

wwPDB EM Validation Summary Report (i)

Dec 2, 2024 – 02:55 PM EST

PDB ID	:	8T2Z
EMDB ID	:	EMD-40992
Title	:	Hypomethylated yeast 80S bound with cycloheximide, P-site tRNA, and A-site
		tRNA, messenger RNA, POST
Authors	:	Zhao, Y.; Li, H.
Deposited on	:	2023-06-07
Resolution	:	2.40 Å(reported)
This is a	x7xx7	PDB EM Validation Summary Report for a publicly released PDB entry

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	2022.3.0, CSD as543be (2022)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.40

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	EM structures
Metric	$(\# {\rm Entries})$	$(\# { m Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	BA	252	82%	18%
2	BB	255	83%	• 16%
3	BC	254	85%	15%
4	BE	261	99%	
5	BG	236	95%	• •
6	BH	190	96%	• •
7	BI	200	8%	6%
8	BJ	197	93%	• 6%

Mol	Chain	Length	Quality of chain	
9	BL	156	99%	
10	BN	151	99%	
11	BO	137	91%	• 7%
12	BV	87	• 100%	
13	BW	130	98%	
14	BX	145		
15	BY	135	24%	
16	Ba	110	33%	•
10	Da	119	82%	18%
17	Bb	82	99%	•
18	Be	63	92%	• 5%
19	BD	240	9%	• 7%
20	BF	225	5% 92%	8%
21	BK	105	91%	9%
22	BP	142	86%	13%
23	BQ	143	99%	
		100	6%	
24	BR	136	10%	• 11%
25	BS	146	99%	••
26	BT	144	98%	·
27	BU	121	88%	12%
28	ΒZ	108	66% 34%	
29	Bc	67	93%	• 6%
30	Bd	56	95%	5%
31	Bg	319	97%	•
32	Bf	152	<u>39%</u> <u>49%</u> 51%	
		102	78%	
33	BM	143	85%	13%

Mol	Chain	Length	Quality of chain	
34	B5	1798	74% 2	4% •
35	AA	254	97%	•
36	AB	387	99%	
37	AC	362	99%	
38	A1	3395	5% 75% 189	% 7%
39	A3	121	86%	14%
40	A4	158	82%	18%
41	AD	297	6% 	
12	ΔE	176	8%	-
42		244	94%	• 5%
43	AF	244	91%	9%
44	AG	256	89%	10%
45	AH	191	99%	••
46	AI	221	98%	·
47	AJ	174	97%	••
48	AL	199	96%	• •
49	AM	138	99%	
50	AN	204	100%	
51	AO	199	98%	
52	ΔΡ	18/		E9/
52		104	30%	• 5%
- 00	AQ	180	99%	•
54	AR	189	98%	••
55	AS	178	97%	•
56	AT	160	99%	••
57	AU	121	83%	17%
58	AV	137	99%	·

Mol	Chain	Length	Quality of chain	
59	AW	155	41% 59%	
60	AX	142	85%	15%
61	AY	127	98%	••
62	AZ	136	99%	·
63	Aa	149	99%	·
64	Ab	59	98%	·
65	Ac	105	92%	8%
66	Ad	113	96%	•
67	Ae	130	98%	•
68	Af	107	99%	·
69	Ag	121	93%	7%
70	Ah	120	99%	·
71	Ai	100	99%	·
72	Aj	88	99%	
73	Ak	78	97%	
74	Al	51	98%	•
75	Am	128	4 0% • 59%	
76	An	25	96%	•
77	Ao	106	99%	·
78	Ар	92	99%	
79	tP	75	59% 39%	·
80	tA	76	79%	20% •
81	MR	12	92%	8%

2 Entry composition (i)

There are 84 unique types of molecules in this entry. The entry contains 202314 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 40S ribosomal protein S0-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	BA	206	Total 1612	C 1034	N 285	0 291	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 2 is a protein called RPS1A isoform 1.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	BB	214	Total 1709	C 1084	N 310	0 311	$\frac{S}{4}$	0	0

• Molecule 3 is a protein called RPS2 isoform 1.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	BC	217	Total 1635	C 1047	N 289	O 297	${ m S} { m 2}$	0	0

• Molecule 4 is a protein called 40S ribosomal protein S4-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	BE	260	Total 2068	C 1316	N 389	O 360	${ m S} { m 3}$	0	0

• Molecule 5 is a protein called 40S ribosomal protein S6-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	BG	226	Total 1820	C 1142	N 350	O 325	${ m S} { m 3}$	0	0

• Molecule 6 is a protein called 40S ribosomal protein S7-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
6	BH	184	Total 1481	C 951	N 265	O 265	0	0

• Molecule 7 is a protein called 40S ribosomal protein S8-A.

Mol	Chain	Residues		At	oms		AltConf	Trace	
7	BI	188	Total 1489	C 925	N 298	0 264	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 8 is a protein called 40S ribosomal protein S9-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	BJ	185	Total 1494	C 943	N 289	O 261	S 1	0	0

• Molecule 9 is a protein called 40S ribosomal protein S11-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	BL	155	Total 1244	C 798	N 235	0 208	${ m S} { m 3}$	0	0

• Molecule 10 is a protein called 40S ribosomal protein S13.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	BN	150	Total 1192	C 759	N 224	O 207	${ m S} { m 2}$	0	0

• Molecule 11 is a protein called 40S ribosomal protein S14-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
11	BO	127	Total 941	C 578	N 186	0 174	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called 40S ribosomal protein S21-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	BV	87	Total 684	C 420	N 125	0 137	${ m S} { m 2}$	0	0

• Molecule 13 is a protein called RPS22A isoform 1.

Mol	Chain	Residues		At	oms		AltConf	Trace	
13	BW	129	Total 1021	C 650	N 188	0 180	${ m S} { m 3}$	0	0

• Molecule 14 is a protein called 40S ribosomal protein S23-A.

Mol	Chain	Residues		At	oms		AltConf	Trace	
14	BX	144	Total 1121	C 708	N 220	O 191	${ m S} { m 2}$	0	0

• Molecule 15 is a protein called 40S ribosomal protein S24-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
15	BY	134	Total 1073	C 676	N 208	O 189	0	0

• Molecule 16 is a protein called RPS26B isoform 1.

Mol	Chain	Residues		At	oms		AltConf	Trace	
16	Ba	97	Total 769	C 475	N 160	0 129	${ m S}{ m 5}$	0	0

• Molecule 17 is a protein called 40S ribosomal protein S27-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
17	Bb	81	Total 610	C 382	N 110	0 113	${ m S}{ m 5}$	0	0

• Molecule 18 is a protein called 40S ribosomal protein S30-A.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
18	Be	60	Total 475	C 299	N 98	O 77	S 1	0	0

• Molecule 19 is a protein called RPS3 isoform 1.

Mol	Chain	Residues		At	AltConf	Trace			
19	BD	223	Total 1734	C 1101	N 313	0 314	S 6	0	0

• Molecule 20 is a protein called Rps5p.

Mol	Chain	Residues		At	AltConf	Trace			
20	BF	206	Total 1609	C 1007	N 300	O 299	${ m S} { m 3}$	0	0

• Molecule 21 is a protein called 40S ribosomal protein S10-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	BK	96	Total 817	C 529	N 133	O 153	${ m S} { m 2}$	0	0

• Molecule 22 is a protein called RPS15 isoform 1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	BP	124	Total 991	C 631	N 187	O 166	${ m S} 7$	0	0

• Molecule 23 is a protein called 40S ribosomal protein S16-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
23	BQ	141	Total 1105	C 708	N 203	O 194	0	0

• Molecule 24 is a protein called 40S ribosomal protein S17-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
24	BR	121	Total 948	C 596	N 179	0 171	${ m S} { m 2}$	0	0

• Molecule 25 is a protein called 40S ribosomal protein S18-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	BS	145	Total 1192	С 743	N 237	0 210	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 26 is a protein called 40S ribosomal protein S19-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	BT	141	Total 1095	C 685	N 206	O 202	${ m S} { m 2}$	0	0

• Molecule 27 is a protein called RPS20 isoform 1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
27	BU	107	Total 855	C 539	N 156	0 159	S 1	0	0

• Molecule 28 is a protein called RPS25A isoform 1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
28	BZ	71	Total 574	C 366	N 108	O 100	0	0

• Molecule 29 is a protein called RPS28A isoform 1.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
29	Bc	63	Total 497	C 306	N 99	0 91	S 1	0	0

• Molecule 30 is a protein called RPS29A isoform 1.

Mol	Chain	Residues		Atc	\mathbf{ms}		AltConf	Trace	
30	Bd	53	Total 442	С 274	N 92	O 72	${S \atop 4}$	0	0

• Molecule 31 is a protein called Guanine nucleotide-binding protein subunit beta-like protein.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
31	Bg	312	Total 2401	C 1522	N 410	0 461	S 8	0	0

• Molecule 32 is a protein called Ubiquitin-40S ribosomal protein S31.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
32	Bf	75	Total 605	C 386	N 116	O 99	$\frac{S}{4}$	0	0

• Molecule 33 is a protein called 40S ribosomal protein S12.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	BM	124	Total 935	C 587	N 165	0 181	${ m S} { m 2}$	0	0

• Molecule 34 is a RNA chain called 18S rRNA.

Mol	Chain	Residues		1	Atoms			AltConf	Trace
34	B5	1757	Total 37463	C 16754	N 6635	O 12317	Р 1757	1	0

• Molecule 35 is a protein called 60S ribosomal protein L2-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	AA	247	Total 1878	C 1170	N 381	O 326	S 1	0	0

• Molecule 36 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues		Ate	AltConf	Trace			
36	AB	386	Total 3081	C 1956	N 584	O 533	S 8	0	0

• Molecule 37 is a protein called RPL4A isoform 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
37	AC	361	Total 2748	C 1729	N 522	0 494	${ m S} { m 3}$	0	0

• Molecule 38 is a RNA chain called 25S rRNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
38	A1	3161	Total 67606	C 30202	N 12171	O 22072	Р 3161	0	0

• Molecule 39 is a RNA chain called 5s rRNA.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms			AltConf	Trace
39	A3	121	Total 2579	C 1152	N 461	0 845	Р 121	0	0

• Molecule 40 is a RNA chain called 5.8 S rRNA.

Mol	Chain	Residues		Α		AltConf	Trace		
40	A4	158	Total 3353	C 1500	N 586	O 1109	Р 158	0	0

• Molecule 41 is a protein called RPL5 isoform 1.

Mol	Chain	Residues		At		AltConf	Trace		
41	AD	292	Total 2341	C 1478	N 408	0 453	${ m S} { m 2}$	0	0

• Molecule 42 is a protein called 60S ribosomal protein L6-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	AE	167	Total 1303	C 840	N 234	O 228	S 1	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
AE	120	LYS	ASN	conflict	UNP Q02326

• Molecule 43 is a protein called 60S ribosomal protein L7-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
43	AF	222	Total 1784	C 1151	N 324	O 308	S 1	0	0

• Molecule 44 is a protein called 60S ribosomal protein L8-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
44	AG	230	Total 1798	C 1149	N 323	0 323	$\frac{S}{3}$	0	0

• Molecule 45 is a protein called 60S ribosomal protein L9-A.

Mol	Chain	Residues		At	AltConf	Trace			
45	AH	190	Total 1510	C 957	N 273	0 276	${S \atop 4}$	0	0

• Molecule 46 is a protein called RPL10 isoform 1.

Mol	Chain	Residues		Ate	AltConf	Trace			
46	AI	217	Total 1759	C 1114	N 333	O 305	S 7	0	0

• Molecule 47 is a protein called RPL11A isoform 1.

Mol	Chain	Residues		At	AltConf	Trace			
47	AJ	169	Total 1353	C 847	N 253	0 249	$\frac{S}{4}$	0	0

• Molecule 48 is a protein called 60S ribosomal protein L13-A.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace
48	AL	193	Total 1543	C 962	N 315	O 266	0	0

• Molecule 49 is a protein called 60S ribosomal protein L14-A.

Mol	Chain	Residues		At	AltConf	Trace			
49	AM	136	Total 1053	C 675	N 199	0 177	${ m S} { m 2}$	0	0

• Molecule 50 is a protein called 60S ribosomal protein L15-A.

Mol	Chain	Residues		Ate	AltConf	Trace			
50	AN	203	Total 1720	C 1077	N 361	O 281	S 1	0	0

• Molecule 51 is a protein called 60S ribosomal protein L16-A.

Mol	Chain	Residues		At	AltConf	Trace			
51	AO	197	Total 1555	C 1003	N 289	O 262	S 1	197	0

• Molecule 52 is a protein called 60S ribosomal protein L17-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
52	AP	175	Total 1388	C 862	N 277	O 249	0	0

• Molecule 53 is a protein called 60S ribosomal protein L18-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
53	AQ	185	Total 1441	C 908	N 290	0 241	${ m S} { m 2}$	0	0

• Molecule 54 is a protein called 60S ribosomal protein L19-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
54	AR	188	Total 1521	C 935	N 326	O 260	0	0

• Molecule 55 is a protein called 60S ribosomal protein L20.

Mol	Chain	Residues		At	oms			AltConf	Trace
55	AS	172	Total 1445	C 930	N 267	O 244	$\frac{S}{4}$	0	0

• Molecule 56 is a protein called 60S ribosomal protein L21-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
56	AT	159	Total 1276	C 805	N 246	0 221	$\frac{S}{4}$	0	0

• Molecule 57 is a protein called 60S ribosomal protein L22-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
57	AU	100	Total 796	C 516	N 131	O 149	0	0

• Molecule 58 is a protein called 60S ribosomal protein L23-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
58	AV	136	Total 1003	C 628	N 189	0 179	S 7	0	0

• Molecule 59 is a protein called RPL24A isoform 1.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
59	AW	63	Total 521	C 336	N 102	O 82	S 1	0	0

• Molecule 60 is a protein called 60S ribosomal protein L25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
60	AX	121	Total 968	C 623	N 170	0 173	${ m S} { m 2}$	0	0

• Molecule 61 is a protein called 60S ribosomal protein L26-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
61	AY	126	Total 993	C 625	N 192	O 176	0	0

• Molecule 62 is a protein called 60S ribosomal protein L27-A.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
62	AZ	135	Total 1092	C 710	N 202	O 180	0	0

• Molecule 63 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
63	Aa	148	Total 1173	C 749	N 231	0 190	${ m S} { m 3}$	0	0

• Molecule 64 is a protein called RPL29 isoform 1.

Mol	Chain	Residues		Ator	\mathbf{ns}	AltConf	Trace	
64	Ab	58	Total 462	C 289	N 100	O 73	0	0

• Molecule 65 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	oms	AltConf	Trace		
65	Ac	97	Total 743	C 479	N 124	O 139	S 1	0	0

• Molecule 66 is a protein called 60S ribosomal protein L31-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
66	Ad	109	Total 890	C 565	N 168	0 156	S 1	0	0

• Molecule 67 is a protein called RPL32 isoform 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
67	Ae	127	Total 1020	C 647	N 205	0 167	S 1	0	0

• Molecule 68 is a protein called 60S ribosomal protein L33-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
68	Af	106	Total 850	C 540	N 165	0 144	S 1	0	0

• Molecule 69 is a protein called 60S ribosomal protein L34-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
69	Ag	112	Total 880	$\begin{array}{c} \mathrm{C} \\ 545 \end{array}$	N 179	O 152	$\frac{S}{4}$	0	0

• Molecule 70 is a protein called 60S ribosomal protein L35-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
70	Ah	119	Total 969	C 615	N 186	0 167	S 1	0	0

• Molecule 71 is a protein called 60S ribosomal protein L36-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
71	Ai	99	Total 771	C 481	N 156	0 132	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 72 is a protein called 60S ribosomal protein L37-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
79	Λį	87	Total	С	Ν	0	S	0	0
12	лj	01	681	414	148	114	5	0	0

• Molecule 73 is a protein called RPL38 isoform 1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
73	Ak	77	Total 612	C 391	N 115	O 106	0	0

• Molecule 74 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
74	Al	50	Total	С	N	0	S	0	0
			436	272	97	65	2		

• Molecule 75 is a protein called Ubiquitin-60S ribosomal protein L40.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
75	Am	52	Total 417	C 259	N 86	O 67	${f S}{5}$	0	0

• Molecule 76 is a protein called 60S ribosomal protein L41-A.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
76	An	25	Total	C	N 62	0	S 1	0	0
			233	142	63	27	T		

• Molecule 77 is a protein called 60S ribosomal protein L42-A.

Mol	Chain	Residues	Atoms			AltConf	Trace		
77	Ao	105	Total 847	C 534	N 170	0 138	${f S}{5}$	0	0

• Molecule 78 is a protein called 60S ribosomal protein L43-A.

Mol	Chain	Residues	Atoms			AltConf	Trace		
78	Ap	91	Total 694	C 429	N 138	0 121	S 6	0	0

• Molecule 79 is a RNA chain called P site tRNA.

Mol	Chain	Residues		A	toms			AltConf	Trace
79	tP	75	Total 1606	C 716	N 297	0 518	Р 75	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
tP	10	А	G	conflict	GB 176433

• Molecule 80 is a RNA chain called A site tRNA.

Mol	Chain	Residues	Atoms			AltConf	Trace		
80	tA	76	Total 1628	С 726	N 302	0 524	Р 76	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
tA	10	А	G	conflict	GB 176433
tA	17	А	-	insertion	GB 176433

• Molecule 81 is a RNA chain called messenger RNA.

Mol	Chain	Residues	Atoms			AltConf	Trace		
81	MR	12	Total 262	C 118	N 54	O 78	Р 12	0	0

• Molecule 82 is SPERMIDINE (three-letter code: SPD) (formula: $C_7H_{19}N_3$).

Mol	Chain	Residues	Atoms	AltConf
82	A1	1	Total C N 10 7 3	0

• Molecule 83 is 4-{(2R)-2-[(1S,3S,5S)-3,5-dimethyl-2-oxocyclohexyl]-2-hydroxyethyl}piperidi ne-2,6-dione (three-letter code: 3HE) (formula: $C_{15}H_{23}NO_4$).

Mol	Chain	Residues	Atoms			AltConf	
83	A1	1	Total 20	C 15	N 1	0 4	0

• Molecule 84 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
84	Ao	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 40S ribosomal protein S0-A

• Molecule 11: 40S ribosomal protein S14-A

Chain BO:	91%	• 7%
MET SER ASN VAL VAL GLN GLN ASP ASP	811 812 0124 L137	
• Molecule 12	2: 40S ribosomal protein S21-A	
Chain BV:	100%	
M1 E42 R87		
• Molecule 13	3: RPS22A isoform 1	
Chain BW:	98%	••
MET T2 D54 Y130		
• Molecule 14	4: 40S ribosomal protein S23-A	
Chain BX:	99%	
MET G2 D97 E138 K142 F143	R144 S145 ◆	
• Molecule 15	5: 40S ribosomal protein S24-A	
Chain BY:	99%	
MET S2 D3 A4 V5 T6	Q22 ♦ A33 4 B44 4 E42 4 E42 4 E46 4 E46 4 A45 4 A45 4 A45 4 A45 4 A50 4 E86 4 E86 4 E86 4 C95 4	R131 R132 N133 A134 A134 D135
• Molecule 16	5: RPS26B isoform 1	
Chain Ba:	82% 1	8%
MET P2 GLN GLN PRO PHE ASN ASN	ARC ASP ASP ASP VAL SER SER ALA ALA ALA ALA ALA ALA ALA LYS LLYS LL	
• Molecule 17	7: 40S ribosomal protein S27-A	
Chain Bb:	99%	·
MET V2 G39 E57 S58 C59		

• Molecule 18: 40S ribosomal protein S30-A

Chain Be:	92%	• 5%	
MET A2 K3 K3 K20 G6 K20 K20 K20 K20 K20 K28 K20 K28 K20 K28 K20 K28 K20 K28 K20 K20 K20 K20 K20 K20 K20 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3	V50 V50 V51 V51 V52 V53 V53 V53 V4L V4L C51 V4L C51 V4L C51 V4L C51 V4L C51 V4L C51 V51 V51 V51 V51 V51 V51 V51 V51 V51 V		
• Molecule 19: RPS3 isoform 1			
Chain BD:	92%	• 7%	
MET VAL A3 A3 651 E31 E31 C44 E61 N62 G60 G63 G63 R64 N67 N67 N67 C92 N67	R94 R94 E213 E214 E215 F216 P216 P216 A219	K223 D224 P224 ARG ALA ALA GLU GLU GLU GLU PRO VAL ALA ALA ALA ALA	
• Molecule 20: Rps5p			
Chain BF:	92%	8%	
MET ASP ASP ASP ASP ALA GLU CLU CLU CLU CLU CLU CLU CLU CLU CLU C	L20 E32 D126 G151 G152 G152 A154 A155	n156 + ◆	
• Molecule 21: 40S ribosomal pr	rotein S10-A		
Chain BK:	91%	9%	
MI L12 B6 D7 R31 R31 R31 R31 R31 R35 R35 R35 R35 R35 R35 R35 R35 R35 R35	E78 E78 B12 182 E84 E84 E84 E84 E84 E85 E84 E85 E84 E85 T95 V87	192 192 193 894 895 893 893 893 8140 8140 8140 8140 8140 8140 8140 8140	
• Molecule 22: RPS15 isoform 1	Ĺ		
Chain BP:	86%	• 13%	
MET SER GLN ALA ALA ASN ASN ASN ASN ASN ASN ASN ASN ASN AS	L26 E27 B27 S29 S29 A37 A37 A37 A37 C136 C136 S51 S51 S51 S51	F-53 A62 A62 A63 A63 A63 A63 A65 A65 A65 A65 A65 F168 F17 F73 F73 F73 F73 F73 F73 F73 F73 F73 F7	ALA
THR THR SER ARG PHE LLEU LYS			
• Molecule 23: 40S ribosomal pr	rotein S16-A		
Chain BQ:	99%		
MET SER A3 B64 B64 B1143 R1143			
• Molecule 24: 40S ribosomal pr	rotein S17-A		
Chain BR:	88%	• 11%	
	W O R L D W I	D E BANK	

MET C2 L73 L93 S94	R95 SER ASU CLY CLY CLA N100 N123 A126 A126 A126 A126 A126 A126 A126 A126	
• Molecule 25	5: 40S ribosomal protein S18-A	
Chain BS:	99% ··	
MET 82 1.3 V 4 06 67 08 08	G3 510 F11 B51 H H B60 H H A146 H H	
• Molecule 26	6: 40S ribosomal protein S19-A	
Chain BT:	98% •	
MET P2 G3 L28 E51	N127	
• Molecule 27	7: RPS20 isoform 1	
Chain BU:	17% 88% 12%	
MET SER ASP PHE CLN LYS CLU CLU CLU CLU	GLU GLU GLU GLU GLU GLU GLU GLU GLU GLO CLO CLO CLO CLO CLO CLO CLO CLO CLO C	
• Molecule 28	8: RPS25A isoform 1	
Chain BZ:	66% 34%	
MET PRO PRO LYS GLN GLN CLN CLN SER LYS	ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA	T105 ALA SER GLU
• Molecule 29	9: RPS28A isoform 1	
Chain Bc:	93% • 6%	
MET ASP ASN LVS F5 P6 E34		
• Molecule 30	0: RPS29A isoform 1	
Chain Bd:	95% 5%	
MET ALA HIS E4 R56		

• Molecule 31: Guanine nucleotide-binding protein subunit beta-like protein

 \bullet Molecule 35: 60S ribosomal protein L2-A

Chain AA:

97%

Chain A3:

G1 67 411 411 412 423 423 424 455 455 665	C73 A76 C105 C105 C105 C105 C105 C105 C105 C105	
• Molecule 40: 5.8 S rRNA		
Chain A4:	82%	18%
A1 U23 U34 C35 C35 C35 C35 C35 C35 C35 C33 C33 C33	C C C C C C C C C C C C C C C C C C C	1158
• Molecule 41: RPL5 isoform	n 1	
Chain AD:	98%	
MET ALA ALA ALA CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	E217 D230 D232 K264	
• Molecule 42: 60S ribosom	al protein L6-A	
Chain AE:	94%	• 5%
MET S2 K70 K70 K110 C1112 K1112 K112 K113 K115 K115 K115 K115 K116 K116 K116	K120 LEU PHE PRO GLU GLN GLN GLN GLN GLN CLYS B129 D142 € 120 F176	
• Molecule 43: 60S ribosom	al protein L7-A	
Chain AF:	91%	9%
MET ALA ALA ALA ALA CLU CLYS CLU CLYS CLU SER CLU CLYS CLU CLYS CLN CLN CLN CLN CLN	THR A23 C25 C24 C25 A27 A27 A27 A27 A27 A27 A27 A23 A23 A24 N244	
• Molecule 44: 60S ribosom	al protein L8-A	
Chain AG:	89%	10%
MET ALA ALA CLY GLY CLYS CLYS LYS PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	THR ARG ARG A76 A114 A115 V116 G119 K120 S121 K120 C123 Q123 Q123 C123 C123 C123 C123 C123 C123 C123 C	N252
• Molecule 45: 60S ribosom	al protein L9-A	
Chain AH:	99%	
M1 E14 R23 R23 R23 B105 B105 E189 E189 E189 E189		
• Molecule 46: RPL10 isofor	rm 1	

	98%	•
MET A2 8104 C105 A106 A106 A106 A108 A108 A108 A108 A108 A108 A108 A108		
• Molecule 47: RPL11A isofor	rm 1	
Chain AJ:	97%	• •
MET ALA ALA ALA ALA ALA ALA B117 B118 B118 M173 K174		
• Molecule 48: 60S ribosomal	protein L13-A	
Chain AL:	96%	•••
MET A2 V68 E134 A191 E134 A191 CVS LVS LVS LVS LVS		
• Molecule 49: 60S ribosomal	protein L14-A	
Chain AM:	99%	.
 Molecule 50: 60S ribosomal 	protein L15-A	
 Molecule 50: 60S ribosomal Chain AN: 	protein L15-A 100%	
• Molecule 50: 60S ribosomal Chain AN:	protein L15-A 100%	
 Molecule 50: 60S ribosomal Chain AN: S S Molecule 51: 60S ribosomal 	protein L15-A ^{100%} protein L16-A	
 Molecule 50: 60S ribosomal Chain AN: S S Molecule 51: 60S ribosomal Chain AO: 	protein L15-A 100% protein L16-A 98%	
 Molecule 50: 60S ribosomal Chain AN: Chain AN: Molecule 51: 60S ribosomal Chain AO: 	protein L15-A 100% protein L16-A 98%	
 Molecule 50: 60S ribosomal Chain AN: Molecule 51: 60S ribosomal Chain AO: Chain AO: Molecule 52: 60S ribosomal 	protein L15-A ^{100%} protein L16-A ^{98%} protein L17-A	
 Molecule 50: 60S ribosomal Chain AN: Chain AN: Molecule 51: 60S ribosomal Chain AO: Molecule 52: 60S ribosomal Chain AP: 	protein L15-A 100% protein L16-A 98% protein L17-A	. 5%

WORLDWIDE PROTEIN DATA BANK

• Molecule 53: 60S ribosomal p	protein L18-A	
Chain AQ:	99%	
MET C2 V186		
• Molecule 54: 60S ribosomal p	protein L19-A	
Chain AR:	98%	
MET A131 A131 A131 A165 A169 A166 A166 A166 A166 A176 A177 A177 A177	A183	
• Molecule 55: 60S ribosomal p	protein L20	
Chain AS:	97%	
MET PRO GJ.N LYS LYS M1 A2 H3 Y172		
• Molecule 56: 60S ribosomal p	protein L21-A	
Chain AT:	99%	
MET C2 C2 01.23 V1.24 A1.25 A1.25		
• Molecule 57: 60S ribosomal p	protein L22-A	
Chain AU:	83%	17%
MET ALA ARN ASN ASN ASN ASN KIO Q3 C26 Q3 KIO C26 C26 C26 C26 C26 C26 C26 C26 C26 C26		
• Molecule 58: 60S ribosomal p	protein L23-A	
Chain AV:	99%	
MET S2 C3 C3 C3 C5 C5 C5 C7 C7 V137		
• Molecule 59: RPL24A isoform	m 1	
Chain AW: 41%		59%

MA THR THR CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	LYS LYS LYS LYS	LYS ALA GLU LYS
ALA ALA ALA ARG CLV CLV CLV CLV CLV CLV CLV CLV CLV CLV		
• Molecule 60: 60S ribosomal protein L25		
Chain AX: 85%	15%	
MET ALLA PRIO SER ALLA ALLA ALLA ALLA ALLA ALLA ALLA AL		
• Molecule 61: 60S ribosomal protein L26-A		
Chain AY: 98%	•••	
• Molecule 62: 60S ribosomal protein L27-A		
Chain AZ: 99%	•	l
MET A2		
• Molecule 63: 60S ribosomal protein L28		
Chain Aa: 99%	•	I
MET P2 A149		
• Molecule 64: RPL29 isoform 1		
Chain Ab: 98%	•	I
MET K55 K55		
• Molecule 65: 60S ribosomal protein L30		
Chain Ac: 92%	8%	
AMET VAL SER SER GLIN GLIN CILIN A105		

• Molecule 66: 60S ribosomal protein L31-A	
Chain Ad: 96%	·
MET ALA CLY KS E82 E83 E83 E83 E83 E83 E83 ALA	
\bullet Molecule 67: RPL32 isoform 1	
Chain Ae: 98%	
MET A2 A127 L128 GLU ALA	
\bullet Molecule 68: 60S ribosomal protein L33-A	
Chain Af: 99%	
A2 1107	
\bullet Molecule 69: 60S ribosomal protein L34-A	
Chain Ag: 93%	7%
Chain Ag: 93%	7%
Chain Ag: 93% Image: 93%	7%
Chain Ag: 93% Molecule 70: 60S ribosomal protein L35-A Chain Ah: 99%	7%
Chain Ag: 93% We we	7%
Chain Ag: 93% Molecule 70: 60S ribosomal protein L35-A Chain Ah: 99% Molecule 71: 60S ribosomal protein L36-A	7%
Chain Ag: 93% Molecule 70: 60S ribosomal protein L35-A Chain Ah: 99% Molecule 71: 60S ribosomal protein L36-A Chain Ai: 99%	7%
Chain Ag: 93% • Molecule 70: 60S ribosomal protein L35-A Chain Ah: • 99% • Molecule 71: 60S ribosomal protein L36-A Chain Ai: • 99%	7%
Chain Ag: 93% Molecule 70: 60S ribosomal protein L35-A Chain Ah: 99% Molecule 71: 60S ribosomal protein L36-A Chain Ai: 99% Molecule 72: 60S ribosomal protein L37-A	7%

MET G2 A86 S87 A88		
• Molecule 73:	RPL38 isoform 1	
Chain Ak:	97%	
MET A2 K33 A34 G35 K36 D58		
• Molecule 74:	60S ribosomal protein L39	
Chain Al:	98% •	
MET A2 I51		
• Molecule 75:	Ubiquitin-60S ribosomal protein L40	
Chain Am:	40% 59%	
MET GLN TLE PHE VAL LYS THR LEU GLY LYS	THR THR LEU OLU VAL CLU VAL CLU CLU CLU VAL ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	TYR ASN
A Moloculo 76:	60S ribosomal protoin I 41 A	
	005 Hbosomai protein L41-A	
Chain An:	96% ·	
M K25		
• Molecule 77:	60S ribosomal protein L42-A	
Chain Ao:	99%	
MET V2 F106		
• Molecule 78:	60S ribosomal protein L43-A	
Chain Ap:	99% •	
MET A2 V90 E91 A92		

• Molecule 79: P site tRNA Chain tP: 59% 39% . A44 U45 G46 U47 U47 C48 016 615 615 615 A20 42 32 32 32 es es • Molecule 80: A site tRNA 5% Chain tA: 79% 20% • • Molecule 81: messenger RNA Chain MR: 92% 8% A-3 A8

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	215904	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	1500	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	9.263	Depositor
Minimum map value	-3.940	Depositor
Average map value	0.031	Depositor
Map value standard deviation	0.277	Depositor
Recommended contour level	0.7	Depositor
Map size (Å)	423.99997, 423.99997, 423.99997	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.06, 1.06, 1.06	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: UR3, MA6, OMU, 5MC, 3HE, G7M, HIC, 1MA, OMG, ZN, SPD, PSU, 4AC, B8N

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	ond lengths	B	ond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	BA	0.27	0/1653	0.54	0/2261
2	BB	0.30	0/1735	0.59	0/2335
3	BC	0.28	0/1665	0.51	0/2263
4	BE	0.27	0/2109	0.59	0/2839
5	BG	0.26	0/1844	0.60	0/2464
6	BH	0.28	0/1506	0.62	0/2028
7	BI	0.28	0/1514	0.59	0/2021
8	BJ	0.27	0/1519	0.66	1/2035~(0.0%)
9	BL	0.30	0/1272	0.55	0/1712
10	BN	0.29	0/1215	0.54	0/1638
11	BO	0.32	0/952	0.64	0/1279
12	BV	0.28	0/693	0.55	0/935
13	BW	0.29	0/1038	0.57	0/1395
14	BX	0.27	0/1139	0.56	0/1518
15	BY	0.28	0/1087	0.59	0/1449
16	Ba	0.28	0/782	0.63	0/1047
17	Bb	0.27	0/620	0.55	0/838
18	Be	0.28	0/483	0.65	1/643~(0.2%)
19	BD	0.29	0/1759	0.60	0/2368
20	BF	0.27	0/1629	0.54	0/2202
21	BK	0.31	0/837	0.59	0/1131
22	BP	0.27	0/1012	0.62	1/1356~(0.1%)
23	BQ	0.27	0/1125	0.53	0/1510
24	BR	0.29	0/957	0.58	0/1283
25	BS	0.26	0/1211	0.58	0/1628
26	BT	0.27	0/1113	0.56	0/1494
27	BU	0.28	0/865	0.59	0/1169
28	BZ	0.28	0/582	0.62	0/782
29	Bc	0.28	0/499	0.72	0/670
30	Bd	0.28	0/452	0.60	0/600
31	Bg	0.26	0/2454	0.54	0/3340
32	Bf	0.25	0/616	0.53	0/817

Mol	Chain	Bond lengths		E	Bond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
33	BM	0.26	0/943	0.61	1/1274~(0.1%)
34	B5	0.36	0/41450	0.81	15/64582~(0.0%)
35	AA	0.32	0/1912	0.61	0/2569
36	AB	0.30	0/3139	0.58	0/4219
37	AC	0.29	0/2800	0.58	1/3790~(0.0%)
38	A1	0.48	0/74838	0.82	25/116683~(0.0%)
39	A3	0.39	0/2861	0.79	2/4457~(0.0%)
40	A4	0.49	0/3724	0.78	0/5798
41	AD	0.28	0/2390	0.53	0/3225
42	AE	0.29	0/1324	0.57	0/1782
43	AF	0.30	0/1821	0.54	0/2451
44	AG	0.31	0/1830	0.54	0/2469
45	AH	0.30	0/1531	0.57	0/2062
46	AI	0.29	0/1796	0.59	0/2409
47	AJ	0.29	0/1374	0.64	0/1842
48	AL	0.34	1/1568~(0.1%)	0.61	0/2106
49	AM	0.28	0/1068	0.56	0/1438
50	AN	0.32	0/1757	0.62	0/2354
51	AO	0.31	0/1585	0.56	1/2128~(0.0%)
52	AP	0.31	0/1410	0.58	0/1893
53	AQ	0.30	0/1465	0.59	0/1965
54	AR	0.30	0/1538	0.62	0/2050
55	AS	0.30	0/1481	0.55	0/1990
56	AT	0.31	0/1300	0.53	0/1743
57	AU	0.30	0/812	0.50	0/1099
58	AV	0.30	0/1018	0.58	0/1369
59	AW	0.29	0/533	0.54	0/707
60	AX	0.32	0/983	0.53	0/1325
61	AY	0.31	0/1004	0.60	0/1341
62	AZ	0.33	0/1118	0.59	0/1497
63	Aa	0.31	0/1204	0.56	0/1612
64	Ab	0.29	0/473	0.55	0/629
65	Ac	0.31	0/751	0.52	0/1008
66	Ad	0.29	0/904	0.58	0/1213
67	Ae	0.29	0/1041	0.57	0/1394
68	Af	0.32	$0/86\overline{8}$	0.59	0/1168
69	Ag	0.29	0/890	0.59	0/1189
70	Ah	0.30	0/978	0.55	0/1301
71	Ai	0.28	0/778	0.62	0/1034
72	Aj	0.31	0/696	0.60	0/923
73	Ak	0.32	0/618	0.63	1/826~(0.1%)
74	Al	0.28	0/443	0.64	0/588
75	Am	0.29	0/423	0.62	0/562

Mal	Chain	Bo	ond lengths	E	Bond angles
INIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
76	An	0.33	0/234	0.90	1/300~(0.3%)
77	Ao	0.30	0/860	0.60	0/1136
78	Ap	0.30	0/701	0.63	0/934
79	tP	0.33	0/1796	0.90	2/2799~(0.1%)
80	tA	0.28	0/1821	0.87	2/2838~(0.1%)
81	MR	0.32	0/295	0.74	0/458
All	All	0.39	$1/21608\overline{4}\ (0.0\%)$	0.73	54/317579~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
6	BH	0	1
11	BO	0	2
13	BW	0	1
36	AB	0	1
43	AF	0	1
44	AG	0	1
54	AR	0	1
76	An	0	1
All	All	0	9

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
48	AL	58	VAL	CB-CG1	-5.61	1.41	1.52

The worst 5 of 54 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
38	A1	406	G	O4'-C1'-N9	8.87	115.29	108.20
34	B5	851	U	C2-N1-C1'	8.67	128.10	117.70
38	A1	2779	А	N9-C4-C5	-7.40	102.84	105.80
38	A1	835	G	O4'-C1'-N9	7.36	114.08	108.20
34	B5	736	С	N1-C2-O2	6.94	123.07	118.90

There are no chirality outliers.

5 of 9 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
36	AB	266	ARG	Sidechain
6	BH	64	VAL	Peptide
11	BO	123	SER	Peptide
11	BO	124	ASP	Peptide
13	BW	54	ASP	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	BA	204/252~(81%)	185 (91%)	19 (9%)	0	100	100
2	BB	212/255~(83%)	191 (90%)	21 (10%)	0	100	100
3	BC	215/254~(85%)	210 (98%)	5 (2%)	0	100	100
4	BE	258/261~(99%)	247 (96%)	11 (4%)	0	100	100
5	BG	224/236~(95%)	219 (98%)	5 (2%)	0	100	100
6	BH	182/190~(96%)	168 (92%)	14 (8%)	0	100	100
7	BI	184/200~(92%)	170 (92%)	14 (8%)	0	100	100
8	BJ	183/197~(93%)	171 (93%)	12 (7%)	0	100	100
9	BL	153/156~(98%)	144 (94%)	9 (6%)	0	100	100
10	BN	148/151~(98%)	142 (96%)	6 (4%)	0	100	100
11	BO	125/137~(91%)	114 (91%)	11 (9%)	0	100	100
12	BV	85/87~(98%)	79~(93%)	6 (7%)	0	100	100
13	BW	127/130~(98%)	123 (97%)	4 (3%)	0	100	100
14	BX	142/145~(98%)	133 (94%)	9 (6%)	0	100	100
15	BY	132/135~(98%)	125 (95%)	7 (5%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
16	Ba	95/119~(80%)	86 (90%)	9 (10%)	0	100	100
17	Bb	79/82~(96%)	73 (92%)	6 (8%)	0	100	100
18	Be	58/63~(92%)	54 (93%)	4 (7%)	0	100	100
19	BD	221/240~(92%)	213 (96%)	8 (4%)	0	100	100
20	BF	204/225~(91%)	194 (95%)	10 (5%)	0	100	100
21	BK	94/105~(90%)	85 (90%)	9 (10%)	0	100	100
22	BP	122/142~(86%)	117 (96%)	5 (4%)	0	100	100
23	BQ	139/143~(97%)	136 (98%)	3 (2%)	0	100	100
24	BR	117/136~(86%)	115 (98%)	2 (2%)	0	100	100
25	BS	143/146~(98%)	133 (93%)	10 (7%)	0	100	100
26	BT	139/144~(96%)	128 (92%)	11 (8%)	0	100	100
27	BU	105/121~(87%)	97 (92%)	8 (8%)	0	100	100
28	BZ	69/108~(64%)	69~(100%)	0	0	100	100
29	Bc	61/67~(91%)	59~(97%)	2(3%)	0	100	100
30	Bd	51/56~(91%)	49 (96%)	2 (4%)	0	100	100
31	Bg	310/319~(97%)	286~(92%)	24 (8%)	0	100	100
32	Bf	73/152~(48%)	69 (94%)	4 (6%)	0	100	100
33	BM	122/143~(85%)	116 (95%)	6 (5%)	0	100	100
35	AA	245/254~(96%)	233~(95%)	12 (5%)	0	100	100
36	AB	383/387~(99%)	368~(96%)	15 (4%)	0	100	100
37	AC	359/362~(99%)	338 (94%)	21 (6%)	0	100	100
41	AD	290/297~(98%)	279~(96%)	11 (4%)	0	100	100
42	AE	163/176~(93%)	155~(95%)	8 (5%)	0	100	100
43	AF	220/244~(90%)	212 (96%)	8 (4%)	0	100	100
44	AG	228/256~(89%)	219 (96%)	9 (4%)	0	100	100
45	AH	188/191~(98%)	177 (94%)	11 (6%)	0	100	100
46	AI	$\overline{215/221}~(97\%)$	204 (95%)	11 (5%)	0	100	100
47	AJ	167/174~(96%)	161 (96%)	6 (4%)	0	100	100
48	AL	191/199~(96%)	183 (96%)	8 (4%)	0	100	100
49	AM	134/138~(97%)	129 (96%)	5 (4%)	0	100	100
50	AN	$201/\overline{204}\;(98\%)$	193 (96%)	8 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
51	AO	195/199~(98%)	193~(99%)	2(1%)	0	100	100
52	AP	171/184~(93%)	165~(96%)	6~(4%)	0	100	100
53	AQ	183/186~(98%)	178~(97%)	5 (3%)	0	100	100
54	AR	186/189~(98%)	180~(97%)	6~(3%)	0	100	100
55	AS	170/178~(96%)	162~(95%)	8~(5%)	0	100	100
56	AT	157/160~(98%)	151~(96%)	6 (4%)	0	100	100
57	AU	98/121 (81%)	93~(95%)	5(5%)	0	100	100
58	AV	134/137~(98%)	132~(98%)	2(2%)	0	100	100
59	AW	61/155~(39%)	60~(98%)	1 (2%)	0	100	100
60	AX	119/142~(84%)	115~(97%)	4 (3%)	0	100	100
61	AY	124/127~(98%)	122~(98%)	2(2%)	0	100	100
62	AZ	133/136~(98%)	126~(95%)	7 (5%)	0	100	100
63	Aa	146/149~(98%)	137 (94%)	9~(6%)	0	100	100
64	Ab	56/59~(95%)	52 (93%)	4 (7%)	0	100	100
65	Ac	95/105~(90%)	91~(96%)	4 (4%)	0	100	100
66	Ad	107/113~(95%)	102~(95%)	5 (5%)	0	100	100
67	Ae	125/130~(96%)	123~(98%)	2(2%)	0	100	100
68	Af	104/107~(97%)	100 (96%)	4 (4%)	0	100	100
69	Ag	110/121~(91%)	104 (94%)	6 (6%)	0	100	100
70	Ah	117/120~(98%)	114 (97%)	3~(3%)	0	100	100
71	Ai	97/100~(97%)	93~(96%)	4 (4%)	0	100	100
72	Aj	85/88~(97%)	82 (96%)	3 (4%)	0	100	100
73	Ak	75/78~(96%)	71~(95%)	4(5%)	0	100	100
74	Al	48/51~(94%)	47 (98%)	1 (2%)	0	100	100
75	Am	50/128~(39%)	48 (96%)	2(4%)	0	100	100
76	An	23/25~(92%)	23 (100%)	0	0	100	100
77	Ao	103/106 (97%)	90 (87%)	13 (13%)	0	100	100
78	Ар	89/92~(97%)	84 (94%)	5~(6%)	0	100	100
All	All	10921/11886 (92%)	10389 (95%)	532 (5%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	BA	173/210~(82%)	173~(100%)	0	100	100
2	BB	191/224~(85%)	189 (99%)	2 (1%)	73	86
3	BC	176/205~(86%)	176 (100%)	0	100	100
4	BE	221/222 (100%)	220 (100%)	1 (0%)	86	94
5	BG	193/201~(96%)	191 (99%)	2 (1%)	73	86
6	BH	165/170~(97%)	165 (100%)	0	100	100
7	BI	150/161~(93%)	150 (100%)	0	100	100
8	BJ	158/166~(95%)	158 (100%)	0	100	100
9	BL	136/137~(99%)	135 (99%)	1 (1%)	81	91
10	BN	127/128~(99%)	127 (100%)	0	100	100
11	BO	96/105~(91%)	96 (100%)	0	100	100
12	BV	74/74~(100%)	74 (100%)	0	100	100
13	BW	110/111 (99%)	110 (100%)	0	100	100
14	BX	119/120~(99%)	119 (100%)	0	100	100
15	BY	112/113~(99%)	112 (100%)	0	100	100
16	Ba	83/100~(83%)	83 (100%)	0	100	100
17	Bb	70/71~(99%)	70 (100%)	0	100	100
18	Be	51/54~(94%)	50 (98%)	1 (2%)	50	70
19	BD	182/195~(93%)	180 (99%)	2 (1%)	70	84
20	BF	173/191~(91%)	173 (100%)	0	100	100
21	BK	89/98~(91%)	89 (100%)	0	100	100
22	BP	104/118 (88%)	103 (99%)	1 (1%)	73	86
23	BQ	117/119~(98%)	117 (100%)	0	100	100
24	BR	101/124 (82%)	100 (99%)	1 (1%)	73	86
25	BS	128/129~(99%)	127 (99%)	1 (1%)	79	90
26	BT	113/116~(97%)	113 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
27	BU	100/114~(88%)	100 (100%)	0	100	100
28	ΒZ	62/89~(70%)	62 (100%)	0	100	100
29	Bc	56/60~(93%)	55~(98%)	1 (2%)	54	73
30	Bd	47/49~(96%)	47 (100%)	0	100	100
31	Bg	256/262~(98%)	255 (100%)	1 (0%)	89	95
32	Bf	66/135~(49%)	66 (100%)	0	100	100
33	BM	100/119~(84%)	98 (98%)	2 (2%)	50	70
35	AA	189/196~(96%)	189 (100%)	0	100	100
36	AB	321/322~(100%)	320 (100%)	1 (0%)	91	96
37	AC	288/289~(100%)	287 (100%)	1 (0%)	91	96
41	AD	241/245~(98%)	241 (100%)	0	100	100
42	AE	137/153~(90%)	136 (99%)	1 (1%)	81	91
43	AF	186/205~(91%)	186 (100%)	0	100	100
44	AG	189/208~(91%)	189 (100%)	0	100	100
45	AH	170/171~(99%)	169 (99%)	1 (1%)	84	92
46	AI	185/187~(99%)	185 (100%)	0	100	100
47	AJ	147/150~(98%)	146 (99%)	1 (1%)	81	91
48	AL	154/159~(97%)	154 (100%)	0	100	100
49	AM	107/109~(98%)	107 (100%)	0	100	100
50	AN	175/176~(99%)	175 (100%)	0	100	100
51	AO	160/162~(99%)	160 (100%)	0	100	100
52	AP	141/146~(97%)	140 (99%)	1 (1%)	81	91
53	AQ	150/151~(99%)	150 (100%)	0	100	100
54	AR	153/154 (99%)	152 (99%)	1 (1%)	81	91
55	AS	156/162~(96%)	156 (100%)	0	100	100
56	AT	136/137~(99%)	135 (99%)	1 (1%)	81	91
57	AU	87/107 (81%)	87 (100%)	0	100	100
58	AV	104/105~(99%)	104 (100%)	0	100	100
59	AW	55/129~(43%)	55 (100%)	0	100	100
60	AX	105/118~(89%)	105 (100%)	0	100	100
61	AY	109/110~(99%)	108 (99%)	1 (1%)	75	88

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
62	AZ	115/116~(99%)	115 (100%)	0	100	100
63	Aa	118/119~(99%)	118 (100%)	0	100	100
64	Ab	46/47~(98%)	46 (100%)	0	100	100
65	Ac	81/88~(92%)	81 (100%)	0	100	100
66	Ad	96/97~(99%)	96 (100%)	0	100	100
67	Ae	109/111 (98%)	109 (100%)	0	100	100
68	Af	90/91~(99%)	90 (100%)	0	100	100
69	Ag	95/103~(92%)	95 (100%)	0	100	100
70	Ah	104/105~(99%)	104 (100%)	0	100	100
71	Ai	81/82~(99%)	81 (100%)	0	100	100
72	Aj	70/71~(99%)	70 (100%)	0	100	100
73	Ak	68/69~(99%)	68 (100%)	0	100	100
74	Al	45/46~(98%)	45 (100%)	0	100	100
75	Am	47/116~(40%)	46 (98%)	1 (2%)	48	69
76	An	23/23~(100%)	23 (100%)	0	100	100
77	Ao	90/91~(99%)	90 (100%)	0	100	100
78	Ap	71/72~(99%)	71 (100%)	0	100	100
All	All	9293/9988~(93%)	9267 (100%)	26 (0%)	90	96

5 of 26 residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
33	BM	73	LYS
37	AC	138	ARG
61	AY	3	LYS
36	AB	332	ARG
42	AE	150	LYS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 108 such side chains are listed below:

Mol	Chain	Res	Type
37	AC	175	HIS
44	AG	137	ASN
63	Aa	64	GLN
37	AC	291	ASN

Continued from previous page...

Mol	Chain	Res	Type
42	AE	157	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
34	B5	1749/1798~(97%)	408 (23%)	10 (0%)
38	A1	3156/3395~(92%)	573~(18%)	29~(0%)
39	A3	120/121~(99%)	15 (12%)	1 (0%)
40	A4	157/158~(99%)	26 (16%)	1 (0%)
79	tP	74/75~(98%)	31 (41%)	0
80	tA	75/76~(98%)	15 (20%)	0
81	MR	11/12~(91%)	1 (9%)	0
All	All	5342/5635~(94%)	1069 (20%)	41 (0%)

5 of 1069 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
34	B5	2	А
34	B5	4	С
34	B5	17	С
34	B5	25	С
34	B5	34	G

5 of 41 RNA pucker outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
38	A1	2222	А
38	A1	3154	С
38	A1	2438	А
38	A1	2801	А
38	A1	3227	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

59 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

Mol	Type	Chain	Dog	Link	Bond lengths		Bond angles			
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
38	1MA	A1	645	38	$17,\!25,\!26$	1.39	2 (11%)	17,37,40	1.14	2 (11%)
34	MA6	B5	1782	34	$19,\!26,\!27$	0.99	1(5%)	18,38,41	2.00	4 (22%)
38	PSU	A1	1042	38	18,21,22	1.39	4 (22%)	21,30,33	2.03	3 (14%)
38	PSU	A1	2133	38	18,21,22	1.44	3 (16%)	21,30,33	2.09	5 (23%)
38	PSU	A1	2191	38	18,21,22	1.41	4 (22%)	21,30,33	2.12	4 (19%)
34	MA6	B5	1781	34	19,26,27	0.92	1 (5%)	18,38,41	1.91	3 (16%)
38	PSU	A1	990	38	18,21,22	1.38	3 (16%)	21,30,33	2.08	4 (19%)
38	PSU	A1	2351	38	18,21,22	1.42	4 (22%)	21,30,33	2.08	4 (19%)
34	PSU	B5	211	34	18,21,22	1.38	2 (11%)	21,30,33	2.02	4 (19%)
38	PSU	A1	2880	38	18,21,22	1.42	3 (16%)	21,30,33	2.22	5 (23%)
34	PSU	B5	999	34	18,21,22	1.40	3 (16%)	21,30,33	2.05	4 (19%)
38	PSU	A1	1110	38	18,21,22	1.46	3 (16%)	21,30,33	2.05	4 (19%)
38	PSU	A1	2260	38	18,21,22	1.40	3 (16%)	21,30,33	1.99	3 (14%)
34	PSU	B5	466	34	18,21,22	1.36	2 (11%)	21,30,33	2.01	4 (19%)
38	PSU	A1	2349	38	18,21,22	1.43	4 (22%)	21,30,33	2.02	4 (19%)
38	PSU	A1	2129	38	18,21,22	1.41	3 (16%)	21,30,33	2.18	4 (19%)
38	PSU	A1	2865	38	18,21,22	1.42	3 (16%)	21,30,33	2.14	4 (19%)
38	5MC	A1	2870	38	19,22,23	1.70	3 (15%)	26,32,35	1.33	3 (11%)
38	PSU	A1	1124	38	18,21,22	1.37	2 (11%)	21,30,33	2.23	4 (19%)
34	PSU	B5	1415	34	18,21,22	1.38	2 (11%)	21,30,33	1.99	3 (14%)
39	PSU	A3	50	39	18,21,22	1.37	2 (11%)	21,30,33	2.10	4 (19%)
38	PSU	A1	2266	38	18,21,22	1.40	3 (16%)	21,30,33	2.06	4 (19%)
38	OMG	A1	2922	80,38	19,26,27	0.87	1 (5%)	21,38,41	1.04	2(9%)
38	1MA	A1	2142	38	17,25,26	1.44	2 (11%)	17,37,40	1.18	2 (11%)
34	G7M	B5	1575	34,79	20,26,27	2.74	5 (25%)	16,39,42	1.77	4 (25%)
34	PSU	B5	766	34	18,21,22	1.44	3 (16%)	21,30,33	2.06	4 (19%)
34	PSU	B5	106	34	18,21,22	1.39	2 (11%)	21,30,33	2.07	4 (19%)
38	PSU	A1	960	38	18,21,22	1.49	4 (22%)	21,30,33	2.09	4 (19%)
38	PSU	A1	2258	38	18,21,22	1.43	3 (16%)	21,30,33	2.04	3 (14%)
38	PSU	A1	2975	38	18,21,22	1.42	3 (16%)	21,30,33	2.11	4 (19%)
38	PSU	A1	2416	38	18,21,22	1.46	3 (16%)	21,30,33	2.07	4 (19%)
38	PSU	A1	2735	38	18,21,22	1.41	3 (16%)	21,30,33	2.11	4 (19%)
38	PSU	A1	1052	38	18,21,22	1.41	3 (16%)	21,30,33	2.00	4 (19%)

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Trune	Chain	Dec	Tinle	Bo	ond leng	ths	В	ond ang	jles
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
38	5MC	A1	2278	38	19,22,23	1.55	3 (15%)	$26,\!32,\!35$	1.09	3 (11%)
38	PSU	A1	2944	38	18,21,22	1.46	4 (22%)	21,30,33	2.20	5 (23%)
38	PSU	A1	1004	38	18,21,22	1.40	2 (11%)	21,30,33	2.10	4 (19%)
34	PSU	B5	1290	34	18,21,22	1.39	3 (16%)	21,30,33	2.10	5 (23%)
38	PSU	A1	966	38	18,21,22	1.43	4 (22%)	21,30,33	2.14	4 (19%)
38	PSU	A1	2923	80,38	18,21,22	1.42	2 (11%)	21,30,33	2.06	3 (14%)
34	PSU	B5	1181	34	18,21,22	1.36	2 (11%)	21,30,33	2.07	4 (19%)
38	PSU	A1	2340	38	18,21,22	1.45	3 (16%)	21,30,33	2.12	4 (19%)
38	PSU	A1	2314	38	18,21,22	1.41	3 (16%)	21,30,33	2.10	4 (19%)
34	PSU	B5	302	34	18,21,22	1.40	3 (16%)	21,30,33	2.08	4 (19%)
34	4AC	B5	1773	34	21,24,25	0.98	2 (9%)	28,34,37	2.22	5 (17%)
38	PSU	A1	1056	38	18,21,22	1.38	3 (16%)	21,30,33	2.06	4 (19%)
38	PSU	A1	2264	38	18,21,22	1.40	3 (16%)	21,30,33	2.14	4 (19%)
38	PSU	A1	776	38	18,21,22	1.46	3 (16%)	21,30,33	2.00	4 (19%)
34	PSU	B5	120	34	18,21,22	1.35	3 (16%)	21,30,33	2.04	4 (19%)
36	HIC	AB	243	36	8,11,12	1.62	2 (25%)	5,14,16	1.01	0
38	PSU	A1	2826	38	18,21,22	1.39	4 (22%)	21,30,33	2.05	5 (23%)
38	PSU	A1	986	38	18,21,22	1.42	3 (16%)	21,30,33	2.02	4 (19%)
34	PSU	B5	759	34	18,21,22	1.38	2 (11%)	21,30,33	2.04	4 (19%)
34	B8N	B5	1191	34	25,29,30	1.34	3 (12%)	28,42,45	1.64	6 (21%)
34	4AC	B5	1280	34	21,24,25	1.00	1 (4%)	28,34,37	1.12	3 (10%)
38	OMU	A1	2921	38	19,22,23	1.26	3 (15%)	25,31,34	1.83	5 (20%)
38	UR3	A1	2634	38	19,22,23	0.93	0	26,32,35	1.71	2 (7%)
34	PSU	B5	1187	34	18,21,22	1.36	2 (11%)	21,30,33	2.09	4 (19%)
40	PSU	A4	73	40	18,21,22	1.40	3 (16%)	21,30,33	2.07	4 (19%)
34	PSU	B5	632	34	18,21,22	1.38	3 (16%)	21,30,33	2.08	3 (14%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
38	1MA	A1	645	38	-	0/3/25/26	0/3/3/3
34	MA6	B5	1782	34	-	4/7/29/30	0/3/3/3
38	PSU	A1	1042	38	-	3/7/25/26	0/2/2/2

001000	naca jio	me proceec	pago	••			
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
38	PSU	A1	2133	38	-	0/7/25/26	0/2/2/2
38	PSU	A1	2191	38	-	0/7/25/26	0/2/2/2
34	MA6	B5	1781	34	-	0/7/29/30	0/3/3/3
38	PSU	A1	990	38	-	0/7/25/26	0/2/2/2
38	PSU	A1	2351	38	-	0/7/25/26	0/2/2/2
34	PSU	B5	211	34	-	0/7/25/26	0/2/2/2
38	PSU	A1	2880	38	-	0/7/25/26	0/2/2/2
34	PSU	B5	999	34	-	0/7/25/26	0/2/2/2
38	PSU	A1	1110	38	-	0/7/25/26	0/2/2/2
38	PSU	A1	2260	38	-	2/7/25/26	0/2/2/2
34	PSU	B5	466	34	_	0/7/25/26	0/2/2/2
38	PSU	A1	2349	38	-	0/7/25/26	0/2/2/2
38	PSU	A1	2129	38	-	0/7/25/26	0/2/2/2
38	PSU	A1	2865	38	-	0/7/25/26	0/2/2/2
38	5MC	A1	2870	38	-	4/7/25/26	0/2/2/2
38	PSU	A1	1124	38	-	0/7/25/26	0/2/2/2
34	PSU	B5	1415	34	-	0/7/25/26	0/2/2/2
39	PSU	A3	50	39	-	0/7/25/26	0/2/2/2
38	PSU	A1	2266	38	_	1/7/25/26	0/2/2/2
38	OMG	A1	2922	80,38	-	1/5/27/28	0/3/3/3
38	1MA	A1	2142	38	-	1/3/25/26	0/3/3/3
34	G7M	B5	1575	34,79	-	0/3/25/26	0/3/3/3
34	PSU	B5	766	34	-	0/7/25/26	0/2/2/2
34	PSU	B5	106	34	-	0/7/25/26	0/2/2/2
38	PSU	A1	960	38	-	2/7/25/26	0/2/2/2
38	PSU	A1	2258	38	-	2/7/25/26	0/2/2/2
38	PSU	A1	2975	38	_	0/7/25/26	0/2/2/2
38	PSU	A1	2416	38	-	0/7/25/26	0/2/2/2
38	PSU	A1	2735	38	-	0/7/25/26	0/2/2/2
38	PSU	A1	1052	38	-	0/7/25/26	0/2/2/2
38	5MC	A1	2278	38	-	0/7/25/26	0/2/2/2
38	PSU	A1	2944	38	-	0/7/25/26	0/2/2/2
38	PSU	A1	1004	38	-	0/7/25/26	0/2/2/2
34	PSU	B5	1290	34	-	0/7/25/26	0/2/2/2
38	PSU	A1	966	38	-	0/7/25/26	0/2/2/2
38	PSU	A1	2923	80,38	-	3/7/25/26	0/2/2/2
34	PSU	B5	1181	34	-	0/7/25/26	0/2/2/2
38	PSU	A1	2340	38	-	1/7/25/26	0/2/2/2
38	PSU	A1	2314	38	-	1/7/25/26	0/2/2/2
34	PSU	B5	302	34	-	$0/7/25\overline{/26}$	0/2/2/2
34	4AC	B5	1773	34	-	3/11/29/30	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
38	PSU	A1	1056	38	-	0/7/25/26	0/2/2/2
38	PSU	A1	2264	38	-	0/7/25/26	0/2/2/2
38	PSU	A1	776	38	-	2/7/25/26	0/2/2/2
34	PSU	B5	120	34	-	0/7/25/26	0/2/2/2
36	HIC	AB	243	36	-	0/5/6/8	0/1/1/1
38	PSU	A1	2826	38	-	0/7/25/26	0/2/2/2
38	PSU	A1	986	38	-	0/7/25/26	0/2/2/2
34	PSU	B5	759	34	-	0/7/25/26	0/2/2/2
34	B8N	B5	1191	34	-	0/16/34/35	0/2/2/2
34	4AC	B5	1280	34	-	0/11/29/30	0/2/2/2
38	OMU	A1	2921	38	-	0/9/27/28	0/2/2/2
38	UR3	A1	2634	38	-	0/7/25/26	0/2/2/2
34	PSU	B5	1187	34	-	0/7/25/26	0/2/2/2
40	PSU	A4	73	40	-	0/7/25/26	0/2/2/2
34	PSU	B5	632	34	-	0/7/25/26	0/2/2/2

The worst 5 of 161 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)
34	B5	1575	G7M	C8-N9	7.41	1.46	1.33
34	B5	1575	G7M	C8-N7	7.25	1.46	1.33
38	A1	2870	5MC	C5-C4	6.02	1.48	1.44
38	A1	2278	5MC	C5-C4	5.50	1.48	1.44
38	A1	2142	1MA	C2-N3	4.45	1.34	1.28

The worst 5 of 223 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
34	B5	1773	4AC	N4-C4-N3	8.18	127.15	113.87
38	A1	2944	PSU	N1-C2-N3	6.84	122.39	115.17
38	A1	1124	PSU	N1-C2-N3	6.83	122.38	115.17
38	A1	2129	PSU	N1-C2-N3	6.83	122.37	115.17
38	A1	2634	UR3	C4-N3-C2	-6.82	119.09	124.58

There are no chirality outliers.

5 of 30 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
34	B5	1773	4AC	N3-C4-N4-C7
34	B5	1782	MA6	C5-C6-N6-C10
38	A1	776	PSU	C3'-C4'-C5'-O5'

Continued from previous page...

Mol	Chain	Res	Type	Atoms
38	A1	776	PSU	O4'-C4'-C5'-O5'
38	A1	960	PSU	C2'-C1'-C5-C4

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 3 ligands modelled in this entry, 1 is monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bond lengths			Bond angles		
INIOI	туре	Unain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
83	3HE	A1	3402	-	21,21,21	0.38	0	23,30,30	0.65	0
82	SPD	A1	3401	-	9,9,9	0.34	0	8,8,8	0.97	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
83	3HE	A1	3402	-	-	2/8/36/36	0/2/2/2
82	SPD	A1	3401	-	-	0/7/7/7	-

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
83	A1	3402	3HE	C7-C8-C9-C10
83	A1	3402	3HE	C7-C8-C9-C13

All (2) torsion outliers are listed below:

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and similar rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-40992. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 200

Z Index: 200

6.2.2 Raw map

X Index: 200

Y Index: 200

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 183

Z Index: 188

6.3.2 Raw map

X Index: 183

Y Index: 247

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.7. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1441 nm^3 ; this corresponds to an approximate mass of 1302 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.417 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.417 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	2.40	-	-	
Author-provided FSC curve	-	-	-	
Unmasked-calculated*	2.98	3.65	3.02	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 2.98 differs from the reported value 2.4 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-40992 and PDB model 8T2Z. Per-residue inclusion information can be found in section 3 on page 20.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.7 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.7).

9.4 Atom inclusion (i)

At the recommended contour level, 90% of all backbone atoms, 87% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.7) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.8740	0.5770
A1	0.9350	0.6180
A3	0.9780	0.6230
A4	0.9760	0.6520
AA	0.9800	0.6830
AB	0.9520	0.6420
AC	0.9550	0.6510
AD	0.8490	0.5680
AE	0.8390	0.5610
AF	0.9410	0.6430
AG	0.8770	0.5930
AH	0.8820	0.5950
AI	0.8610	0.5750
AJ	0.8040	0.5380
AL	0.9240	0.6310
AM	0.9140	0.6010
AN	0.9850	0.6800
AO	0.9600	0.6410
AP	0.9490	0.6510
AQ	0.9690	0.6690
AR	0.8520	0.5780
AS	0.9280	0.6220
AT	0.9310	0.6340
AU	0.8410	0.5620
AV	0.9370	0.6460
AW	0.9550	0.6530
AX	0.9280	0.6300
AY	0.9320	0.6320
AZ	0.9040	0.6130
Aa	0.9630	0.6630
Ab	0.9340	0.6220
Ac	0.9270	0.6220
Ad	0.8820	0.6050
Ae	0.9530	0.6650
Af	0.9790	0.6630

0.0 <0.0

1.0

Chain	Atom inclusion	Q-score
Ag	0.9180	0.6390
Ah	0.9410	0.6300
Ai	0.9210	0.6040
Aj	0.9770	0.6810
Ak	0.8060	0.5600
Al	0.9780	0.6650
Am	0.8710	0.6000
An	0.9240	0.6160
Ao	0.9390	0.6410
Ap	0.9430	0.6550
B5	0.8470	0.5190
BA	0.8700	0.5860
BB	0.8590	0.5820
BC	0.9300	0.6230
BD	0.7410	0.5170
BE	0.6530	0.3870
BF	0.7700	0.5390
BG	0.5600	0.3660
BH	0.6710	0.4810
BI	0.8190	0.5290
BJ	0.5960	0.3460
BK	0.5980	0.4390
BL	0.7680	0.5220
BM	0.1380	0.2500
BN	0.9170	0.6190
BO	0.9260	0.6120
BP	0.5730	0.4360
BQ	0.8100	0.5480
BR	0.7920	0.5520
BS	0.7200	0.4880
BT	0.7580	0.5020
BU	0.6450	0.4680
BV	0.8790	0.5950
BW	0.9610	0.6470
BX	0.8640	0.5870
BY	0.5530	0.3490
BZ	0.6730	0.4760
Ba	0.9240	0.6320
Bb	0.8640	0.5840
Bc	0.7820	0.5450
Bd	0.9200	0.6000
Be	0.5750	0.3800

Chain	Atom inclusion	Q-score
Bf	0.2530	0.3260
Bg	0.5650	0.4450
MR	0.9350	0.5970
tA	0.7200	0.4630
tP	0.8290	0.4750

