ARG:HG2	1.98	0.46
1:AN:145:ASP:OD1	1:AN:145:ASP:N	2.36	0.46
2:AW:76:ARG:NH1	9:AW:200:CYC:O2D	2.49	0.46
6:BD:699:ALA:HB1	2:DQ:134:LYS:HZ3	1.81	0.46
2:BV:84:ASP:OD2	9:BV:200:CYC:ND	2.40	0.46
1:DG:24:ASP:OD1	1:DG:25:ARG:NH2	2.48	0.46
1:DK:2:SER:OG	1:DK:3:ILE:N	2.49	0.46
1:AC:100:ASP:OD1	1:AC:101:VAL:N	2.49	0.45
3:AE:30:LEU:HD13	2:AF:31:PHE:HD1	1.81	0.45
3:BL:2:SER:O	3:BL:5:SER:OG	2.34	0.45

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
6:CL:74:ARG:HG2	6:CL:201:GLU:HG3	1.98	0.45
6:CL:745:GLN:NE2	6:CL:807:HIS:O	2.44	0.45
1:CR:83:ARG:HH22	9:CR:200:CYC:HAA2	1.81	0.45
1:CY:90:ARG:NH1	2:CZ:16:GLY:O	2.43	0.45
1:DP:12:ASP:OD2	2:DQ:107:ARG:NH1	2.44	0.45
5:BB:30:LEU:HD12	6:BD:572:ASP:HB3	1.98	0.45
1:BJ:7:SER:OG	1:BJ:25:ARG:NH1	2.49	0.45
1:CB:16:ARG:O	2:CC:94:TYR:OH	2.29	0.45
2:DL:2:GLN:OE1	2:DL:10:ASN:ND2	2.36	0.45
1:DP:72:ALA:HA	7:DV:201:ARG:HH21	1.82	0.45
2:AU:65:VAL:HG21	9:AU:200:CYC:HMC2	1.97	0.45
6:BD:710:SER:O	6:BD:716:ARG:NH2	2.43	0.45
2:BI:130:ILE:HG23	2:BI:153:LEU:HD12	1.98	0.45
5:CI:14:THR:OG1	6:CL:388:ASP:OD1	2.33	0.45
1:CP:14:GLU:HB3	1:CP:16:ARG:HD2	1.98	0.45
3:AE:113:LYS:O	3:AE:117:ASN:ND2	2.45	0.45
2:AL:27:LEU:HB3	6:BD:54:LEU:HD21	1.97	0.45
1:AZ:81:CYS:HA	9:AZ:200:CYC:HAC1	1.81	0.45
1:BO:41:GLU:HA	1:BO:44:THR:HG22	1.99	0.45
6:CL:597:TYR:HB3	6:CL:600:LYS:HD2	1.99	0.45
6:CL:694:LEU:HB3	1:DR:83:ARG:HD3	1.99	0.45
1:DA:23:LEU:HD12	2:DB:38:VAL:HG13	1.99	0.45
1:DK:41:GLU:HA	1:DK:44:THR:HG22	1.97	0.45
2:DQ:134:LYS:HE3	2:DQ:134:LYS:HB2	1.82	0.45
1:AA:90:ARG:NH2	2:AF:73:TYR:OH	2.48	0.45
2:AI:87:TYR:OH	6:BD:339:ASN:ND2	2.49	0.45
2:AS:114:GLU:OE2	6:BD:449:SER:N	2.47	0.45
1:AV:16:ARG:O	2:AW:94:TYR:OH	2.33	0.45
5:BB:2:ARG:HE	5:BB:66:LEU:HD13	1.81	0.45
1:BU:117:ARG:HH22	1:CD:117:ARG:HH22	1.65	0.45
2:CQ:104:LEU:HD11	2:CQ:156:ILE:HD11	1.98	0.45
1:DA:72:ALA:HA	1:DA:77:MET:HB3	1.98	0.45
1:DG:137:ALA:O	1:DG:141:MET:HB2	2.17	0.45
2:DL:64:ASP:HA	2:DL:67:ARG:HB2	1.98	0.45
1:DN:12:ASP:HA	2:DO:90:ARG:HH21	1.81	0.45
9:DN:200:CYC:HBC2	9:DN:200:CYC:H2C	1.70	0.45
7:DW:241:ASN:N	7:DW:241:ASN:OD1	2.49	0.45
2:AD:55:ALA:O	2:AD:59:SER:CB	2.65	0.45
4:AK:84:ARG:NH2	4:AK:85:ASP:OD1	2.49	0.45
2:AS:3:ASP:H	2:AS:6:THR:HG1	1.64	0.45
5:BB:39:GLU:OE1	6:BD:576:ARG:NH2	2.41	0.45

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:BO:146:ALA:O	1:BO:150:SER:OG	2.32	0.45
4:BR:162:ARG:NH2	2:BV:100:ASP:OD2	2.41	0.45
9:BW:200:CYC:HB	9:BW:200:CYC:HMA1	1.82	0.45
1:CB:4:VAL:HG22	1:CB:26:ILE:HD12	1.99	0.45
2:CQ:144:ASP:N	2:CQ:144:ASP:OD1	2.49	0.45
1:DN:65:ILE:HG22	1:DN:72:ALA:HB3	1.99	0.45
1:AC:23:LEU:HD22	2:AD:38:VAL:HG13	1.99	0.45
2:CG:74:THR:HB	2:CG:77:ARG:HG2	1.99	0.45
2:DH:153:LEU:HD23	2:DH:156:ILE:HD12	1.99	0.45
2:DJ:105:ASP:HA	2:DJ:109:LEU:HB2	1.99	0.45
2:AF:33:SER:O	2:AF:37:ARG:HG3	2.17	0.45
1:BH:57:ARG:NH2	1:BH:60:GLN:OE1	2.50	0.45
1:BH:110:VAL:HB	2:BM:76:ARG:HG2	1.98	0.45
2:BK:36:LEU:HA	2:BK:39:ARG:HG2	1.98	0.45
2:DH:3:ASP:O	2:DH:7:ALA:CB	2.65	0.45
2:DO:71:ASN:OD1	2:DO:77:ARG:NH1	2.50	0.45
2:DQ:83:ARG:NH1	9:DQ:200:CYC:O1A	2.45	0.45
1:AC:142:SER:O	1:AC:146:ALA:N	2.50	0.45
1:BO:47:ARG:NH2	1:BO:86:ASP:OD2	2.50	0.45
6:CL:241:ARG:N	6:CL:251:LEU:O	2.48	0.45
2:CQ:74:THR:HG22	1:CR:107:ILE:HG23	1.99	0.45
1:DG:103:PRO:HA	1:DG:106:GLU:HG2	1.98	0.45
2:AB:144:ASP:OD1	2:AB:144:ASP:N	2.48	0.45
6:BD:308:GLN:HB3	6:BD:314:ILE:HG12	1.98	0.45
2:BS:64:ASP:HA	2:BS:67:ARG:HB2	1.99	0.45
1:CB:126:VAL:HG22	9:CB:200:CYC:HMC3	1.99	0.45
2:AB:134:LYS:HZ1	2:AB:154:ASP:HB3	1.80	0.44
2:AF:57:ALA:HA	2:AF:61:LEU:HD22	1.99	0.44
1:AH:24:ASP:HA	1:AH:27:LYS:HG2	1.99	0.44
1:AV:49:THR:OG1	1:AV:53:GLN:OE1	2.36	0.44
2:AW:88:TYR:OH	2:AW:116:TYR:OH	2.35	0.44
1:AX:66:VAL:HG21	7:BF:235:VAL:HG21	1.98	0.44
5:BB:29:LYS:HE2	6:BD:574:SER:HB3	1.99	0.44
2:BI:41:ALA:HB2	2:BI:97:LEU:HD11	1.99	0.44
2:BV:14:VAL:HG13	2:BZ:69:GLY:HA2	1.99	0.44
1:CB:81:CYS:HA	9:CB:200:CYC:HAC1	1.81	0.44
5:DD:34:ASP:OD1	5:DD:34:ASP:N	2.50	0.44
1:DK:29:PHE:O	1:DK:36:ARG:NH2	2.49	0.44
2:AU:61:LEU:HD22	9:AV:200:CYC:HAA1	2.00	0.44
2:CE:150:GLY:HA2	2:CE:153:LEU:HB2	1.98	0.44
2:CG:74:THR:HG22	2:CG:76:ARG:H	1.81	0.44

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:CU:1:MET:HE3	2:CU:103:ILE:HD12	1.99	0.44
1:CW:91:LEU:HD23	1:CW:94:TYR:HD2	1.82	0.44
2:CZ:126:THR:O	2:CZ:130:ILE:HD12	2.17	0.44
1:DA:84:ASP:OD2	9:DA:200:CYC:ND	2.50	0.44
1:DG:59:PHE:HE1	9:DG:200:CYC:HBC1	1.83	0.44
1:DK:14:GLU:HB3	1:DK:16:ARG:HG2	1.98	0.44
1:AN:27:LYS:HG2	2:AO:38:VAL:HG11	1.99	0.44
1:AR:2:SER:N	1:AR:5:THR:OG1	2.49	0.44
2:BS:6:THR:HA	2:BS:9:ILE:HG22	2.00	0.44
2:BV:64:ASP:HA	2:BV:67:ARG:HB2	1.99	0.44
2:BV:113:LYS:HB3	6:CL:439:ARG:HH21	1.83	0.44
1:CD:62:ARG:HH12	1:CD:124:GLU:HG2	1.83	0.44
6:CL:175:ILE:O	6:CL:179:THR:HB	2.16	0.44
6:CL:244:PRO:HG2	6:CL:248:ILE:HD13	1.99	0.44
6:CL:666:GLN:O	6:CL:670:ALA:CB	2.65	0.44
1:CP:52:LYS:NZ	7:DW:240:ILE:O	2.49	0.44
2:DJ:129:ALA:O	2:DJ:133:ILE:HD12	2.17	0.44
1:DN:80:THR:OG1	1:DN:83:ARG:NH1	2.50	0.44
1:DP:112:VAL:HA	1:DP:115:MET:HB2	1.99	0.44
2:AB:105:ASP:HA	2:AB:109:LEU:HD12	1.99	0.44
1:AC:37:LEU:HD21	2:AD:28:LYS:HE3	1.99	0.44
4:AK:114:ARG:NH2	4:AK:164:LEU:O	2.51	0.44
2:BI:102:SER:HA	2:BI:105:ASP:HB2	1.99	0.44
2:BK:52:VAL:HG13	2:BK:89:LEU:HD12	1.98	0.44
2:BM:106:GLU:HG2	2:BM:107:ARG:HG3	1.99	0.44
2:BP:51:ILE:HD11	2:BP:140:LEU:HD22	2.00	0.44
1:CD:36:ARG:HH22	1:CD:99:GLY:HA2	1.83	0.44
6:CL:821:GLN:O	6:CL:825:ILE:HD12	2.18	0.44
1:CP:103:PRO:HA	1:CP:106:GLU:HG2	2.00	0.44
2:CQ:65:VAL:HG12	2:CQ:72:MET:HB2	1.99	0.44
1:AX:64:ASP:OD1	1:AX:64:ASP:N	2.50	0.44
1:BQ:12:ASP:OD2	4:BR:108:ARG:NH1	2.41	0.44
1:DI:153:PHE:O	1:DI:157:ILE:HD12	2.18	0.44
2:DL:144:ASP:N	2:DL:144:ASP:OD1	2.50	0.44
2:DO:144:ASP:OD1	2:DO:144:ASP:N	2.50	0.44
1:DR:58:LEU:HD22	1:DR:129:SER:HB2	1.99	0.44
7:DV:201:ARG:H	7:DV:201:ARG:HD3	1.81	0.44
3:AE:94:TYR:OH	2:AF:17:LYS:O	2.35	0.44
2:AF:130:ILE:HB	2:AF:153:LEU:HD12	1.99	0.44
1:AP:87:TYR:HB3	9:AP:200:CYC:HBB3	1.99	0.44
9:AQ:200:CYC:HB	9:AQ:200:CYC:HMA1	1.82	0.44

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
9:AW:200:CYC:HHD	9:AW:200:CYC:HAC1	1.84	0.44
1:AZ:105:GLU:HA	1:AZ:109:LEU:HB3	2.00	0.44
9:BI:200:CYC:HHD	9:BI:200:CYC:HAC1	1.69	0.44
1:BJ:22:GLU:HG3	1:BJ:25:ARG:HH21	1.83	0.44
2:BK:17:LYS:HZ1	2:BK:20:ASP:HB3	1.82	0.44
2:BZ:107:ARG:NH1	6:CL:593:TRP:O	2.51	0.44
6:CL:85:LEU:HG	6:CL:153:LEU:HD21	2.00	0.44
1:CT:14:GLU:OE1	1:CT:16:ARG:NE	2.43	0.44
2:CX:113:LYS:NZ	2:CX:160:LEU:O	2.41	0.44
1:DA:150:SER:HA	1:DA:153:PHE:HB2	1.98	0.44
1:DG:87:TYR:HD1	1:DG:90:ARG:HH12	1.64	0.44
9:DL:200:CYC:HB	9:DL:200:CYC:HMA1	1.83	0.44
1:DN:82:LEU:HA	1:DN:85:MET:HG3	1.98	0.44
2:DO:74:THR:HG22	1:DP:107:ILE:HG23	1.99	0.44
9:DQ:200:CYC:HB	9:DQ:200:CYC:HMA1	1.83	0.44
2:AD:105:ASP:N	2:AD:105:ASP:OD1	2.50	0.44
1:AN:35:ALA:O	1:AN:39:ILE:HD12	2.17	0.44
6:BD:758:SER:O	6:BD:761:THR:OG1	2.30	0.44
2:BM:90:ARG:NH1	2:BM:94:TYR:OH	2.44	0.44
2:BP:109:LEU:HD13	2:BP:159:GLY:HA3	1.98	0.44
2:BS:108:VAL:O	6:CL:420:TYR:OH	2.33	0.44
2:CC:40:ALA:HB3	2:CC:96:MET:HE1	2.00	0.44
1:CD:95:GLY:HA3	1:CD:104:ILE:HD11	1.99	0.44
1:CF:150:SER:HA	1:CF:153:PHE:HB2	2.00	0.44
6:CL:580:LYS:NZ	6:CL:637:GLU:OE1	2.41	0.44
1:CR:12:ASP:OD2	2:CS:107:ARG:NH1	2.50	0.44
9:CU:200:CYC:HAC1	9:CU:200:CYC:HHD	1.79	0.44
1:DG:14:GLU:HG3	1:DG:16:ARG:HD3	1.98	0.44
1:DG:16:ARG:O	2:DH:94:TYR:OH	2.36	0.44
1:DG:30:VAL:HG11	2:DH:34:GLY:HA3	1.98	0.44
1:DG:107:ILE:HG23	2:DL:74:THR:HG22	1.99	0.44
1:AX:5:THR:OG1	2:AY:3:ASP:OD2	2.36	0.44
2:BP:144:ASP:OD1	2:BP:144:ASP:N	2.51	0.44
9:BP:200:CYC:HHD	9:BP:200:CYC:HAC1	1.83	0.44
2:BS:3:ASP:N	2:BS:6:THR:OG1	2.49	0.44
5:CI:15:ARG:NH1	5:CI:21:GLU:O	2.50	0.44
2:CQ:102:SER:O	2:CQ:106:GLU:HB2	2.17	0.44
2:DL:65:VAL:HG12	2:DL:72:MET:HB2	2.00	0.44
2:DS:112:LEU:HD13	9:DS:200:CYC:HMB3	2.00	0.44
2:AB:72:MET:HA	2:AB:77:ARG:HG2	2.00	0.44
2:AO:104:LEU:HD11	2:AO:152:TYR:HB3	2.00	0.44

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:AV:84:ASP:OD2	9:AV:200:CYC:ND	2.51	0.44
1:BJ:64:ASP:OD1	1:BJ:64:ASP:N	2.51	0.44
2:CC:65:VAL:HG12	2:CC:72:MET:HB2	2.00	0.44
9:CG:200:CYC:HAC1	9:CG:200:CYC:HHD	1.85	0.44
8:CO:104:GLY:O	8:CO:111:LYS:NZ	2.49	0.44
2:DQ:104:LEU:HB3	2:DQ:109:LEU:HD23	1.99	0.44
7:DV:243:GLU:O	7:DV:248:ARG:NH2	2.50	0.44
1:AA:44:THR:OG1	1:AA:47:ARG:NH2	2.42	0.43
1:AN:72:ALA:HA	1:AN:77:MET:HB3	2.00	0.43
2:AY:109:LEU:HD13	2:AY:159:GLY:HA3	2.00	0.43
5:BA:2:ARG:H	5:BA:2:ARG:HD3	1.83	0.43
5:BA:13:GLN:NE2	5:BA:46:MET:O	2.51	0.43
1:BJ:2:SER:OG	1:BJ:3:ILE:N	2.50	0.43
1:BJ:25:ARG:NE	6:CL:42:GLU:OE2	2.40	0.43
3:BL:21:GLY:O	1:BQ:25:ARG:NH2	2.41	0.43
1:BO:24:ASP:HA	1:BO:27:LYS:HG2	2.00	0.43
1:BU:83:ARG:HG3	8:CO:107:LEU:HD22	2.00	0.43
7:CN:232:ILE:HD12	7:CN:233:PRO:HD2	2.00	0.43
1:CW:150:SER:HA	1:CW:153:PHE:HB2	1.99	0.43
1:DP:77:MET:HE1	7:DV:203:PHE:HD2	1.83	0.43
6:BD:52:LEU:HD11	6:BD:216:ALA:HB2	2.00	0.43
1:CB:90:ARG:NH1	2:CC:16:GLY:O	2.47	0.43
7:DE:240:ILE:O	1:DI:52:LYS:NZ	2.38	0.43
2:DJ:110:ASN:OD1	2:DJ:110:ASN:N	2.52	0.43
1:DP:16:ARG:O	2:DQ:94:TYR:OH	2.29	0.43
2:DS:126:THR:HG23	9:DS:200:CYC:HBC3	2.00	0.43
2:AD:133:ILE:HD12	2:AD:133:ILE:HA	1.86	0.43
2:AL:56:VAL:HG12	2:AL:61:LEU:HG	2.01	0.43
1:AV:144:ASP:OD1	1:AV:144:ASP:N	2.51	0.43
9:BJ:200:CYC:HAC1	9:BJ:200:CYC:HHD	1.75	0.43
2:BK:50:THR:HA	2:BK:53:LYS:HG2	2.00	0.43
3:BL:94:TYR:CG	2:BM:9:ILE:HD11	2.53	0.43
2:BM:55:ALA:O	2:BM:59:SER:OG	2.26	0.43
1:BQ:49:THR:OG1	1:BQ:53:GLN:OE1	2.36	0.43
4:BR:77:ARG:NH2	9:BR:200:CYC:O2D	2.52	0.43
4:BR:82:CYS:HA	9:BR:200:CYC:HAC1	1.79	0.43
2:BX:96:MET:HG3	2:BX:149:MET:HG2	1.99	0.43
1:CF:146:ALA:O	1:CF:150:SER:HB3	2.18	0.43
1:CP:97:VAL:HG11	2:CQ:19:LEU:HD11	2.00	0.43
1:CR:103:PRO:HA	1:CR:106:GLU:HG3	2.00	0.43
2:CS:44:ILE:O	2:CS:48:ALA:HB2	2.17	0.43

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:CT:144:ASP:OD1	1:CT:144:ASP:N	2.51	0.43
1:DI:107:ILE:HG22	9:DI:200:CYC:HBB1	1.99	0.43
1:DK:87:TYR:HD1	1:DK:90:ARG:HH12	1.66	0.43
4:AK:54:ARG:HB2	4:AK:137:MET:HE1	2.00	0.43
2:AY:76:ARG:HB2	1:AZ:110:VAL:HG13	2.01	0.43
1:BJ:104:ILE:HG22	1:BJ:109:LEU:HG	2.00	0.43
2:BM:144:ASP:OD1	2:BM:144:ASP:N	2.51	0.43
2:CQ:64:ASP:HA	2:CQ:67:ARG:HB2	2.00	0.43
1:CR:119:LEU:HD12	9:CR:200:CYC:HBD1	1.99	0.43
1:DA:29:PHE:HE1	1:DA:99:GLY:HA3	1.82	0.43
2:DS:71:ASN:HD22	2:DS:121:VAL:HA	1.82	0.43
1:AA:72:ALA:HA	1:AA:77:MET:HB3	2.00	0.43
1:AR:157:ILE:O	1:AR:161:SER:OG	2.34	0.43
6:BD:436:GLN:NE2	6:BD:440:PRO:O	2.52	0.43
2:CE:88:TYR:OH	2:CE:116:TYR:OH	2.35	0.43
1:CP:21:GLY:O	1:CP:25:ARG:HG2	2.18	0.43
1:CT:64:ASP:OD1	1:CT:64:ASP:N	2.45	0.43
2:CX:51:ILE:O	2:CX:55:ALA:HB2	2.19	0.43
2:DB:112:LEU:HD13	9:DB:200:CYC:HMB3	2.01	0.43
2:DH:73:TYR:OH	1:DI:90:ARG:NH2	2.51	0.43
1:DR:16:ARG:O	2:DS:94:TYR:OH	2.28	0.43
2:AB:61:LEU:HD22	9:AC:200:CYC:HAA1	2.00	0.43
2:AF:127:VAL:HG12	2:AF:131:GLN:HE22	1.84	0.43
2:AL:63:SER:OG	2:AL:64:ASP:N	2.51	0.43
6:BD:725:LYS:HE2	6:BD:725:LYS:HB3	1.90	0.43
1:DN:71:ASN:HD22	1:DN:121:THR:HG22	1.84	0.43
1:DR:64:ASP:OD1	1:DR:64:ASP:N	2.52	0.43
6:BD:513:PHE:HB3	6:BD:542:LEU:HD12	2.00	0.43
1:BJ:16:ARG:NH1	1:BJ:17:TYR:O	2.51	0.43
1:BW:87:TYR:HB3	9:BW:200:CYC:HBB3	1.99	0.43
6:CL:270:LYS:HB2	6:CL:273:LEU:HG	1.99	0.43
1:CT:12:ASP:OD2	2:CU:107:ARG:NH1	2.46	0.43
1:DG:50:ILE:HD13	1:DG:136:VAL:HG12	2.00	0.43
1:BJ:62:ARG:NH2	1:BJ:64:ASP:OD2	2.41	0.43
2:BM:85:LEU:HD23	2:BM:88:TYR:HD2	1.83	0.43
1:BQ:16:ARG:O	4:BR:95:TYR:OH	2.32	0.43
1:BQ:144:ASP:OD1	1:BQ:144:ASP:N	2.52	0.43
4:BR:58:GLN:HG2	4:BR:133:ILE:HD13	2.01	0.43
2:BX:83:ARG:NH1	2:BX:84:ASP:OD1	2.52	0.43
5:CI:55:LEU:HD22	5:CI:60:PRO:HG3	2.01	0.43
9:DN:200:CYC:HBB3	2:DS:74:THR:HA	2.01	0.43

A + a 1	At and D	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:DS:3:ASP:HA	2:DS:98:ALA:HB1	2.01	0.43
9:DS:200:CYC:HAC1	9:DS:200:CYC:HHD	1.78	0.43
1:AA:114:GLU:HB3	2:AF:82:ILE:HD11	2.00	0.43
2:AF:64:ASP:HA	2:AF:67:ARG:HE	1.84	0.43
1:AN:115:MET:HE2	2:AS:75:THR:HG22	2.00	0.43
2:AY:77:ARG:HG2	9:AY:200:CYC:HBD1	2.01	0.43
4:BR:151:ASP:N	4:BR:151:ASP:OD1	2.52	0.43
2:BZ:144:ASP:OD1	2:BZ:144:ASP:N	2.52	0.43
6:CL:17:TYR:HA	6:CL:260:ALA:HB1	2.00	0.43
6:CL:845:LEU:HG	5:DU:42:ARG:HD2	2.00	0.43
1:CP:49:THR:OG1	1:CP:53:GLN:OE1	2.37	0.43
2:CQ:108:VAL:HG12	9:CQ:200:CYC:HAB1	2.00	0.43
1:CW:37:LEU:HD12	1:CW:37:LEU:HA	1.86	0.43
1:DA:50:ILE:HD13	1:DA:136:VAL:HG12	2.01	0.43
1:AP:2:SER:OG	1:AP:3:ILE:N	2.52	0.43
1:AP:105:GLU:HA	1:AP:109:LEU:HB2	2.01	0.43
1:BY:109:LEU:HB3	1:BY:159:LYS:HG2	2.01	0.43
1:CD:91:LEU:HD13	1:CD:91:LEU:HA	1.90	0.43
2:CG:15:GLN:HE22	2:CG:17:LYS:HB2	1.84	0.43
2:CZ:73:TYR:OH	1:DA:90:ARG:NH2	2.51	0.43
1:DK:23:LEU:HD12	2:DL:38:VAL:HG22	2.01	0.43
2:DQ:85:LEU:HG	9:DQ:200:CYC:HBC1	2.01	0.43
2:DQ:134:LYS:NZ	2:DQ:154:ASP:OD2	2.51	0.43
2:AQ:46:ALA:HB2	1:AX:154:ASP:HB3	2.00	0.42
2:AY:63:SER:H	2:AY:66:THR:HG22	1.82	0.42
2:AY:130:ILE:HD13	2:AY:130:ILE:HA	1.87	0.42
9:BA:200:CYC:HHD	9:BA:200:CYC:HAC1	1.84	0.42
2:BK:37:ARG:NH1	2:BK:96:MET:O	2.41	0.42
2:BV:104:LEU:HD11	2:BV:152:TYR:HB3	2.01	0.42
2:CC:2:GLN:HB3	2:CC:102:SER:HB3	2.01	0.42
2:CC:134:LYS:HG3	2:CC:150:GLY:HA2	2.00	0.42
1:CD:14:GLU:HB2	1:CD:16:ARG:HH11	1.83	0.42
6:CL:479:ASP:N	6:CL:479:ASP:OD1	2.42	0.42
1:DG:144:ASP:OD1	1:DG:144:ASP:N	2.51	0.42
9:DG:200:CYC:HB	9:DG:200:CYC:HMA1	1.84	0.42
1:DR:23:LEU:HB3	2:DS:38:VAL:HG13	2.01	0.42
9:AC:200:CYC:HBC2	9:AC:200:CYC:H2C	1.78	0.42
3:AE:113:LYS:HG3	3:AE:123:VAL:HG21	2.00	0.42
2:AW:55:ALA:O	2:AW:59:SER:CB	2.67	0.42
2:AY:53:LYS:HZ2	1:AZ:119:LEU:HD13	1.84	0.42
6:BD:485:ILE:HG21	6:BD:665:LEU:HD22	2.00	0.42

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	$distance ({ m \AA})$	overlap (Å)
1:BH:95:GLY:HA3	1:BH:104:ILE:HD11	2.01	0.42
3:BL:69:GLY:N	3:BL:73:TYR:OH	2.52	0.42
1:BU:27:LYS:HG3	2:BV:38:VAL:HG11	2.00	0.42
2:BX:64:ASP:N	2:BX:64:ASP:OD1	2.52	0.42
1:DP:50:ILE:HG13	1:DP:136:VAL:HG13	2.01	0.42
5:DU:34:ASP:N	5:DU:34:ASP:OD1	2.53	0.42
9:AA:200:CYC:HAC1	9:AA:200:CYC:HHD	1.79	0.42
1:AC:105:GLU:HG3	1:AC:109:LEU:HB3	2.01	0.42
2:AD:83:ARG:NH2	9:AD:200:CYC:O2A	2.52	0.42
1:AH:43:LEU:HD12	1:AH:89:LEU:HD11	2.01	0.42
1:AH:142:SER:O	1:AH:146:ALA:N	2.48	0.42
2:AI:160:LEU:HD23	2:AI:160:LEU:HA	1.90	0.42
1:AV:97:VAL:HG21	2:AW:19:LEU:HD11	2.00	0.42
2:AY:74:THR:HG22	2:AY:76:ARG:H	1.84	0.42
5:BA:3:MET:HG2	5:BA:32:PRO:HA	2.00	0.42
2:BK:126:THR:HG23	9:BK:200:CYC:HBC3	2.01	0.42
1:BW:66:VAL:HB	1:DA:68:PRO:HG2	2.01	0.42
2:CE:65:VAL:HG12	2:CE:72:MET:HB2	2.01	0.42
1:DA:113:ARG:NH2	1:DA:160:MET:O	2.52	0.42
2:DO:63:SER:H	2:DO:66:THR:HG22	1.84	0.42
3:AE:49:LYS:O	3:AE:53:GLN:NE2	2.53	0.42
1:AJ:104:ILE:H	1:AJ:104:ILE:HG13	1.60	0.42
2:AL:16:GLY:O	6:BD:161:ARG:NH1	2.52	0.42
2:AY:65:VAL:HA	2:AY:70:GLY:HA3	2.01	0.42
6:BD:606:HIS:CE1	6:BD:612:ARG:HH21	2.37	0.42
3:BL:127:VAL:HB	3:BL:157:ILE:HG23	2.01	0.42
2:BP:69:GLY:HA2	4:BR:14:LEU:HD12	2.01	0.42
1:BQ:50:ILE:HA	1:BQ:136:VAL:HG11	2.02	0.42
1:BQ:128:GLN:OE1	1:BQ:131:ARG:NH1	2.52	0.42
4:BR:47:ASN:ND2	4:BR:141:MET:SD	2.93	0.42
9:BS:200:CYC:HMB1	9:BS:200:CYC:HAB1	1.92	0.42
2:DH:2:GLN:N	2:DH:102:SER:OG	2.53	0.42
2:DH:51:ILE:HG21	2:DH:137:THR:HG23	2.01	0.42
1:DN:12:ASP:OD2	2:DO:107:ARG:NH1	2.51	0.42
4:AK:62:GLU:OE1	4:AK:129:ARG:NE	2.53	0.42
2:AL:17:LYS:O	6:BD:165:TYR:OH	2.38	0.42
2:AY:112:LEU:HD13	9:AY:200:CYC:HMB3	2.00	0.42
6:BD:348:ARG:HH21	6:BD:398:LEU:HD11	1.85	0.42
6:BD:576:ARG:HG3	6:BD:645:TYR:HE1	1.84	0.42
1:BH:5:THR:OG1	2:BI:1:MET:SD	2.72	0.42
1:BH:27:LYS:HE3	2:BI:38:VAL:HG11	2.00	0.42

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:BW:95:GLY:HA3	1:BW:104:ILE:HD11	2.00	0.42
1:BW:144:ASP:N	1:BW:144:ASP:OD1	2.52	0.42
2:DQ:12:ALA:HA	2:DQ:15:GLN:HE21	1.85	0.42
2:AD:77:ARG:NE	9:AD:200:CYC:O2D	2.50	0.42
2:AY:81:CYS:HA	9:AY:200:CYC:HAC1	1.89	0.42
2:AY:106:GLU:HG3	2:AY:107:ARG:HG3	2.00	0.42
1:BY:150:SER:O	1:BY:154:ASP:HB2	2.20	0.42
1:CR:27:LYS:HE2	1:CR:27:LYS:HB2	1.80	0.42
7:DE:229:ALA:HA	1:DN:66:VAL:HG13	2.02	0.42
2:DH:97:LEU:HD23	2:DH:97:LEU:HA	1.91	0.42
1:DK:48:GLU:HA	1:DK:51:VAL:HG12	2.01	0.42
1:DN:123:ILE:HA	1:DN:126:VAL:HG12	2.02	0.42
2:AF:113:LYS:NZ	2:AF:117:ASN:OD1	2.44	0.42
1:AH:39:ILE:HG23	1:AH:141:MET:HE1	2.01	0.42
5:BB:9:CYS:HB3	5:BB:26:TYR:HD1	1.84	0.42
6:BD:251:LEU:HD11	6:BD:407:GLU:HA	2.01	0.42
1:BH:25:ARG:HG3	1:BO:25:ARG:HE	1.85	0.42
1:BO:58:LEU:HD13	1:BO:129:SER:HB2	2.01	0.42
9:CG:200:CYC:HAD2	9:CG:200:CYC:HMD1	1.92	0.42
2:CQ:104:LEU:HD23	2:CQ:155:TYR:HD2	1.84	0.42
2:CQ:119:LEU:HD13	9:CQ:200:CYC:HBD1	2.01	0.42
1:CR:49:THR:OG1	1:CR:53:GLN:OE1	2.36	0.42
2:CS:126:THR:HG23	9:CS:200:CYC:HBC3	2.01	0.42
2:DB:89:LEU:HD12	2:DB:133:ILE:HD11	2.02	0.42
7:DF:232:ILE:HD12	7:DF:233:PRO:HD2	2.01	0.42
2:DJ:131:GLN:HA	2:DJ:134:LYS:HG2	2.02	0.42
2:AB:52:VAL:HG21	2:AB:86:ASP:HB3	2.01	0.42
3:AE:97:LEU:HD23	3:AE:97:LEU:HA	1.85	0.42
2:AF:105:ASP:HA	2:AF:109:LEU:HB2	2.01	0.42
2:AL:3:ASP:N	2:AL:6:THR:OG1	2.47	0.42
2:AL:64:ASP:HA	2:AL:67:ARG:HG2	2.02	0.42
9:AL:200:CYC:O2A	6:BD:298:TYR:OH	2.37	0.42
1:AV:112:VAL:HA	1:AV:115:MET:HB3	2.01	0.42
2:AW:112:LEU:HD11	9:AW:200:CYC:HHB	2.01	0.42
1:AX:91:LEU:HD11	9:AX:200:CYC:HBB1	2.02	0.42
6:BD:425:ARG:HD3	6:BD:429:GLN:HB2	2.02	0.42
1:BU:52:LYS:HE3	1:BU:52:LYS:HB2	1.82	0.42
1:CR:25:ARG:NH2	1:DA:25:ARG:HA	2.35	0.42
1:CT:95:GLY:HA3	1:CT:104:ILE:HD11	2.02	0.42
1:CY:95:GLY:HA3	1:CY:104:ILE:HD11	2.01	0.42
2:CZ:123:ILE:O	2:CZ:126:THR:OG1	2.30	0.42

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:AO:144:ASP:N	2:AO:144:ASP:OD1	2.49	0.42
9:AP:200:CYC:HMA1	9:AP:200:CYC:HB	1.85	0.42
2:AU:109:LEU:HD13	2:AU:159:GLY:HA3	2.00	0.42
1:AV:91:LEU:HD12	1:AV:104:ILE:HA	2.02	0.42
1:BH:137:ALA:O	1:BH:141:MET:CB	2.67	0.42
2:BZ:147:LYS:NZ	8:CO:91:GLY:O	2.41	0.42
1:CB:20:PRO:HA	1:CB:23:LEU:HD12	2.01	0.42
1:CB:72:ALA:HA	1:CB:77:MET:HB3	2.00	0.42
6:CL:152:SER:OG	9:CL:902:CYC:H3C	2.19	0.42
1:CW:150:SER:O	1:CW:154:ASP:HB2	2.20	0.42
5:DD:10:VAL:HG22	5:DD:48:GLY:HA3	2.02	0.42
1:DG:109:LEU:HD11	1:DG:160:MET:HB2	2.02	0.42
1:DI:27:LYS:HE2	2:DJ:38:VAL:HG11	2.02	0.42
1:DP:76:GLU:OE1	7:DV:202:ARG:NH2	2.53	0.42
1:BJ:21:GLY:HA3	6:CL:20:VAL:HG21	2.02	0.42
2:BM:63:SER:H	2:BM:66:THR:HG22	1.85	0.42
9:BO:200:CYC:O2D	2:BS:62:TYR:OH	2.34	0.42
1:BY:95:GLY:HA3	1:BY:104:ILE:HD11	2.01	0.42
2:CG:121:VAL:HA	2:CG:122:PRO:HD3	1.95	0.42
9:CT:200:CYC:HBC2	9:CT:200:CYC:H2C	1.75	0.42
9:CU:200:CYC:HB	9:CU:200:CYC:HMA1	1.84	0.42
9:CX:200:CYC:HHD	9:CX:200:CYC:HAC1	1.77	0.42
9:CZ:200:CYC:H2C	9:CZ:200:CYC:HBC2	1.74	0.42
1:DR:104:ILE:H	1:DR:104:ILE:HG13	1.70	0.42
1:AA:27:LYS:HG3	2:AB:38:VAL:HG11	2.01	0.41
1:AA:83:ARG:HH22	9:AA:200:CYC:HBA2	1.85	0.41
1:AA:103:PRO:HA	1:AA:106:GLU:HG2	2.01	0.41
2:AB:105:ASP:HB3	2:AB:155:TYR:HE2	1.84	0.41
2:AB:113:LYS:NZ	2:AB:160:LEU:O	2.44	0.41
1:AC:104:ILE:HG22	1:AC:109:LEU:HB2	2.01	0.41
1:AV:114:GLU:HA	1:AV:117:ARG:HB3	2.01	0.41
2:BI:115:THR:HG21	9:BI:200:CYC:HMA2	2.01	0.41
1:BJ:95:GLY:HA3	1:BJ:104:ILE:HD11	2.01	0.41
1:BY:126:VAL:HG13	9:BY:200:CYC:HBC3	2.02	0.41
2:CE:110:ASN:OD1	2:CE:110:ASN:N	2.46	0.41
6:CL:566:ILE:HD13	6:CL:566:ILE:HA	1.87	0.41
6:CL:593:TRP:CE2	6:CL:632:PHE:HB2	2.55	0.41
2:DB:47:ASN:HD22	2:DB:140:LEU:HD11	1.85	0.41
1:DG:109:LEU:HD13	1:DG:112:VAL:HG11	2.00	0.41
1:DI:23:LEU:HD12	2:DJ:38:VAL:HG13	2.02	0.41
1:DK:49:THR:O	1:DK:53:GLN:NE2	2.48	0.41

Atom-1	Atom-2	Interatomic	Clash
	Atom-2	distance (Å)	overlap (Å)
2:DQ:144:ASP:OD1	2:DQ:144:ASP:N	2.53	0.41
1:AA:91:LEU:HD23	1:AA:91:LEU:HA	1.84	0.41
4:AK:98:ILE:HD13	4:AK:98:ILE:HA	1.95	0.41
1:AN:25:ARG:HH12	1:AZ:25:ARG:HH11	1.67	0.41
1:AV:154:ASP:HA	1:AV:157:ILE:HD12	2.02	0.41
2:AW:126:THR:HG22	9:AW:200:CYC:HBC3	2.01	0.41
1:AX:57:ARG:HG3	1:AX:60:GLN:NE2	2.36	0.41
2:AY:81:CYS:HA	9:AY:200:CYC:HHD	2.02	0.41
9:AY:200:CYC:OB	5:BB:21:GLU:N	2.47	0.41
1:AZ:95:GLY:HA3	1:AZ:104:ILE:HD11	2.01	0.41
5:BB:31:VAL:HG11	5:BB:39:GLU:HG2	2.02	0.41
6:BD:353:ARG:NH1	6:BD:354:GLY:O	2.50	0.41
1:BY:134:LYS:HD2	1:BY:150:SER:HB3	2.00	0.41
6:CL:190:CYS:SG	6:CL:191:SER:N	2.93	0.41
2:CQ:51:ILE:HG22	2:CQ:133:ILE:HD13	2.02	0.41
1:DA:134:LYS:HD2	1:DA:150:SER:HB2	2.02	0.41
1:DI:14:GLU:OE2	1:DI:16:ARG:NE	2.47	0.41
1:DK:77:MET:H	1:DK:77:MET:HG2	1.72	0.41
1:AC:5:THR:OG1	2:AD:3:ASP:OD2	2.26	0.41
2:AD:71:ASN:HD22	2:AD:121:VAL:HA	1.86	0.41
5:BA:39:GLU:OE2	5:BA:42:ARG:NH2	2.38	0.41
6:BD:851:ASP:OD1	6:BD:851:ASP:N	2.52	0.41
1:BH:72:ALA:HA	1:BH:77:MET:HB3	2.02	0.41
2:BM:37:ARG:NH1	2:BM:148:GLU:OE2	2.52	0.41
1:BQ:24:ASP:HA	1:BQ:27:LYS:HG2	2.02	0.41
2:BZ:119:LEU:HB3	2:BZ:121:VAL:HG23	2.02	0.41
2:CQ:106:GLU:OE2	5:DD:1:MET:N	2.44	0.41
2:CS:112:LEU:HD13	9:CS:200:CYC:HMB3	2.01	0.41
9:DB:200:CYC:HHD	9:DB:200:CYC:HAC1	1.83	0.41
1:DP:105:GLU:HA	1:DP:109:LEU:HB2	2.02	0.41
1:AC:104:ILE:O	1:AC:108:GLY:C	2.58	0.41
4:AK:161:THR:O	4:AK:165:SER:CB	2.69	0.41
1:AR:16:ARG:O	2:AS:94:TYR:OH	2.35	0.41
2:AY:106:GLU:OE2	2:AY:107:ARG:NH1	2.54	0.41
6:BD:239:LYS:O	6:BD:253:LEU:N	2.50	0.41
9:BD:901:CYC:HAC1	9:BD:901:CYC:HHD	1.85	0.41
2:BV:112:LEU:HD13	9:BV:200:CYC:HMB3	2.00	0.41
2:BX:110:ASN:OD1	2:BX:110:ASN:N	2.51	0.41
2:CS:55:ALA:O	2:CS:59:SER:OG	2.31	0.41
2:CS:113:LYS:NZ	2:CS:160:LEU:O	2.53	0.41
9:CU:200:CYC:HAB1	9:CU:200:CYC:HMB1	1.89	0.41

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:DD:29:LYS:NZ	5:DD:39:GLU:OE2	2.42	0.41
1:DG:100:ASP:OD2	1:DG:102:THR:OG1	2.32	0.41
2:AD:144:ASP:N	2:AD:144:ASP:OD1	2.54	0.41
1:AJ:153:PHE:O	1:AJ:157:ILE:HG12	2.21	0.41
1:AR:33:GLY:HA2	1:AR:36:ARG:HD2	2.02	0.41
1:BO:97:VAL:HG13	2:BP:27:LEU:HD21	2.02	0.41
1:BQ:87:TYR:HB3	9:BQ:200:CYC:HBB3	2.02	0.41
1:BY:63:PRO:HD2	1:CF:69:GLY:HA3	2.03	0.41
1:CD:71:ASN:OD1	9:CD:200:CYC:NC	2.43	0.41
2:CE:37:ARG:NH1	2:CE:148:GLU:OE2	2.53	0.41
2:CE:77:ARG:HG3	9:CE:200:CYC:HAD1	2.03	0.41
5:CJ:30:LEU:N	6:CL:572:ASP:O	2.47	0.41
6:CL:485:ILE:HG21	6:CL:665:LEU:HD22	2.02	0.41
6:CL:617:ARG:O	6:CL:621:ASN:HB2	2.20	0.41
6:CL:676:ARG:HB2	6:CL:679:ILE:HG12	2.03	0.41
9:CL:901:CYC:HMA1	9:CL:901:CYC:HB	1.84	0.41
2:CU:85:LEU:HG	9:CU:200:CYC:HBC1	2.03	0.41
2:CX:109:LEU:HD13	2:CX:109:LEU:HA	1.94	0.41
1:DI:8:ILE:HG12	1:DI:18:LEU:HD11	2.01	0.41
9:DL:200:CYC:HHD	9:DL:200:CYC:HAC1	1.79	0.41
2:DO:105:ASP:HA	2:DO:109:LEU:HB2	2.02	0.41
2:AI:102:SER:O	2:AI:106:GLU:CB	2.69	0.41
3:BL:81:CYS:HA	9:BL:200:CYC:HAC1	1.89	0.41
4:BR:126:PRO:HA	4:BR:129:ARG:HB3	2.03	0.41
1:BU:37:LEU:HD13	1:BU:37:LEU:HA	1.91	0.41
1:CD:81:CYS:HA	9:CD:200:CYC:HAC1	1.98	0.41
1:CP:27:LYS:HE2	2:CQ:38:VAL:HG11	2.01	0.41
1:CP:70:GLY:N	1:CY:64:ASP:OD2	2.54	0.41
2:CX:103:ILE:O	2:CX:107:ARG:HB2	2.20	0.41
2:DQ:64:ASP:N	2:DQ:64:ASP:OD1	2.53	0.41
1:AP:27:LYS:HE2	2:AQ:38:VAL:HG11	2.02	0.41
2:AU:16:GLY:O	1:AZ:90:ARG:NH1	2.49	0.41
2:BP:56:VAL:HG12	2:BP:61:LEU:HG	2.03	0.41
9:BY:200:CYC:HMB1	9:BY:200:CYC:HAB1	1.94	0.41
2:CC:112:LEU:HD23	2:CC:112:LEU:HA	1.87	0.41
6:CL:365:PHE:HA	6:CL:368:VAL:HG12	2.02	0.41
1:CP:102:THR:HA	1:CP:105:GLU:HG2	2.03	0.41
2:CZ:129:ALA:O	2:CZ:133:ILE:HG13	2.21	0.41
2:DB:60:LEU:HD12	2:DB:60:LEU:HA	1.92	0.41
1:DG:22:GLU:O	1:DG:26:ILE:HG12	2.21	0.41
2:DQ:60:LEU:HD13	2:DQ:72:MET:HE1	2.03	0.41

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:DS:119:LEU:HD13	9:DS:200:CYC:HBD1	2.03	0.41
5:DU:21:GLU:O	5:DU:25:THR:CB	2.69	0.41
5:DU:39:GLU:OE2	5:DU:42:ARG:NH2	2.42	0.41
1:AC:95:GLY:HA3	1:AC:104:ILE:HD11	2.02	0.41
2:AI:56:VAL:HG12	2:AI:61:LEU:HG	2.03	0.41
2:AQ:107:ARG:HB3	6:BD:457:GLN:HE21	1.85	0.41
9:AQ:200:CYC:HMB1	9:AQ:200:CYC:HAB1	1.93	0.41
2:AS:65:VAL:HG12	2:AS:72:MET:HB2	2.02	0.41
1:AV:91:LEU:HD11	1:AV:107:ILE:HB	2.03	0.41
2:AW:55:ALA:O	2:AW:59:SER:OG	2.29	0.41
2:AY:97:LEU:HD23	2:AY:97:LEU:HA	1.89	0.41
2:AY:107:ARG:O	5:BB:20:ARG:NH1	2.53	0.41
5:BA:2:ARG:HA	5:BA:57:THR:HG22	2.03	0.41
6:BD:504:PHE:HA	6:BD:505:PRO:HD3	1.96	0.41
1:BY:87:TYR:HB3	9:BY:200:CYC:HBB3	2.03	0.41
1:CD:91:LEU:HD12	1:CD:104:ILE:HA	2.03	0.41
9:CE:200:CYC:HHD	9:CE:200:CYC:HAC1	1.87	0.41
9:CS:200:CYC:HMB1	9:CS:200:CYC:HAB1	1.88	0.41
2:CX:66:THR:HA	2:CX:72:MET:HB3	2.03	0.41
2:CX:85:LEU:HD22	2:CX:133:ILE:HD11	2.01	0.41
1:CY:69:GLY:N	7:DE:198:ASN:OD1	2.42	0.41
2:AB:104:LEU:HD23	2:AB:104:LEU:HA	1.87	0.41
1:AC:130:VAL:HB	1:AC:157:ILE:HG22	2.02	0.41
1:AC:143:SER:HA	1:AC:146:ALA:HB3	2.03	0.41
1:AH:57:ARG:HH21	1:AH:132:GLU:HG2	1.86	0.41
1:AJ:64:ASP:N	1:AJ:64:ASP:OD1	2.53	0.41
1:AR:109:LEU:HD13	1:AR:159:LYS:HG3	2.03	0.41
2:AS:84:ASP:OD2	2:AS:116:TYR:OH	2.33	0.41
2:AW:51:ILE:HD11	2:AW:140:LEU:HD23	2.02	0.41
5:BA:30:LEU:HD23	6:BD:313:ASP:HB2	2.02	0.41
5:BB:59:ARG:O	5:BB:62:THR:OG1	2.37	0.41
6:BD:279:ASN:OD1	6:BD:310:ARG:NH1	2.54	0.41
6:BD:726:LEU:HD11	6:BD:735:VAL:HG22	2.02	0.41
1:BO:51:VAL:HG22	1:BO:133:MET:HE1	2.03	0.41
1:BO:142:SER:O	1:BO:146:ALA:N	2.46	0.41
2:BS:154:ASP:HA	2:BS:157:CYS:HB2	2.03	0.41
2:BX:122:PRO:HB2	2:BX:125:SER:HB2	2.02	0.41
2:CC:130:ILE:HA	2:CC:133:ILE:HD12	2.02	0.41
2:CG:12:ALA:HA	2:CG:15:GLN:HE21	1.86	0.41
5:CJ:34:ASP:OD1	5:CJ:34:ASP:N	2.52	0.41
2:CQ:51:ILE:HG21	2:CQ:137:THR:HG23	2.02	0.41

A 4 a m 1	A + amo 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:CS:56:VAL:HG23	2:CS:60:LEU:HD12	2.03	0.41
1:CW:65:ILE:HG22	1:CW:72:ALA:HB3	2.03	0.41
1:DG:21:GLY:O	1:DG:25:ARG:HG2	2.20	0.41
1:DP:91:LEU:HD23	1:DP:91:LEU:HA	1.85	0.41
2:DQ:122:PRO:HB2	2:DQ:125:SER:HB2	2.02	0.41
1:AP:58:LEU:HD22	1:AP:129:SER:HB3	2.02	0.41
9:AU:200:CYC:HBA1	5:BB:33:TYR:CZ	2.56	0.41
1:AV:39:ILE:HG12	1:AV:145:ASP:HB3	2.02	0.41
1:BJ:131:ARG:HG2	1:BJ:157:ILE:HD13	2.03	0.41
3:BL:23:LEU:HA	3:BL:26:ILE:HD12	2.02	0.41
3:BL:151:PRO:HB2	1:BQ:20:PRO:HB3	2.03	0.41
2:BM:64:ASP:HA	2:BM:67:ARG:HE	1.86	0.41
2:BM:114:GLU:OE1	2:BM:114:GLU:N	2.46	0.41
2:BV:74:THR:HG22	2:BV:76:ARG:HG2	2.03	0.41
2:BZ:65:VAL:HG12	2:BZ:72:MET:HB2	2.03	0.41
1:CR:19:SER:OG	1:CR:22:GLU:OE1	2.37	0.41
2:CS:87:TYR:CG	9:CS:200:CYC:HBB3	2.56	0.41
1:CW:36:ARG:NH1	1:CW:148:GLU:OE2	2.54	0.41
7:DE:203:PHE:HZ	7:DW:216:MET:HG2	1.86	0.41
1:DG:117:ARG:HH12	1:DP:117:ARG:HH12	1.67	0.41
2:DH:130:ILE:HG23	2:DH:153:LEU:HD22	2.03	0.41
2:AB:130:ILE:HD13	2:AB:133:ILE:HD12	2.03	0.40
2:AD:85:LEU:HD23	2:AD:88:TYR:HD2	1.86	0.40
2:AF:144:ASP:OD1	2:AF:144:ASP:N	2.54	0.40
1:AN:94:TYR:OH	2:AO:17:LYS:O	2.37	0.40
9:AW:200:CYC:HMB1	9:AW:200:CYC:HAB2	1.95	0.40
1:BO:107:ILE:HG23	2:BS:74:THR:HG22	2.03	0.40
1:BQ:95:GLY:HA3	1:BQ:104:ILE:HD11	2.02	0.40
2:CE:2:GLN:O	2:CE:102:SER:OG	2.35	0.40
9:DG:200:CYC:HMB1	9:DG:200:CYC:HAB1	1.95	0.40
4:AK:42:ALA:HA	4:AK:45:ASN:HD22	1.87	0.40
2:AL:65:VAL:HG12	2:AL:72:MET:HB2	2.02	0.40
1:AR:72:ALA:HA	1:AR:77:MET:HB3	2.04	0.40
6:BD:175:ILE:O	6:BD:179:THR:OG1	2.27	0.40
6:BD:507:SER:O	6:BD:507:SER:OG	2.37	0.40
3:BL:124:PRO:HA	3:BL:127:VAL:HG22	2.02	0.40
4:BR:105:LEU:HD13	4:BR:160:MET:HG3	2.03	0.40
2:BS:138:ALA:HA	2:BS:146:GLY:HA3	2.03	0.40
5:CI:7:THR:HB	5:CI:52:LYS:HB3	2.02	0.40
7:CN:236:SER:OG	7:CN:239:ASN:OD1	2.35	0.40
2:DO:81:CYS:HA	9:DO:200:CYC:HAC1	1.81	0.40

Atom 1	Atom 2	Interatomic	Clash
Atom-1	AtUIII-2	distance (\AA)	overlap (Å)
2:DS:67:ARG:HD3	2:DS:67:ARG:HA	1.82	0.40
2:AW:76:ARG:HB2	1:AX:110:VAL:HG13	2.03	0.40
2:AY:134:LYS:HG3	2:AY:150:GLY:HA2	2.04	0.40
6:BD:203:ARG:HD2	6:BD:221:LEU:HD13	2.03	0.40
1:BH:86:ASP:OD1	2:BI:18:TYR:OH	2.30	0.40
2:BI:109:LEU:O	2:BI:113:LYS:NZ	2.45	0.40
9:BX:200:CYC:HAC1	9:BX:200:CYC:HHD	1.88	0.40
1:BY:91:LEU:HB3	1:BY:104:ILE:HG23	2.02	0.40
6:CL:27:GLN:HG3	6:CL:265:GLN:HE22	1.85	0.40
6:CL:582:LEU:O	6:CL:585:SER:OG	2.34	0.40
1:CR:33:GLY:HA2	1:CR:36:ARG:HE	1.87	0.40
9:CS:200:CYC:HHD	9:CS:200:CYC:HAC1	1.84	0.40
2:CU:36:LEU:HA	2:CU:39:ARG:HG2	2.02	0.40
2:CU:70:GLY:O	2:CU:77:ARG:NH2	2.53	0.40
2:CU:130:ILE:HG23	2:CU:153:LEU:HD22	2.04	0.40
2:DB:64:ASP:HA	2:DB:67:ARG:HB2	2.03	0.40
1:DI:23:LEU:HD22	1:DI:26:ILE:HD12	2.03	0.40
2:DJ:61:LEU:HD22	9:DK:200:CYC:HAA1	2.02	0.40
2:DO:33:SER:HB2	2:DO:37:ARG:HE	1.87	0.40
2:DO:112:LEU:HA	2:DO:115:THR:HG22	2.04	0.40
1:AA:95:GLY:HA3	1:AA:104:ILE:HD11	2.02	0.40
2:AB:81:CYS:HA	9:AB:200:CYC:HAC1	1.93	0.40
2:AB:153:LEU:HD23	2:AB:153:LEU:HA	1.90	0.40
1:AN:2:SER:OG	2:AO:3:ASP:OD2	2.30	0.40
1:AR:2:SER:OG	2:AS:3:ASP:OD2	2.33	0.40
1:AV:58:LEU:HD22	1:AV:129:SER:HB3	2.03	0.40
1:AX:81:CYS:HA	9:AX:200:CYC:HAC1	1.96	0.40
2:AY:62:TYR:OH	9:AZ:200:CYC:O2D	2.33	0.40
2:AY:74:THR:OG1	2:AY:77:ARG:NH2	2.54	0.40
6:BD:235:THR:HA	6:BD:236:PRO:HD3	1.96	0.40
9:BH:200:CYC:HAC1	9:BH:200:CYC:HHD	1.81	0.40
1:CB:63:PRO:O	1:CB:67:SER:OG	2.34	0.40
1:CF:102:THR:O	1:CF:106:GLU:HB2	2.21	0.40
6:CL:559:GLN:HB3	6:CL:587:LEU:HD22	2.04	0.40
6:CL:726:LEU:HD21	6:CL:735:VAL:HA	2.02	0.40
1:CT:29:PHE:HE1	1:CT:99:GLY:HA3	1.86	0.40
2:DB:81:CYS:HA	9:DB:200:CYC:HAC1	2.00	0.40
9:DL:200:CYC:HAB1	9:DL:200:CYC:HMB1	1.93	0.40
2:DQ:62:TYR:OH	9:DR:200:CYC:O2D	2.31	0.40
1:AC:16:ARG:O	2:AD:94:TYR:OH	2.39	0.40
1:AC:82:LEU:HD13	1:AC:85:MET:HG3	2.03	0.40

A 4 1	A 4 amp 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:AC:122:PRO:HG2	9:AC:200:CYC:HMC2	2.02	0.40
3:AE:21:GLY:O	1:AJ:25:ARG:NH2	2.54	0.40
3:AE:103:PRO:O	3:AE:107:THR:OG1	2.27	0.40
1:AJ:63:PRO:O	1:AJ:67:SER:OG	2.33	0.40
2:AL:85:LEU:HG	9:AL:200:CYC:HBC1	2.04	0.40
1:AP:16:ARG:O	2:AQ:94:TYR:OH	2.30	0.40
1:AR:87:TYR:HB3	9:AR:200:CYC:HBB3	2.02	0.40
1:AX:94:TYR:OH	2:AY:17:LYS:O	2.39	0.40
9:AY:200:CYC:HAC1	9:AY:200:CYC:HHD	1.85	0.40
9:AY:200:CYC:HMD1	9:AY:200:CYC:HAD2	1.89	0.40
2:BI:144:ASP:OD1	2:BI:144:ASP:N	2.55	0.40
2:BM:74:THR:HG22	2:BM:77:ARG:HB2	2.04	0.40
2:BZ:117:ASN:ND2	6:CL:9:SER:H	2.20	0.40
1:CB:159:LYS:HD3	1:CB:159:LYS:HA	1.91	0.40
2:CE:153:LEU:HD23	2:CE:153:LEU:HA	1.86	0.40
2:CG:81:CYS:HA	9:CG:200:CYC:HAC1	1.91	0.40
8:CO:103:PRO:HB2	8:CO:111:LYS:HZ1	1.85	0.40
1:CP:110:VAL:HG23	2:CU:76:ARG:HG2	2.03	0.40
2:CQ:51:ILE:HG23	2:CQ:136:VAL:HB	2.02	0.40
9:CT:200:CYC:HAB1	9:CT:200:CYC:HMB1	1.94	0.40
1:DI:18:LEU:HD23	1:DI:18:LEU:HA	1.97	0.40
7:DV:202:ARG:HE	7:DV:204:ILE:H	1.70	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	AA	158/161~(98%)	157~(99%)	1 (1%)	0	100	100
1	AC	158/161~(98%)	155~(98%)	3 (2%)	0	100	100
1	AH	158/161~(98%)	157~(99%)	1 (1%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles	
1	AJ	158/161~(98%)	157 (99%)	1 (1%)	0	100	100	
1	AN	158/161~(98%)	156 (99%)	2 (1%)	0	100	100	
1	AP	158/161~(98%)	157 (99%)	1 (1%)	0	100	100	
1	AR	158/161~(98%)	158 (100%)	0	0	100	100	
1	AV	158/161~(98%)	158 (100%)	0	0	100	100	
1	AX	158/161~(98%)	157 (99%)	1 (1%)	0	100	100	
1	AZ	158/161~(98%)	157 (99%)	1 (1%)	0	100	100	
1	BH	158/161~(98%)	156 (99%)	2 (1%)	0	100	100	
1	BJ	158/161~(98%)	155 (98%)	3 (2%)	0	100	100	
1	BO	158/161~(98%)	157 (99%)	1 (1%)	0	100	100	
1	BQ	158/161~(98%)	158 (100%)	0	0	100	100	
1	BU	158/161~(98%)	155 (98%)	3 (2%)	0	100	100	
1	BW	158/161~(98%)	157 (99%)	1 (1%)	0	100	100	-
1	BY	158/161~(98%)	157 (99%)	1 (1%)	0	100	100	
1	CB	158/161~(98%)	157 (99%)	1 (1%)	0	100	100	_
1	CD	158/161~(98%)	156 (99%)	2 (1%)	0	100	100	
1	CF	158/161~(98%)	155~(98%)	3(2%)	0	100	100	
1	CP	158/161~(98%)	157 (99%)	1 (1%)	0	100	100	
1	CR	158/161~(98%)	154 (98%)	4 (2%)	0	100	100	
1	CT	158/161~(98%)	158 (100%)	0	0	100	100	
1	CW	158/161~(98%)	155 (98%)	3 (2%)	0	100	100	
1	CY	158/161~(98%)	155 (98%)	3 (2%)	0	100	100	
1	DA	158/161~(98%)	158 (100%)	0	0	100	100	
1	DG	158/161~(98%)	157 (99%)	1 (1%)	0	100	100	
1	DI	158/161~(98%)	152 (96%)	6 (4%)	0	100	100	
1	DK	158/161~(98%)	158 (100%)	0	0	100	100	
1	DN	158/161~(98%)	156 (99%)	2(1%)	0	100	100	
1	DP	$158/\overline{161~(98\%)}$	157 (99%)	1 (1%)	0	100	100	
1	DR	158/161 (98%)	157 (99%)	1 (1%)	0	100	100	_
2	AB	$159/\overline{161~(99\%)}$	155 (98%)	4 (2%)	0	100	100	
2	AD	159/161~(99%)	157 (99%)	2 (1%)	0	100	100	

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
2	AF	159/161~(99%)	155~(98%)	4 (2%)	0	100	100
2	AI	159/161~(99%)	154~(97%)	5(3%)	0	100	100
2	AL	159/161~(99%)	156~(98%)	3~(2%)	0	100	100
2	AO	159/161~(99%)	158 (99%)	1 (1%)	0	100	100
2	AQ	159/161~(99%)	154 (97%)	5(3%)	0	100	100
2	AS	159/161~(99%)	157~(99%)	2(1%)	0	100	100
2	AU	159/161~(99%)	153~(96%)	6 (4%)	0	100	100
2	AW	159/161~(99%)	156~(98%)	3 (2%)	0	100	100
2	AY	159/161~(99%)	157~(99%)	2(1%)	0	100	100
2	BI	159/161~(99%)	156~(98%)	3 (2%)	0	100	100
2	BK	159/161~(99%)	156~(98%)	3(2%)	0	100	100
2	BM	159/161~(99%)	156~(98%)	3 (2%)	0	100	100
2	BP	159/161~(99%)	154 (97%)	5(3%)	0	100	100
2	BS	159/161~(99%)	155~(98%)	4 (2%)	0	100	100
2	BV	159/161~(99%)	156~(98%)	3~(2%)	0	100	100
2	BX	159/161~(99%)	154~(97%)	5(3%)	0	100	100
2	ΒZ	159/161~(99%)	155~(98%)	4 (2%)	0	100	100
2	CC	159/161~(99%)	157~(99%)	2(1%)	0	100	100
2	CE	159/161~(99%)	158~(99%)	1 (1%)	0	100	100
2	CG	159/161~(99%)	157~(99%)	2 (1%)	0	100	100
2	CQ	159/161~(99%)	156~(98%)	3 (2%)	0	100	100
2	CS	159/161~(99%)	157~(99%)	2 (1%)	0	100	100
2	CU	159/161~(99%)	155~(98%)	4 (2%)	0	100	100
2	CX	159/161~(99%)	151~(95%)	8 (5%)	0	100	100
2	CZ	159/161~(99%)	153~(96%)	5(3%)	1 (1%)	22	51
2	DB	159/161~(99%)	156~(98%)	3 (2%)	0	100	100
2	DH	159/161~(99%)	155~(98%)	4 (2%)	0	100	100
2	DJ	159/161~(99%)	156 (98%)	3 (2%)	0	100	100
2	DL	159/161~(99%)	156 (98%)	3 (2%)	0	100	100
2	DO	159/161~(99%)	152 (96%)	7 (4%)	0	100	100
2	DQ	159/161~(99%)	153~(96%)	6 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
2	DS	159/161~(99%)	155~(98%)	4 (2%)	0	100	100
3	AE	158/161~(98%)	157~(99%)	1 (1%)	0	100	100
3	BL	158/161~(98%)	156 (99%)	2 (1%)	0	100	100
4	AK	167/169~(99%)	163 (98%)	4 (2%)	0	100	100
4	BR	167/169~(99%)	166 (99%)	1 (1%)	0	100	100
5	BA	65/67~(97%)	64 (98%)	1 (2%)	0	100	100
5	BB	65/67~(97%)	64 (98%)	1 (2%)	0	100	100
5	CI	65/67~(97%)	64 (98%)	1 (2%)	0	100	100
5	CJ	65/67~(97%)	63~(97%)	2 (3%)	0	100	100
5	DD	65/67~(97%)	64 (98%)	1 (2%)	0	100	100
5	DU	65/67~(97%)	63~(97%)	2 (3%)	0	100	100
6	BD	846/896~(94%)	803 (95%)	43 (5%)	0	100	100
6	CL	846/896~(94%)	792 (94%)	54 (6%)	0	100	100
7	BF	55/249~(22%)	52 (94%)	3 (6%)	0	100	100
7	CN	55/249~(22%)	52 (94%)	3 (6%)	0	100	100
7	DE	52/249~(21%)	46 (88%)	6 (12%)	0	100	100
7	DF	52/249~(21%)	45 (86%)	7 (14%)	0	100	100
7	DV	52/249~(21%)	43 (83%)	9 (17%)	0	100	100
7	DW	52/249~(21%)	45 (86%)	7 (14%)	0	100	100
8	BG	34/121 (28%)	31 (91%)	3 (9%)	0	100	100
8	CO	34/121~(28%)	33 (97%)	1 (3%)	0	100	100
All	All	13580/15216 (89%)	13253 (98%)	326 (2%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	CZ	75	THR

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	AA	128/129~(99%)	125 (98%)	3 (2%)	45	78
1	AC	128/129~(99%)	123 (96%)	5 (4%)	27	61
1	AH	128/129~(99%)	128 (100%)	0	100	100
1	AJ	128/129~(99%)	128 (100%)	0	100	100
1	AN	128/129~(99%)	125 (98%)	3 (2%)	45	78
1	AP	128/129~(99%)	127 (99%)	1 (1%)	79	93
1	AR	128/129~(99%)	128 (100%)	0	100	100
1	AV	128/129~(99%)	126 (98%)	2 (2%)	58	85
1	AX	128/129~(99%)	128 (100%)	0	100	100
1	AZ	128/129~(99%)	126 (98%)	2 (2%)	58	85
1	BH	128/129~(99%)	127 (99%)	1 (1%)	79	93
1	BJ	128/129~(99%)	125 (98%)	3 (2%)	45	78
1	BO	128/129~(99%)	124 (97%)	4 (3%)	35	69
1	BQ	128/129~(99%)	125 (98%)	3 (2%)	45	78
1	BU	128/129~(99%)	128 (100%)	0	100	100
1	BW	128/129~(99%)	127 (99%)	1 (1%)	79	93
1	BY	128/129~(99%)	127 (99%)	1 (1%)	79	93
1	CB	128/129~(99%)	127 (99%)	1 (1%)	79	93
1	CD	128/129~(99%)	127 (99%)	1 (1%)	79	93
1	CF	128/129~(99%)	127 (99%)	1 (1%)	79	93
1	CP	128/129~(99%)	125 (98%)	3 (2%)	45	78
1	CR	128/129~(99%)	124 (97%)	4 (3%)	35	69
1	CT	128/129~(99%)	126 (98%)	2 (2%)	58	85
1	CW	128/129~(99%)	127 (99%)	1 (1%)	79	93
1	CY	128/129~(99%)	125 (98%)	3 (2%)	45	78
1	DA	128/129~(99%)	126 (98%)	2 (2%)	58	85
1	DG	128/129~(99%)	124 (97%)	4 (3%)	35	69
1	DI	128/129~(99%)	124 (97%)	4 (3%)	35	69
1	DK	128/129~(99%)	126 (98%)	2 (2%)	58	85
1	DN	128/129~(99%)	127 (99%)	1 (1%)	79	93
1	DP	128/129~(99%)	126 (98%)	2 (2%)	58	85

analysed, and the total number of residues.

α \cdot \cdot \cdot	C		
Continued	from	previous	page
		1	1 0

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	DR	128/129~(99%)	126~(98%)	2(2%)	58	85
2	AB	125/125~(100%)	123 (98%)	2(2%)	58	85
2	AD	125/125~(100%)	124 (99%)	1 (1%)	79	93
2	AF	125/125~(100%)	123 (98%)	2(2%)	58	85
2	AI	125/125~(100%)	125 (100%)	0	100	100
2	AL	125/125~(100%)	124 (99%)	1 (1%)	79	93
2	AO	125/125~(100%)	124 (99%)	1 (1%)	79	93
2	AQ	125/125~(100%)	125 (100%)	0	100	100
2	AS	125/125~(100%)	123 (98%)	2 (2%)	58	85
2	AU	125/125~(100%)	121 (97%)	4 (3%)	34	68
2	AW	125/125~(100%)	122 (98%)	3 (2%)	44	77
2	AY	125/125~(100%)	125 (100%)	0	100	100
2	BI	125/125~(100%)	124 (99%)	1 (1%)	79	93
2	BK	125/125~(100%)	124 (99%)	1 (1%)	79	93
2	BM	125/125~(100%)	124 (99%)	1 (1%)	79	93
2	BP	125/125~(100%)	125 (100%)	0	100	100
2	BS	125/125~(100%)	121 (97%)	4 (3%)	34	68
2	BV	125/125~(100%)	125 (100%)	0	100	100
2	BX	125/125~(100%)	125 (100%)	0	100	100
2	BZ	125/125~(100%)	124 (99%)	1 (1%)	79	93
2	CC	125/125~(100%)	124 (99%)	1 (1%)	79	93
2	CE	125/125~(100%)	121 (97%)	4 (3%)	34	68
2	CG	125/125~(100%)	125 (100%)	0	100	100
2	CQ	125/125~(100%)	123 (98%)	2 (2%)	58	85
2	CS	125/125~(100%)	124 (99%)	1 (1%)	79	93
2	CU	125/125~(100%)	122 (98%)	3 (2%)	44	77
2	CX	125/125~(100%)	123 (98%)	2 (2%)	58	85
2	CZ	125/125~(100%)	122 (98%)	3 (2%)	44	77
2	DB	125/125~(100%)	125 (100%)	0	100	100
2	DH	125/125~(100%)	125 (100%)	0	100	100
2	DJ	125/125~(100%)	124 (99%)	1 (1%)	79	93

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	DL	125/125~(100%)	124 (99%)	1 (1%)	79	93
2	DO	125/125~(100%)	122 (98%)	3 (2%)	44	77
2	DQ	125/125~(100%)	122 (98%)	3 (2%)	44	77
2	DS	125/125~(100%)	123 (98%)	2 (2%)	58	85
3	AE	132/133~(99%)	129 (98%)	3 (2%)	45	78
3	BL	132/133~(99%)	131 (99%)	1 (1%)	79	93
4	AK	140/140~(100%)	140 (100%)	0	100	100
4	BR	140/140~(100%)	140 (100%)	0	100	100
5	BA	58/58~(100%)	57~(98%)	1 (2%)	56	84
5	BB	58/58~(100%)	58 (100%)	0	100	100
5	CI	58/58~(100%)	57 (98%)	1 (2%)	56	84
5	CJ	58/58~(100%)	56 (97%)	2 (3%)	32	66
5	DD	58/58~(100%)	58 (100%)	0	100	100
5	DU	58/58~(100%)	56 (97%)	2 (3%)	32	66
6	BD	719/753~(96%)	707~(98%)	12 (2%)	56	84
6	CL	719/753~(96%)	709~(99%)	10 (1%)	62	87
7	BF	49/221~(22%)	49 (100%)	0	100	100
7	CN	49/221~(22%)	48 (98%)	1 (2%)	50	81
7	DE	$46/221 \ (21\%)$	45 (98%)	1 (2%)	47	79
7	DF	$46/221 \ (21\%)$	45 (98%)	1 (2%)	47	79
7	DV	$46/221 \ (21\%)$	45 (98%)	1 (2%)	47	79
7	DW	$46/221 \ (21\%)$	45 (98%)	1 (2%)	47	79
8	BG	30/98~(31%)	29 (97%)	1 (3%)	33	67
8	CO	30/98~(31%)	29 (97%)	1 (3%)	33	67
All	All	11018/12300 (90%)	10867 (99%)	151 (1%)	62	87

All (151) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	AA	16	ARG
1	AA	52	LYS
1	AA	66	VAL
2	AB	9	ILE
2	AB	27	LEU

Mol	Chain	Res	Type
1	AC	16	ARG
1	AC	25	ARG
1	AC	41	GLU
1	AC	61	LYS
1	AC	132	GLU
2	AD	135	GLU
3	AE	73	TYR
3	AE	101	LYS
3	AE	138	LEU
2	AF	74	THR
2	AF	131	GLN
2	AL	15	GLN
1	AN	129	SER
1	AN	131	ARG
1	AN	140	LEU
2	AO	10	ASN
1	AP	25	ARG
2	AS	85	LEU
2	AS	141	VAL
2	AU	27	LEU
2	AU	54	GLU
2	AU	73	TYR
2	AU	131	GLN
1	AV	30	VAL
1	AV	114	GLU
2	AW	67	ARG
2	AW	71	ASN
2	AW	77	ARG
1	AZ	52	LYS
1	AZ	53	GLN
5	BA	2	ARG
6	BD	173	ASN
6	BD	211	ARG
6	BD	338	ILE
6	BD	524	VAL
6	BD	530	THR
6	BD	544	ARG
6	BD	553	ARG
6	BD	675	LEU
6	BD	700	ILE
6	BD	811	ARG
6	BD	831	LEU

Mol	Chain	Res	Type
6	BD	892	VAL
8	BG	118	LYS
1	BH	52	LYS
2	BI	147	LYS
1	BJ	16	ARG
1	BJ	25	ARG
1	BJ	113	ARG
2	BK	67	ARG
3	BL	16	ARG
2	BM	71	ASN
1	BO	53	GLN
1	BO	58	LEU
1	BO	61	LYS
1	BO	157	ILE
1	BQ	25	ARG
1	BQ	66	VAL
1	BQ	112	VAL
2	BS	54	GLU
2	BS	77	ARG
2	BS	85	LEU
2	BS	141	VAL
1	BW	5	THR
1	BY	30	VAL
2	BZ	141	VAL
1	CB	53	GLN
2	CC	128	GLN
1	CD	30	VAL
2	CE	28	LYS
2	CE	39	ARG
2	CE	71	ASN
2	CE	147	LYS
1	CF	102	THR
5	CI	40	GLN
5	CJ	17	ARG
5	CJ	22	LEU
6	CL	17	TYR
6	CL	55	GLU
6	CL	82	LEU
6	CL	173	ASN
6	CL	221	LEU
6	CL	228	LEU
6	CL	524	VAL

Mol	Chain	Res	Type
6	CL	700	ILE
6	CL	751	LEU
6	CL	811	ARG
7	CN	225	ILE
8	CO	115	ARG
1	CP	16	ARG
1	CP	23	LEU
1	CP	97	VAL
2	CQ	85	LEU
2	CQ	110	ASN
1	CR	23	LEU
1	CR	81	CYS
1	CR	109	LEU
1	CR	114	GLU
2	CS	67	ARG
1	CT	23	LEU
1	CT	58	LEU
2	CU	97	LEU
2	CU	112	LEU
2	CU	140	LEU
1	CW	87	TYR
2	CX	28	LYS
2	CX	153	LEU
1	CY	30	VAL
1	CY	36	ARG
1	CY	81	CYS
2	CZ	27	LEU
2	CZ	115	THR
2	CZ	131	GLN
1	DA	81	CYS
1	DA	157	ILE
7	DE	223	ARG
7	DF	225	ILE
1	DG	16	ARG
1	DG	61	LYS
1	DG	71	ASN
1	DG	134	LYS
1	DI	4	VAL
1	DI	23	LEU
1	DI	81	CYS
1	DI	83	ARG
2	DJ	15	GLN

Mol	Chain	Res	Type		
1	DK	23	LEU		
1	DK	58	LEU		
2	DL	54	GLU		
1	DN	85	MET		
2	DO	53	LYS		
2	DO	61	LEU		
2	DO	128	GLN		
1	DP	75	GLU		
1	DP	121	THR		
2	DQ	67	ARG		
2	DQ	115	THR		
2	DQ	153	LEU		
1	DR	81	CYS		
1	DR	140	LEU		
2	DS	27	LEU		
2	DS	85	LEU		
5	DU	1	MET		
5	DU	53	VAL		
7	DV	201	ARG		
7	DW	249	ARG		

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (11) such sidechains are listed below:

Mol	Chain	Res	Type
3	AE	53	GLN
2	AO	71	ASN
2	AS	71	ASN
2	AU	10	ASN
2	AY	71	ASN
6	BD	63	ASN
6	BD	696	GLN
2	CE	131	GLN
6	CL	451	ASN
6	CL	846	GLN
1	CT	60	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

72 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bos	Link	В	Bond lengths			ond ang	gles
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
9	CYC	DH	200	2	42,46,46	1.70	9 (21%)	52,67,67	2.22	11 (21%)
9	CYC	DN	200	1	42,46,46	1.68	8 (19%)	52,67,67	2.32	14 (26%)
9	CYC	AL	200	2	42,46,46	1.71	10 (23%)	52,67,67	2.19	12 (23%)
9	CYC	AV	200	1	42,46,46	1.67	10 (23%)	52,67,67	2.12	12 (23%)
9	CYC	CF	200	1	42,46,46	1.64	9 (21%)	52,67,67	2.25	12 (23%)
9	CYC	BO	200	1	42,46,46	1.70	10 (23%)	52,67,67	2.21	12 (23%)
9	CYC	CD	200	1	42,46,46	1.69	10 (23%)	52,67,67	2.21	14 (26%)
9	CYC	BJ	200	1	42,46,46	1.71	9 (21%)	52,67,67	2.07	12 (23%)
9	CYC	BR	200	4	42,46,46	1.69	8 (19%)	52,67,67	2.29	13 (25%)
9	CYC	BP	200	2	42,46,46	1.64	9 (21%)	52,67,67	2.36	14 (26%)
9	CYC	CU	200	2	42,46,46	1.72	8 (19%)	52,67,67	2.27	13 (25%)
9	CYC	AP	200	1	42,46,46	1.65	8 (19%)	52,67,67	2.31	14 (26%)
9	CYC	BH	200	1	42,46,46	1.71	9 (21%)	52,67,67	2.16	11 (21%)
9	CYC	BK	200	2	42,46,46	1.67	9 (21%)	52,67,67	2.26	17 (32%)
9	CYC	DG	200	1	42,46,46	1.70	9 (21%)	52,67,67	2.03	13 (25%)
9	CYC	CX	200	2	42,46,46	1.67	8 (19%)	52,67,67	2.16	14 (26%)
9	CYC	AA	200	1	42,46,46	1.67	9 (21%)	52,67,67	2.10	9 (17%)
9	CYC	AJ	200	1	42,46,46	1.63	8 (19%)	52,67,67	2.29	14 (26%)

Mol	Type	Chain	Bos	Link	В	ond leng	gths	Bond angles		
	туре	Chan	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
9	CYC	AC	200	1	42,46,46	1.70	9 (21%)	52,67,67	2.02	12 (23%)
9	CYC	BL	200	3	42,46,46	1.71	9 (21%)	52,67,67	2.21	15 (28%)
9	CYC	CP	200	1	42,46,46	1.66	10 (23%)	52,67,67	2.21	12 (23%)
9	CYC	CZ	200	2	42,46,46	1.68	9 (21%)	52,67,67	2.36	12 (23%)
9	CYC	DJ	200	2	42,46,46	1.63	9 (21%)	52,67,67	2.43	15 (28%)
9	CYC	AR	200	-	42,46,46	1.70	10 (23%)	52,67,67	2.11	13 (25%)
9	CYC	DB	200	2	42,46,46	1.69	9 (21%)	52,67,67	2.08	14 (26%)
9	CYC	DQ	200	2	42,46,46	1.68	9 (21%)	52,67,67	2.33	14 (26%)
9	CYC	BY	200	1	42,46,46	1.70	9 (21%)	52,67,67	2.18	13 (25%)
9	CYC	BQ	200	1	42,46,46	1.66	8 (19%)	52,67,67	2.23	11 (21%)
9	CYC	CR	200	1	42,46,46	1.69	9 (21%)	52,67,67	1.96	10 (19%)
9	CYC	DO	200	2	42,46,46	1.65	9 (21%)	52,67,67	2.36	15 (28%)
9	CYC	CG	200	2	42,46,46	1.65	9 (21%)	52,67,67	2.20	14 (26%)
9	CYC	AY	200	2	42,46,46	1.67	9 (21%)	52,67,67	2.13	16 (30%)
9	CYC	AQ	200	2	42,46,46	1.67	9 (21%)	52,67,67	2.26	14 (26%)
9	CYC	DP	200	1	42,46,46	1.70	10 (23%)	52,67,67	2.19	13 (25%)
9	CYC	AI	200	2	42,46,46	1.66	8 (19%)	52,67,67	2.41	15 (28%)
9	CYC	CE	200	2	42,46,46	1.69	8 (19%)	52,67,67	2.56	17 (32%)
9	CYC	BW	200	1	42,46,46	1.65	8 (19%)	52,67,67	2.31	14 (26%)
9	CYC	CC	200	2	42,46,46	1.72	9 (21%)	52,67,67	2.24	17 (32%)
9	CYC	BS	200	2	42,46,46	1.70	8 (19%)	52,67,67	2.16	12 (23%)
9	CYC	CS	200	2	42,46,46	1.64	9 (21%)	52,67,67	2.26	15 (28%)
9	CYC	AH	200	1	42,46,46	1.67	10 (23%)	52,67,67	2.11	13 (25%)
9	CYC	BD	902	6	42,46,46	1.68	9 (21%)	52,67,67	2.18	14 (26%)
9	CYC	BV	200	2	42,46,46	1.65	8 (19%)	52,67,67	2.34	14 (26%)
9	CYC	СТ	200	1	42,46,46	1.68	9 (21%)	52,67,67	2.17	13 (25%)
9	CYC	CY	200	1	42,46,46	1.66	9 (21%)	52,67,67	2.27	14 (26%)
9	CYC	DL	200	2	42,46,46	1.71	9 (21%)	52,67,67	2.29	13 (25%)
9	CYC	AE	200	3	42,46,46	1.72	9 (21%)	52,67,67	2.35	15 (28%)
9	CYC	DR	200	1	42,46,46	1.72	8 (19%)	52,67,67	2.25	17 (32%)
9	CYC	CB	200	1	42,46,46	1.67	10 (23%)	52,67,67	2.10	13 (25%)
9	CYC	AO	200	2	42,46,46	1.67	9 (21%)	52,67,67	2.34	15 (28%)
9	CYC	BA	200	2	42,46,46	1.70	9 (21%)	52,67,67	2.05	11 (21%)
9	CYC	AD	200	2	42,46,46	1.67	9 (21%)	52,67,67	2.16	17 (32%)
9	CYC	AU	200	2	42,46,46	1.68	9 (21%)	52,67,67	2.30	17 (32%)

Mal	Turne	Chain	Dec	Tink	B	Bond lengths			Bond angles		
WIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2	
9	CYC	CI	200	2	42,46,46	1.69	9 (21%)	52,67,67	2.11	11 (21%)	
9	CYC	CL	901	2	42,46,46	1.66	9 (21%)	52,67,67	2.12	15 (28%)	
9	CYC	DA	200	1	42,46,46	1.68	9 (21%)	52,67,67	2.29	17 (32%)	
9	CYC	AK	200	4	42,46,46	1.67	9 (21%)	52,67,67	2.22	11 (21%)	
9	CYC	BU	200	1	42,46,46	1.68	9 (21%)	52,67,67	2.18	14 (26%)	
9	CYC	AW	200	2	42,46,46	1.66	9 (21%)	52,67,67	2.19	14 (26%)	
9	CYC	AX	200	1	42,46,46	1.69	9 (21%)	52,67,67	2.12	9 (17%)	
9	CYC	BX	200	2	42,46,46	1.67	9 (21%)	52,67,67	2.26	17 (32%)	
9	CYC	AN	200	1	42,46,46	1.68	9 (21%)	52,67,67	2.19	14 (26%)	
9	CYC	BD	901	2	42,46,46	1.66	9 (21%)	52,67,67	2.08	16 (30%)	
9	CYC	AZ	200	1	42,46,46	1.70	8 (19%)	52,67,67	2.14	14 (26%)	
9	CYC	DS	200	2	42,46,46	1.67	9 (21%)	52,67,67	2.30	16 (30%)	
9	CYC	CQ	200	2	42,46,46	1.75	9 (21%)	52,67,67	2.19	12 (23%)	
9	CYC	AB	200	2	42,46,46	1.66	8 (19%)	52,67,67	2.37	15 (28%)	
9	CYC	DK	200	1	42,46,46	1.70	9 (21%)	52,67,67	2.20	14 (26%)	
9	CYC	DI	200	1	42,46,46	1.66	10 (23%)	52,67,67	1.95	12 (23%)	
9	CYC	CW	200	1	42,46,46	1.69	8 (19%)	52,67,67	2.26	11 (21%)	
9	CYC	CL	902	6	42,46,46	1.68	9 (21%)	52,67,67	2.22	15 (28%)	
9	CYC	BI	200	2	42,46,46	1.66	9 (21%)	52,67,67	2.33	17 (32%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	CYC	DH	200	2	-	13/25/74/74	0/4/4/4
9	CYC	DN	200	1	-	11/25/74/74	0/4/4/4
9	CYC	AL	200	2	-	18/25/74/74	0/4/4/4
9	CYC	AV	200	1	-	11/25/74/74	0/4/4/4
9	CYC	CF	200	1	-	10/25/74/74	0/4/4/4
9	CYC	BO	200	1	-	6/25/74/74	0/4/4/4
9	CYC	CD	200	1	-	12/25/74/74	0/4/4/4
9	CYC	BJ	200	1	-	12/25/74/74	0/4/4/4
9	CYC	BR	200	4	-	12/25/74/74	0/4/4/4
9	CYC	BP	200	2	-	15/25/74/74	0/4/4/4

001000	naca ji o	ne proceec	lo pago				
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	CYC	CU	200	2	-	8/25/74/74	0/4/4/4
9	CYC	AP	200	1	-	7/25/74/74	0/4/4/4
9	CYC	BH	200	1	-	7/25/74/74	0/4/4/4
9	CYC	BK	200	2	-	13/25/74/74	0/4/4/4
9	CYC	DG	200	1	-	10/25/74/74	0/4/4/4
9	CYC	CX	200	2	-	12/25/74/74	0/4/4/4
9	CYC	AA	200	1	-	12/25/74/74	0/4/4/4
9	CYC	AJ	200	1	-	8/25/74/74	0/4/4/4
9	CYC	AC	200	1	-	7/25/74/74	0/4/4/4
9	CYC	BL	200	3	-	6/25/74/74	0/4/4/4
9	CYC	CP	200	1	-	7/25/74/74	0/4/4/4
9	CYC	CZ	200	2	-	15/25/74/74	0/4/4/4
9	CYC	DJ	200	2	-	16/25/74/74	0/4/4/4
9	CYC	AR	200	-	-	11/25/74/74	0/4/4/4
9	CYC	DB	200	2	-	9/25/74/74	0/4/4/4
9	CYC	DQ	200	2	-	11/25/74/74	0/4/4/4
9	CYC	BY	200	1	-	9/25/74/74	0/4/4/4
9	CYC	BQ	200	1	-	9/25/74/74	0/4/4/4
9	CYC	CR	200	1	-	15/25/74/74	0/4/4/4
9	CYC	DO	200	2	-	19/25/74/74	0/4/4/4
9	CYC	CG	200	2	-	15/25/74/74	0/4/4/4
9	CYC	AY	200	2	-	15/25/74/74	0/4/4/4
9	CYC	AQ	200	2	-	17/25/74/74	0/4/4/4
9	CYC	DP	200	1	-	9/25/74/74	0/4/4/4
9	CYC	AI	200	2	-	16/25/74/74	0/4/4/4
9	CYC	CE	200	2	-	18/25/74/74	0/4/4/4
9	CYC	BW	200	1	-	7/25/74/74	0/4/4/4
9	CYC	CC	200	2	-	10/25/74/74	0/4/4/4
9	CYC	BS	200	2	-	14/25/74/74	0/4/4/4
9	CYC	CS	200	2	-	13/25/74/74	0/4/4/4
9	CYC	AH	200	1	-	11/25/74/74	0/4/4/4
9	CYC	BD	902	6	-	15/25/74/74	0/4/4/4
9	CYC	BV	200	2	-	10/25/74/74	0/4/4/4
9	CYC	CT	200	1	_	12/25/74/74	0/4/4/4

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	CYC	CY	200	1	-	6/25/74/74	0/4/4/4
9	CYC	DL	200	2	-	11/25/74/74	0/4/4/4
9	CYC	AE	200	3	-	8/25/74/74	0/4/4/4
9	CYC	DR	200	1	-	5/25/74/74	0/4/4/4
9	CYC	CB	200	1	-	6/25/74/74	0/4/4/4
9	CYC	AO	200	2	-	12/25/74/74	0/4/4/4
9	CYC	BA	200	2	-	8/25/74/74	0/4/4/4
9	CYC	AD	200	2	-	12/25/74/74	0/4/4/4
9	CYC	AU	200	2	-	10/25/74/74	0/4/4/4
9	CYC	CI	200	2	-	12/25/74/74	0/4/4/4
9	CYC	CL	901	2	-	12/25/74/74	0/4/4/4
9	CYC	DA	200	1	-	10/25/74/74	0/4/4/4
9	CYC	AK	200	4	-	12/25/74/74	0/4/4/4
9	CYC	BU	200	1	-	9/25/74/74	0/4/4/4
9	CYC	AW	200	2	-	12/25/74/74	0/4/4/4
9	CYC	AX	200	1	-	10/25/74/74	0/4/4/4
9	CYC	BX	200	2	-	15/25/74/74	0/4/4/4
9	CYC	AN	200	1	-	11/25/74/74	0/4/4/4
9	CYC	BD	901	2	-	11/25/74/74	0/4/4/4
9	CYC	AZ	200	1	-	4/25/74/74	0/4/4/4
9	CYC	DS	200	2	-	12/25/74/74	0/4/4/4
9	CYC	CQ	200	2	-	15/25/74/74	0/4/4/4
9	CYC	AB	200	2	-	18/25/74/74	0/4/4/4
9	CYC	DK	200	1	-	7/25/74/74	0/4/4/4
9	CYC	DI	200	1	-	12/25/74/74	0/4/4/4
9	CYC	CW	200	1	-	10/25/74/74	0/4/4/4
9	CYC	CL	902	6	-	8/25/74/74	0/4/4/4
9	CYC	BI	200	2	-	17/25/74/74	0/4/4/4

Continued from previous page...

All (642) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
9	CQ	200	CYC	CHA-C1A	5.80	1.40	1.35
9	CC	200	CYC	CHA-C1A	5.58	1.40	1.35
9	CE	200	CYC	CHA-C1A	5.53	1.40	1.35
9	CU	200	CYC	CHA-C1A	5.53	1.40	1.35

			us puye	•••	77		
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(A)
9	DR	200	CYC	CHA-CIA	5.45	1.40	1.35
9	AZ	200	CYC	CHA-C1A	5.43	1.40	1.35
9	BL	200	CYC	CHA-C1A	5.43	1.40	1.35
9	AE	200	CYC	CHA-C1A	5.42	1.40	1.35
9	DL	200	CYC	CHA-C1A	5.42	1.40	1.35
9	CD	200	CYC	CHA-C1A	5.30	1.40	1.35
9	BY	200	CYC	CHA-C1A	5.25	1.40	1.35
9	DK	200	CYC	CHA-C1A	5.22	1.40	1.35
9	BH	200	CYC	CHA-C1A	5.21	1.40	1.35
9	AX	200	CYC	CHA-C1A	5.21	1.40	1.35
9	BJ	200	CYC	CHA-C1A	5.20	1.40	1.35
9	BR	200	CYC	CHA-C1A	5.19	1.40	1.35
9	CT	200	CYC	CHA-C1A	5.19	1.40	1.35
9	CL	902	CYC	CHA-C1A	5.16	1.40	1.35
9	DA	200	CYC	CHA-C1A	5.15	1.40	1.35
9	BA	200	CYC	CHA-C1A	5.14	1.40	1.35
9	AN	200	CYC	CHA-C1A	5.13	1.40	1.35
9	DH	200	CYC	CHA-C1A	5.13	1.40	1.35
9	DN	200	CYC	CHA-C1A	5.13	1.40	1.35
9	AC	200	CYC	CHA-C1A	5.12	1.40	1.35
9	CR	200	CYC	CHA-C1A	5.12	1.40	1.35
9	CZ	200	CYC	CHA-C1A	5.11	1.40	1.35
9	AD	200	CYC	CHA-C1A	5.11	1.40	1.35
9	CW	200	CYC	CHA-C1A	5.11	1.40	1.35
9	CI	200	CYC	CHA-C1A	5.11	1.40	1.35
9	BD	902	CYC	CHA-C1A	5.11	1.40	1.35
9	CB	200	CYC	CHA-C1A	5.11	1.40	1.35
9	AU	200	CYC	CHA-C1A	5.11	1.40	1.35
9	DB	200	CYC	CHA-C1A	5.10	1.40	1.35
9	AR	200	CYC	CHA-C1A	5.08	1.40	1.35
9	BU	200	CYC	CHA-C1A	5.06	1.40	1.35
9	DG	200	CYC	CHA-C1A	5.05	1.40	1.35
9	BX	200	CYC	CHA-C1A	5.03	1.40	1.35
9	AO	200	CYC	CHA-C1A	5.01	1.40	1.35
9	DP	200	CYC	CHA-C1A	5.01	1.40	1.35
9	AK	200	CYC	CHA-C1A	5.00	1.40	1.35
9	DI	200	CYC	CHA-C1A	5.00	1.40	1.35
9	AW	200	CYC	CHA-C1A	4.97	1.39	1.35
9	DQ	200	CYC	CHA-C1A	4.96	1.39	1.35
9	AB	200	CYC	CHA-C1A	4.96	1.39	1.35
9	AY	200	CYC	CHA-C1A	4.96	1.39	1.35
9	DS	200	CYC	CHA-C1A	4.95	1.39	1.35

Continued from previous page...

COULU	naca jion	i preui	bus puye	• • •			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
9	BQ	200	CYC	CHA-C1A	4.94	1.39	1.35
9	BO	200	CYC	CHA-C1A	4.92	1.39	1.35
9	BK	200	CYC	CHA-C1A	4.92	1.39	1.35
9	AA	200	CYC	CHA-C1A	4.91	1.39	1.35
9	AQ	200	CYC	CHA-C1A	4.90	1.39	1.35
9	DO	200	CYC	CHA-C1A	4.89	1.39	1.35
9	CP	200	CYC	CHA-C1A	4.88	1.39	1.35
9	AP	200	CYC	CHA-C1A	4.87	1.39	1.35
9	BI	200	CYC	CHA-C1A	4.87	1.39	1.35
9	BW	200	CYC	CHA-C1A	4.87	1.39	1.35
9	CS	200	CYC	CHA-C1A	4.86	1.39	1.35
9	AL	200	CYC	CHA-C1A	4.86	1.39	1.35
9	BP	200	CYC	CHA-C1A	4.82	1.39	1.35
9	AI	200	CYC	CHA-C1A	4.82	1.39	1.35
9	CL	901	CYC	CHA-C1A	4.81	1.39	1.35
9	AV	200	CYC	CHA-C1A	4.81	1.39	1.35
9	CX	200	CYC	CHA-C1A	4.79	1.39	1.35
9	BD	901	CYC	CHA-C1A	4.79	1.39	1.35
9	CG	200	CYC	CHA-C1A	4.77	1.39	1.35
9	AH	200	CYC	CHA-C1A	4.73	1.39	1.35
9	CF	200	CYC	CHA-C1A	4.73	1.39	1.35
9	DJ	200	CYC	CHA-C1A	4.72	1.39	1.35
9	CY	200	CYC	CHA-C1A	4.70	1.39	1.35
9	AJ	200	CYC	CHA-C1A	4.69	1.39	1.35
9	BV	200	CYC	CHA-C1A	4.64	1.39	1.35
9	BS	200	CYC	CHA-C1A	4.58	1.39	1.35
9	BS	200	CYC	C1C-NC	-3.90	1.32	1.37
9	AR	200	CYC	C1C-NC	-3.78	1.32	1.37
9	DI	200	CYC	C1C-NC	-3.76	1.32	1.37
9	CR	200	CYC	C1C-NC	-3.73	1.32	1.37
9	BV	200	CYC	C1C-NC	-3.65	1.32	1.37
9	AL	200	CYC	C1C-NC	-3.61	1.33	1.37
9	BL	200	CYC	C1B-NB	3.58	1.43	1.37
9	AE	200	CYC	C1B-NB	3.57	1.43	1.37
9	AX	200	CYC	C1B-NB	3.56	1.43	1.37
9	CQ	200	CYC	C1B-NB	3.56	1.43	1.37
9	BJ	200	CYC	C1B-NB	3.54	1.43	1.37
9	AI	200	CYC	C1C-NC	-3.54	1.33	1.37
9	CP	200	CYC	C1C-NC	-3.53	1.33	1.37
9	BH	200	CYC	C1B-NB	3.52	1.43	1.37
9	BA	200	CYC	C1B-NB	3.52	1.43	1.37
9	BK	200	CYC	C1B-NB	3.52	1.43	1.37

Continued from previous page...

COUU	naea fron	i prevu	bus puye.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
9	DR	200	CYC	C1C-NC	-3.51	1.33	1.37
9	BQ	200	CYC	C1C-NC	-3.51	1.33	1.37
9	DG	200	CYC	C1C-NC	-3.51	1.33	1.37
9	CY	200	CYC	C1C-NC	-3.50	1.33	1.37
9	AD	200	CYC	C1B-NB	3.50	1.43	1.37
9	DA	200	CYC	C1C-NC	-3.50	1.33	1.37
9	BD	902	CYC	C1B-NB	3.49	1.43	1.37
9	AW	200	CYC	C1B-NB	3.49	1.43	1.37
9	DB	200	CYC	C1B-NB	3.48	1.43	1.37
9	BU	200	CYC	C1C-NC	-3.48	1.33	1.37
9	DA	200	CYC	C1B-NB	3.48	1.43	1.37
9	AJ	200	CYC	C1C-NC	-3.48	1.33	1.37
9	BS	200	CYC	C1B-NB	3.48	1.43	1.37
9	BY	200	CYC	C1C-NC	-3.48	1.33	1.37
9	BA	200	CYC	C1C-NC	-3.47	1.33	1.37
9	DG	200	CYC	C1B-NB	3.47	1.43	1.37
9	DR	200	CYC	C1B-NB	3.47	1.43	1.37
9	BX	200	CYC	C1B-NB	3.47	1.43	1.37
9	DK	200	CYC	C1B-NB	3.47	1.43	1.37
9	BW	200	CYC	C1C-NC	-3.47	1.33	1.37
9	CI	200	CYC	C1B-NB	3.47	1.43	1.37
9	BI	200	CYC	C1B-NB	3.46	1.43	1.37
9	BO	200	CYC	C1B-NB	3.46	1.43	1.37
9	DQ	200	CYC	C1B-NB	3.46	1.43	1.37
9	AC	200	CYC	C1C-NC	-3.46	1.33	1.37
9	CW	200	CYC	C1B-NB	3.45	1.43	1.37
9	AQ	200	CYC	C1B-NB	3.45	1.43	1.37
9	CD	200	CYC	C1B-NB	3.45	1.43	1.37
9	CT	200	CYC	C1B-NB	3.45	1.43	1.37
9	CZ	200	CYC	C1B-NB	3.44	1.43	1.37
9	DP	200	CYC	C1C-NC	-3.44	1.33	1.37
9	AC	200	CYC	C1B-NB	3.44	1.43	1.37
9	AZ	200	CYC	C1B-NB	3.43	1.43	1.37
9	AO	200	CYC	C1C-NC	-3.43	1.33	1.37
9	AB	200	CYC	C1B-NB	3.43	1.43	1.37
9	AP	200	CYC	C1C-NC	-3.43	1.33	1.37
9	DQ	200	CYC	C1C-NC	-3.43	1.33	1.37
9	AO	200	CYC	C1B-NB	3.42	1.43	1.37
9	AN	200	CYC	C1C-NC	-3.42	1.33	1.37
9	CL	902	CYC	C1B-NB	3.42	1.43	1.37
9	AV	200	CYC	C1B-NB	3.42	1.43	1.37
9	BD	901	CYC	C1B-NB	3.41	1.43	1.37

C0mu	nueu fron	i prevu	ous paye.	•••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
9	CB	200	CYC	C1B-NB	3.41	1.43	1.37
9	DN	200	CYC	C1B-NB	3.41	1.43	1.37
9	CR	200	CYC	C1B-NB	3.40	1.43	1.37
9	AL	200	CYC	C1B-NB	3.40	1.43	1.37
9	CX	200	CYC	C1B-NB	3.39	1.43	1.37
9	BV	200	CYC	C1B-NB	3.39	1.43	1.37
9	BY	200	CYC	C1B-NB	3.38	1.43	1.37
9	CU	200	CYC	C1B-NB	3.38	1.43	1.37
9	DO	200	CYC	C1B-NB	3.38	1.43	1.37
9	DH	200	CYC	C1C-NC	-3.38	1.33	1.37
9	DI	200	CYC	C1B-NB	3.38	1.43	1.37
9	CC	200	CYC	C1B-NB	3.38	1.43	1.37
9	AR	200	CYC	C1B-NB	3.37	1.43	1.37
9	CL	901	CYC	C1B-NB	3.37	1.43	1.37
9	DH	200	CYC	C1B-NB	3.37	1.43	1.37
9	BP	200	CYC	C1C-NC	-3.37	1.33	1.37
9	CZ	200	CYC	C1C-NC	-3.37	1.33	1.37
9	AZ	200	CYC	C1C-NC	-3.37	1.33	1.37
9	CU	200	CYC	C1C-NC	-3.36	1.33	1.37
9	AU	200	CYC	C1B-NB	3.36	1.43	1.37
9	DL	200	CYC	C1B-NB	3.36	1.43	1.37
9	BO	200	CYC	C1C-NC	-3.36	1.33	1.37
9	AH	200	CYC	C1B-NB	3.36	1.43	1.37
9	CF	200	CYC	C1B-NB	3.35	1.43	1.37
9	CF	200	CYC	C1C-NC	-3.35	1.33	1.37
9	AY	200	CYC	C1B-NB	3.33	1.43	1.37
9	CY	200	CYC	C1B-NB	3.33	1.43	1.37
9	AQ	200	CYC	C1C-NC	-3.33	1.33	1.37
9	CL	901	CYC	C1C-NC	-3.33	1.33	1.37
9	AA	200	CYC	C1B-NB	3.32	1.43	1.37
9	CB	200	CYC	C1C-NC	-3.32	1.33	1.37
9	DS	200	CYC	C1B-NB	3.32	1.43	1.37
9	AK	200	CYC	C1C-NC	-3.32	1.33	1.37
9	BX	200	CYC	C1C-NC	-3.31	1.33	1.37
9	BD	901	CYC	C1C-NC	-3.30	1.33	1.37
9	CW	200	CYC	C1C-NC	-3.30	1.33	1.37
9	DP	200	CYC	C1B-NB	3.30	1.43	1.37
9	BD	902	CYC	C1C-NC	-3.29	1.33	1.37
9	CD	200	CYC	C1C-NC	-3.29	1.33	1.37
9	BR	200	CYC	C1B-NB	3.29	1.43	1.37
9	AY	200	CYC	C1C-NC	-3.29	1.33	1.37
9	CX	200	CYC	C1C-NC	-3.28	1.33	1.37

COUU	naca jion	i preui	ous puye	• • •			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
9	BR	200	CYC	C1C-NC	-3.28	1.33	1.37
9	CG	200	CYC	C1C-NC	-3.28	1.33	1.37
9	BU	200	CYC	C1B-NB	3.28	1.43	1.37
9	CT	200	CYC	C1C-NC	-3.28	1.33	1.37
9	AH	200	CYC	C1C-NC	-3.27	1.33	1.37
9	AA	200	CYC	C1C-NC	-3.27	1.33	1.37
9	DS	200	CYC	C1C-NC	-3.27	1.33	1.37
9	AK	200	CYC	C1B-NB	3.27	1.43	1.37
9	CC	200	CYC	C1C-NC	-3.26	1.33	1.37
9	BW	200	CYC	C1B-NB	3.25	1.43	1.37
9	BJ	200	CYC	C1C-NC	-3.25	1.33	1.37
9	CL	902	CYC	C1C-NC	-3.24	1.33	1.37
9	CS	200	CYC	C1C-NC	-3.23	1.33	1.37
9	CE	200	CYC	C1B-NB	3.23	1.43	1.37
9	AV	200	CYC	C1C-NC	-3.23	1.33	1.37
9	CS	200	CYC	C1B-NB	3.23	1.43	1.37
9	AD	200	CYC	C1C-NC	-3.22	1.33	1.37
9	CI	200	CYC	C1C-NC	-3.22	1.33	1.37
9	DL	200	CYC	C1C-NC	-3.21	1.33	1.37
9	AN	200	CYC	C1B-NB	3.20	1.43	1.37
9	BQ	200	CYC	C1B-NB	3.20	1.43	1.37
9	CP	200	CYC	C1B-NB	3.20	1.43	1.37
9	CE	200	CYC	C1C-NC	-3.19	1.33	1.37
9	AX	200	CYC	C1C-NC	-3.19	1.33	1.37
9	CG	200	CYC	C1B-NB	3.17	1.43	1.37
9	BH	200	CYC	C1C-NC	-3.17	1.33	1.37
9	DL	200	CYC	C2A-C3A	3.17	1.43	1.36
9	BL	200	CYC	C1C-NC	-3.17	1.33	1.37
9	DN	200	CYC	C1C-NC	-3.16	1.33	1.37
9	AP	200	CYC	C1B-NB	3.15	1.43	1.37
9	CU	200	CYC	C2A-C3A	3.15	1.43	1.36
9	DB	200	CYC	C1C-NC	-3.13	1.33	1.37
9	AE	200	CYC	C1C-NC	-3.13	1.33	1.37
9	CQ	200	CYC	C1C-NC	-3.11	1.33	1.37
9	AB	200	CYC	C1C-NC	-3.11	1.33	1.37
9	BL	200	CYC	C2A-C3A	3.11	1.43	1.36
9	DK	200	CYC	C1C-NC	-3.10	1.33	1.37
9	AJ	200	CYC	C1B-NB	3.10	1.43	1.37
9	DO	200	CYC	C1C-NC	-3.08	1.33	1.37
9	AU	200	CYC	C1C-NC	-3.07	1.33	1.37
9	DJ	200	CYC	C1C-NC	-3.06	1.33	1.37
9	BK	200	CYC	C1C-NC	-3.05	1.33	1.37

001111	naca jion	i precia	bus puye.	• • •			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
9	AI	200	CYC	C1B-NB	3.04	1.43	1.37
9	DJ	200	CYC	C1B-NB	3.04	1.43	1.37
9	BP	200	CYC	C1B-NB	3.01	1.43	1.37
9	CC	200	CYC	C2A-C3A	2.97	1.43	1.36
9	AE	200	CYC	C2A-C3A	2.97	1.43	1.36
9	AW	200	CYC	C1C-NC	-2.96	1.33	1.37
9	BO	200	CYC	C1A-C2A	-2.93	1.41	1.45
9	BI	200	CYC	C1C-NC	-2.91	1.33	1.37
9	AH	200	CYC	C1A-C2A	-2.89	1.41	1.45
9	BI	200	CYC	C4C-NC	2.88	1.42	1.37
9	AB	200	CYC	C4C-NC	2.83	1.42	1.37
9	DQ	200	CYC	C2A-C3A	2.83	1.42	1.36
9	CL	902	CYC	C2A-C3A	2.82	1.42	1.36
9	AW	200	CYC	C4C-NC	2.80	1.42	1.37
9	AU	200	CYC	C4C-NC	2.80	1.42	1.37
9	BU	200	CYC	C1A-C2A	-2.79	1.41	1.45
9	BD	901	CYC	C1A-C2A	-2.79	1.41	1.45
9	CI	200	CYC	C4C-NC	2.78	1.42	1.37
9	BS	200	CYC	C2A-C3A	2.78	1.42	1.36
9	AL	200	CYC	C2A-C3A	2.78	1.42	1.36
9	AH	200	CYC	C4C-NC	2.78	1.42	1.37
9	AD	200	CYC	C2A-C3A	2.77	1.42	1.36
9	AD	200	CYC	C4C-NC	2.77	1.42	1.37
9	CQ	200	CYC	C4C-NC	2.77	1.42	1.37
9	DP	200	CYC	C1A-C2A	-2.77	1.41	1.45
9	AE	200	CYC	C4C-NC	2.76	1.42	1.37
9	DJ	200	CYC	C4C-NC	2.76	1.42	1.37
9	BS	200	CYC	C1A-C2A	-2.76	1.41	1.45
9	CY	200	CYC	C1A-C2A	-2.76	1.41	1.45
9	AP	200	CYC	C1A-C2A	-2.76	1.41	1.45
9	CE	200	CYC	C4C-NC	2.75	1.42	1.37
9	DA	200	CYC	C2A-C3A	2.75	1.42	1.36
9	DR	200	CYC	C4C-NC	2.75	1.42	1.37
9	BK	200	CYC	C4C-NC	2.75	1.42	1.37
9	CC	200	CYC	C4C-NC	2.75	1.42	1.37
9	CG	200	CYC	C4C-NC	2.75	1.42	1.37
9	BW	200	CYC	C1A-C2A	-2.75	1.41	1.45
9	CE	200	CYC	C2A-C3A	2.75	1.42	1.36
9	DB	200	CYC	C4C-NC	2.74	1.42	1.37
9	DL	200	CYC	C4C-NC	2.74	1.42	1.37
9	BL	200	CYC	C4C-NC	2.74	1.42	1.37
9	DO	200	CYC	C4C-NC	2.74	1.42	1.37

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
9	CT	200	CYC	C4C-NC	2.73	1.42	1.37
9	CF	200	CYC	C1A-C2A	-2.73	1.41	1.45
9	CP	200	CYC	C1A-C2A	-2.73	1.41	1.45
9	BH	200	CYC	C4C-NC	2.72	1.42	1.37
9	CL	901	CYC	C1A-C2A	-2.72	1.41	1.45
9	AV	200	CYC	C1A-C2A	-2.72	1.41	1.45
9	AY	200	CYC	C4C-NC	2.72	1.42	1.37
9	DS	200	CYC	C4C-NC	2.71	1.42	1.37
9	DB	200	CYC	C2A-C3A	2.71	1.42	1.36
9	BH	200	CYC	C1A-C2A	-2.71	1.41	1.45
9	CQ	200	CYC	C2A-C3A	2.70	1.42	1.36
9	CS	200	CYC	C2A-C3A	2.70	1.42	1.36
9	DK	200	CYC	C4C-NC	2.70	1.42	1.37
9	CZ	200	CYC	C2A-C3A	2.70	1.42	1.36
9	AA	200	CYC	C4C-NC	2.70	1.42	1.37
9	AX	200	CYC	C4C-NC	2.70	1.42	1.37
9	BP	200	CYC	C1A-C2A	-2.70	1.41	1.45
9	DJ	200	CYC	C2A-C3A	2.70	1.42	1.36
9	DQ	200	CYC	C4C-NC	2.69	1.42	1.37
9	DA	200	CYC	C4C-NC	2.69	1.42	1.37
9	AB	200	CYC	C2A-C3A	2.69	1.42	1.36
9	DH	200	CYC	C4C-NC	2.69	1.42	1.37
9	AJ	200	CYC	C1A-C2A	-2.69	1.41	1.45
9	CX	200	CYC	C4C-NC	2.69	1.42	1.37
9	CD	200	CYC	C2A-C3A	2.68	1.42	1.36
9	BD	902	CYC	C4C-NC	2.68	1.42	1.37
9	CS	200	CYC	C4C-NC	2.67	1.42	1.37
9	BJ	200	CYC	C1A-C2A	-2.67	1.41	1.45
9	CZ	200	CYC	C4C-NC	2.67	1.42	1.37
9	DN	200	CYC	C4C-NC	2.67	1.42	1.37
9	DO	200	CYC	C2A-C3A	2.67	1.42	1.36
9	AU	200	CYC	C2A-C3A	2.67	1.42	1.36
9	AL	200	CYC	C4C-NC	2.67	1.42	1.37
9	BQ	200	CYC	C1A-C2A	-2.67	1.41	1.45
9	CU	200	CYC	C4C-NC	2.67	1.42	1.37
9	AK	200	CYC	C4C-NC	2.67	1.42	1.37
9	BJ	200	CYC	C4C-NC	2.66	1.42	1.37
9	BR	200	CYC	C4C-NC	2.66	1.42	1.37
9	BA	200	CYC	C4C-NC	2.66	1.42	1.37
9	CY	200	CYC	C4C-NC	2.66	1.42	1.37
9	CX	200	CYC	C2A-C3A	2.66	1.42	1.36
9	CL	902	CYC	C4C-NC	$2.\overline{65}$	1.42	1.37

C0mu	пией јгоп	i prevu	ous page	• • •			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
9	CR	200	CYC	C1A-C2A	-2.65	1.41	1.45
9	CL	901	CYC	C4C-NC	2.65	1.42	1.37
9	DK	200	CYC	C2A-C3A	2.65	1.42	1.36
9	BX	200	CYC	C4C-NC	2.65	1.42	1.37
9	DH	200	CYC	C2A-C3A	2.64	1.42	1.36
9	AL	200	CYC	C1A-C2A	-2.64	1.41	1.45
9	AJ	200	CYC	C4C-NC	2.64	1.42	1.37
9	BI	200	CYC	C2A-C3A	2.64	1.42	1.36
9	CE	200	CYC	C3B-C2B	2.64	1.42	1.36
9	DI	200	CYC	C2A-C3A	2.64	1.42	1.36
9	BD	901	CYC	C4C-NC	2.64	1.42	1.37
9	CQ	200	CYC	CHB-C1B	2.64	1.44	1.37
9	AZ	200	CYC	C2A-C3A	2.63	1.42	1.36
9	AA	200	CYC	C1A-C2A	-2.63	1.41	1.45
9	DG	200	CYC	C4C-NC	2.63	1.42	1.37
9	AO	200	CYC	C4C-NC	2.63	1.42	1.37
9	AQ	200	CYC	C4C-NC	2.63	1.42	1.37
9	DH	200	CYC	C3B-C2B	2.63	1.42	1.36
9	CF	200	CYC	C4C-NC	2.63	1.42	1.37
9	BS	200	CYC	C4C-NC	2.62	1.42	1.37
9	DP	200	CYC	C3B-C2B	2.62	1.42	1.36
9	BQ	200	CYC	C4C-NC	2.62	1.42	1.37
9	AI	200	CYC	C1A-C2A	-2.62	1.41	1.45
9	CW	200	CYC	C4C-NC	2.62	1.42	1.37
9	AK	200	CYC	C2A-C3A	2.62	1.42	1.36
9	DR	200	CYC	CHB-C1B	2.62	1.44	1.37
9	DG	200	CYC	C3B-C2B	2.61	1.42	1.36
9	BP	200	CYC	C4C-NC	2.61	1.42	1.37
9	AV	200	CYC	C4C-NC	2.61	1.42	1.37
9	BD	902	CYC	C2A-C3A	2.61	1.42	1.36
9	AC	200	CYC	C3B-C2B	2.61	1.42	1.36
9	BK	200	CYC	C2A-C3A	2.61	1.42	1.36
9	BO	200	CYC	CHB-C1B	2.60	1.44	1.37
9	AC	200	CYC	C4C-NC	2.60	1.42	1.37
9	CI	200	CYC	C1A-C2A	-2.60	1.41	1.45
9	AP	200	CYC	C4C-NC	2.60	1.42	1.37
9	DK	200	CYC	CHB-C1B	2.60	1.44	1.37
9	BY	200	CYC	C2A-C3A	2.60	1.42	1.36
9	BW	200	CYC	C4C-NC	2.59	1.42	1.37
9	AA	200	CYC	C3B-C2B	2.59	1.42	1.36
9	CW	200	CYC	C2A-C3A	2.59	1.42	1.36
9	CW	200	CYC	C1A-C2A	-2.59	1.41	1.45

				A 4	7	\mathbf{O} $\mathbf{I}(\mathbf{A})$	
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(A)
9	DR	200	CYC	C2A-C3A	2.58	1.42	1.36
9	DN	200	CYC	C2A-C3A	2.58	1.42	1.36
9	Al	200	CYC	C3B-C2B	2.58	1.42	1.36
9	DG	200	CYC	CHB-C1B	2.58	1.44	1.37
9	CT	200	CYC	C1A-C2A	-2.58	1.41	1.45
9	CB	200	CYC	C2A-C3A	2.58	1.42	1.36
9	CD	200	CYC	C1A-C2A	-2.58	1.41	1.45
9	CQ	200	CYC	C3B-C2B	2.57	1.42	1.36
9	BA	200	CYC	C1A-C2A	-2.57	1.41	1.45
9	AH	200	CYC	C3B-C2B	2.57	1.42	1.36
9	AZ	200	CYC	C4C-NC	2.57	1.42	1.37
9	CX	200	CYC	C3B-C2B	2.57	1.42	1.36
9	BR	200	CYC	C2A-C3A	2.57	1.42	1.36
9	BO	200	CYC	C4C-NC	2.56	1.42	1.37
9	BH	200	CYC	C3B-C2B	2.56	1.42	1.36
9	CG	200	CYC	C3B-C2B	2.56	1.42	1.36
9	AW	200	CYC	C3B-C2B	2.56	1.42	1.36
9	AB	200	CYC	C3B-C2B	2.56	1.42	1.36
9	BV	200	CYC	C4C-NC	2.55	1.42	1.37
9	BD	901	CYC	C3B-C2B	2.55	1.42	1.36
9	CT	200	CYC	CHB-C1B	2.55	1.44	1.37
9	BP	200	CYC	C3B-C2B	2.55	1.42	1.36
9	AI	200	CYC	C4C-NC	2.55	1.42	1.37
9	AN	200	CYC	C3B-C2B	2.55	1.42	1.36
9	BX	200	CYC	C2A-C3A	2.55	1.42	1.36
9	DJ	200	CYC	C3B-C2B	2.55	1.42	1.36
9	BJ	200	CYC	C3B-C2B	2.54	1.42	1.36
9	AQ	200	CYC	C2A-C3A	2.54	1.42	1.36
9	CI	200	CYC	C3B-C2B	2.54	1.42	1.36
9	AN	200	CYC	C1A-C2A	-2.54	1.41	1.45
9	DB	200	CYC	C3B-C2B	2.54	1.42	1.36
9	AN	200	CYC	C4C-NC	2.53	1.42	1.37
9	AR	200	CYC	C1A-C2A	-2.53	1.41	1.45
9	CX	200	CYC	C1A-C2A	-2.53	1.41	1.45
9	CY	200	CYC	CHB-C1B	2.53	1.43	1.37
9	CP	200	CYC	C2A-C3A	2.53	1.42	1.36
9	AR	200	CYC	C2A-C3A	2.53	1.42	1.36
9	BY	200	CYC	C4C-NC	2.53	1.42	1.37
9	AC	200	CYC	C2A-C3A	2.53	1.42	1.36
9	BK	200	CYC	C3B-C2B	2.53	1.42	1.36
9	DP	200	CYC	C4C-NC	2.53	1.42	1.37
9	BO	200	CYC	C3B-C2B	2.53	1.42	1.36

Contr	naca jion	i preui	bus puge	•••			
Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
9	DN	200	CYC	C1A-C2A	-2.53	1.41	1.45
9	BU	200	CYC	C4C-NC	2.52	1.42	1.37
9	DI	200	CYC	C4C-NC	2.52	1.42	1.37
9	BY	200	CYC	CHB-C1B	2.52	1.43	1.37
9	AZ	200	CYC	C3B-C2B	2.52	1.42	1.36
9	DG	200	CYC	C2A-C3A	2.52	1.42	1.36
9	CD	200	CYC	C4C-NC	2.52	1.42	1.37
9	AQ	200	CYC	C3B-C2B	2.52	1.42	1.36
9	CR	200	CYC	C3B-C2B	2.52	1.42	1.36
9	BV	200	CYC	C1A-C2A	-2.52	1.41	1.45
9	CW	200	CYC	C3B-C2B	2.52	1.42	1.36
9	AR	200	CYC	CHB-C1B	2.52	1.43	1.37
9	BI	200	CYC	C3B-C2B	2.51	1.42	1.36
9	DP	200	CYC	C2A-C3A	2.51	1.42	1.36
9	CB	200	CYC	C4C-NC	2.51	1.42	1.37
9	AA	200	CYC	C2A-C3A	2.51	1.42	1.36
9	DI	200	CYC	C1A-C2A	-2.51	1.41	1.45
9	AY	200	CYC	CHB-C1B	2.51	1.43	1.37
9	DG	200	CYC	C1A-C2A	-2.51	1.41	1.45
9	AO	200	CYC	CHB-C1B	2.50	1.43	1.37
9	AR	200	CYC	C3B-C2B	2.50	1.42	1.36
9	DK	200	CYC	C1A-C2A	-2.50	1.41	1.45
9	BY	200	CYC	C3B-C2B	2.50	1.42	1.36
9	DS	200	CYC	C2A-C3A	2.49	1.42	1.36
9	DL	200	CYC	CHB-C1B	2.49	1.43	1.37
9	DK	200	CYC	C3B-C2B	2.49	1.42	1.36
9	AE	200	CYC	C1A-C2A	-2.49	1.41	1.45
9	BJ	200	CYC	C2A-C3A	2.49	1.42	1.36
9	AX	200	CYC	C1A-C2A	-2.49	1.41	1.45
9	CI	200	CYC	C2A-C3A	2.49	1.42	1.36
9	AY	200	CYC	C3B-C2B	2.49	1.42	1.36
9	AL	200	CYC	C3B-C2B	2.49	1.42	1.36
9	DS	200	CYC	C3B-C2B	2.48	1.42	1.36
9	DL	200	CYC	C3B-C2B	2.48	1.42	1.36
9	CG	200	CYC	C1A-C2A	-2.48	1.41	1.45
9	DS	200	CYC	C1A-C2A	-2.48	1.41	1.45
9	BQ	200	CYC	C2A-C3A	2.48	1.42	1.36
9	CT	200	CYC	C3B-C2B	2.48	1.42	1.36
9	CB	200	CYC	C3B-C2B	2.47	1.42	1.36
9	AZ	200	CYC	CHB-C1B	2.47	1.43	1.37
9	BH	200	CYC	C2A-C3A	2.47	1.42	1.36
9	CT	200	CYC	C2A-C3A	2.47	1.42	1.36

OOnu	παεά ποπ	ιριευω	bus puye				
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
9	AC	200	CYC	C1A-C2A	-2.47	1.41	1.45
9	BX	200	CYC	CHB-C1B	2.47	1.43	1.37
9	CL	901	CYC	C3B-C2B	2.47	1.42	1.36
9	CW	200	CYC	CHB-C1B	2.47	1.43	1.37
9	BR	200	CYC	CHB-C1B	2.46	1.43	1.37
9	AY	200	CYC	C2A-C3A	2.46	1.42	1.36
9	AX	200	CYC	C2A-C3A	2.46	1.42	1.36
9	AE	200	CYC	CHB-C1B	2.46	1.43	1.37
9	BJ	200	CYC	CHB-C1B	2.46	1.43	1.37
9	AV	200	CYC	C3B-C2B	2.46	1.42	1.36
9	CP	200	CYC	C3B-C2B	2.46	1.42	1.36
9	DN	200	CYC	C3B-C2B	2.46	1.42	1.36
9	BX	200	CYC	C3B-C2B	2.45	1.42	1.36
9	BU	200	CYC	CHB-C1B	2.45	1.43	1.37
9	DN	200	CYC	CHB-C1B	2.45	1.43	1.37
9	CP	200	CYC	C4C-NC	2.45	1.42	1.37
9	CR	200	CYC	C4C-NC	2.45	1.42	1.37
9	AQ	200	CYC	CHB-C1B	2.45	1.43	1.37
9	CR	200	CYC	C2A-C3A	2.45	1.42	1.36
9	BH	200	CYC	CHB-C1B	2.45	1.43	1.37
9	BD	902	CYC	C1A-C2A	-2.45	1.41	1.45
9	AI	200	CYC	C2A-C3A	2.45	1.42	1.36
9	AW	200	CYC	C2A-C3A	2.45	1.42	1.36
9	AN	200	CYC	CHB-C1B	2.44	1.43	1.37
9	AH	200	CYC	CHB-C1B	2.44	1.43	1.37
9	CX	200	CYC	CHB-C1B	2.44	1.43	1.37
9	BV	200	CYC	CHB-C1B	2.44	1.43	1.37
9	AX	200	CYC	C3B-C2B	2.44	1.42	1.36
9	BD	901	CYC	C2A-C3A	2.44	1.42	1.36
9	AC	200	CYC	CHB-C1B	2.43	1.43	1.37
9	CI	200	CYC	CHB-C1B	2.43	1.43	1.37
9	CY	200	CYC	C2A-C3A	2.43	1.42	1.36
9	BW	200	CYC	C2A-C3A	2.43	1.42	1.36
9	DB	200	CYC	CHB-C1B	2.43	1.43	1.37
9	BR	200	CYC	C3B-C2B	2.43	1.42	1.36
9	AH	200	CYC	C2A-C3A	2.42	1.42	1.36
9	DO	200	CYC	C3B-C2B	2.42	1.42	1.36
9	BA	200	CYC	C3B-C2B	2.42	1.42	1.36
9	BU	200	CYC	C3B-C2B	2.42	1.42	1.36
9	$\overline{\mathrm{CG}}$	200	CYC	C2A-C3A	2.42	1.42	1.36
9	CC	200	CYC	CHB-C1B	2.42	1.43	1.37
9	DH	200	CYC	CHB-C1B	2.42	1.43	1.37

Continued from previous page...

001111	naca jion	i preco	bus puge	• • •			
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(Å)
9	DR	200	CYC	C3B-C2B	2.42	1.42	1.36
9	CF	200	CYC	C3B-C2B	2.42	1.42	1.36
9	CG	200	CYC	CHB-C1B	2.42	1.43	1.37
9	DP	200	CYC	CHB-C1B	2.42	1.43	1.37
9	DA	200	CYC	CHB-C1B	2.42	1.43	1.37
9	AK	200	CYC	C3B-C2B	2.41	1.42	1.36
9	AO	200	CYC	C3B-C2B	2.41	1.42	1.36
9	CY	200	CYC	C3B-C2B	2.41	1.42	1.36
9	AJ	200	CYC	C2A-C3A	2.41	1.42	1.36
9	BK	200	CYC	CHB-C1B	2.41	1.43	1.37
9	BQ	200	CYC	CHB-C1B	2.41	1.43	1.37
9	AK	200	CYC	C1A-C2A	-2.41	1.42	1.45
9	BQ	200	CYC	C3B-C2B	2.41	1.42	1.36
9	AO	200	CYC	C1A-C2A	-2.41	1.42	1.45
9	BD	902	CYC	CHB-C1B	2.41	1.43	1.37
9	BA	200	CYC	C2A-C3A	2.40	1.42	1.36
9	AU	200	CYC	CHB-C1B	2.40	1.43	1.37
9	CC	200	CYC	C3B-C2B	2.40	1.42	1.36
9	CZ	200	CYC	C3B-C2B	2.40	1.42	1.36
9	AP	200	CYC	CHB-C1B	2.40	1.43	1.37
9	AI	200	CYC	CHB-C1B	2.40	1.43	1.37
9	CS	200	CYC	C1A-C2A	-2.40	1.42	1.45
9	CL	901	CYC	C2A-C3A	2.40	1.41	1.36
9	BU	200	CYC	C2A-C3A	2.40	1.41	1.36
9	CL	902	CYC	C3B-C2B	2.39	1.41	1.36
9	BW	200	CYC	CHB-C1B	2.39	1.43	1.37
9	BV	200	CYC	C3B-C2B	2.39	1.41	1.36
9	BR	200	CYC	C1A-C2A	-2.39	1.42	1.45
9	AO	200	CYC	C2A-C3A	2.39	1.41	1.36
9	AP	200	CYC	C2A-C3A	2.39	1.41	1.36
9	AD	200	CYC	C3B-C2B	2.39	1.41	1.36
9	AL	200	CYC	CHB-C1B	2.39	1.43	1.37
9	DS	200	CYC	CHB-C1B	2.39	1.43	1.37
9	CU	200	CYC	CHB-C1B	2.39	1.43	1.37
9	DI	200	CYC	C3B-C2B	2.39	1.41	1.36
9	BS	200	CYC	C3B-C2B	2.39	1.41	1.36
9	CF	200	CYC	C2A-C3A	2.39	1.41	1.36
9	AR	200	CYC	C4C-NC	2.38	1.42	1.37
9	AP	200	CYC	C3B-C2B	2.38	1.41	1.36
9	BA	200	CYC	CHB-C1B	2.38	1.43	1.37
9	DJ	200	CYC	C1A-C2A	-2.38	1.42	1.45
9	CP	200	CYC	CHB-C1B	2.38	1.43	1.37

001000	nucu jion	" preek	ous page				
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
9	BD	902	CYC	C3B-C2B	2.38	1.41	1.36
9	CE	200	CYC	CHB-C1B	2.38	1.43	1.37
9	AV	200	CYC	C2A-C3A	2.38	1.41	1.36
9	BI	200	CYC	CHB-C1B	2.37	1.43	1.37
9	BL	200	CYC	CHB-C1B	2.37	1.43	1.37
9	DO	200	CYC	C1A-C2A	-2.37	1.42	1.45
9	AJ	200	CYC	CHB-C1B	2.37	1.43	1.37
9	AU	200	CYC	C1A-C2A	-2.37	1.42	1.45
9	AK	200	CYC	CHB-C1B	2.37	1.43	1.37
9	DB	200	CYC	C1A-C2A	-2.36	1.42	1.45
9	CZ	200	CYC	CHB-C1B	2.36	1.43	1.37
9	DO	200	CYC	CHB-C1B	2.36	1.43	1.37
9	DQ	200	CYC	CHB-C1B	2.36	1.43	1.37
9	AJ	200	CYC	C3B-C2B	2.36	1.41	1.36
9	BD	901	CYC	CHB-C1B	2.36	1.43	1.37
9	BL	200	CYC	C3B-C2B	2.36	1.41	1.36
9	AU	200	CYC	C3B-C2B	2.36	1.41	1.36
9	CU	200	CYC	C3B-C2B	2.36	1.41	1.36
9	CL	901	CYC	CHB-C1B	2.35	1.43	1.37
9	BW	200	CYC	C3B-C2B	2.35	1.41	1.36
9	CL	902	CYC	CHB-C1B	2.35	1.43	1.37
9	BK	200	CYC	C1A-C2A	-2.34	1.42	1.45
9	BY	200	CYC	C1A-C2A	-2.34	1.42	1.45
9	CL	902	CYC	C1A-C2A	-2.34	1.42	1.45
9	BS	200	CYC	CHB-C1B	2.34	1.43	1.37
9	CB	200	CYC	CHB-C1B	2.34	1.43	1.37
9	DA	200	CYC	C1A-C2A	-2.34	1.42	1.45
9	AB	200	CYC	CHB-C1B	2.33	1.43	1.37
9	BO	200	CYC	C2A-C3A	2.33	1.41	1.36
9	DQ	200	CYC	C1A-C2A	-2.33	1.42	1.45
9	CS	200	CYC	C3B-C2B	2.33	1.41	1.36
9	DQ	200	CYC	C3B-C2B	2.33	1.41	1.36
9	BV	200	CYC	C2A-C3A	2.33	1.41	1.36
9	AE	200	CYC	C3B-C2B	2.32	1.41	1.36
9	AN	200	CYC	C2A-C3A	2.32	1.41	1.36
9	AX	200	CYC	CHB-C1B	2.32	1.43	1.37
9	AW	200	CYC	CHB-C1B	2.32	1.43	1.37
9	CD	200	CYC	CHB-C1B	2.32	1.43	1.37
9	CF	200	CYC	CHB-C1B	2.31	1.43	1.37
9	CD	200	CYC	C3B-C2B	2.31	1.41	1.36
9	CZ	200	CYC	C1A-C2A	-2.31	1.42	1.45
9	CR	200	CYC	CHB-C1B	2.31	1.43	1.37

001111	naca jion	i preco	ous page	•••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
9	AW	200	CYC	C1A-C2A	-2.31	1.42	1.45
9	DJ	200	CYC	CHB-C1B	2.30	1.43	1.37
9	BP	200	CYC	C2A-C3A	2.30	1.41	1.36
9	AA	200	CYC	CHB-C1B	2.30	1.43	1.37
9	DH	200	CYC	C1A-C2A	-2.29	1.42	1.45
9	AD	200	CYC	C1A-C2A	-2.29	1.42	1.45
9	CQ	200	CYC	C1A-C2A	-2.28	1.42	1.45
9	AD	200	CYC	CHB-C1B	2.28	1.43	1.37
9	BP	200	CYC	CHB-C1B	2.27	1.43	1.37
9	AV	200	CYC	CHB-C1B	2.26	1.43	1.37
9	DA	200	CYC	C3B-C2B	2.24	1.41	1.36
9	CB	200	CYC	C1A-C2A	-2.24	1.42	1.45
9	AY	200	CYC	C1A-C2A	-2.24	1.42	1.45
9	CS	200	CYC	CHB-C1B	2.22	1.43	1.37
9	AR	200	CYC	CAC-C3C	2.20	1.58	1.54
9	AQ	200	CYC	C1A-C2A	-2.17	1.42	1.45
9	DI	200	CYC	CHB-C1B	2.14	1.43	1.37
9	CI	200	CYC	CBD-CGD	2.13	1.55	1.50
9	BI	200	CYC	CBD-CGD	2.12	1.55	1.50
9	DR	200	CYC	C1A-C2A	-2.12	1.42	1.45
9	AU	200	CYC	CBD-CGD	2.12	1.55	1.50
9	DI	200	CYC	C4A-C3A	-2.11	1.41	1.45
9	CQ	200	CYC	CBD-CGD	2.11	1.55	1.50
9	AW	200	CYC	CBD-CGD	2.11	1.55	1.50
9	CD	200	CYC	CAC-C3C	2.10	1.58	1.54
9	AE	200	CYC	CBD-CGD	2.10	1.55	1.50
9	BA	200	CYC	CBD-CGD	2.10	1.55	1.50
9	AH	200	CYC	CAC-C3C	2.10	1.58	1.54
9	AC	200	CYC	CBD-CGD	2.10	1.55	1.50
9	CZ	200	CYC	CBD-CGD	2.10	1.55	1.50
9	AL	200	CYC	CAC-C3C	2.10	1.58	1.54
9	CU	200	CYC	CBD-CGD	2.10	1.55	1.50
9	AV	200	CYC	CBD-CGD	2.09	1.55	1.50
9	BK	200	CYC	CBD-CGD	2.09	1.55	1.50
9	BJ	200	CYC	CBD-CGD	2.09	1.55	1.50
9	BX	200	CYC	C1A-C2A	-2.09	1.42	1.45
9	BH	200	CYC	CBD-CGD	2.09	1.55	1.50
9	AB	200	CYC	CBD-CGD	2.09	1.55	1.50
9	CE	200	$CY\overline{C}$	CBD-CGD	2.09	1.55	1.50
9	BO	200	CYC	CAC-C3C	2.09	1.58	1.54
9	BL	200	CYC	CBD-CGD	2.08	1.55	1.50
9	DL	200	CYC	CBD-CGD	2.08	1.55	1.50

Mol	Chain	Res		Atoms	Ζ	Observed(Å)	Ideal(Å)
9	DQ	200	CYC	CBD-CGD	2.08	1.55	1.50
9	AD	200	CYC	CBD-CGD	2.07	1.55	1.50
9	AX	200	CYC	CBD-CGD	2.07	1.55	1.50
9	AY	200	CYC	CBD-CGD	2.07	1.55	1.50
9	DB	200	CYC	CBD-CGD	2.07	1.55	1.50
9	AV	200	CYC	CAC-C3C	2.07	1.58	1.54
9	DK	200	CYC	CBD-CGD	2.07	1.55	1.50
9	CR	200	CYC	CBD-CGD	2.07	1.55	1.50
9	AA	200	CYC	CBD-CGD	2.07	1.55	1.50
9	AN	200	CYC	CBD-CGD	2.06	1.55	1.50
9	DO	200	CYC	CBD-CGD	2.06	1.55	1.50
9	DP	200	CYC	CBD-CGD	2.06	1.55	1.50
9	DP	200	CYC	CAC-C3C	2.06	1.57	1.54
9	CC	200	CYC	C1A-C2A	-2.06	1.42	1.45
9	CL	902	CYC	CBD-CGD	2.06	1.55	1.50
9	CC	200	CYC	CBD-CGD	2.06	1.55	1.50
9	DS	200	CYC	CBD-CGD	2.06	1.55	1.50
9	DG	200	CYC	CBD-CGD	2.06	1.55	1.50
9	BO	200	CYC	CBD-CGD	2.06	1.55	1.50
9	CD	200	CYC	CBD-CGD	2.05	1.55	1.50
9	CG	200	CYC	CBD-CGD	2.05	1.55	1.50
9	BL	200	CYC	C1A-C2A	-2.05	1.42	1.45
9	CP	200	CYC	CBD-CGD	2.05	1.55	1.50
9	BD	902	CYC	CBD-CGD	2.05	1.55	1.50
9	BX	200	CYC	CBD-CGD	2.04	1.55	1.50
9	AZ	200	CYC	CBD-CGD	2.04	1.55	1.50
9	CY	200	CYC	CBD-CGD	2.04	1.55	1.50
9	AH	200	CYC	CBD-CGD	2.04	1.55	1.50
9	AQ	200	CYC	CBD-CGD	2.04	1.55	1.50
9	AK	200	CYC	CBD-CGD	2.03	1.55	1.50
9	AR	200	CYC	CBD-CGD	2.03	1.55	1.50
9	BU	200	CYC	CBD-CGD	2.03	1.55	1.50
9	CS	200	CYC	CBD-CGD	2.03	1.55	1.50
9	BP	200	CYC	CBD-CGD	2.03	1.55	1.50
9	DI	200	CYC	CBD-CGD	2.03	1.55	1.50
9	BI	200	CYC	C4A-C3A	-2.03	1.41	1.45
9	CB	200	CYC	CAC-C3C	2.03	1.57	1.54
9	CT	200	CYC	CBD-CGD	2.02	1.55	1.50
9	BY	200	CYC	CBD-CGD	2.02	1.55	1.50
9	CL	901	CYC	CBD-CGD	$2.0\overline{2}$	1.55	1.50
9	CB	200	CYC	CBD-CGD	2.02	1.55	1.50
9	DL	200	CYC	C1A-C2A	-2.02	1.42	1.45

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
9	AO	200	CYC	CBD-CGD	2.02	1.55	1.50
9	DH	200	CYC	CBD-CGD	2.02	1.55	1.50
9	AL	200	CYC	CBD-CGD	2.02	1.55	1.50
9	CF	200	CYC	CBD-CGD	2.02	1.55	1.50
9	BD	901	CYC	CBD-CGD	2.01	1.55	1.50
9	DA	200	CYC	CBD-CGD	2.01	1.55	1.50
9	CP	200	CYC	CAC-C3C	2.01	1.57	1.54
9	DJ	200	CYC	CBD-CGD	2.00	1.55	1.50

All (984) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
9	CZ	200	CYC	OC-C1C-C2C	-7.89	119.90	126.17
9	BI	200	CYC	C1D-CHD-C4C	7.48	138.74	128.47
9	DJ	200	CYC	C1D-CHD-C4C	7.48	138.74	128.47
9	BK	200	CYC	OC-C1C-C2C	-7.31	120.36	126.17
9	BP	200	CYC	CAB-C3B-C4B	7.10	132.35	121.37
9	DN	200	CYC	C1D-CHD-C4C	7.07	138.18	128.47
9	BS	200	CYC	C1D-CHD-C4C	6.98	138.05	128.47
9	DJ	200	CYC	OC-C1C-C2C	-6.92	120.67	126.17
9	DL	200	CYC	CAB-C3B-C4B	6.88	132.01	121.37
9	AW	200	CYC	C1D-CHD-C4C	6.87	137.90	128.47
9	AB	200	CYC	OC-C1C-C2C	-6.82	120.75	126.17
9	CZ	200	CYC	C2C-C1C-NC	6.82	113.96	108.29
9	CY	200	CYC	OC-C1C-C2C	-6.82	120.75	126.17
9	DO	200	CYC	C1D-CHD-C4C	6.81	137.82	128.47
9	AI	200	CYC	CAB-C3B-C4B	6.79	131.87	121.37
9	BR	200	CYC	OC-C1C-C2C	-6.75	120.81	126.17
9	DO	200	CYC	OC-C1C-C2C	-6.66	120.88	126.17
9	DR	200	CYC	OC-C1C-C2C	-6.66	120.88	126.17
9	DA	200	CYC	OC-C1C-C2C	-6.65	120.88	126.17
9	AP	200	CYC	OC-C1C-C2C	-6.65	120.89	126.17
9	DJ	200	CYC	CAB-C3B-C4B	6.65	131.65	121.37
9	CF	200	CYC	OC-C1C-C2C	-6.63	120.91	126.17
9	AE	200	CYC	OC-C1C-C2C	-6.61	120.92	126.17
9	CF	200	CYC	C1D-CHD-C4C	6.61	137.54	128.47
9	AX	200	CYC	OC-C1C-C2C	-6.60	120.92	126.17
9	CW	200	CYC	OC-C1C-C2C	-6.59	120.93	126.17
9	DH	200	CYC	OC-C1C-C2C	-6.59	120.94	126.17
9	CL	902	CYC	OC-C1C-C2C	-6.59	120.94	126.17
9	AK	200	CYC	OC-C1C-C2C	-6.57	120.95	126.17
9	BW	200	CYC	OC-C1C-C2C	-6.57	120.95	126.17

α \cdot \cdot \cdot	C	•	
Continued	from	previous	page
	5	1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	BL	200	CYC	OC-C1C-C2C	-6.54	120.97	126.17
9	BD	902	CYC	OC-C1C-C2C	-6.51	121.00	126.17
9	AJ	200	CYC	OC-C1C-C2C	-6.47	121.03	126.17
9	DQ	200	CYC	C1D-CHD-C4C	6.46	137.34	128.47
9	CS	200	CYC	OC-C1C-C2C	-6.46	121.04	126.17
9	BV	200	CYC	OC-C1C-C2C	-6.42	121.07	126.17
9	CU	200	CYC	OC-C1C-C2C	-6.40	121.08	126.17
9	DS	200	CYC	CAB-C3B-C4B	6.40	131.26	121.37
9	CE	200	CYC	C1D-CHD-C4C	6.39	137.24	128.47
9	BH	200	CYC	OC-C1C-C2C	-6.39	121.09	126.17
9	AO	200	CYC	OC-C1C-C2C	-6.39	121.09	126.17
9	BV	200	CYC	C1D-CHD-C4C	6.38	137.23	128.47
9	CU	200	CYC	CAB-C3B-C4B	6.38	131.24	121.37
9	DB	200	CYC	OC-C1C-C2C	-6.37	121.11	126.17
9	AO	200	CYC	C1D-CHD-C4C	6.36	137.20	128.47
9	DH	200	CYC	C1D-CHD-C4C	6.36	137.20	128.47
9	DO	200	CYC	CAB-C3B-C4B	6.36	131.20	121.37
9	DS	200	CYC	OC-C1C-C2C	-6.35	121.12	126.17
9	AV	200	CYC	OC-C1C-C2C	-6.35	121.12	126.17
9	CQ	200	CYC	C1D-CHD-C4C	6.35	137.19	128.47
9	AI	200	CYC	OC-C1C-C2C	-6.33	121.14	126.17
9	DQ	200	CYC	OC-C1C-C2C	-6.33	121.14	126.17
9	CW	200	CYC	C2C-C1C-NC	6.32	113.54	108.29
9	BO	200	CYC	OC-C1C-C2C	-6.31	121.15	126.17
9	DK	200	CYC	OC-C1C-C2C	-6.31	121.15	126.17
9	CX	200	CYC	OC-C1C-C2C	-6.30	121.16	126.17
9	AJ	200	CYC	CAB-C3B-C4B	6.30	131.11	121.37
9	BO	200	CYC	C2C-C1C-NC	6.29	113.53	108.29
9	BR	200	CYC	CAB-C3B-C4B	6.29	131.10	121.37
9	BW	200	CYC	CAB-C3B-C4B	6.29	131.09	121.37
9	BQ	200	CYC	OC-C1C-C2C	-6.28	121.18	126.17
9	DL	200	CYC	OC-C1C-C2C	-6.28	121.18	126.17
9	DP	200	CYC	CAB-C3B-C4B	6.28	131.08	121.37
9	CT	200	CYC	OC-C1C-C2C	-6.27	$1\overline{21.19}$	126.17
9	AQ	200	CYC	OC-C1C-C2C	-6.26	121.19	126.17
9	BP	200	CYC	OC-C1C-C2C	-6.26	121.19	126.17
9	AP	200	CYC	CAB-C3B-C4B	6.25	131.03	121.37
9	CQ	$20\overline{0}$	CYC	OC-C1C-C2C	-6.24	121.21	126.17
9	CE	200	CYC	OC-C1C-C2C	-6.23	121.22	126.17
9	BX	200	CYC	OC-C1C-C2C	-6.22	121.23	126.17
9	AL	200	CYC	C1D-CHD-C4C	6.21	137.00	128.47
9	BW	200	CYC	C2C-C1C-NC	6.21	113.46	108.29

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	from	previous	page
	5	1	1 5

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	AE	200	CYC	C1D-CHD-C4C	6.21	136.99	128.47
9	AV	200	CYC	C2C-C1C-NC	6.20	113.45	108.29
9	AP	200	CYC	C2C-C1C-NC	6.16	113.42	108.29
9	BR	200	CYC	C2C-C1C-NC	6.16	113.42	108.29
9	BO	200	CYC	C1D-CHD-C4C	6.15	136.91	128.47
9	CR	200	CYC	C2C-C1C-NC	6.14	113.40	108.29
9	AD	200	CYC	OC-C1C-C2C	-6.14	121.29	126.17
9	AZ	200	CYC	OC-C1C-C2C	-6.13	121.30	126.17
9	AZ	200	CYC	C2C-C1C-NC	6.13	113.39	108.29
9	DP	200	CYC	C2C-C1C-NC	6.12	113.38	108.29
9	BQ	200	CYC	CAB-C3B-C4B	6.12	130.83	121.37
9	BI	200	CYC	OC-C1C-C2C	-6.11	121.31	126.17
9	CS	200	CYC	C1D-CHD-C4C	6.11	136.85	128.47
9	AK	200	CYC	C2C-C1C-NC	6.10	113.36	108.29
9	AE	200	CYC	C2C-C1C-NC	6.10	113.36	108.29
9	CI	200	CYC	OC-C1C-C2C	-6.09	121.33	126.17
9	AI	200	CYC	C2C-C1C-NC	6.09	113.36	108.29
9	AA	200	CYC	OC-C1C-C2C	-6.07	121.34	126.17
9	CD	200	CYC	OC-C1C-C2C	-6.07	121.35	126.17
9	AN	200	CYC	C2C-C1C-NC	6.06	113.33	108.29
9	CL	902	CYC	C2C-C1C-NC	6.06	113.33	108.29
9	BH	200	CYC	C1D-CHD-C4C	6.06	136.79	128.47
9	AL	200	CYC	OC-C1C-C2C	-6.05	121.36	126.17
9	CC	200	CYC	OC-C1C-C2C	-6.05	121.37	126.17
9	BY	200	CYC	C2C-C1C-NC	6.05	113.32	108.29
9	DA	200	CYC	CAB-C3B-C4B	6.04	130.71	121.37
9	BU	200	CYC	C2C-C1C-NC	6.04	113.31	108.29
9	AR	200	CYC	C2C-C1C-NC	6.04	113.31	108.29
9	BL	200	CYC	C2C-C1C-NC	6.04	113.31	108.29
9	AW	200	CYC	OC-C1C-C2C	-6.03	121.38	126.17
9	AC	200	CYC	C2C-C1C-NC	6.00	113.28	108.29
9	CB	200	CYC	C2C-C1C-NC	6.00	113.28	108.29
9	AK	200	CYC	CAB-C3B-C4B	6.00	130.64	121.37
9	CG	200	CYC	C1D-CHD-C4C	5.99	136.69	128.47
9	BU	200	CYC	OC-C1C-C2C	-5.99	121.41	126.17
9	CW	200	CYC	C1D-CHD-C4C	5.99	136.69	128.47
9	CD	200	CYC	C2C-C1C-NC	5.99	113.27	108.29
9	DP	200	CYC	OC-C1C-C2C	-5.99	121.41	126.17
9	AH	200	CYC	OC-C1C-C2C	-5.98	121.42	126.17
9	CL	901	CYC	OC-C1C-C2C	-5.97	121.42	126.17
9	AA	200	CYC	C1D-CHD-C4C	5.97	$1\overline{36.67}$	128.47
9	CF	200	CYC	C2C-C1C-NC	5.97	113.26	108.29

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	5	1	1 0

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
9	BY	200	CYC	OC-C1C-C2C	-5.97	121.43	126.17
9	AN	200	CYC	CAB-C3B-C4B	5.96	130.59	121.37
9	AX	200	CYC	C2C-C1C-NC	5.96	113.25	108.29
9	BA	200	CYC	OC-C1C-C2C	-5.96	121.43	126.17
9	AN	200	CYC	OC-C1C-C2C	-5.96	121.44	126.17
9	BH	200	CYC	C2C-C1C-NC	5.95	113.24	108.29
9	AX	200	CYC	C1D-CHD-C4C	5.93	136.62	128.47
9	BQ	200	CYC	C2C-C1C-NC	5.93	113.22	108.29
9	CG	200	CYC	OC-C1C-C2C	-5.92	121.46	126.17
9	AQ	200	CYC	CAB-C3B-C4B	5.92	130.53	121.37
9	AJ	200	CYC	C2C-C1C-NC	5.92	113.22	108.29
9	CI	200	CYC	C1D-CHD-C4C	5.92	136.60	128.47
9	CB	200	CYC	OC-C1C-C2C	-5.92	121.47	126.17
9	CS	200	CYC	CAB-C3B-C4B	5.92	130.53	121.37
9	DH	200	CYC	C2C-C1C-NC	5.91	113.21	108.29
9	CY	200	CYC	C2C-C1C-NC	5.91	113.21	108.29
9	CP	200	CYC	C2C-C1C-NC	5.91	113.20	108.29
9	BD	901	CYC	OC-C1C-C2C	-5.90	121.48	126.17
9	CZ	200	CYC	CAB-C3B-C4B	5.89	130.48	121.37
9	BK	200	CYC	C2C-C1C-NC	5.89	113.19	108.29
9	BV	200	CYC	C2C-C1C-NC	5.89	113.19	108.29
9	BD	902	CYC	C2C-C1C-NC	5.88	113.18	108.29
9	AU	200	CYC	OC-C1C-C2C	-5.88	121.50	126.17
9	CQ	200	CYC	CAB-C3B-C4B	5.84	130.40	121.37
9	AB	200	CYC	C1D-CHD-C4C	5.83	136.47	128.47
9	AC	200	CYC	OC-C1C-C2C	-5.83	121.54	126.17
9	DL	200	CYC	C1D-CHD-C4C	5.82	136.47	128.47
9	BJ	200	CYC	OC-C1C-C2C	-5.82	121.54	126.17
9	AQ	200	CYC	C2C-C1C-NC	5.80	113.11	108.29
9	DG	200	CYC	OC-C1C-C2C	-5.80	121.56	126.17
9	DQ	200	CYC	C2C-C1C-NC	5.79	113.11	108.29
9	AL	200	CYC	CAB-C3B-C4B	5.79	130.32	121.37
9	AA	200	CYC	C2C-C1C-NC	5.76	113.08	108.29
9	CE	200	CYC	CAB-C3B-C4B	5.76	130.28	121.37
9	DO	200	CYC	C2C-C1C-NC	5.75	113.08	108.29
9	CE	200	CYC	CAA-C2A-C1A	5.75	135.12	125.02
9	DI	200	CYC	C2C-C1C-NC	5.74	113.07	108.29
9	DH	200	CYC	CAB-C3B-C4B	$5.7\overline{4}$	$130.2\overline{4}$	121.37
9	AC	200	CYC	CAB-C3B-C4B	5.73	130.23	121.37
9	BS	200	CYC	OC-C1C-C2C	-5.71	121.63	126.17
9	BP	200	CYC	C2C-C1C-NC	5.71	113.04	108.29
9	BQ	200	CYC	C1D-CHD-C4C	5.70	136.29	128.47

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
00100000000	J. 00	proceed as	P ~ 9 ~

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
9	AQ	200	CYC	C1D-CHD-C4C	5.69	136.28	128.47
9	AY	200	CYC	C1D-CHD-C4C	5.69	136.28	128.47
9	BJ	200	CYC	C2C-C1C-NC	5.69	113.02	108.29
9	AR	200	CYC	OC-C1C-C2C	-5.67	121.67	126.17
9	DS	200	CYC	C1D-CHD-C4C	5.67	136.25	128.47
9	BX	200	CYC	C2C-C1C-NC	5.66	113.00	108.29
9	DK	200	CYC	C2C-C1C-NC	5.66	113.00	108.29
9	DA	200	CYC	C2C-C1C-NC	5.66	113.00	108.29
9	DB	200	CYC	C2C-C1C-NC	5.65	112.99	108.29
9	DR	200	CYC	C2C-C1C-NC	5.65	112.99	108.29
9	AU	200	CYC	CAB-C3B-C4B	5.65	130.11	121.37
9	AO	200	CYC	C2C-C1C-NC	5.64	112.98	108.29
9	CS	200	CYC	C2C-C1C-NC	5.63	112.97	108.29
9	CL	901	CYC	C2C-C1C-NC	5.63	112.97	108.29
9	CP	200	CYC	OC-C1C-C2C	-5.63	121.70	126.17
9	AV	200	CYC	C1D-CHD-C4C	5.62	136.18	128.47
9	BX	200	CYC	CAB-C3B-C4B	5.61	130.05	121.37
9	CX	200	CYC	CAB-C3B-C4B	5.61	130.05	121.37
9	BD	901	CYC	C2C-C1C-NC	5.61	112.95	108.29
9	CU	200	CYC	C2C-C1C-NC	5.61	112.95	108.29
9	AL	200	CYC	C2C-C1C-NC	5.60	112.95	108.29
9	AK	200	CYC	C1D-CHD-C4C	5.60	136.16	128.47
9	CG	200	CYC	CAB-C3B-C4B	5.60	130.03	121.37
9	BA	200	CYC	C2C-C1C-NC	5.59	112.94	108.29
9	DN	200	CYC	OC-C1C-C2C	-5.58	121.74	126.17
9	BX	200	CYC	C1D-CHD-C4C	5.56	136.11	128.47
9	AB	200	CYC	C2C-C1C-NC	5.56	112.91	108.29
9	AI	200	CYC	C1D-CHD-C4C	5.55	136.08	128.47
9	DJ	200	CYC	C2C-C1C-NC	5.54	112.90	108.29
9	CQ	200	CYC	C2C-C1C-NC	5.50	112.86	108.29
9	CX	200	CYC	C1D-CHD-C4C	5.49	136.01	128.47
9	CR	200	CYC	OC-C1C-C2C	-5.49	121.81	126.17
9	DI	200	CYC	OC-C1C-C2C	-5.49	121.81	126.17
9	DS	200	CYC	C2C-C1C-NC	5.48	112.85	108.29
9	AR	200	CYC	CAB-C3B-C4B	5.48	129.84	121.37
9	AJ	200	CYC	C1D-CHD-C4C	5.47	135.98	128.47
9	DG	200	CYC	C2C-C1C-NC	5.46	112.83	108.29
9	CX	200	CYC	C2C-C1C-NC	5.46	112.83	108.29
9	BY	200	CYC	CAB-C3B-C4B	5.46	129.81	121.37
9	CE	200	CYC	C2C-C1C-NC	5.45	112.82	108.29
9	CL	901	CYC	CAB-C3B-C4B	5.43	129.77	121.37
9	DL	200	CYC	C2C-C1C-NC	5.43	112.81	108.29

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	CW	200	CYC	CAB-C3B-C4B	5.42	129.75	121.37
9	AP	200	CYC	C1D-CHD-C4C	5.41	135.89	128.47
9	BL	200	CYC	CAB-C3B-C4B	5.39	129.71	121.37
9	AZ	200	CYC	CAB-C3B-C4B	5.39	129.71	121.37
9	AO	200	CYC	CAB-C3B-C4B	5.39	129.71	121.37
9	DR	200	CYC	CAB-C3B-C4B	5.39	129.70	121.37
9	BS	200	CYC	C2C-C1C-NC	5.37	112.76	108.29
9	CI	200	CYC	C2C-C1C-NC	5.36	112.75	108.29
9	DQ	200	CYC	CAB-C3B-C4B	5.36	129.65	121.37
9	BS	200	CYC	CAB-C3B-C4B	5.35	129.65	121.37
9	AY	200	CYC	OC-C1C-C2C	-5.35	121.92	126.17
9	AH	200	CYC	C2C-C1C-NC	5.34	112.73	108.29
9	BL	200	CYC	C1D-CHD-C4C	5.34	135.81	128.47
9	BP	200	CYC	C1D-CHD-C4C	5.34	135.81	128.47
9	BD	902	CYC	CAB-C3B-C4B	5.33	129.60	121.37
9	BU	200	CYC	CAB-C3B-C4B	5.31	129.58	121.37
9	CT	200	CYC	C2C-C1C-NC	5.31	112.71	108.29
9	DB	200	CYC	CAB-C3B-C4B	5.28	129.54	121.37
9	BV	200	CYC	CAB-C3B-C4B	5.28	129.53	121.37
9	CY	200	CYC	CAB-C3B-C4B	5.27	129.53	121.37
9	DG	200	CYC	CAB-C3B-C4B	5.26	129.50	121.37
9	CL	902	CYC	CAB-C3B-C4B	5.26	129.50	121.37
9	CT	200	CYC	CAB-C3B-C4B	5.26	129.50	121.37
9	CC	200	CYC	CAB-C3B-C4B	5.26	129.50	121.37
9	AY	200	CYC	CAB-C3B-C4B	5.25	129.49	121.37
9	AD	200	CYC	C2C-C1C-NC	5.25	112.65	108.29
9	DI	200	CYC	CAB-C3B-C4B	5.24	129.47	121.37
9	DN	200	CYC	CAB-C3B-C4B	5.23	129.46	121.37
9	BJ	200	CYC	C1D-CHD-C4C	5.22	135.63	128.47
9	CC	200	CYC	C2C-C1C-NC	5.20	112.61	108.29
9	AB	200	CYC	CAB-C3B-C4B	5.18	129.38	121.37
9	AU	200	CYC	C2C-C1C-NC	5.17	112.59	108.29
9	CR	200	CYC	CAB-C3B-C4B	5.17	129.36	121.37
9	BK	200	CYC	CAB-C3B-C4B	5.14	129.32	121.37
9	CB	200	CYC	CAB-C3B-C4B	5.14	129.32	121.37
9	BA	200	CYC	CAB-C3B-C4B	5.14	129.31	121.37
9	BW	200	CYC	C1D-CHD-C4C	5.14	135.52	128.47
9	BY	200	CYC	C1D-CHD-C4C	5.14	135.52	128.47
9	AW	200	CYC	CAB-C3B-C4B	5.13	129.30	121.37
9	AY	200	CYC	C2C-C1C-NC	5.12	112.55	108.29
9	BI	200	CYC	CAB-C3B-C4B	5.11	129.27	121.37
9	DK	200	CYC	CAB-C3B-C4B	5.11	129.26	121.37

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	CG	200	CYC	C2C-C1C-NC	5.09	112.53	108.29
9	BR	200	CYC	C1D-CHD-C4C	5.09	135.45	128.47
9	BJ	200	CYC	CAB-C3B-C4B	5.08	129.23	121.37
9	CP	200	CYC	CAB-C3B-C4B	5.08	129.23	121.37
9	CI	200	CYC	CAB-C3B-C4B	5.08	129.22	121.37
9	AW	200	CYC	C2C-C1C-NC	5.07	112.51	108.29
9	BH	200	CYC	CAB-C3B-C4B	5.07	129.20	121.37
9	CU	200	CYC	C1D-CHD-C4C	5.06	135.42	128.47
9	CD	200	CYC	CAB-C3B-C4B	5.06	129.19	121.37
9	AU	200	CYC	C1D-CHD-C4C	5.05	135.40	128.47
9	BD	901	CYC	CAB-C3B-C4B	5.04	129.16	121.37
9	BI	200	CYC	C2C-C1C-NC	5.03	112.47	108.29
9	AN	200	CYC	C1D-CHD-C4C	5.02	135.36	128.47
9	CZ	200	CYC	C1D-CHD-C4C	5.01	135.35	128.47
9	CD	200	CYC	C1D-CHD-C4C	4.98	135.31	128.47
9	CF	200	CYC	CAB-C3B-C4B	4.97	129.06	121.37
9	AV	200	CYC	CAB-C3B-C4B	4.94	129.00	121.37
9	DP	200	CYC	C1D-CHD-C4C	4.93	135.23	128.47
9	AA	200	CYC	CAB-C3B-C4B	4.92	128.98	121.37
9	AD	200	CYC	CAB-C3B-C4B	4.90	128.95	121.37
9	DB	200	CYC	C1D-CHD-C4C	4.89	135.18	128.47
9	AX	200	CYC	CAB-C3B-C4B	4.87	128.91	121.37
9	AH	200	CYC	CAB-C3B-C4B	4.85	128.88	121.37
9	AH	200	CYC	C1D-CHD-C4C	4.84	135.12	128.47
9	BO	200	CYC	CAB-C3B-C4B	4.84	128.86	121.37
9	DI	200	CYC	C2C-C3C-C4C	4.83	108.57	101.34
9	AR	200	CYC	CMC-C2C-C1C	-4.82	102.02	112.40
9	AE	200	CYC	C1B-CHB-C4A	4.80	139.84	128.06
9	CB	200	CYC	C1D-CHD-C4C	4.77	135.02	128.47
9	DA	200	CYC	C1B-CHB-C4A	4.77	139.78	128.06
9	CE	200	CYC	CHA-C1A-NA	-4.74	122.32	128.76
9	CZ	200	CYC	C2C-C3C-C4C	4.72	108.41	101.34
9	BU	200	CYC	C1D-CHD-C4C	4.71	134.93	128.47
9	AE	200	CYC	C2C-C3C-C4C	4.68	108.34	101.34
9	DQ	200	CYC	C2C-C3C-C4C	4.65	108.30	101.34
9	CC	200	CYC	C1D-CHD-C4C	4.57	134.74	128.47
9	CY	200	CYC	C2C-C3C-C4C	4.57	108.18	101.34
9	BK	200	CYC	C1D-CHD-C4C	4.56	134.72	128.47
9	CE	200	CYC	CAA-C2A-C3A	-4.55	119.35	127.87
9	CR	200	CYC	C2C-C3C-C4C	4.52	108.11	101.34
9	AE	200	CYC	CAB-C3B-C4B	4.51	128.35	121.37
9	AJ	200	CYC	C2C-C3C-C4C	4.51	108.09	101.34

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	BS	200	CYC	C2C-C3C-C4C	4.48	108.05	101.34
9	BL	200	CYC	C2C-C3C-C4C	4.46	108.03	101.34
9	CW	200	CYC	C2C-C3C-C4C	4.44	107.98	101.34
9	DR	200	CYC	C2C-C3C-C4C	4.43	107.98	101.34
9	BV	200	CYC	C2C-C3C-C4C	4.40	107.92	101.34
9	DA	200	CYC	C2C-C3C-C4C	4.40	107.92	101.34
9	CS	200	CYC	CMB-C2B-C1B	4.39	129.50	124.16
9	DH	200	CYC	C2C-C3C-C4C	4.38	107.90	101.34
9	BQ	200	CYC	C2C-C3C-C4C	4.32	107.82	101.34
9	AD	200	CYC	C1D-CHD-C4C	4.32	134.40	128.47
9	DR	200	CYC	C1B-CHB-C4A	4.32	138.66	128.06
9	AZ	200	CYC	C1D-CHD-C4C	4.31	134.39	128.47
9	AL	200	CYC	C2C-C3C-C4C	4.31	107.80	101.34
9	BH	200	CYC	C2C-C3C-C4C	4.31	107.79	101.34
9	CL	902	CYC	C2C-C3C-C4C	4.30	107.78	101.34
9	BR	200	CYC	C2C-C3C-C4C	4.30	107.78	101.34
9	BW	200	CYC	C2C-C3C-C4C	4.29	107.77	101.34
9	AK	200	CYC	C2C-C3C-C4C	4.27	107.73	101.34
9	CL	901	CYC	C1D-CHD-C4C	4.26	134.31	128.47
9	DL	200	CYC	CMB-C2B-C1B	4.25	129.32	124.16
9	DN	200	CYC	C2C-C1C-NC	4.22	111.80	108.29
9	CC	200	CYC	C1B-CHB-C4A	4.21	138.39	128.06
9	DQ	200	CYC	CBD-CAD-C3D	4.18	119.56	112.54
9	AU	200	CYC	C1B-CHB-C4A	4.16	138.26	128.06
9	CU	200	CYC	CMB-C2B-C1B	4.16	129.21	124.16
9	CL	902	CYC	C1B-CHB-C4A	4.13	138.20	128.06
9	DP	200	CYC	C2C-C3C-C4C	4.13	107.52	101.34
9	CY	200	CYC	C1D-CHD-C4C	4.09	134.09	128.47
9	BD	902	CYC	C2C-C3C-C4C	4.09	107.46	101.34
9	DJ	200	CYC	CMB-C2B-C1B	4.06	129.10	124.16
9	BA	200	CYC	CMB-C2B-C1B	4.06	129.09	124.16
9	AP	200	CYC	C2C-C3C-C4C	4.04	107.39	101.34
9	CP	200	CYC	CMA-C3A-C4A	4.01	131.33	125.10
9	CU	200	CYC	C2C-C3C-C4C	4.01	107.34	101.34
9	BA	200	CYC	C2C-C3C-C4C	3.98	107.30	101.34
9	AI	200	CYC	C2C-C3C-C4C	3.97	107.29	101.34
9	BR	200	CYC	CMB-C2B-C1B	3.96	128.97	124.16
9	AA	200	CYC	C2C-C3C-C4C	3.95	107.26	101.34
9	DS	200	CYC	CMB-C2B-C1B	3.94	128.96	124.16
9	DO	200	CYC	CMB-C2B-C1B	3.94	128.95	124.16
9	AX	200	CYC	C2C-C3C-C4C	3.93	107.23	101.34
9	DK	200	CYC	C1D-CHD-C4C	3.93	133.87	128.47

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	CI	200	CYC	C2C-C3C-C4C	3.93	107.22	101.34
9	BD	901	CYC	C1D-CHD-C4C	3.92	133.85	128.47
9	CY	200	CYC	C1B-CHB-C4A	3.92	137.67	128.06
9	BV	200	CYC	CMB-C2B-C1B	3.91	128.92	124.16
9	CT	200	CYC	C1B-CHB-C4A	3.91	137.65	128.06
9	AZ	200	CYC	C2C-C3C-C4C	3.90	107.19	101.34
9	CP	200	CYC	C1B-CHB-C4A	3.90	137.63	128.06
9	AB	200	CYC	CBD-CAD-C3D	3.89	119.07	112.54
9	CE	200	CYC	C2C-C3C-C4C	3.89	107.16	101.34
9	AZ	200	CYC	CMB-C2B-C1B	3.87	128.87	124.16
9	CG	200	CYC	CMB-C2B-C1B	3.86	128.85	124.16
9	AQ	200	CYC	C2C-C3C-C4C	3.85	107.11	101.34
9	DK	200	CYC	C1B-CHB-C4A	3.83	137.45	128.06
9	AB	200	CYC	CHA-C1A-NA	-3.81	123.58	128.76
9	CR	200	CYC	CMB-C2B-C1B	3.81	128.79	124.16
9	AV	200	CYC	CMB-C2B-C1B	3.81	128.79	124.16
9	DO	200	CYC	C2C-C3C-C4C	3.81	107.04	101.34
9	CF	200	CYC	C2C-C3C-C4C	3.81	107.04	101.34
9	CP	200	CYC	C1D-CHD-C4C	3.79	133.68	128.47
9	BO	200	CYC	C2C-C3C-C4C	3.79	107.01	101.34
9	DN	200	CYC	C3C-C4C-NC	-3.78	103.07	107.94
9	AH	200	CYC	C2C-C3C-C4C	3.78	107.00	101.34
9	CD	200	CYC	C1B-CHB-C4A	3.76	137.29	128.06
9	AB	200	CYC	C2C-C3C-C4C	3.76	106.97	101.34
9	CL	902	CYC	C1D-CHD-C4C	3.76	133.62	128.47
9	BD	902	CYC	C1B-CHB-C4A	3.74	137.24	128.06
9	AV	200	CYC	C2C-C3C-C4C	3.72	106.90	101.34
9	BI	200	CYC	CBD-CAD-C3D	3.71	118.78	112.54
9	BS	200	CYC	CMB-C2B-C1B	3.71	128.67	124.16
9	AB	200	CYC	C4D-CHA-C1A	-3.71	123.77	128.73
9	DL	200	CYC	C2C-C3C-C4C	3.70	106.88	101.34
9	CX	200	CYC	C2C-C3C-C4C	3.70	106.87	101.34
9	AO	200	CYC	C2C-C3C-C4C	3.69	106.87	101.34
9	AO	200	CYC	CMB-C2B-C1B	3.69	128.65	124.16
9	CI	200	CYC	CMB-C2B-C1B	3.68	128.63	124.16
9	AH	200	CYC	CMA-C3A-C4A	3.67	130.81	125.10
9	AL	200	CYC	CMB-C2B-C1B	3.67	128.62	124.16
9	BU	200	CYC	CMA-C3A-C4A	3.67	130.80	125.10
9	BI	200	CYC	CAA-C2A-C1A	3.67	131.46	125.02
9	CL	901	CYC	CMB-C2B-C1B	3.66	128.61	124.16
9	DB	200	CYC	CMB-C2B-C1B	3.66	128.60	124.16
9	BQ	200	CYC	CMB-C2B-C1B	3.65	128.60	124.16

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	CL	901	CYC	C2C-C3C-C4C	3.64	106.80	101.34
9	AI	200	CYC	CMB-C2B-C1B	3.64	128.59	124.16
9	DS	200	CYC	C2C-C3C-C4C	3.64	106.79	101.34
9	DN	200	CYC	CBC-CAC-C3C	-3.64	105.70	113.41
9	CQ	200	CYC	C2C-C3C-C4C	3.64	106.79	101.34
9	AU	200	CYC	CMB-C2B-C1B	3.64	128.58	124.16
9	AB	200	CYC	CMB-C2B-C1B	3.62	128.57	124.16
9	DB	200	CYC	C2C-C3C-C4C	3.62	106.76	101.34
9	CZ	200	CYC	CBD-CAD-C3D	3.61	118.61	112.54
9	CS	200	CYC	C2C-C3C-C4C	3.61	106.74	101.34
9	AI	200	CYC	OB-C4B-C3B	3.61	131.83	128.03
9	AC	200	CYC	C2C-C3C-C4C	3.60	106.73	101.34
9	DI	200	CYC	CMB-C2B-C1B	3.60	128.53	124.16
9	AR	200	CYC	CMB-C2B-C1B	3.59	128.53	124.16
9	CY	200	CYC	CMA-C3A-C4A	3.59	130.67	125.10
9	AE	200	CYC	CMB-C2B-C1B	3.59	128.52	124.16
9	AY	200	CYC	CMB-C2B-C1B	3.59	128.52	124.16
9	BD	901	CYC	C2C-C3C-C4C	3.58	106.70	101.34
9	AK	200	CYC	CMB-C2B-C1B	3.58	128.51	124.16
9	AD	200	CYC	CMB-C2B-C1B	3.58	128.51	124.16
9	AN	200	CYC	CMB-C2B-C1B	3.57	128.51	124.16
9	BV	200	CYC	CMC-C2C-C1C	-3.57	104.70	112.40
9	DK	200	CYC	CMA-C3A-C4A	3.57	130.65	125.10
9	CT	200	CYC	CMA-C3A-C4A	3.57	130.64	125.10
9	AJ	200	CYC	CMB-C2B-C1B	3.57	128.50	124.16
9	BP	200	CYC	OB-C4B-C3B	3.56	131.77	128.03
9	AA	200	CYC	CMB-C2B-C1B	3.55	128.48	124.16
9	BX	200	CYC	C2C-C3C-C4C	3.54	106.65	101.34
9	AN	200	CYC	C2C-C3C-C4C	3.54	106.64	101.34
9	AB	200	CYC	CAA-C2A-C1A	3.54	131.23	125.02
9	BI	200	CYC	CMB-C2B-C1B	3.54	128.46	124.16
9	DJ	200	CYC	OB-C4B-C3B	3.53	131.74	128.03
9	BI	200	CYC	CHA-C1A-NA	-3.52	123.98	128.76
9	AQ	200	CYC	CMB-C2B-C1B	3.52	128.44	124.16
9	BD	901	CYC	CMB-C2B-C1B	3.52	128.44	124.16
9	BY	200	CYC	C2C-C3C-C4C	3.52	106.61	101.34
9	CQ	200	CYC	CMB-C2B-C1B	3.51	128.43	124.16
9	CT	200	CYC	C2C-C3C-C4C	3.51	106.59	101.34
9	BH	200	CYC	CMB-C2B-C1B	3.50	128.42	124.16
9	DJ	200	CYC	C2C-C3C-C4C	3.50	106.58	101.34
9	AW	200	CYC	CMB-C2B-C1B	3.50	128.41	124.16
9	DQ	200	CYC	CMB-C2B-C1B	3.49	128.40	124.16

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	DG	200	CYC	CMB-C2B-C1B	3.48	128.40	124.16
9	BY	200	CYC	CMB-C2B-C1B	3.48	128.39	124.16
9	BX	200	CYC	CMB-C2B-C1B	3.47	128.38	124.16
9	BJ	200	CYC	C2C-C3C-C4C	3.47	106.54	101.34
9	BU	200	CYC	C2C-C3C-C4C	3.47	106.54	101.34
9	DG	200	CYC	C2C-C3C-C4C	3.47	106.53	101.34
9	CZ	200	CYC	CMB-C2B-C1B	3.47	128.38	124.16
9	AY	200	CYC	C2C-C3C-C4C	3.46	106.53	101.34
9	CB	200	CYC	CMB-C2B-C1B	3.46	128.37	124.16
9	BW	200	CYC	C1B-CHB-C4A	3.46	136.54	128.06
9	BP	200	CYC	C2C-C3C-C4C	3.46	106.52	101.34
9	BK	200	CYC	CMB-C2B-C1B	3.46	128.36	124.16
9	CP	200	CYC	CMB-C2B-C1B	3.45	128.36	124.16
9	AO	200	CYC	CMC-C2C-C1C	-3.45	104.96	112.40
9	AN	200	CYC	CMA-C3A-C4A	3.45	130.46	125.10
9	BU	200	CYC	CMB-C2B-C1B	3.45	128.35	124.16
9	CP	200	CYC	CHB-C4A-C3A	3.44	133.71	124.87
9	DL	200	CYC	CAB-C3B-C2B	-3.44	121.23	127.56
9	AP	200	CYC	CMC-C2C-C1C	-3.44	104.99	112.40
9	BS	200	CYC	CMC-C2C-C1C	-3.44	104.99	112.40
9	DN	200	CYC	CMB-C2B-C1B	3.43	128.33	124.16
9	CE	200	CYC	CMB-C2B-C1B	3.43	128.33	124.16
9	DN	200	CYC	C1B-CHB-C4A	3.43	136.47	128.06
9	BJ	200	CYC	CMB-C2B-C1B	3.42	128.32	124.16
9	CF	200	CYC	CMB-C2B-C1B	3.41	128.31	124.16
9	DS	200	CYC	OB-C4B-C3B	3.41	131.61	128.03
9	CB	200	CYC	C2C-C3C-C4C	3.40	106.43	101.34
9	DP	200	CYC	CMB-C2B-C1B	3.39	128.28	124.16
9	BP	200	CYC	CAB-C3B-C2B	-3.38	121.35	127.56
9	BA	200	CYC	C1D-CHD-C4C	3.38	133.11	128.47
9	BL	200	CYC	C1B-CHB-C4A	3.38	136.35	128.06
9	CW	200	CYC	CMC-C2C-C1C	-3.37	105.13	112.40
9	BP	200	CYC	CMA-C3A-C4A	3.37	130.33	125.10
9	CQ	200	CYC	CBD-CAD-C3D	3.36	118.19	112.54
9	AP	200	CYC	CMA-C3A-C4A	3.34	130.29	125.10
9	BD	902	CYC	CMB-C2B-C1B	3.34	128.22	124.16
9	BP	200	CYC	CMB-C2B-C1B	3.34	128.22	124.16
9	CX	200	CYC	CMB-C2B-C1B	3.34	128.22	124.16
9	CC	200	CYC	CMB-C2B-C1B	3.33	128.21	124.16
9	AW	200	CYC	C4D-CHA-C1A	3.31	133.17	128.73
9	BL	200	CYC	CMB-C2B-C1B	3.31	$1\overline{28.19}$	124.16
9	DN	200	CYC	C1C-NC-C4C	-3.31	109.25	113.41

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	CF	200	CYC	CMC-C2C-C1C	-3.31	105.27	112.40
9	CD	200	CYC	CMC-C2C-C1C	-3.31	105.27	112.40
9	DK	200	CYC	C2C-C3C-C4C	3.31	106.29	101.34
9	AI	200	CYC	CMA-C3A-C4A	3.30	130.23	125.10
9	DN	200	CYC	CMA-C3A-C4A	3.30	130.22	125.10
9	BK	200	CYC	C2C-C3C-C4C	3.30	106.28	101.34
9	CU	200	CYC	CMC-C2C-C1C	-3.30	105.30	112.40
9	BU	200	CYC	CMC-C2C-C1C	-3.29	105.31	112.40
9	AO	200	CYC	CBD-CAD-C3D	3.29	118.06	112.54
9	BA	200	CYC	CMC-C2C-C1C	-3.28	105.33	112.40
9	BO	200	CYC	CMC-C2C-C1C	-3.28	105.34	112.40
9	CT	200	CYC	CMB-C2B-C1B	3.28	128.15	124.16
9	DS	200	CYC	CAB-C3B-C2B	-3.28	121.54	127.56
9	BO	200	CYC	CMA-C3A-C4A	3.27	130.19	125.10
9	CY	200	CYC	CMC-C2C-C1C	-3.27	105.35	112.40
9	AU	200	CYC	CMA-C3A-C4A	3.27	130.18	125.10
9	AI	200	CYC	CAB-C3B-C2B	-3.25	121.59	127.56
9	CP	200	CYC	C2C-C3C-C4C	3.25	106.20	101.34
9	DA	200	CYC	C1D-CHD-C4C	3.24	132.92	128.47
9	AR	200	CYC	CMA-C3A-C4A	3.24	130.14	125.10
9	CP	200	CYC	CMC-C2C-C1C	-3.24	105.41	112.40
9	СТ	200	CYC	C4D-CHA-C1A	3.24	133.07	128.73
9	DK	200	CYC	CMB-C2B-C1B	3.24	128.10	124.16
9	DR	200	CYC	CMA-C3A-C4A	3.24	130.13	125.10
9	CC	200	CYC	CHB-C4A-C3A	3.24	133.19	124.87
9	AI	200	CYC	CMC-C2C-C1C	-3.22	105.45	112.40
9	DP	200	CYC	CMC-C2C-C1C	-3.21	105.47	112.40
9	CG	200	CYC	C2C-C3C-C4C	3.21	106.15	101.34
9	AD	200	CYC	C2C-C3C-C4C	3.21	106.14	101.34
9	DN	200	CYC	CMC-C2C-C1C	-3.21	105.49	112.40
9	CF	200	CYC	CMA-C3A-C4A	3.19	130.06	125.10
9	AJ	200	CYC	CMA-C3A-C4A	3.19	130.06	125.10
9	BD	902	CYC	CMA-C3A-C4A	3.17	130.02	125.10
9	DH	200	CYC	CMC-C2C-C1C	-3.17	105.57	112.40
9	CZ	200	CYC	CMC-C2C-C1C	-3.17	105.57	112.40
9	BX	200	CYC	C1B-CHB-C4A	3.16	$1\overline{35.82}$	128.06
9	AC	200	CYC	C1D-CHD-C4C	3.16	132.81	128.47
9	AL	200	CYC	CAC-C3C-C4C	3.16	120.79	112.67
9	AO	200	CYC	CMA-C3A-C4A	3.15	130.00	125.10
9	CC	200	CYC	C2C-C3C-C4C	3.15	106.06	101.34
9	BK	200	CYC	CMC-C2C-C1C	-3.14	$1\overline{05.63}$	112.40
9	BW	200	CYC	CMC-C2C-C1C	-3.14	105.64	112.40

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
9	DO	200	CYC	CBD-CAD-C3D	3.13	117.81	112.54
9	AX	200	CYC	CMB-C2B-C1B	3.12	127.96	124.16
9	DQ	200	CYC	C1B-CHB-C4A	3.12	135.72	128.06
9	AQ	200	CYC	CMC-C2C-C1C	-3.12	105.67	112.40
9	CW	200	CYC	CMB-C2B-C1B	3.12	127.96	124.16
9	DJ	200	CYC	CAB-C3B-C2B	-3.12	121.82	127.56
9	AZ	200	CYC	CMC-C2C-C1C	-3.11	105.70	112.40
9	AR	200	CYC	C1B-CHB-C4A	3.11	135.69	128.06
9	BI	200	CYC	C2C-C3C-C4C	3.10	105.99	101.34
9	AU	200	CYC	CHB-C4A-C3A	3.10	132.83	124.87
9	AW	200	CYC	C3C-C4C-NC	-3.10	103.95	107.94
9	DA	200	CYC	CHB-C4A-C3A	3.10	132.83	124.87
9	CU	200	CYC	CAB-C3B-C2B	-3.09	121.88	127.56
9	AN	200	CYC	CMC-C2C-C1C	-3.09	105.75	112.40
9	CG	200	CYC	CMA-C3A-C4A	3.09	129.89	125.10
9	BR	200	CYC	CAB-C3B-C2B	-3.08	121.89	127.56
9	BX	200	CYC	CMC-C2C-C1C	-3.08	105.76	112.40
9	BY	200	CYC	C1B-CHB-C4A	3.08	135.62	128.06
9	DG	200	CYC	C1D-CHD-C4C	3.08	132.70	128.47
9	AU	200	CYC	CBD-CAD-C3D	3.08	117.71	112.54
9	AD	200	CYC	CMC-C2C-C1C	-3.08	105.77	112.40
9	BO	200	CYC	CMB-C2B-C1B	3.08	127.90	124.16
9	CB	200	CYC	CMC-C2C-C1C	-3.07	105.78	112.40
9	CL	902	CYC	CMB-C2B-C1B	3.07	127.90	124.16
9	DK	200	CYC	CHB-C4A-C3A	3.07	132.76	124.87
9	AV	200	CYC	CMC-C2C-C1C	-3.07	105.79	112.40
9	CR	200	CYC	CHD-C4C-NC	-3.07	121.80	125.63
9	AP	200	CYC	CMB-C2B-C1B	3.07	127.89	124.16
9	BW	200	CYC	CMA-C3A-C4A	3.06	129.86	125.10
9	AW	200	CYC	C2C-C3C-C4C	3.06	105.93	101.34
9	DO	200	CYC	CAB-C3B-C2B	-3.05	121.95	127.56
9	AY	200	CYC	CBD-CAD-C3D	3.05	117.66	112.54
9	BV	200	CYC	CMA-C3A-C4A	3.04	129.83	125.10
9	DA	200	CYC	CHB-C1B-C2B	-3.04	120.90	126.97
9	AE	200	CYC	CHB-C4A-C3A	3.04	132.69	124.87
9	BU	200	CYC	C1B-CHB-C4A	3.04	135.51	128.06
9	AK	200	CYC	CMC-C2C-C1C	-3.03	105.87	112.40
9	CW	200	CYC	C1B-CHB-C4A	3.03	135.50	128.06
9	BY	200	CYC	CMC-C2C-C1C	-3.03	105.88	112.40
9	AJ	200	CYC	CMC-C2C-C1C	-3.02	105.88	112.40
9	BK	200	CYC	CBC-CAC-C3C	-3.02	107.00	113.41
9	BV	200	CYC	CBD-CAD-C3D	3.01	117.60	112.54

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	BY	200	CYC	CMA-C3A-C4A	3.01	129.77	125.10
9	BR	200	CYC	CMA-C3A-C4A	3.01	129.77	125.10
9	AU	200	CYC	C2C-C3C-C4C	3.01	105.84	101.34
9	AX	200	CYC	CMC-C2C-C1C	-3.00	105.94	112.40
9	CY	200	CYC	CMB-C2B-C1B	2.99	127.79	124.16
9	CC	200	CYC	CHA-C1A-NA	-2.98	124.71	128.76
9	AP	200	CYC	C1B-CHB-C4A	2.98	135.37	128.06
9	CX	200	CYC	CMC-C2C-C1C	-2.97	106.00	112.40
9	AC	200	CYC	CMB-C2B-C1B	2.97	127.77	124.16
9	CI	200	CYC	CBD-CAD-C3D	2.96	117.52	112.54
9	CB	200	CYC	CMA-C3A-C4A	2.94	129.67	125.10
9	DH	200	CYC	CBD-CAD-C3D	2.94	117.48	112.54
9	CW	200	CYC	CMA-C3A-C4A	2.93	129.66	125.10
9	CS	200	CYC	CMC-C2C-C1C	-2.93	106.09	112.40
9	DP	200	CYC	CAB-C3B-C2B	-2.93	122.18	127.56
9	CU	200	CYC	CHA-C1A-NA	-2.92	124.79	128.76
9	DL	200	CYC	CHA-C1A-NA	-2.92	124.80	128.76
9	CD	200	CYC	C2C-C3C-C4C	2.92	105.71	101.34
9	AH	200	CYC	CAC-C3C-C4C	2.91	120.16	112.67
9	CD	200	CYC	CMB-C2B-C1B	2.91	127.70	124.16
9	BJ	200	CYC	CMA-C3A-C4A	2.90	129.61	125.10
9	BR	200	CYC	OB-C4B-C3B	2.90	131.08	128.03
9	DG	200	CYC	CMA-C3A-C4A	2.89	129.59	125.10
9	BQ	200	CYC	CMA-C3A-C4A	2.89	129.58	125.10
9	CL	902	CYC	CMC-C2C-C1C	-2.89	106.18	112.40
9	DR	200	CYC	CHB-C4A-C3A	2.88	132.28	124.87
9	CC	200	CYC	CMC-C2C-C1C	-2.88	106.19	112.40
9	DQ	200	CYC	CMC-C2C-C1C	-2.88	106.19	112.40
9	BR	200	CYC	CMC-C2C-C1C	-2.87	106.21	112.40
9	DK	200	CYC	C4D-CHA-C1A	2.86	132.56	128.73
9	BP	200	CYC	CMC-C2C-C1C	-2.86	106.23	112.40
9	AD	200	CYC	CHA-C1A-NA	-2.86	124.88	128.76
9	AY	200	CYC	CMA-C3A-C4A	2.85	129.53	125.10
9	CE	200	CYC	CBA-CAA-C2A	2.85	120.41	112.53
9	AD	200	CYC	C1B-CHB-C4A	2.85	135.04	128.06
9	CT	200	CYC	C1D-CHD-C4C	2.84	132.37	128.47
9	BH	200	CYC	CBD-CAD-C3D	2.84	117.31	112.54
9	DB	200	CYC	CMC-C2C-C1C	-2.84	106.29	112.40
9	AH	200	CYC	C1B-CHB-C4A	2.83	135.01	128.06
9	DS	200	CYC	CBD-CAD-C3D	2.83	117.30	112.54
9	AA	200	CYC	CMC-C2C-C1C	-2.82	$1\overline{06.32}$	112.40
9	BD	901	CYC	CBC-CAC-C3C	-2.82	107.43	113.41

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	DS	200	CYC	CMC-C2C-C1C	-2.81	106.35	112.40
9	DB	200	CYC	CBD-CAD-C3D	2.81	117.25	112.54
9	DL	200	CYC	CMC-C2C-C1C	-2.80	106.36	112.40
9	AZ	200	CYC	CAA-C2A-C1A	2.80	129.94	125.02
9	CL	901	CYC	CMC-C2C-C1C	-2.80	106.37	112.40
9	CL	902	CYC	CHB-C4A-C3A	2.80	132.06	124.87
9	AL	200	CYC	CBD-CAD-C3D	2.80	117.24	112.54
9	BD	902	CYC	CMC-C2C-C1C	-2.79	106.38	112.40
9	CD	200	CYC	CBD-CAD-C3D	2.79	117.23	112.54
9	AQ	200	CYC	C1B-CHB-C4A	2.79	134.90	128.06
9	DS	200	CYC	CMA-C3A-C4A	2.78	129.42	125.10
9	AD	200	CYC	CHB-C4A-C3A	2.77	132.00	124.87
9	CG	200	CYC	OB-C4B-C3B	2.76	130.94	128.03
9	CE	200	CYC	CMC-C2C-C1C	-2.76	106.45	112.40
9	DI	200	CYC	CMC-C2C-C1C	-2.75	106.47	112.40
9	CL	901	CYC	CMA-C3A-C4A	2.74	129.36	125.10
9	DR	200	CYC	CMB-C2B-C1B	2.74	127.49	124.16
9	AD	200	CYC	C3C-C4C-NC	-2.74	104.42	107.94
9	CZ	200	CYC	CAB-C3B-C2B	-2.73	122.54	127.56
9	BD	901	CYC	CBD-CAD-C3D	2.73	117.13	112.54
9	BJ	200	CYC	CMC-C2C-C1C	-2.73	106.52	112.40
9	AK	200	CYC	CAB-C3B-C2B	-2.73	122.55	127.56
9	DR	200	CYC	C1D-CHD-C4C	2.73	132.21	128.47
9	BD	901	CYC	CMC-C2C-C1C	-2.72	106.53	112.40
9	CT	200	CYC	CHB-C4A-C3A	2.72	131.86	124.87
9	DJ	200	CYC	C3C-C4C-NC	-2.71	104.45	107.94
9	CD	200	CYC	CMA-C3A-C4A	2.71	129.31	125.10
9	AE	200	CYC	CMC-C2C-C1C	-2.71	106.56	112.40
9	AR	200	CYC	C1C-NC-C4C	-2.71	110.01	113.41
9	AD	200	CYC	CMA-C3A-C4A	2.71	129.30	125.10
9	CS	200	CYC	CAB-C3B-C2B	-2.71	122.59	127.56
9	BQ	200	CYC	CMC-C2C-C1C	-2.70	106.59	112.40
9	AQ	200	CYC	CAB-C3B-C2B	-2.70	122.61	127.56
9	AW	200	CYC	CBD-CAD-C3D	2.69	117.06	112.54
9	BD	902	CYC	CHB-C4A-C3A	2.69	131.78	124.87
9	BX	200	CYC	CAA-C2A-C1A	2.69	129.74	125.02
9	DP	200	CYC	OB-C4B-C3B	2.69	130.86	128.03
9	DO	200	CYC	CMC-C2C-C1C	-2.68	106.62	112.40
9	CR	200	CYC	CMC-C2C-C1C	-2.68	106.62	112.40
9	AO	200	CYC	C1B-CHB-C4A	2.68	134.63	128.06
9	BD	901	CYC	CMA-C3A-C4A	2.67	129.25	125.10
9	CY	200	CYC	CHB-C4A-C3A	2.67	131.73	124.87

Mol	Chain	Res	Type	Atoms	Ζ	Observed(°)	$Ideal(^{o})$
9	AL	200	CYC	CAB-C3B-C2B	-2.67	122.65	127.56
9	DR	200	CYC	CAA-C2A-C1A	2.67	129.70	125.02
9	AW	200	CYC	CMC-C2C-C1C	-2.67	106.65	112.40
9	BK	200	CYC	CBD-CAD-C3D	2.67	117.02	112.54
9	BO	200	CYC	C1B-CHB-C4A	2.66	134.59	128.06
9	DA	200	CYC	CMA-C3A-C4A	2.66	129.23	125.10
9	BW	200	CYC	CMB-C2B-C1B	2.65	127.38	124.16
9	AU	200	CYC	CAB-C3B-C2B	-2.65	122.70	127.56
9	CU	200	CYC	CBD-CAD-C3D	2.64	116.98	112.54
9	CX	200	CYC	C1B-CHB-C4A	2.64	134.54	128.06
9	BL	200	CYC	CMC-C2C-C1C	-2.64	106.72	112.40
9	AJ	200	CYC	CAB-C3B-C2B	-2.64	122.72	127.56
9	DI	200	CYC	CHD-C4C-NC	-2.64	122.34	125.63
9	BQ	200	CYC	CAB-C3B-C2B	-2.63	122.72	127.56
9	CP	200	CYC	CHB-C4A-NA	-2.63	119.27	124.95
9	AH	200	CYC	CMB-C2B-C1B	2.62	127.34	124.16
9	CD	200	CYC	C1C-NC-C4C	-2.62	110.12	113.41
9	BX	200	CYC	CMA-C3A-C4A	2.62	129.16	125.10
9	CD	200	CYC	CHB-C4A-C3A	2.61	131.58	124.87
9	CQ	200	CYC	CAB-C3B-C2B	-2.61	122.77	127.56
9	CZ	200	CYC	CAD-CBD-CGD	-2.61	106.81	113.83
9	CL	901	CYC	CBD-CAD-C3D	2.60	116.91	112.54
9	DN	200	CYC	CHB-C4A-C3A	2.60	131.55	124.87
9	DA	200	CYC	CAB-C3B-C2B	-2.59	122.80	127.56
9	CE	200	CYC	CAB-C3B-C2B	-2.58	122.81	127.56
9	BH	200	CYC	CMC-C2C-C1C	-2.58	106.83	112.40
9	AU	200	CYC	CMC-C2C-C1C	-2.58	106.84	112.40
9	BH	200	CYC	CMA-C3A-C4A	2.58	129.11	125.10
9	BK	200	CYC	C1C-NC-C4C	-2.58	110.17	113.41
9	AY	200	CYC	CAA-C2A-C1A	2.58	129.54	125.02
9	AI	200	CYC	C1B-CHB-C4A	2.56	134.34	128.06
9	CS	200	CYC	CHA-C1A-NA	-2.56	125.29	128.76
9	BW	200	CYC	CAB-C3B-C2B	-2.55	122.87	127.56
9	DQ	200	CYC	CAD-CBD-CGD	-2.55	106.96	113.83
9	AL	200	CYC	CMC-C2C-C1C	-2.55	106.91	112.40
9	AN	200	CYC	CAB-C3B-C2B	-2.55	122.88	127.56
9	AB	200	CYC	CAA-C2A-C3A	-2.55	123.10	127.87
9	CE	200	CYC	CBD-CAD-C3D	2.54	116.81	112.54
9	DA	200	CYC	CMB-C2B-C1B	2.54	127.25	124.16
9	DJ	200	CYC	CMC-C2C-C1C	-2.54	106.93	112.40
9	DL	200	CYC	OB-C4B-C3B	2.54	130.70	128.03
9	BK	200	CYC	C3C-C4C-NC	-2.53	104.68	107.94

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	DR	200	CYC	CMC-C2C-C1C	-2.53	106.96	112.40
9	CL	902	CYC	CMA-C3A-C4A	2.52	129.02	125.10
9	AK	200	CYC	CMA-C3A-C4A	2.52	129.02	125.10
9	AP	200	CYC	CAB-C3B-C2B	-2.52	122.92	127.56
9	CL	901	CYC	CAA-CBA-CGA	-2.52	106.98	113.67
9	AU	200	CYC	C3C-C4C-NC	-2.52	104.70	107.94
9	AA	200	CYC	CMA-C3A-C4A	2.52	129.01	125.10
9	AB	200	CYC	CMC-C2C-C1C	-2.52	106.98	112.40
9	DI	200	CYC	CAA-CBA-CGA	-2.52	106.99	113.67
9	CI	200	CYC	CMC-C2C-C1C	-2.51	106.98	112.40
9	DJ	200	CYC	CBD-CAD-C3D	2.51	116.76	112.54
9	DL	200	CYC	C1B-CHB-C4A	2.51	134.22	128.06
9	DA	200	CYC	CHB-C1B-NB	2.51	131.41	126.06
9	CD	200	CYC	CHB-C1B-C2B	-2.51	121.97	126.97
9	BA	200	CYC	CBC-CAC-C3C	-2.50	108.10	113.41
9	CU	200	CYC	C1B-CHB-C4A	2.50	134.20	128.06
9	CC	200	CYC	C3C-C4C-NC	-2.50	104.72	107.94
9	BL	200	CYC	CAB-C3B-C2B	-2.50	122.97	127.56
9	AC	200	CYC	CAB-C3B-C2B	-2.50	122.97	127.56
9	AC	200	CYC	CMA-C3A-C4A	2.50	128.97	125.10
9	CG	200	CYC	CMC-C2C-C1C	-2.49	107.03	112.40
9	BX	200	CYC	CAB-C3B-C2B	-2.49	122.99	127.56
9	AZ	200	CYC	CMA-C3A-C4A	2.48	128.96	125.10
9	BL	200	CYC	CBD-CAD-C3D	2.48	116.71	112.54
9	CX	200	CYC	CAB-C3B-C2B	-2.48	123.00	127.56
9	CU	200	CYC	C3C-C4C-NC	-2.48	104.75	107.94
9	BX	200	CYC	CHA-C1A-NA	-2.48	125.40	128.76
9	CQ	200	CYC	CMC-C2C-C1C	-2.47	107.07	112.40
9	CY	200	CYC	CBD-CAD-C3D	2.47	116.70	112.54
9	BI	200	CYC	CAA-C2A-C3A	-2.47	123.23	127.87
9	BP	200	CYC	CAA-CBA-CGA	-2.47	107.12	113.67
9	CU	200	CYC	CBC-CAC-C3C	-2.46	108.19	113.41
9	BD	901	CYC	CAA-CBA-CGA	-2.46	107.14	113.67
9	DR	200	CYC	CAA-C2A-C3A	-2.46	123.27	127.87
9	AH	200	CYC	CHB-C4A-C3A	2.45	131.18	124.87
9	AR	200	CYC	C2C-C3C-C4C	2.45	105.00	101.34
9	AE	200	CYC	CMA-C3A-C4A	2.44	128.90	125.10
9	CC	200	CYC	CHB-C4A-NA	-2.44	119.68	124.95
9	BL	200	CYC	CHA-C1A-NA	-2.44	125.45	128.76
9	AR	200	CYC	CHB-C4A-C3A	2.44	131.13	124.87
9	AU	200	CYC	CHB-C4A-NA	-2.43	119.70	124.95
9	DQ	200	CYC	CHA-C1A-NA	-2.43	125.46	128.76

9

ΑZ

200

CYC

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	CG	200	CYC	C3C-C4C-NC	-2.43	104.82	107.94
9	DA	200	CYC	CHB-C4A-NA	-2.43	119.71	124.95
9	AE	200	CYC	CHB-C1B-C2B	-2.42	122.14	126.97
9	AV	200	CYC	CMA-C3A-C4A	2.42	128.86	125.10
9	CG	200	CYC	CAB-C3B-C2B	-2.41	123.13	127.56
9	DQ	200	CYC	CAB-C3B-C2B	-2.41	123.13	127.56
9	BK	200	CYC	CMA-C3A-C4A	2.41	128.84	125.10
9	AH	200	CYC	CMC-C2C-C1C	-2.41	107.22	112.40
9	BI	200	CYC	C3C-C4C-NC	-2.41	104.84	107.94
9	CE	200	CYC	C3C-C4C-NC	-2.40	104.85	107.94
9	CL	901	CYC	CAB-C3B-C2B	-2.40	123.14	127.56
9	AN	200	CYC	CBD-CAD-C3D	2.40	116.57	112.54
9	BS	200	CYC	CAB-C3B-C2B	-2.40	123.15	127.56
9	AQ	200	CYC	CMA-C3A-C4A	2.39	128.82	125.10
9	BI	200	CYC	CAD-CBD-CGD	-2.39	107.39	113.83
9	BU	200	CYC	CHB-C4A-C3A	2.39	131.01	124.87
9	AE	200	CYC	CHB-C4A-NA	-2.39	119.80	124.95
9	BS	200	CYC	CAC-C3C-C4C	2.39	118.80	112.67
9	BY	200	CYC	CHB-C4A-C3A	2.38	131.00	124.87
9	CX	200	CYC	C3C-C4C-NC	-2.38	104.88	107.94
9	DG	200	CYC	CBA-CAA-C2A	-2.38	105.95	112.53
9	BV	200	CYC	CBC-CAC-C3C	-2.38	108.37	113.41
9	BD	902	CYC	CAB-C3B-C2B	-2.38	123.19	127.56
9	AI	200	CYC	CBD-CAD-C3D	2.38	116.53	112.54
9	BV	200	CYC	CAD-CBD-CGD	-2.37	107.44	113.83
9	AJ	200	CYC	C1B-CHB-C4A	2.37	133.87	128.06
9	DH	200	CYC	CAB-C3B-C2B	-2.37	123.21	127.56
9	CC	200	CYC	CMA-C3A-C4A	2.37	128.78	125.10
9	CL	901	CYC	C1B-CHB-C4A	2.36	133.85	128.06
9	AN	200	CYC	C1C-NC-C4C	-2.36	110.45	113.41
9	BU	200	CYC	C1C-NC-C4C	-2.36	110.45	113.41
9	DK	200	CYC	C1C-NC-C4C	-2.36	110.45	113.41
9	CS	200	CYC	CBD-CAD-C3D	2.35	116.50	112.54
9	AO	200	CYC	CAB-C3B-C2B	-2.35	123.23	127.56
9	CX	200	CYC	CMA-C3A-C4A	2.35	128.75	125.10
9	BK	200	CYC	CHA-C1A-NA	-2.35	125.57	128.76
9	CP	200	CYC	C1C-NC-C4C	-2.35	110.46	113.41
9	BK	200	CYC	C1B-CHB-C4A	2.35	133.82	128.06
9	BA	200	CYC	CAB-C3B-C2B	-2.34	123.26	127.56
9	BV	200	CYC	CAB-C3B-C2B	-2.34	123.26	127.56
9	DA	200	CYC	CMC-C2C-C1C	-2.34	107.36	112.40

Continued from previous page...

Continued on next page...

127.87

123.49

-2.34

CAA-C2A-C3A

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	BD	901	CYC	C1B-CHB-C4A	2.34	133.79	128.06
9	DJ	200	CYC	CHA-C1A-NA	-2.33	125.59	128.76
9	CB	200	CYC	C1C-NC-C4C	-2.33	110.48	113.41
9	AQ	200	CYC	CAA-C2A-C1A	2.33	129.12	125.02
9	AZ	200	CYC	CAB-C3B-C2B	-2.33	123.29	127.56
9	AN	200	CYC	OB-C4B-C3B	2.32	130.48	128.03
9	CS	200	CYC	CMA-C3A-C4A	2.32	128.71	125.10
9	AE	200	CYC	CBD-CAD-C3D	2.32	116.44	112.54
9	CX	200	CYC	CBC-CAC-C3C	-2.32	108.49	113.41
9	BO	200	CYC	CHB-C4A-C3A	2.32	130.83	124.87
9	CR	200	CYC	CBD-CAD-C3D	2.31	116.43	112.54
9	CL	902	CYC	CHA-C1A-NA	-2.31	125.62	128.76
9	BI	200	CYC	C1C-NC-C4C	-2.31	110.51	113.41
9	CI	200	CYC	CMA-C3A-C4A	2.31	128.69	125.10
9	BD	902	CYC	C1D-CHD-C4C	2.31	131.64	128.47
9	AK	200	CYC	OB-C4B-C3B	2.30	130.45	128.03
9	AO	200	CYC	CAD-CBD-CGD	-2.30	107.64	113.83
9	BW	200	CYC	CHB-C4A-C3A	2.29	130.77	124.87
9	CE	200	CYC	OB-C4B-C3B	2.29	130.44	128.03
9	AW	200	CYC	C1C-NC-C4C	-2.29	110.53	113.41
9	AI	200	CYC	CBC-CAC-C3C	-2.29	108.56	113.41
9	DI	200	CYC	CAB-C3B-C2B	-2.29	123.35	127.56
9	DL	200	CYC	C3C-C4C-NC	-2.29	105.00	107.94
9	CB	200	CYC	CHA-C1A-NA	-2.29	125.66	128.76
9	CE	200	CYC	CBC-CAC-C3C	-2.29	108.56	113.41
9	CR	200	CYC	CAB-C3B-C2B	-2.29	123.36	127.56
9	DQ	200	CYC	CBC-CAC-C3C	-2.28	108.57	113.41
9	CL	902	CYC	CHB-C1B-C2B	-2.28	122.42	126.97
9	CL	902	CYC	CAB-C3B-C2B	-2.28	123.37	127.56
9	AI	200	CYC	CHB-C4A-C3A	2.28	130.72	124.87
9	AR	200	CYC	CAB-C3B-C2B	-2.28	123.38	127.56
9	AR	200	CYC	C1D-CHD-C4C	2.27	131.59	128.47
9	DH	200	CYC	CMB-C2B-C1B	2.27	126.92	124.16
9	BL	200	CYC	CHB-C1B-C2B	-2.27	122.44	126.97
9	DO	200	CYC	CHA-C1A-NA	-2.27	125.69	128.76
9	AO	200	CYC	CBC-CAC-C3C	-2.26	108.61	113.41
9	BX	200	CYC	CBD-CAD-C3D	$2.2\overline{6}$	116.33	112.54
9	DP	200	CYC	CBD-CAD-C3D	2.26	116.33	112.54
9	DR	200	CYC	CHB-C1B-C2B	-2.26	122.47	126.97
9	AU	200	CYC	C1C-NC-C4C	-2.25	110.58	113.41
9	CW	200	CYC	CAB-C3B-C2B	$-2.\overline{25}$	123.42	127.56
9	BY	200	CYC	C1C-NC-C4C	-2.25	110.58	113.41

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	AV	200	CYC	C1C-NC-C4C	-2.25	110.58	113.41
9	AC	200	CYC	CBC-CAC-C3C	-2.25	108.64	113.41
9	CL	902	CYC	CHB-C4A-NA	-2.24	120.11	124.95
9	CG	200	CYC	CHA-C1A-NA	-2.24	125.72	128.76
9	DG	200	CYC	CAB-C3B-C2B	-2.24	123.45	127.56
9	BY	200	CYC	CAB-C3B-C2B	-2.23	123.45	127.56
9	BD	901	CYC	C1C-NC-C4C	-2.23	110.60	113.41
9	AP	200	CYC	CHB-C4A-C3A	2.23	130.61	124.87
9	DN	200	CYC	CAC-C3C-C4C	2.23	118.40	112.67
9	CC	200	CYC	CAB-C3B-C2B	-2.23	123.46	127.56
9	BQ	200	CYC	C1B-CHB-C4A	2.23	133.53	128.06
9	AX	200	CYC	CBD-CAD-C3D	2.23	116.28	112.54
9	AB	200	CYC	CAB-C3B-C2B	-2.23	123.47	127.56
9	BO	200	CYC	C1C-NC-C4C	-2.23	110.62	113.41
9	DB	200	CYC	CAB-C3B-C2B	-2.22	123.47	127.56
9	BJ	200	CYC	C1C-NC-C4C	-2.22	110.62	113.41
9	DI	200	CYC	C1B-CHB-C4A	2.22	133.51	128.06
9	DN	200	CYC	CAB-C3B-C2B	-2.22	123.48	127.56
9	AH	200	CYC	C3C-C4C-NC	-2.21	105.09	107.94
9	AU	200	CYC	CHA-C1A-NA	-2.21	125.76	128.76
9	DP	200	CYC	CBC-CAC-C3C	-2.21	108.72	113.41
9	BP	200	CYC	C1C-NC-C4C	-2.21	110.64	113.41
9	DB	200	CYC	C3C-C4C-NC	-2.21	105.10	107.94
9	BJ	200	CYC	CBD-CAD-C3D	2.20	116.24	112.54
9	AZ	200	CYC	CHA-C1A-NA	-2.20	125.77	128.76
9	BI	200	CYC	C4A-C3A-C2A	2.20	108.97	106.48
9	DS	200	CYC	C3C-C4C-NC	-2.20	105.11	107.94
9	AQ	200	CYC	CHA-C1A-NA	-2.20	125.78	128.76
9	BK	200	CYC	CAB-C3B-C2B	-2.20	123.52	127.56
9	AW	200	CYC	CAB-C3B-C2B	-2.20	123.52	127.56
9	CB	200	CYC	CHB-C4A-C3A	2.20	130.51	124.87
9	DJ	200	CYC	C1C-NC-C4C	-2.19	110.66	113.41
9	CW	200	CYC	CHB-C4A-C3A	2.19	130.50	124.87
9	CI	200	CYC	CBC-CAC-C3C	-2.18	108.78	113.41
9	DK	200	CYC	CHB-C4A-NA	-2.18	120.24	124.95
9	AY	200	CYC	C3C-C4C-NC	-2.18	105.14	107.94
9	CT	200	CYC	CAB-C3B-C2B	-2.18	123.56	127.56
9	DG	200	CYC	CAC-C3C-C4C	2.17	118.26	112.67
9	AW	200	CYC	CBC-CAC-C3C	-2.17	108.80	113.41
9	CF	200	CYC	CBA-CAA-C2A	-2.17	106.53	112.53
9	BL	200	CYC	CHB-C4A-C3A	2.17	130.44	124.87
9	AJ	200	CYC	CBC-CAC-C3C	-2.17	108.82	113.41

9

DS

200

CYC

Mol	Chain	Res		Atoms	Z	Observed $(^{o})$	Ideal(°)
0		200	CVC	CAR C3R C2R	2 17	123 58	12756
0	CL	<u>200</u> 901	CVC	$\frac{\text{CRC} \text{C}_{3}\text{C}_{2}C$	2.17	108.84	127.00 113/1
0		200	CVC	CBC-CAC-C3C	-2.15	108.84	113.41
0	RD RD	<u>200</u> 002	CVC	CHA-CIA-NA	-2.10	125.84	110.41 128.76
<u>0</u>	DB	200	CYC	CHA-CIA-NA	-2.15	125.84	120.70 128.76
9	CT	200	CYC	CMC-C2C-C1C	-2.15	107 78	112.40
0		200	CYC	CRD-CAD-C3D	2.10 2.15	116.15	112.40 112.54
<u>0</u>		200	CYC	CHA-C1A-NA	-2.15	125.85	112.04 128.76
9	DR	200	CYC	CAB-C3B-C2B	-2.13	123.63	120.10 127.56
9	BA	200	CYC	C3C-C4C-NC	-2.14	105.19	107.94
9	DO	200	CYC	CBC-CAC-C3C	-2.14	108.88	113 41
9	BH	200	CYC	CAB-C3B-C2B	-2.13	123.64	110.11 127.56
9	CI	200	CYC	CAB-C3B-C2B	-2.13	123.64	127.50 127.56
9	CG	200	CYC	CAA-C2A-C1A	2.10	128.76	127.00 125.02
9	BX	200	CYC	CHB-C4A-C3A	2.10 2.13	130.33	120.02 124.87
9	CS	200	CYC	OB-C4B-C3B	2.10 2.13	130.27	121.01
9	BJ	200	CYC	CAB-C3B-C2B	-2.12	123.66	120.00 127.56
9	AQ	200	CYC	CBD-CAD-C3D	2.12	116.11	112.54
9	CO	200	CYC	C1C-NC-C4C	-2.12	110.75	113.01
9	CB	200	CYC	CAB-C3B-C2B	-2.12	123.66	127.56
9	DO	200	CYC	C1C-NC-C4C	-2.12	110.75	113.41
9	BR	200	CYC	C1B-CHB-C4A	2.12	133.26	128.06
9	CC	200	CYC	C1A-NA-C4A	2.12	110.41	106.52
9	DB	200	CYC	CBC-CAC-C3C	-2.12	108.92	113.41
9	BR	200	CYC	CBD-CAD-C3D	2.11	116.09	112.54
9	DR	200	CYC	C4D-CHA-C1A	2.11	131.56	128.73
9	BI	200	CYC	CAB-C3B-C2B	-2.11	123.68	127.56
9	AC	200	CYC	CMC-C2C-C1C	-2.11	107.85	112.40
9	BP	200	CYC	C1B-CHB-C4A	2.11	133.23	128.06
9	BV	200	CYC	C1B-CHB-C4A	2.11	133.23	128.06
9	DP	200	CYC	CMA-C3A-C4A	2.11	128.38	125.10
9	AO	200	CYC	CAA-C2A-C1A	2.11	128.72	125.02
9	CZ	200	CYC	C1B-CHB-C4A	2.11	133.23	128.06
9	CF	200	CYC	C1B-CHB-C4A	2.10	133.22	128.06
9	DJ	200	CYC	CAD-CBD-CGD	-2.10	108.16	113.83
9	BA	200	CYC	CMA-C3A-C4A	2.10	128.37	125.10
9	BX	200	CYC	C3C-C4C-NC	-2.10	105.23	107.94
9	CS	200	CYC	CAD-CBD-CGD	-2.10	108.17	113.83
9	AD	200	CYC	C1C-NC-C4C	-2.10	110.77	113.41
9	BS	200	CYC	CMD-C2D-C3D	-2.09	120.99	124.94
9	DR	200	CYC	O1D-CGD-CBD	-2.09	116.45	123.09

Continued from previous page...

Continued on next page...

113.41

108.97

-2.09

CBC-CAC-C3C

<i>α</i>	0		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	DA	200	CYC	O1D-CGD-CBD	-2.09	116.45	123.09
9	CQ	200	CYC	C4D-CHA-C1A	2.09	131.53	128.73
9	BD	901	CYC	CAB-C3B-C2B	-2.09	123.72	127.56
9	DB	200	CYC	C1C-NC-C4C	-2.09	110.78	113.41
9	CC	200	CYC	C1C-NC-C4C	-2.09	110.79	113.41
9	AL	200	CYC	CMD-C2D-C3D	-2.09	121.01	124.94
9	CQ	200	CYC	C3C-C4C-NC	-2.09	105.25	107.94
9	AJ	200	CYC	CHB-C4A-C3A	2.09	130.23	124.87
9	AI	200	CYC	CAD-CBD-CGD	-2.08	108.22	113.83
9	BU	200	CYC	CAB-C3B-C2B	-2.08	123.73	127.56
9	DG	200	CYC	O1D-CGD-CBD	-2.08	116.49	123.09
9	AY	200	CYC	CAB-C3B-C2B	-2.08	123.73	127.56
9	BX	200	CYC	CAA-C2A-C3A	-2.08	123.97	127.87
9	BI	200	CYC	CMC-C2C-C1C	-2.08	107.92	112.40
9	DQ	200	CYC	CHB-C4A-C3A	2.08	130.21	124.87
9	AZ	200	CYC	C1C-NC-C4C	-2.08	110.80	113.41
9	BU	200	CYC	CBD-CAD-C3D	2.08	116.03	112.54
9	AH	200	CYC	O1D-CGD-CBD	-2.08	116.51	123.09
9	AO	200	CYC	CHB-C4A-C3A	2.07	130.20	124.87
9	DH	200	CYC	OB-C4B-C3B	2.07	130.21	128.03
9	BI	200	CYC	O1D-CGD-CBD	-2.07	116.52	123.09
9	AC	200	CYC	CAC-C3C-C4C	2.07	117.99	112.67
9	AV	200	CYC	CBD-CAD-C3D	2.07	116.02	112.54
9	CF	200	CYC	O1D-CGD-CBD	-2.07	116.53	123.09
9	AD	200	CYC	CHB-C4A-NA	-2.07	120.49	124.95
9	AU	200	CYC	CAD-CBD-CGD	-2.07	108.26	113.83
9	AD	200	CYC	CAB-C3B-C2B	-2.07	123.76	127.56
9	CR	200	CYC	O1D-CGD-CBD	-2.06	116.55	123.09
9	AC	200	CYC	O1D-CGD-CBD	-2.06	116.55	123.09
9	DI	200	CYC	O1D-CGD-CBD	-2.06	116.55	123.09
9	CY	200	CYC	C4D-CHA-C1A	2.06	131.49	128.73
9	AP	200	CYC	CBA-CAA-C2A	-2.06	106.84	112.53
9	DO	200	CYC	OB-C4B-C3B	2.06	130.20	128.03
9	AY	200	CYC	O1D-CGD-CBD	-2.06	116.56	123.09
9	DJ	200	CYC	CBC-CAC-C3C	-2.06	109.05	113.41
9	BW	200	CYC	O1D-CGD-CBD	-2.06	116.57	123.09
9	BR	200	CYC	O1D-CGD-CBD	-2.06	$1\overline{16.57}$	123.09
9	CZ	200	CYC	CHA-C1A-NA	-2.06	125.97	128.76
9	BO	200	CYC	O1D-CGD-CBD	-2.05	116.58	123.09
9	CX	200	CYC	OB-C4B-C3B	2.05	130.19	128.03
9	DH	200	CYC	CBC-CAC-C3C	-2.05	109.07	113.41
9	CF	200	CYC	C1C-NC-C4C	-2.05	110.84	113.41

9

DS

200

CYC

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
9	AA	200	CYC	O1D-CGD-CBD	-2.05	116.60	123.09
9	DG	200	CYC	CHD-C4C-NC	-2.05	123.08	125.63
9	CS	200	CYC	C1C-NC-C4C	-2.04	110.84	113.41
9	CB	200	CYC	O1D-CGD-CBD	-2.04	116.61	123.09
9	CG	200	CYC	O1D-CGD-CBD	-2.04	116.61	123.09
9	DK	200	CYC	CAB-C3B-C2B	-2.04	123.81	127.56
9	AB	200	CYC	O1D-CGD-CBD	-2.04	116.62	123.09
9	BW	200	CYC	CBC-CAC-C3C	-2.04	109.09	113.41
9	CX	200	CYC	O1D-CGD-CBD	-2.04	116.63	123.09
9	AY	200	CYC	C1B-CHB-C4A	2.04	133.06	128.06
9	DG	200	CYC	C1B-CHB-C4A	2.04	133.05	128.06
9	BK	200	CYC	CAD-CBD-CGD	-2.04	108.35	113.83
9	CT	200	CYC	O1D-CGD-CBD	-2.03	116.64	123.09
9	DA	200	CYC	CAC-C3C-C4C	2.03	117.90	112.67
9	BK	200	CYC	O1D-CGD-CBD	-2.03	116.64	123.09
9	AR	200	CYC	O1D-CGD-CBD	-2.03	116.64	123.09
9	BX	200	CYC	CAD-CBD-CGD	-2.03	108.36	113.83
9	BQ	200	CYC	O1D-CGD-CBD	-2.03	116.65	123.09
9	AY	200	CYC	CMC-C2C-C1C	-2.03	108.02	112.40
9	CL	901	CYC	C1C-NC-C4C	-2.03	110.86	113.41
9	BW	200	CYC	CHB-C1B-C2B	-2.03	122.92	126.97
9	CY	200	CYC	O1D-CGD-CBD	-2.03	116.65	123.09
9	DB	200	CYC	O1D-CGD-CBD	-2.03	116.66	123.09
9	CD	200	CYC	O1D-CGD-CBD	-2.03	116.66	123.09
9	CY	200	CYC	CAB-C3B-C2B	-2.03	123.83	127.56
9	AP	200	CYC	O1D-CGD-CBD	-2.03	116.67	123.09
9	BH	200	CYC	O1D-CGD-CBD	-2.03	116.67	123.09
9	DR	200	CYC	CHB-C1B-NB	2.03	130.38	126.06
9	AE	200	CYC	CBB-CAB-C3B	-2.03	106.93	112.42
9	BD	902	CYC	CHB-C4A-NA	-2.02	120.58	124.95
9	BS	200	CYC	CBD-CAD-C3D	2.02	115.94	112.54
9	CS	200	CYC	O1D-CGD-CBD	-2.02	116.68	123.09
9	AN	200	CYC	CAD-CBD-CGD	-2.02	108.39	113.83
9	DO	200	CYC	CHD-C4C-NC	2.02	128.15	125.63
9	BD	902	CYC	O1D-CGD-CBD	-2.02	116.68	123.09
9	DS	200	CYC	C1C-NC-C4C	-2.02	110.87	113.41
9	AQ	200	CYC	O1D-CGD-CBD	-2.02	116.69	123.09
9	BP	200	CYC	CHB-C4A-C3A	2.02	130.06	124.87
9	BS	200	CYC	O1D-CGD-CBD	-2.02	116.69	123.09
9	AX	200	CYC	O1D-CGD-CBD	-2.02	116.69	123.09
9	BV	200	CYC	CAA-C2A-C1A	2.02	128.56	125.02

Continued from previous page...

Continued on next page...

113.83

108.39

-2.02

CAD-CBD-CGD

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	BL	200	CYC	CAD-CBD-CGD	-2.02	108.40	113.83
9	AD	200	CYC	O1D-CGD-CBD	-2.02	116.69	123.09
9	DP	200	CYC	O1D-CGD-CBD	-2.02	116.70	123.09
9	AY	200	CYC	CAA-C2A-C3A	-2.02	124.09	127.87
9	BD	901	CYC	O1D-CGD-CBD	-2.02	116.70	123.09
9	DK	200	CYC	O1D-CGD-CBD	-2.01	116.70	123.09
9	AK	200	CYC	O1D-CGD-CBD	-2.01	116.70	123.09
9	BY	200	CYC	O1D-CGD-CBD	-2.01	116.71	123.09
9	BJ	200	CYC	O1D-CGD-CBD	-2.01	116.71	123.09
9	DL	200	CYC	O1D-CGD-CBD	-2.01	116.71	123.09
9	AJ	200	CYC	O1D-CGD-CBD	-2.01	116.71	123.09
9	AZ	200	CYC	O1D-CGD-CBD	-2.01	116.71	123.09
9	AY	200	CYC	CHA-C1A-NA	-2.01	126.03	128.76
9	AE	200	CYC	O1D-CGD-CBD	-2.01	116.72	123.09
9	BU	200	CYC	O1D-CGD-CBD	-2.01	116.72	123.09
9	AP	200	CYC	C1C-NC-C4C	-2.01	110.89	113.41
9	DO	200	CYC	O1D-CGD-CBD	-2.01	116.72	123.09
9	AL	200	CYC	O1D-CGD-CBD	-2.01	116.72	123.09
9	CL	902	CYC	O1D-CGD-CBD	-2.01	116.72	123.09
9	BD	901	CYC	C3C-C4C-NC	-2.01	105.36	107.94
9	AN	200	CYC	O1D-CGD-CBD	-2.01	116.73	123.09
9	CL	901	CYC	O1D-CGD-CBD	-2.01	116.73	123.09
9	BL	200	CYC	O1D-CGD-CBD	-2.00	116.74	123.09
9	AV	200	CYC	O1D-CGD-CBD	-2.00	116.74	123.09
9	AJ	200	CYC	OB-C4B-C3B	2.00	130.14	128.03
9	DI	200	CYC	C1D-CHD-C4C	2.00	131.22	128.47
9	DS	200	CYC	O1D-CGD-CBD	-2.00	116.74	123.09
9	AB	200	CYC	CAD-CBD-CGD	-2.00	108.44	113.83
9	AW	200	CYC	O1D-CGD-CBD	-2.00	116.75	123.09
9	CE	200	CYC	O1D-CGD-CBD	-2.00	116.75	123.09

There are no chirality outliers.

All (808) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
9	AA	200	CYC	ND-C4D-CHA-C1A
9	AA	200	CYC	C3D-C4D-CHA-C1A
9	AA	200	CYC	NA-C4A-CHB-C1B
9	AA	200	CYC	C3A-C4A-CHB-C1B
9	AA	200	CYC	C4C-C3C-CAC-CBC
9	AA	200	CYC	NC-C4C-CHD-C1D
9	AB	200	CYC	NA-C1A-CHA-C4D

	EMD	-25028,	7SC7
--	-----	---------	------

Conti	Continued from previous page						
Mol	Chain	Res	Type	Atoms			
9	AB	200	CYC	C2A-C1A-CHA-C4D			
9	AB	200	CYC	ND-C4D-CHA-C1A			
9	AB	200	CYC	C3D-C4D-CHA-C1A			
9	AB	200	CYC	NA-C4A-CHB-C1B			
9	AB	200	CYC	C3A-C4A-CHB-C1B			
9	AB	200	CYC	C2C-C3C-CAC-CBC			
9	AB	200	CYC	C4C-C3C-CAC-CBC			
9	AB	200	CYC	NC-C4C-CHD-C1D			
9	AB	200	CYC	ND-C1D-CHD-C4C			
9	AB	200	CYC	C2D-C1D-CHD-C4C			
9	AC	200	CYC	NA-C4A-CHB-C1B			
9	AC	200	CYC	C3A-C4A-CHB-C1B			
9	AD	200	CYC	ND-C4D-CHA-C1A			
9	AD	200	CYC	C3D-C4D-CHA-C1A			
9	AD	200	CYC	C2C-C3C-CAC-CBC			
9	AD	200	CYC	C4C-C3C-CAC-CBC			
9	AE	200	CYC	C4C-C3C-CAC-CBC			
9	AE	200	CYC	NC-C4C-CHD-C1D			
9	AH	200	CYC	NA-C4A-CHB-C1B			
9	AH	200	CYC	C2C-C3C-CAC-CBC			
9	AH	200	CYC	C4C-C3C-CAC-CBC			
9	AH	200	CYC	ND-C1D-CHD-C4C			
9	AH	200	CYC	C2D-C1D-CHD-C4C			
9	AI	200	CYC	NA-C1A-CHA-C4D			
9	AI	200	CYC	ND-C4D-CHA-C1A			
9	AI	200	CYC	C3D-C4D-CHA-C1A			
9	AI	200	CYC	NA-C4A-CHB-C1B			
9	AI	200	CYC	C3A-C4A-CHB-C1B			
9	AI	200	CYC	C4C-C3C-CAC-CBC			
9	AI	200	CYC	ND-C1D-CHD-C4C			
9	AJ	200	CYC	NA-C4A-CHB-C1B			
9	AJ	200	CYC	C3A-C4A-CHB-C1B			
9	AK	200	CYC	NA-C4A-CHB-C1B			
9	AK	200	CYC	C3A-C4A-CHB-C1B			
9	AK	200	CYC	C4C-C3C-CAC-CBC			
9	AK	200	CYC	ND-C1D-CHD-C4C			
9	AL	200	CYC	ND-C4D-CHA-C1A			
9	AL	200	CYC	C3D-C4D-CHA-C1A			
9	AL	200	CYC	NA-C4A-CHB-C1B			
9	AL	200	CYC	C3A-C4A-CHB-C1B			
9	AL	200	CYC	C2C-C3C-CAC-CBC			
9	AL	200	CYC	ND-C1D-CHD-C4C			
_			C	ontinued on next page			

EMD-25028, 7	SC7
--------------	-----

Mol	Chain	Res	Type	Atoms
9	AL	200	CYC	C2D-C1D-CHD-C4C
9	AN	200	CYC	NA-C4A-CHB-C1B
9	AN	200	CYC	C3A-C4A-CHB-C1B
9	AN	200	CYC	ND-C1D-CHD-C4C
9	AN	200	CYC	C2D-C1D-CHD-C4C
9	AO	200	CYC	NA-C4A-CHB-C1B
9	AO	200	CYC	C3A-C4A-CHB-C1B
9	AO	200	CYC	C4C-C3C-CAC-CBC
9	AO	200	CYC	ND-C1D-CHD-C4C
9	AO	200	CYC	C2D-C1D-CHD-C4C
9	AP	200	CYC	NA-C4A-CHB-C1B
9	AP	200	CYC	C3A-C4A-CHB-C1B
9	AQ	200	CYC	ND-C4D-CHA-C1A
9	AQ	200	CYC	C3D-C4D-CHA-C1A
9	AQ	200	CYC	NA-C4A-CHB-C1B
9	AQ	200	CYC	C3A-C4A-CHB-C1B
9	AQ	200	CYC	NB-C1B-CHB-C4A
9	AQ	200	CYC	C2B-C1B-CHB-C4A
9	AQ	200	CYC	C4C-C3C-CAC-CBC
9	AQ	200	CYC	ND-C1D-CHD-C4C
9	AR	200	CYC	NA-C4A-CHB-C1B
9	AR	200	CYC	C3A-C4A-CHB-C1B
9	AR	200	CYC	C2C-C3C-CAC-CBC
9	AR	200	CYC	NC-C4C-CHD-C1D
9	AU	200	CYC	C2C-C3C-CAC-CBC
9	AU	200	CYC	C4C-C3C-CAC-CBC
9	AU	200	CYC	ND-C1D-CHD-C4C
9	AV	200	CYC	NA-C4A-CHB-C1B
9	AV	200	CYC	C3A-C4A-CHB-C1B
9	AV	200	CYC	ND-C1D-CHD-C4C
9	AW	200	CYC	ND-C4D-CHA-C1A
9	AW	200	CYC	NA-C4A-CHB-C1B
9	AW	200	CYC	C3A-C4A-CHB-C1B
9	AW	200	CYC	NB-C1B-CHB-C4A
9	AW	200	CYC	C2B-C1B-CHB-C4A
9	AW	200	CYC	C2C-C3C-CAC-CBC
9	AW	200	CYC	C4C-C3C-CAC-CBC
9	AW	200	CYC	ND-C1D-CHD-C4C
9	AW	200	CYC	C2D-C1D-CHD-C4C
9	AX	200	CYC	ND-C4D-CHA-C1A
9	AX	200	CYC	C3D-C4D-CHA-C1A
9	AX	200	CYC	NA-C4A-CHB-C1B

EMD-25028, 7	SC7
--------------	-----

Mol	Chain	Res	Type	Atoms
9	AX	200	CYC	C3A-C4A-CHB-C1B
9	AX	200	CYC	NB-C1B-CHB-C4A
9	AX	200	CYC	C2B-C1B-CHB-C4A
9	AX	200	CYC	C4C-C3C-CAC-CBC
9	AY	200	CYC	ND-C4D-CHA-C1A
9	AY	200	CYC	C3D-C4D-CHA-C1A
9	AY	200	CYC	NA-C4A-CHB-C1B
9	AY	200	CYC	C3A-C4A-CHB-C1B
9	AY	200	CYC	C2C-C3C-CAC-CBC
9	AY	200	CYC	C4C-C3C-CAC-CBC
9	AY	200	CYC	NC-C4C-CHD-C1D
9	AZ	200	CYC	NA-C4A-CHB-C1B
9	AZ	200	CYC	C3A-C4A-CHB-C1B
9	BA	200	CYC	NA-C4A-CHB-C1B
9	BA	200	CYC	C3A-C4A-CHB-C1B
9	BA	200	CYC	C2A-CAA-CBA-CGA
9	BA	200	CYC	NB-C1B-CHB-C4A
9	BA	200	CYC	C2B-C1B-CHB-C4A
9	BA	200	CYC	C2C-C3C-CAC-CBC
9	BA	200	CYC	C4C-C3C-CAC-CBC
9	BD	901	CYC	NA-C4A-CHB-C1B
9	BD	901	CYC	C3A-C4A-CHB-C1B
9	BD	901	CYC	NB-C1B-CHB-C4A
9	BD	901	CYC	C2B-C1B-CHB-C4A
9	BD	901	CYC	C2C-C3C-CAC-CBC
9	BD	901	CYC	C4C-C3C-CAC-CBC
9	BD	902	CYC	NA-C1A-CHA-C4D
9	BD	902	CYC	ND-C4D-CHA-C1A
9	BD	902	CYC	C3D-C4D-CHA-C1A
9	BD	902	CYC	NA-C4A-CHB-C1B
9	BD	902	CYC	C3A-C4A-CHB-C1B
9	BD	902	CYC	ND-C1D-CHD-C4C
9	BD	902	CYC	$C2D-C1D-CHD-C4\overline{C}$
9	BH	200	CYC	NA-C4A-CHB-C1B
9	BH	200	CYC	C3A-C4A-CHB-C1B
9	BH	200	CYC	$C4C-C3C-CAC-CB\overline{C}$
9	BI	200	CYC	NA-C1A-CHA-C4D
9	BI	200	CYC	C2A-C1A-CHA-C4D
9	BI	200	CYC	ND-C4D-CHA-C1A
9	BI	200	CYC	C3D-C4D-CHA-C1A
9	BI	200	CYC	NA-C4A-CHB-C1B
9	BI	200	CYC	C3A-C4A-CHB-C1B

Continued from previous page...

	EMD	-25028,	7SC7
--	-----	---------	------

Mol	Chain	Res	Type	Atoms
9	BI	200	CYC	C2C-C3C-CAC-CBC
9	BI	200	CYC	C4C-C3C-CAC-CBC
9	BI	200	CYC	NC-C4C-CHD-C1D
9	BJ	200	CYC	NA-C4A-CHB-C1B
9	BJ	200	CYC	C3A-C4A-CHB-C1B
9	BJ	200	CYC	C4C-C3C-CAC-CBC
9	BJ	200	CYC	NC-C4C-CHD-C1D
9	BJ	200	CYC	ND-C1D-CHD-C4C
9	BJ	200	CYC	C2D-C1D-CHD-C4C
9	BK	200	CYC	ND-C4D-CHA-C1A
9	BK	200	CYC	C3D-C4D-CHA-C1A
9	BK	200	CYC	NA-C4A-CHB-C1B
9	BK	200	CYC	C3A-C4A-CHB-C1B
9	BK	200	CYC	C2C-C3C-CAC-CBC
9	BK	200	CYC	C4C-C3C-CAC-CBC
9	BK	200	CYC	ND-C1D-CHD-C4C
9	BL	200	CYC	NA-C4A-CHB-C1B
9	BL	200	CYC	C3A-C4A-CHB-C1B
9	BL	200	CYC	C4C-C3C-CAC-CBC
9	BL	200	CYC	NC-C4C-CHD-C1D
9	BO	200	CYC	NA-C4A-CHB-C1B
9	BP	200	CYC	NA-C4A-CHB-C1B
9	BP	200	CYC	C3A-C4A-CHB-C1B
9	BP	200	CYC	C2C-C3C-CAC-CBC
9	BP	200	CYC	C4C-C3C-CAC-CBC
9	BQ	200	CYC	NA-C4A-CHB-C1B
9	BQ	200	CYC	C3A-C4A-CHB-C1B
9	BQ	200	CYC	C4C-C3C-CAC-CBC
9	BR	200	CYC	NA-C4A-CHB-C1B
9	BR	200	CYC	C3A-C4A-CHB-C1B
9	BR	200	CYC	C2A-CAA-CBA-CGA
9	BS	200	CYC	NA-C4A-CHB-C1B
9	BS	200	CYC	C3A-C4A-CHB-C1B
9	BS	200	CYC	C2C-C3C-CAC-CBC
9	BS	200	CYC	ND-C1D-CHD-C4C
9	BS	200	CYC	C2D-C1D-CHD-C4C
9	BU	200	CYC	NA-C4A-CHB-C1B
9	BU	200	CYC	C3A-C4A-CHB-C1B
9	BU	200	CYC	ND-C1D-CHD-C4C
9	BU	200	CYC	C2D-C1D-CHD-C4C
9	BV	200	CYC	NA-C4A-CHB-C1B
9	BV	200	CYC	C3A-C4A-CHB-C1B

Continued from previous page...

	EMD	-25028,	7SC7
--	-----	---------	------

Mol	Chain	Res	Type	Atoms
9	BV	200	CYC	C4C-C3C-CAC-CBC
9	BV	200	CYC	ND-C1D-CHD-C4C
9	BV	200	CYC	C2D-C1D-CHD-C4C
9	BW	200	CYC	NA-C4A-CHB-C1B
9	BW	200	CYC	C3A-C4A-CHB-C1B
9	BX	200	CYC	ND-C4D-CHA-C1A
9	BX	200	CYC	C3D-C4D-CHA-C1A
9	BX	200	CYC	NA-C4A-CHB-C1B
9	BX	200	CYC	C3A-C4A-CHB-C1B
9	BX	200	CYC	C4C-C3C-CAC-CBC
9	BX	200	CYC	ND-C1D-CHD-C4C
9	BY	200	CYC	NA-C4A-CHB-C1B
9	BY	200	CYC	C3A-C4A-CHB-C1B
9	BY	200	CYC	C4C-C3C-CAC-CBC
9	CB	200	CYC	NA-C4A-CHB-C1B
9	CB	200	CYC	C3A-C4A-CHB-C1B
9	CC	200	CYC	C2C-C3C-CAC-CBC
9	CC	200	CYC	C4C-C3C-CAC-CBC
9	CD	200	CYC	NA-C1A-CHA-C4D
9	CD	200	CYC	ND-C4D-CHA-C1A
9	CD	200	CYC	C3D-C4D-CHA-C1A
9	CD	200	CYC	NA-C4A-CHB-C1B
9	CD	200	CYC	ND-C1D-CHD-C4C
9	CD	200	CYC	C2D-C1D-CHD-C4C
9	CE	200	CYC	NA-C1A-CHA-C4D
9	CE	200	CYC	C2A-C1A-CHA-C4D
9	CE	200	CYC	C1A-C2A-CAA-CBA
9	CE	200	CYC	C3A-C2A-CAA-CBA
9	CE	200	CYC	NA-C4A-CHB-C1B
9	CE	200	CYC	C3A-C4A-CHB-C1B
9	CE	200	CYC	C2C-C3C-CAC-CBC
9	CE	200	CYC	C4C-C3C-CAC-CBC
9	CE	200	CYC	ND-C1D-CHD-C4C
9	CE	200	CYC	C2D-C1D-CHD-C4C
9	CF	200	CYC	NA-C4A-CHB-C1B
9	CF	200	CYC	C3A-C4A-CHB-C1B
9	CF	200	CYC	ND-C1D-CHD-C4C
9	CF	200	CYC	C2D-C1D-CHD-C4C
9	CG	200	CYC	NA-C1A-CHA-C4D
9	CG	200	CYC	ND-C4D-CHA-C1A
9	CG	200	CYC	C3D-C4D-CHA-C1A
9	CG	200	CYC	NA-C4A-CHB-C1B

Continued from previous page...

EMD-25028, 7	SC7
--------------	-----

Mol	Chain	Res	Type	Atoms
9	CG	200	CYC	C3A-C4A-CHB-C1B
9	CG	200	CYC	C2C-C3C-CAC-CBC
9	CG	200	CYC	C4C-C3C-CAC-CBC
9	CG	200	CYC	NC-C4C-CHD-C1D
9	CI	200	CYC	ND-C4D-CHA-C1A
9	CI	200	CYC	NA-C4A-CHB-C1B
9	CI	200	CYC	C3A-C4A-CHB-C1B
9	CI	200	CYC	NB-C1B-CHB-C4A
9	CI	200	CYC	C2B-C1B-CHB-C4A
9	CI	200	CYC	C4C-C3C-CAC-CBC
9	CL	901	CYC	NA-C4A-CHB-C1B
9	CL	901	CYC	C3A-C4A-CHB-C1B
9	CL	901	CYC	NB-C1B-CHB-C4A
9	CL	901	CYC	C2B-C1B-CHB-C4A
9	CL	901	CYC	C2C-C3C-CAC-CBC
9	CL	901	CYC	C4C-C3C-CAC-CBC
9	CL	902	CYC	NA-C4A-CHB-C1B
9	CL	902	CYC	C3A-C4A-CHB-C1B
9	CL	902	CYC	ND-C1D-CHD-C4C
9	CL	902	CYC	C2D-C1D-CHD-C4C
9	CP	200	CYC	C3A-C4A-CHB-C1B
9	CQ	200	CYC	NA-C1A-CHA-C4D
9	CQ	200	CYC	NA-C4A-CHB-C1B
9	CQ	200	CYC	C3A-C4A-CHB-C1B
9	CQ	200	CYC	C2C-C3C-CAC-CBC
9	CQ	200	CYC	C4C-C3C-CAC-CBC
9	CQ	200	CYC	NC-C4C-CHD-C1D
9	CQ	200	CYC	ND-C1D-CHD-C4C
9	CQ	200	CYC	C2D-C1D-CHD-C4C
9	CR	200	CYC	NA-C1A-CHA-C4D
9	CR	200	CYC	C2A-C1A-CHA-C4D
9	CR	200	CYC	ND-C4D-CHA-C1A
9	CR	200	CYC	C3D-C4D-CHA-C1A
9	CR	200	CYC	NA-C4A-CHB-C1B
9	CR	200	CYC	C3A-C4A-CHB-C1B
9	CR	200	CYC	NB-C1B-CHB-C4A
9	CR	200	CYC	C2B-C1B-CHB-C4A
9	CR	200	CYC	ND-C1D-CHD-C4C
9	CR	200	CYC	C2D-C1D-CHD-C4C
9	CS	200	CYC	NA-C4A-CHB-C1B
9	CS	200	CYC	C3A-C4A-CHB-C1B
9	CS	200	CYC	C4C-C3C-CAC-CBC

Continued from previous page...

EMD-25028, 7	SC7
--------------	-----

Mol	Chain	Res	Type	Atoms
9	CS	200	CYC	ND-C1D-CHD-C4C
9	CT	200	CYC	NA-C4A-CHB-C1B
9	CT	200	CYC	C2C-C3C-CAC-CBC
9	CT	200	CYC	C4C-C3C-CAC-CBC
9	CU	200	CYC	NA-C4A-CHB-C1B
9	CU	200	CYC	C3A-C4A-CHB-C1B
9	CU	200	CYC	NB-C1B-CHB-C4A
9	CU	200	CYC	C2B-C1B-CHB-C4A
9	CU	200	CYC	C2C-C3C-CAC-CBC
9	CU	200	CYC	C4C-C3C-CAC-CBC
9	CW	200	CYC	NA-C4A-CHB-C1B
9	CW	200	CYC	C3A-C4A-CHB-C1B
9	CW	200	CYC	ND-C1D-CHD-C4C
9	CW	200	CYC	C2D-C1D-CHD-C4C
9	CX	200	CYC	NA-C4A-CHB-C1B
9	CX	200	CYC	C3A-C4A-CHB-C1B
9	CX	200	CYC	NB-C1B-CHB-C4A
9	CX	200	CYC	C2B-C1B-CHB-C4A
9	CX	200	CYC	C2C-C3C-CAC-CBC
9	CX	200	CYC	C4C-C3C-CAC-CBC
9	CY	200	CYC	NC-C4C-CHD-C1D
9	CZ	200	CYC	NA-C4A-CHB-C1B
9	CZ	200	CYC	C3A-C4A-CHB-C1B
9	CZ	200	CYC	NB-C1B-CHB-C4A
9	CZ	200	CYC	C2B-C1B-CHB-C4A
9	CZ	200	CYC	C2C-C3C-CAC-CBC
9	CZ	200	CYC	NC-C4C-CHD-C1D
9	CZ	200	CYC	ND-C1D-CHD-C4C
9	CZ	200	CYC	C2D-C1D-CHD-C4C
9	DA	200	CYC	NA-C4A-CHB-C1B
9	DA	200	CYC	U3A-C4A-CHB-CIB
9	DA	200	CYC	U4U-U3U-UAU-CBC
9	DA	200	CYC	ND-CID-CHD-C4C
9	DB	200	CYC	NA-UIA-UHA-U4D
9	DB	200	CYC	UZA-UIA-UHA-U4D
9	DR	200	CYC	NA-U4A-UHB-UIB
9	DB	200		\bigcirc
9	DB	200		$\begin{array}{c} 0.20 \\ \hline 0.20 $
9		200		
9	DG	200	CVC	$\frac{11}{C3} \frac{11}{C4} 11$
9		200		$\begin{array}{c} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$
1 9	L DG	UU		$\cup \Delta \cup - \cup \cup \cup - \cup A \cup - \cup D \cup$

	EMD	-25028,	7SC7
--	-----	---------	------

Mol	Chain	Res	Type	Atoms
9	DH	200	CYC	NA-C4A-CHB-C1B
9	DH	200	CYC	C3A-C4A-CHB-C1B
9	DH	200	CYC	C4C-C3C-CAC-CBC
9	DH	200	CYC	ND-C1D-CHD-C4C
9	DH	200	CYC	C2D-C1D-CHD-C4C
9	DI	200	CYC	NA-C1A-CHA-C4D
9	DI	200	CYC	C2A-C1A-CHA-C4D
9	DI	200	CYC	ND-C4D-CHA-C1A
9	DI	200	CYC	C3D-C4D-CHA-C1A
9	DI	200	CYC	NA-C4A-CHB-C1B
9	DI	200	CYC	C3A-C4A-CHB-C1B
9	DI	200	CYC	NB-C1B-CHB-C4A
9	DI	200	CYC	C2B-C1B-CHB-C4A
9	DI	200	CYC	C2D-C1D-CHD-C4C
9	DJ	200	CYC	NA-C1A-CHA-C4D
9	DJ	200	CYC	C2A-C1A-CHA-C4D
9	DJ	200	CYC	ND-C4D-CHA-C1A
9	DJ	200	CYC	C3D-C4D-CHA-C1A
9	DJ	200	CYC	NA-C4A-CHB-C1B
9	DJ	200	CYC	C3A-C4A-CHB-C1B
9	DJ	200	CYC	C2C-C3C-CAC-CBC
9	DJ	200	CYC	C4C-C3C-CAC-CBC
9	DJ	200	CYC	ND-C1D-CHD-C4C
9	DJ	200	CYC	C2D-C1D-CHD-C4C
9	DK	200	CYC	C2C-C3C-CAC-CBC
9	DK	200	CYC	C4C-C3C-CAC-CBC
9	DL	200	CYC	NA-C4A-CHB-C1B
9	DL	200	CYC	C3A-C4A-CHB-C1B
9	DL	200	CYC	NB-C1B-CHB-C4A
9	DL	200	CYC	C2B-C1B-CHB-C4A
9	DL	200	CYC	C2C-C3C-CAC-CBC
9	DL	200	CYC	C4C-C3C-CAC-CBC
9	DN	200	CYC	NA-C4A-CHB-C1B
9	DN	200	CYC	C3A-C4A-CHB-C1B
9	DN	200	CYC	NC-C4C-CHD-C1D
9	DN	200	CYC	ND-C1D-CHD-C4C
9	DN	200	CYC	C2D-C1D-CHD-C4C
9	DO	200	CYC	ND-C4D-CHA-C1A
9	DO	200	CYC	C3D-C4D-CHA-C1A
9	DO	200	CYC	NA-C4A-CHB-C1B
9	DO	200	CYC	C3A-C4A-CHB-C1B
9	DO	200	CYC	C2B-C1B-CHB-C4A

Continued from previous page...

	EMD	-25028,	7SC7
--	-----	---------	------

Mol	Chain	Res	Type	Atoms
9	DO	200	CYC	C2C-C3C-CAC-CBC
9	DO	200	CYC	C4C-C3C-CAC-CBC
9	DO	200	CYC	NC-C4C-CHD-C1D
9	DO	200	CYC	ND-C1D-CHD-C4C
9	DO	200	CYC	C2D-C1D-CHD-C4C
9	DP	200	CYC	NA-C4A-CHB-C1B
9	DP	200	CYC	C3A-C4A-CHB-C1B
9	DP	200	CYC	NB-C1B-CHB-C4A
9	DP	200	CYC	C2B-C1B-CHB-C4A
9	DP	200	CYC	C4C-C3C-CAC-CBC
9	DQ	200	CYC	NA-C4A-CHB-C1B
9	DQ	200	CYC	C3A-C4A-CHB-C1B
9	DQ	200	CYC	NC-C4C-CHD-C1D
9	DQ	200	CYC	ND-C1D-CHD-C4C
9	DQ	200	CYC	C2D-C1D-CHD-C4C
9	DR	200	CYC	C3A-C4A-CHB-C1B
9	DR	200	CYC	C4C-C3C-CAC-CBC
9	DS	200	CYC	NA-C1A-CHA-C4D
9	DS	200	CYC	NA-C4A-CHB-C1B
9	DS	200	CYC	C3A-C4A-CHB-C1B
9	DS	200	CYC	C2C-C3C-CAC-CBC
9	DS	200	CYC	C4C-C3C-CAC-CBC
9	BP	200	CYC	C2B-C3B-CAB-CBB
9	AI	200	CYC	C2B-C3B-CAB-CBB
9	DJ	200	CYC	C2B-C3B-CAB-CBB
9	DL	200	CYC	C2B-C3B-CAB-CBB
9	BR	200	CYC	C2B-C3B-CAB-CBB
9	DP	200	CYC	C2B-C3B-CAB-CBB
9	DS	200	CYC	C2B-C3B-CAB-CBB
9	AJ	200	CYC	C2B-C3B-CAB-CBB
9	AP	200	CYC	C2B-C3B-CAB-CBB
9	BW	200	CYC	C2B-C3B-CAB-CBB
9	BQ	200	CYC	C2B-C3B-CAB-CBB
9	AK	200	CYC	C2B-C3B-CAB-CBB
9	CU	200	CYC	C2B-C3B-CAB-CBB
9	DO	200	CYC	C2B-C3B-CAB-CBB
9	AN	200	CYC	C2B-C3B-CAB-CBB
9	AQ	200	CYC	C2B-C3B-CAB-CBB
9	CE	200	CYC	C2B-C3B-CAB-CBB
9	DH	200	CYC	C2B-C3B-CAB-CBB
9	CG	200	CYC	C2B-C3B-CAB-CBB
9	AL	-200	CYC	C2B-C3B-CAB-CBB

Continued from previous page...

EMD-25028, 7	SC7
--------------	-----

Mol	Chain	Res	Type	Atoms
9	CX	200	CYC	C2B-C3B-CAB-CBB
9	BX	200	CYC	C2B-C1B-CHB-C4A
9	CQ	200	CYC	C2B-C3B-CAB-CBB
9	AC	200	CYC	C2B-C3B-CAB-CBB
9	CS	200	CYC	C2B-C3B-CAB-CBB
9	CZ	200	CYC	C2B-C3B-CAB-CBB
9	AI	200	CYC	C2A-CAA-CBA-CGA
9	AK	200	CYC	C2A-CAA-CBA-CGA
9	AP	200	CYC	C2A-CAA-CBA-CGA
9	AX	200	CYC	C2A-CAA-CBA-CGA
9	BI	200	CYC	C2A-CAA-CBA-CGA
9	BW	200	CYC	C2A-CAA-CBA-CGA
9	CF	200	CYC	C2A-CAA-CBA-CGA
9	CI	200	CYC	C2A-CAA-CBA-CGA
9	CW	200	CYC	C2A-CAA-CBA-CGA
9	AH	200	CYC	C3A-C4A-CHB-C1B
9	BO	200	CYC	C3A-C4A-CHB-C1B
9	CD	200	CYC	C3A-C4A-CHB-C1B
9	BY	200	CYC	C2B-C3B-CAB-CBB
9	BP	200	CYC	NB-C1B-CHB-C4A
9	BX	200	CYC	NB-C1B-CHB-C4A
9	DO	200	CYC	NB-C1B-CHB-C4A
9	AR	200	CYC	C2B-C3B-CAB-CBB
9	BP	200	CYC	C2B-C1B-CHB-C4A
9	AA	200	CYC	NA-C1A-CHA-C4D
9	AD	200	CYC	NA-C1A-CHA-C4D
9	AL	200	CYC	NA-C1A-CHA-C4D
9	AO	200	CYC	NA-C1A-CHA-C4D
9	AQ	200	CYC	NA-C1A-CHA-C4D
9	AY	200	CYC	NA-C1A-CHA-C4D
9	BK	200	CYC	NA-C1A-CHA-C4D
9	BP	200	CYC	NA-C1A-CHA-C4D
9	BS	200	CYC	NA-C1A-CHA-C4D
9	BV	200	CYC	NA-C1A-CHA-C4D
9	BX	200	CYC	NA-C1A-CHA-C4D
9	CL	902	CYC	NA-C1A-CHA-C4D
9	CS	200	CYC	NA-C1A-CHA-C4D
9	CZ	200	CYC	NA-C1A-CHA-C4D
9	DH	200	CYC	NA-C1A-CHA-C4D
9	DN	200	CYC	NA-C1A-CHA-C4D
9	DO	200	CYC	NA-C1A-CHA-C4D
9	DQ	200	CYC	NA-C1A-CHA-C4D

Continued from previous page...

	EMD	-25028,	7SC7
--	-----	---------	------

Mol	Chain	Res	Type	Atoms
9	BX	200	CYC	C2B-C3B-CAB-CBB
9	DG	200	CYC	C2B-C3B-CAB-CBB
9	AI	200	CYC	C4B-C3B-CAB-CBB
9	AJ	200	CYC	C4B-C3B-CAB-CBB
9	AK	200	CYC	C4B-C3B-CAB-CBB
9	AN	200	CYC	C4B-C3B-CAB-CBB
9	AP	200	CYC	C4B-C3B-CAB-CBB
9	BP	200	CYC	C4B-C3B-CAB-CBB
9	BQ	200	CYC	C4B-C3B-CAB-CBB
9	BR	200	CYC	C4B-C3B-CAB-CBB
9	BW	200	CYC	C4B-C3B-CAB-CBB
9	CU	200	CYC	C4B-C3B-CAB-CBB
9	DJ	200	CYC	C4B-C3B-CAB-CBB
9	DL	200	CYC	C4B-C3B-CAB-CBB
9	DO	200	CYC	C4B-C3B-CAB-CBB
9	DP	200	CYC	C4B-C3B-CAB-CBB
9	DS	200	CYC	C4B-C3B-CAB-CBB
9	CW	200	CYC	C2B-C3B-CAB-CBB
9	CL	901	CYC	C2B-C3B-CAB-CBB
9	DG	200	CYC	C2B-C1B-CHB-C4A
9	AB	200	CYC	C2A-CAA-CBA-CGA
9	AL	200	CYC	C2A-CAA-CBA-CGA
9	BH	200	CYC	C2A-CAA-CBA-CGA
9	BS	200	CYC	C2A-CAA-CBA-CGA
9	CC	200	CYC	C2A-CAA-CBA-CGA
9	CR	200	CYC	C2A-CAA-CBA-CGA
9	CZ	200	CYC	C2A-CAA-CBA-CGA
9	DG	200	CYC	C2A-CAA-CBA-CGA
9	DN	200	CYC	C2A-CAA-CBA-CGA
9	BD	902	CYC	C2A-C1A-CHA-C4D
9	AE	200	CYC	C3A-C4A-CHB-C1B
9	AZ	200	CYC	C2B-C3B-CAB-CBB
9	BU	200	CYC	C2B-C3B-CAB-CBB
9	AD	200	CYC	NB-C1B-CHB-C4A
9	AV	200	CYC	NB-C1B-CHB-C4A
9	DG	200	CYC	NB-C1B-CHB-C4A
9	DQ	200	CYC	NB-C1B-CHB-C4A
9	AO	200	CYC	C2B-C3B-CAB-CBB
9	CR	200	CYC	C2B-C3B-CAB-CBB
9	AD	200	CYC	NA-C4A-CHB-C1B
9	AE	200	CYC	NA-C4A-CHB-C1B
9	AU	200	CYC	NA-C4A-CHB-C1B

Continued from previous page...

EMD-25028, 7	7SC7
--------------	------

	Chain	Res	Type	Atoms
		200	CVC	NA CAA CHB C1B
9	CD	200	CVC	NA-C4A-CHB-C1B
9	CV	200	CVC	NA-C4A-CHB C1B
9		200	CVC	NA-C4A-CHB C1B
9	DR	200	CVC	NA-C4A-CHB-C1B
9		200	CVC	C2A CAA CBA CCA
9		200	CVC	C2A-CAA-CDA-CGA
9		200	CVC	C2A CAA CBA CCA
9	AU	200	CVC	C2A CAA CBA CCA
9	RI	200	CVC	C2A CAA CBA CGA
9	BO	200	CVC	C2A CAA CBA CCA
9	BU	200	CVC	C2A CAA CBA CGA
9	CT DU	200	CVC	C2A-CAA-CDA-CGA
9		200	CVC	C2A-CAA-CDA-CGA
9		200	CVC	$C_{2A} C_{4A} C_{HB} C_{1B}$
9		200	CVC	$C_{3A} C_{4A} C_{HB} C_{1B}$
9		200	CVC	$C_{3A} C_{4A} C_{HB} C_{1B}$
9	CT	200	CVC	$C_{3A} C_{4A} C_{HB} C_{1B}$
9	CV	200	CVC	$C_{3A} C_{4A} C_{HB} C_{1B}$
9		200	CVC	$C_{3A} C_{4A} C_{HB} C_{1B}$
9		200	CVC	C2B C1B CHB C/A
9		200	CVC	C2B-C1B-CHB-C4A
9	AV	200	CYC	C2B-C3B-CAB-CBB
9	BV	200	CYC	C2B-C3B-CAB-CBB
9	AL	200	CYC	C4B-C3B-CAB-CBB
9	AO	200	CYC	C4B-C3B-CAB-CBB
9	CE	200	CYC	C4B-C3B-CAB-CBB
9	CG	200	CYC	C4B-C3B-CAB-CBB
9	CX	200	CYC	C4B-C3B-CAB-CBB
9	DH	200	CYC	C4B-C3B-CAB-CBB
9	AU	200	CYC	C2B-C3B-CAB-CBB
9	AI	200	CYC	NB-C1B-CHB-C4A
9	AI	200	CYC	C2A-C1A-CHA-C4D
9	AY	200	CYC	C2A-C1A-CHA-C4D
9	BK	200	CYC	C2A-C1A-CHA-C4D
9	CD	200	CYC	C2A-C1A-CHA-C4D
9	CG	200	CYC	C2A-C1A-CHA-C4D
9	CQ	200	CYC	C2A-C1A-CHA-C4D
9	DQ	200	CYC	C2A-C1A-CHA-C4D
9	DS	200	CYC	C2A-C1A-CHA-C4D
9	BD	902	CYC	NB-C1B-CHB-C4A
9	BD	901	CYC	C2B-C3B-CAB-CBB

EMD-25028, 7S

Mol	Chain	Res	Type	Atoms
9	AX	200	CYC	C2B-C3B-CAB-CBB
9	DN	200	CYC	C2B-C3B-CAB-CBB
9	AW	200	CYC	C2B-C3B-CAB-CBB
9	BO	200	CYC	C2A-CAA-CBA-CGA
9	CD	200	CYC	C2A-CAA-CBA-CGA
9	AC	200	CYC	C4B-C3B-CAB-CBB
9	CQ	200	CYC	C4B-C3B-CAB-CBB
9	AO	200	CYC	C2C-C3C-CAC-CBC
9	BJ	200	CYC	C2C-C3C-CAC-CBC
9	BX	200	CYC	C2C-C3C-CAC-CBC
9	CI	200	CYC	C2C-C3C-CAC-CBC
9	CS	200	CYC	C2C-C3C-CAC-CBC
9	DA	200	CYC	C2C-C3C-CAC-CBC
9	DR	200	CYC	C2C-C3C-CAC-CBC
9	AD	200	CYC	C2B-C1B-CHB-C4A
9	AU	200	CYC	C2A-CAA-CBA-CGA
9	AA	200	CYC	C2A-C1A-CHA-C4D
9	AD	200	CYC	C2A-C1A-CHA-C4D
9	AL	200	CYC	C2A-C1A-CHA-C4D
9	BP	200	CYC	C2A-C1A-CHA-C4D
9	BX	200	CYC	C2A-C1A-CHA-C4D
9	CS	200	CYC	C2A-C1A-CHA-C4D
9	CZ	200	CYC	C2A-C1A-CHA-C4D
9	DH	200	CYC	C2A-C1A-CHA-C4D
9	DO	200	CYC	C2A-C1A-CHA-C4D
9	AH	200	CYC	C2B-C3B-CAB-CBB
9	AN	200	CYC	C2A-CAA-CBA-CGA
9	DL	200	CYC	C2A-CAA-CBA-CGA
9	CS	200	CYC	C4B-C3B-CAB-CBB
9	CZ	200	CYC	C4B-C3B-CAB-CBB
9	AI	200	CYC	C2B-C1B-CHB-C4A
9	AU	200	CYC	NB-C1B-CHB-C4A
9	CT	200	CYC	NB-C1B-CHB-C4A
9	AE	200	CYC	C2A-CAA-CBA-CGA
9	AR	200	CYC	C2A-CAA-CBA-CGA
9	BD	902	CYC	C2A-CAA-CBA-CGA
9	BS	200	CYC	C2B-C3B-CAB-CBB
9	AL	200	CYC	C4C-C3C-CAC-CBC
9	BR	200	CYC	C4C-C3C-CAC-CBC
9	BS	200	CYC	C4C-C3C-CAC-CBC
9	CD	200	CYC	C4C-C3C-CAC-CBC
9	CF	200	CYC	C4C-C3C-CAC-CBC

Continued from previous page...

EMD-25028, 7SC7	EMD-25028,	7SC7
-----------------	------------	------

Mol	Chain	Res	Type	Atoms
9	CP	200	CYC	C4C-C3C-CAC-CBC
9	BI	200	CYC	C1A-C2A-CAA-CBA
9	BY	200	CYC	C4B-C3B-CAB-CBB
9	AD	200	CYC	C2A-CAA-CBA-CGA
9	BD	902	CYC	C2B-C1B-CHB-C4A
9	AA	200	CYC	C2B-C3B-CAB-CBB
9	AK	200	CYC	NA-C1A-CHA-C4D
9	AJ	200	CYC	NC-C4C-CHD-C1D
9	AL	200	CYC	NC-C4C-CHD-C1D
9	BD	902	CYC	NC-C4C-CHD-C1D
9	CI	200	CYC	NC-C4C-CHD-C1D
9	BI	200	CYC	C3A-C2A-CAA-CBA
9	AB	200	CYC	C1A-C2A-CAA-CBA
9	AO	200	CYC	C2A-C1A-CHA-C4D
9	BV	200	CYC	C2A-C1A-CHA-C4D
9	CL	902	CYC	C2A-C1A-CHA-C4D
9	DN	200	CYC	C2A-C1A-CHA-C4D
9	AR	200	CYC	C4B-C3B-CAB-CBB
9	BX	200	CYC	C4B-C3B-CAB-CBB
9	DG	200	CYC	C4B-C3B-CAB-CBB
9	AI	200	CYC	C2C-C3C-CAC-CBC
9	DA	200	CYC	C2B-C3B-CAB-CBB
9	CC	200	CYC	C2B-C3B-CAB-CBB
9	BR	200	CYC	NB-C1B-CHB-C4A
9	CI	200	CYC	C2B-C3B-CAB-CBB
9	CE	200	CYC	NB-C1B-CHB-C4A
9	CB	200	CYC	C2A-CAA-CBA-CGA
9	DI	200	CYC	C2B-C3B-CAB-CBB
9	BS	200	CYC	C2A-C1A-CHA-C4D
9	CW	200	CYC	C4B-C3B-CAB-CBB
9	AB	200	CYC	C3A-C2A-CAA-CBA
9	AH	200	CYC	NA-C1A-CHA-C4D
9	CB	200	CYC	C2B-C3B-CAB-CBB
9	CT	200	CYC	C2B-C3B-CAB-CBB
9	CQ	200	CYC	CAA-CBA-CGA-O2A
9	AQ	200	CYC	C2A-C1A-CHA-C4D
9	CW	200	CYC	NA-C1A-CHA-C4D
9	CL	901	CYC	C4B-C3B-CAB-CBB
9	AU	200	CYC	C2B-C1B-CHB-C4A
9	CT	200	CYC	C2B-C1B-CHB-C4A
9	BO	200	CYC	C2B-C3B-CAB-CBB
9	BQ	200	CYC	NC-C4C-CHD-C1D

Continued from previous page...

	EMD-	25028,	7SC7
--	------	--------	------

Mol	Chain	Res		Atoms
9	DK	200	CYC	NC-C4C-CHD-C1D
9	AW	200	CYC	CAA-CBA-CGA-O1A
9	CT	200	CYC	CAA-CBA-CGA-O1A
9	BD	902	CYC	CAA-CBA-CGA-O1A
9	CQ	200	CYC	CAA-CBA-CGA-O1A
9	DO	200	CYC	CAD-CBD-CGD-O1D
9	BH	200	CYC	C2B-C3B-CAB-CBB
9	BY	200	CYC	CAA-CBA-CGA-O1A
9	CB	200	CYC	CAA-CBA-CGA-O1A
9	CP	200	CYC	CAA-CBA-CGA-O1A
9	AR	200	CYC	CAA-CBA-CGA-O2A
9	BX	200	CYC	CAA-CBA-CGA-O1A
9	CL	902	CYC	CAA-CBA-CGA-O1A
9	BD	902	CYC	CAA-CBA-CGA-O2A
9	BY	200	CYC	CAA-CBA-CGA-O2A
9	CB	200	CYC	CAA-CBA-CGA-O2A
9	CW	200	CYC	CAA-CBA-CGA-O1A
9	AE	200	CYC	C2B-C3B-CAB-CBB
9	AK	200	CYC	CAA-CBA-CGA-O1A
9	BV	200	CYC	CAA-CBA-CGA-O1A
9	CL	901	CYC	CAA-CBA-CGA-O1A
9	AV	200	CYC	C2B-C3B-CAB-CBB
9	AW	200	CYC	CAA-CBA-CGA-O2A
9	BO	200	CYC	CAA-CBA-CGA-O1A
9	CD	200	CYC	CAA-CBA-CGA-O2A
9	CX	200	CYC	CAD-CBD-CGD-O1D
9	CX	200	CYC	CAD-CBD-CGD-O2D
9	DH	200	CYC	CAA-CBA-CGA-O2A
9	AV	200	CYC	CAA-CBA-CGA-O2A
9	DO	200	CYC	CAD-CBD-CGD-O2D
9	BH	200	CYC	CAA-CBA-CGA-O1A
9	CC	200	CYC	CAA-CBA-CGA-O2A
9	BP	200	CYC	C2A-CAA-CBA-CGA
9	AV	200	CYC	CAA-CBA-CGA-O1A
9	BR	200	CYC	CAA-CBA-CGA-O1A
9	CL	901	CYC	CAA-CBA-CGA-O2A
9	CP	200	CYC	CAA-CBA-CGA-O2A
9	CT	200	CYC	CAA-CBA-CGA-O2A
9	DN	200	CYC	CAA-CBA-CGA-O1A
9	BR	200	CYC	CAA-CBA-CGA-O2A
9	DA	200	CYC	CAD-CBD-CGD-O1D
9	DH	200	CYC	CAA-CBA-CGA-O1A

Continued from previous page...

	EMD	-25028,	7SC7
--	-----	---------	------

Mol	Chain	Res	Type	Atoms
9	BD	901	CYC	CAA-CBA-CGA-O1A
9	BO	200	CYC	CAA-CBA-CGA-O2A
9	CC	200	CYC	CAA-CBA-CGA-O1A
9	DH	200	CYC	CAD-CBD-CGD-O1D
9	CF	200	CYC	CAD-CBD-CGD-O1D
9	CG	200	CYC	CAA-CBA-CGA-O2A
9	DJ	200	CYC	CAA-CBA-CGA-O2A
9	DN	200	CYC	CAA-CBA-CGA-O2A
9	AE	200	CYC	CAD-CBD-CGD-O1D
9	CD	200	CYC	CAA-CBA-CGA-O1A
9	CL	902	CYC	CAA-CBA-CGA-O2A
9	BJ	200	CYC	CAA-CBA-CGA-O2A
9	BV	200	CYC	CAA-CBA-CGA-O2A
9	CG	200	CYC	CAD-CBD-CGD-O2D
9	CW	200	CYC	CAA-CBA-CGA-O2A
9	AK	200	CYC	CAA-CBA-CGA-O2A
9	AR	200	CYC	CAA-CBA-CGA-O1A
9	BX	200	CYC	CAA-CBA-CGA-O2A
9	DA	200	CYC	CAD-CBD-CGD-O2D
9	AN	200	CYC	CAA-CBA-CGA-O2A
9	BK	200	CYC	CAA-CBA-CGA-O2A
9	CF	200	CYC	CAD-CBD-CGD-O2D
9	DH	200	CYC	CAD-CBD-CGD-O2D
9	AE	200	CYC	CAD-CBD-CGD-O2D
9	BH	200	CYC	CAA-CBA-CGA-O2A
9	BI	200	CYC	CAD-CBD-CGD-O2D
9	BP	200	CYC	CAA-CBA-CGA-O2A
9	AJ	200	CYC	CAA-CBA-CGA-O2A
9	AO	200	CYC	CAA-CBA-CGA-O2A
9	AV	200	CYC	CAD-CBD-CGD-O2D
9	AY	200	CYC	CAA-CBA-CGA-O2A
9	BS	200	CYC	CAD-CBD-CGD-O2D
9		901	CYC	CAD-CBD-CGD-O2D
9	AB	200	CYC	CAD-CBD-CGD-O2D
9	BD	901	CYC	CAA-CBA-CGA-O2A
9	BK	200	CYC	CAD-CBD-CGD-O2D
9	DJ	200	CYC	CAA-CBA-CGA-OIA
9	AB	200	CYC	CAA-CBA-CGA-O2A
9	AP	200	CYC	UAA-UBA-UGA-U2A
9	BD	901	CYC	CAD-CBD-CGD-O2D
9	AA	200	CYC	UAA-UBA-UGA-U2A
9	ΒJ	200	CYC	CAD-CBD-CGD-O2D

Mol	Chain	Res	Type	Atoms
9	BP	200	CYC	CAA-CBA-CGA-O1A
9	CG	200	CYC	CAA-CBA-CGA-O1A
9	CY	200	CYC	CAA-CBA-CGA-O2A
9	BI	200	CYC	CAA-CBA-CGA-O2A
9	BQ	200	CYC	CAA-CBA-CGA-O2A
9	CC	200	CYC	CAD-CBD-CGD-O2D
9	CG	200	CYC	CAD-CBD-CGD-O1D
9	CR	200	CYC	CAD-CBD-CGD-O2D
9	CS	200	CYC	CAD-CBD-CGD-O2D
9	AY	200	CYC	CAD-CBD-CGD-O2D
9	CY	200	CYC	C2B-C3B-CAB-CBB
9	AN	200	CYC	CAA-CBA-CGA-O1A
9	BY	200	CYC	CAD-CBD-CGD-O1D
9	DA	200	CYC	CAA-CBA-CGA-O2A
9	AA	200	CYC	CAA-CBA-CGA-O1A
9	AB	200	CYC	CAA-CBA-CGA-O1A
9	AH	200	CYC	CAA-CBA-CGA-O2A
9	AV	200	CYC	CAD-CBD-CGD-O1D
9	BJ	200	CYC	CAA-CBA-CGA-O1A
9	BK	200	CYC	CAD-CBD-CGD-O1D
9	CE	200	CYC	CAD-CBD-CGD-O2D
9	CL	901	CYC	CAD-CBD-CGD-O1D
9	CS	200	CYC	CAD-CBD-CGD-O1D
9	AQ	200	CYC	CAA-CBA-CGA-O2A
9	BL	200	CYC	CAD-CBD-CGD-O2D
9	BW	200	CYC	CAA-CBA-CGA-O2A
9	DG	200	CYC	CAA-CBA-CGA-O2A
9	BI	200	CYC	C2B-C3B-CAB-CBB
9	AO	200	CYC	CAA-CBA-CGA-O1A
9	CX	200	CYC	CAA-CBA-CGA-O2A
9	DG	200	CYC	CAA-CBA-CGA-O1A
9	CE	200	CYC	C2B-C1B-CHB-C4A
9	BI	200	CYC	CAA-CBA-CGA-O1A
9	DO	200	CYC	CAA-CBA-CGA-O2A
9	BD	901	CYC	CAD-CBD-CGD-O1D
9	BJ	200	CYC	CAD-CBD-CGD-O1D
9	BK	200	CYC	CAA-CBA-CGA-O1A
9	BQ	200	CYC	CAA-CBA-CGA-O1A
9	CE	200	CYC	CAA-CBA-CGA-O2A
9	CF	200	CYC	CAA-CBA-CGA-O2A
9	CS	200	CYC	CAA-CBA-CGA-O2A
9	AB	200	CYC	CAD-CBD-CGD-O1D

Continued from previous page...

$EMD^{-2}0020, 1001$	EMD-	-25028,	7SC7
----------------------	------	---------	------

Mol	Chain	Res	Type	Atoms
9	AJ	200	CYC	CAA-CBA-CGA-O1A
9	AL	200	CYC	CAA-CBA-CGA-O2A
9	BI	200	CYC	CAD-CBD-CGD-O1D
9	CC	200	CYC	CAD-CBD-CGD-01D
9	CY	200	CYC	CAA-CBA-CGA-O1A
9	AK	200	CYC	CAD-CBD-CGD-O2D
9	AY	200	CYC	CAD-CBD-CGD-O1D
9	AH	200	CYC	CAA-CBA-CGA-O1A
9	AL	200	CYC	CAA-CBA-CGA-O1A
9	AY	200	CYC	CAA-CBA-CGA-O1A
9	BS	200	CYC	CAD-CBD-CGD-O1D
9	CE	200	CYC	CAA-CBA-CGA-O1A
9	CQ	200	CYC	CAD-CBD-CGD-O2D
9	BR	200	CYC	C2B-C1B-CHB-C4A
9	AK	200	CYC	CAD-CBD-CGD-O1D
9	AP	200	CYC	CAA-CBA-CGA-O1A
9	BW	200	CYC	CAA-CBA-CGA-O1A
9	AN	200	CYC	CAD-CBD-CGD-O2D
9	BP	200	CYC	CAD-CBD-CGD-O2D
9	BS	200	CYC	CAA-CBA-CGA-O2A
9	BU	200	CYC	CAA-CBA-CGA-O1A
9	BU	200	CYC	CAA-CBA-CGA-O2A
9	CQ	200	CYC	CAD-CBD-CGD-O1D
9	DK	200	CYC	CAA-CBA-CGA-O2A
9	AQ	200	CYC	CAA-CBA-CGA-O1A
9	CF	200	CYC	CAA-CBA-CGA-O1A
9	CS	200	CYC	CAA-CBA-CGA-O1A
9	DK	200	CYC	CAA-CBA-CGA-O1A
9	DO	200	CYC	CAA-CBA-CGA-O1A
9	AC	200	CYC	CAA-CBA-CGA-O2A
9	CR	200	CYC	CAD-CBD-CGD-O1D
9	AC	200	CYC	CAA-CBA-CGA-O1A
9	CX	200	CYC	CAA-CBA-CGA-O1A
9	DB	200	CYC	CAA-CBA-CGA-O1A
9	DS	200	CYC	CAA-CBA-CGA-O1A
9	DB	200	CYC	CAA-CBA-CGA-O2A
9	DI	200	CYC	NC-C4C-CHD-C1D
9	BS	200	CYC	CAA-CBA-CGA-O1A
9	DA	200	CYC	CAA-CBA-CGA-O1A
9	DS	200	CYC	CAA-CBA-CGA-O2A
9	AL	200	CYC	CAD-CBD-CGD-O2D
9	CE	200	CYC	CAD-CBD-CGD-O1D

Continued from previous page...

Continued on next page...

EMD-25028, 7	SC7
--------------	-----

Continued from previous page					
Mol	Chain	Res	Type	Atoms	
9	BL	200	CYC	CAD-CBD-CGD-O1D	
9	DP	200	CYC	CAA-CBA-CGA-O2A	
9	DJ	200	CYC	CAD-CBD-CGD-O1D	
9	BR	200	CYC	CAD-CBD-CGD-O1D	
9	AN	200	CYC	CAD-CBD-CGD-O1D	
9	CP	200	CYC	CAD-CBD-CGD-O2D	
9	DL	200	CYC	CAD-CBD-CGD-O2D	
9	DS	200	CYC	CAD-CBD-CGD-O2D	
9	BR	200	CYC	CAD-CBD-CGD-O2D	
9	BY	200	CYC	CAD-CBD-CGD-O2D	
9	CT	200	CYC	CAD-CBD-CGD-O2D	
9	BP	200	CYC	CAD-CBD-CGD-O1D	
9	AO	200	CYC	C4B-C3B-CAB-CBB	
9	AZ	200	CYC	C4B-C3B-CAB-CBB	
9	BU	200	CYC	C4B-C3B-CAB-CBB	
9	CR	200	CYC	C4B-C3B-CAB-CBB	
9	DQ	200	CYC	CAA-CBA-CGA-O1A	
9	AQ	200	CYC	C2C-C3C-CAC-CBC	
9	DJ	200	CYC	CAD-CBD-CGD-O2D	
9	AD	200	CYC	CAD-CBD-CGD-O2D	
9	DB	200	CYC	CAD-CBD-CGD-O2D	
9	DR	200	CYC	CAD-CBD-CGD-O1D	
9	AL	200	CYC	CAD-CBD-CGD-O1D	
9	DP	200	CYC	CAA-CBA-CGA-O1A	
9	AC	200	CYC	C2A-CAA-CBA-CGA	
9	AQ	200	CYC	CAD-CBD-CGD-O2D	
9	AX	200	CYC	CAA-CBA-CGA-O2A	
9	CP	200	CYC	CAD-CBD-CGD-O1D	
9	CT	200	CYC	CAD-CBD-CGD-O1D	
9	DL	200	CYC	CAD-CBD-CGD-O1D	
9	DQ	200	CYC	CAA-CBA-CGA-O2A	
9	DS	200	CYC	CAD-CBD-CGD-O1D	
9	BD	902	CYC	CAD-CBD-CGD-O2D	
9	CZ	200	CYC	CAD-CBD-CGD-O2D	
9	CI	200	CYC	CAA-CBA-CGA-O2A	
9	AR	200	CYC	CAD-CBD-CGD-O2D	
9	AU	200	CYC	CAA-CBA-CGA-O2A	
9	CZ	200	CYC	CAD-CBD-CGD-O1D	
9	CI	200	CYC	CAA-CBA-CGA-O1A	
9	AI	200	CYC	CAA-CBA-CGA-O2A	
9	AI	200	CYC	CAD-CBD-CGD-O2D	
9	BA	200	CYC	CAA-CBA-CGA-O2A	
1	1	1	1	I. Contraction of the second se	

d fa α . . : .

Continued on next page...

Mol	Chain	\mathbf{Res}	Type	Atoms
9	AY	200	CYC	C4B-C3B-CAB-CBB
9	AQ	200	CYC	CAD-CBD-CGD-O1D
9	AR	200	CYC	CAD-CBD-CGD-O1D

There are no ring outliers.

69 monomers are involved in 205 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
9	DH	200	CYC	1	0
9	DN	200	CYC	6	0
9	AL	200	CYC	4	0
9	AV	200	CYC	3	0
9	CF	200	CYC	2	0
9	BO	200	CYC	2	0
9	CD	200	CYC	3	0
9	BJ	200	CYC	2	0
9	BR	200	CYC	2	0
9	BP	200	CYC	3	0
9	CU	200	CYC	6	0
9	AP	200	CYC	2	0
9	BH	200	CYC	3	0
9	BK	200	CYC	1	0
9	DG	200	CYC	4	0
9	CX	200	CYC	7	0
9	AA	200	CYC	2	0
9	AJ	200	CYC	1	0
9	AC	200	CYC	3	0
9	BL	200	CYC	1	0
9	CP	200	CYC	1	0
9	CZ	200	CYC	1	0
9	DJ	200	CYC	1	0
9	AR	200	CYC	1	0
9	DB	200	CYC	5	0
9	DQ	200	CYC	4	0
9	BY	200	CYC	3	0
9	BQ	200	CYC	1	0
9	CR	200	CYC	2	0
9	DO	200	CYC	4	0
9	CG	200	CYC	4	0
9	AY	200	CYC	7	0
9	AQ	200	CYC	3	0
9	AI	200	CYC	2	0

Continued on next page...

EMD-25028, '	7SC7
--------------	------

Mol	Chain	Res	Type	Clashes	Symm-Clashes
9	CE	200	CYC	3	0
9	BW	200	CYC	2	0
9	CC	200	CYC	4	0
9	BS	200	CYC	4	0
9	CS	200	CYC	5	0
9	BD	902	CYC	3	0
9	BV	200	CYC	3	0
9	CT	200	CYC	4	0
9	CY	200	CYC	1	0
9	DL	200	CYC	5	0
9	AE	200	CYC	2	0
9	DR	200	CYC	2	0
9	CB	200	CYC	2	0
9	AO	200	CYC	2	0
9	BA	200	CYC	2	0
9	AD	200	CYC	3	0
9	AU	200	CYC	3	0
9	CI	200	CYC	2	0
9	CL	901	CYC	3	0
9	DA	200	CYC	2	0
9	BU	200	CYC	2	0
9	AW	200	CYC	6	0
9	AX	200	CYC	4	0
9	BX	200	CYC	4	0
9	AN	200	CYC	3	0
9	BD	901	CYC	3	0
9	AZ	200	CYC	4	0
9	DS	200	CYC	5	0
9	CQ	200	CYC	3	0
9	AB	200	CYC	2	0
9	DK	200	CYC	3	0
9	DI	200	CYC	1	0
9	CW	200	CYC	2	0
9	CL	902	CYC	3	0
9	BI	200	CYC	6	0

Continued from previous page...

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring

in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-25028. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 106

Y Index: 154

 \mathbf{Z}

Z Index: 207

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 91

Y Index: 139

Z Index: 280

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.215. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 2638 nm^3 ; this corresponds to an approximate mass of 2383 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum is only generated for cubic maps.

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-25028 and PDB model 7SC7. Per-residue inclusion information can be found in section 3 on page 17.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.215 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.215).

9.4 Atom inclusion (i)

At the recommended contour level, 100% of all backbone atoms, 93% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.215) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.9340	0.4540
AA	0.8330	0.3830
AB	0.8930	0.3760
AC	0.8490	0.3670
AD	0.8990	0.4060
AE	0.8840	0.4340
AF	0.8680	0.3910
AH	0.9600	0.4380
AI	0.9700	0.5240
AJ	0.9620	0.5270
AK	0.9540	0.5130
AL	0.9610	0.4740
AN	0.9720	0.4710
AO	0.9700	0.5390
AP	0.9630	0.5180
AQ	0.9620	0.5130
AR	0.9560	0.4550
AS	0.9640	0.4910
AU	0.9180	0.4000
AV	0.9230	0.4010
AW	0.9420	0.3550
AX	0.9220	0.4230
AY	0.9410	0.4160
AZ	0.8470	0.4390
BA	0.9010	0.4730
BB	0.8080	0.4640
BD	0.9600	0.4970
BF	0.9500	0.4100
BG	0.9410	0.4380
BH	0.7710	0.3660
BI	0.8340	0.3480
BJ	0.7780	0.3570
BK	0.8250	0.3860
BL	0.8340	0.4060
BM	0.8120	0.3760

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
BO	0.9470	0.4260
BP	0.9660	0.5140
BQ	0.9580	0.5150
BR	0.9540	0.5000
BS	0.9610	0.4590
BU	0.9620	0.4690
BV	0.9700	0.5350
BW	0.9610	0.5140
BX	0.9690	0.5150
BY	0.9530	0.4800
BZ	0.9650	0.4940
CB	0.9340	0.4440
CC	0.9640	0.4240
CD	0.9560	0.4380
CE	0.9620	0.4320
CF	0.9460	0.4680
CG	0.9650	0.4640
CI	0.8290	0.4270
CJ	0.9130	0.5000
CL	0.9580	0.4920
CN	0.9460	0.4400
CO	0.9370	0.4280
CP	0.9660	0.4590
CQ	0.9590	0.4210
CR	0.9420	0.3870
CS	0.9700	0.4690
CT	0.9560	0.4950
CU	0.9700	0.4930
CW	0.9430	0.4030
CX	0.9560	0.4590
CY	0.9530	0.5010
CZ	0.9530	0.4880
DA	0.9660	0.4990
DB	0.9400	0.4230
DD	0.9770	0.5200
DE	0.8600	0.3460
DF	0.8720	0.3620
DG	0.9300	0.3850
DH	0.9590	0.4430
DI	0.9550	0.4570
DJ	0.9550	0.4320
DK	0.9430	0.4370

Continued on next page...

Chain	Atom inclusion	Q-score
DL	0.9660	0.4410
DN	0.9470	0.4330
DO	0.9280	0.4120
DP	0.9270	0.4120
DQ	0.9450	0.4780
DR	0.9570	0.4880
DS	0.9580	0.4710
DU	0.9620	0.5070
DV	0.8580	0.3450
DW	0.9160	0.4180

Continued from previous page...

