

Full wwPDB X-ray Structure Validation Report (i)

Dec 17, 2024 – 06:25 PM EST

PDB ID	:	8T7R
Title	:	Crystal structure of human leukocyte antigen A*0101 in complex with the Fab
		of alloreactive antibody E07
Authors	:	Green, T.J.; Killian Jr, J.T.; Qiu, S.; Macon, K.J.; Yang, G.; King, R.G.;
		Lund, F.E.
Deposited on	:	2023-06-21
Resolution	:	3.84 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.21
EDS	:	3.0
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.004 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.40

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 3.84 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	164625	1056 (4.00-3.68)
Ramachandran outliers	177936	1080 (4.00-3.68)
Sidechain outliers	177891	1073 (4.00-3.68)
RSRZ outliers	164620	1056 (4.00-3.68)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	214	95%	·
1	Е	214	94%	•••
1	Ι	214	94%	•••
1	М	214	94%	•••
1	Q	214	94%	
1	U	214	94%	•••

Mol	Chain	Length	Quality of chain	
1	Y	214	95%	•••
1	с	214	95%	• •
1	g	214	95%	•
1	k	214	94%	•••
1	О	214	94%	• 5%
1	s	214	95%	
2	В	240	88%	• 8%
2	F	240	87%	5% 8%
2	J	240	85%	6% 8%
2	Ν	240	87%	5% 8%
2	R	240	90%	• 8%
2	V	240	86%	5% 8%
2	Z	240	2% 	5% 8%
2	d	240	% • 88%	• 8%
2	h	240	2% 	• 7%
2	1	240	2% 	• 9%
2	р	240	2% 88%	• 9%
2	\mathbf{t}	240	2% 	• 8%
3	С	274	94%	6%
3	G	274	94%	6%
3	K	274	95%	5%
3	0	274	95%	5%
3	S	274	93%	7%
3	W	274	95%	5%
3	a	274	62% 5%	34%

Mol	Chain	Length	Quality of chain					
3	е	274	64% ·	34%				
3	i	274	63% •	34%				
4	0	9	78%	22%				
4	1	9	78%	22%				
4	2	9	78%	22%				
4	3	9	89%	11%				
4	4	9	100%					
4	5	9	67%	33%				
4	6	9	67%	33%				
4	7	9	44%	56%				
4	8	9	44%	56%				
5	D	99	100%					
5	Н	99	100%					
5	L	99	100%					
5	Р	99	100%					
5	Т	99	99%	·				
5	Х	99	99%	:				
5	b	99	100%					
5	f	99	2% 					

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 63611 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	205	Total	С	Ν	0	S	0	0	0
1	A	205	1535	957	266	308	4	0	0	0
1	F	205	Total	С	Ν	0	S	0	0	0
1	Ľ	205	1535	957	266	308	4	0	0	0
1	Т	205	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	L	200	1535	957	266	308	4	0	0	0
1	М	205	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	111	200	1535	957	266	308	4	0	0	0
1	0	205	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	Q	200	1535	957	266	308	4	0	0	0
1	I	205	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	U	200	1535	957	266	308	4	0	0	0
1	v	205	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	L	200	1535	957	266	308	4	0	0	0
1	C	205	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	C	200	1535	957	266	308	4	0	0	0
1	ď	205	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	8	200	1535	957	266	308	4	0	0	0
1	Ŀ	205	Total	С	Ν	Ο	S	0	0	0
1	ĸ	200	1535	957	266	308	4	0	0	0
1	0	203	Total	С	Ν	Ο	S	0	0	0
	0	200	1517	946	263	304	4	0	0	0
1	9	205	Total	С	Ν	0	S	0	0	0
	G	200	1535	957	266	308	4	0		0

• Molecule 1 is a protein called Light chain from antibody JTK191b E07.

• Molecule 2 is a protein called Fab heavy chain from antibody JTK191b E07.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
9	Р	221	Total	С	Ν	0	S	0	0	0
	D	221	1680	1065	289	320	6	0	0	0
0	Б	221	Total	С	Ν	0	S	0	0	0
2	Г	F 221	1680	1065	289	320	6	0	0	0

$8 \mathrm{T7R}$	
------------------	--

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
9	Т	220	Total	С	Ν	0	S	0	0	0
2	J	220	1671	1059	287	319	6	0	0	0
2	N	220	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	11	220	1671	1059	287	319	6	0	0	0
2	B	221	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	10		1675	1061	288	320	6	0	0	0
2	V	220	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	v	220	1671	1059	287	319	6	0	0	0
2	Z	Z 220	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
			1676	1063	288	319	6	0	0	0
2	d	220	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	u	220	1675	1062	288	319	6	Ŭ	0	
2	h	223	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
		220	1690	1070	291	323	6	Ŭ	0	
2	1	219	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	1	210	1662	1054	285	317	6	Ŭ	Ŭ	0
2	n	218	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	Ч	210	1656	1051	284	315	6	Ŭ		
2	t	221	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	U		1675	1061	288	320	6		U	U

Continued from previous page...

• Molecule 3 is a protein called MHC class I antigen (Fragment).

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
3	C	274	Total	С	Ν	0	S	0	0	0
5	U	214	2227	1383	408	426	10	0	0	0
3	C	974	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0	0
0	G	214	2227	1383	408	426	10	0	0	0
3	K	974	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
0	11	214	2227	1383	408	426	10	0	0	0
3	0	274	Total	С	Ν	Ο	\mathbf{S}	0	0	0
0	0	214	2227	1383	408	426	10	0	0	0
3	S	274	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
0	5	211	2227	1383	408	426	10	0	0	0
3	W	974	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
0	**	211	2227	1383	408	426	10	0	0	0
3	а	182	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	a	102	1483	915	276	285	7	0	0	0
3	ρ	182	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
0	C	102	1483	915	276	285	7	0	0	
3	i	189	Total	C	N	0	S	0	0	0
J	1	102	1483	915	276	285	7	0	0	

8T7F	ł
------	---

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
4	0	9	Total C N O 76 49 11 16	0	0	0
4	1	9	Total C N O 76 49 11 16	0	0	0
4	2	9	Total C N O 76 49 11 16	0	0	0
4	3	9	Total C N O 76 49 11 16	0	0	0
4	4	9	Total C N O 76 49 11 16	0	0	0
4	5	9	Total C N O 76 49 11 16	0	0	0
4	6	9	Total C N O 76 49 11 16	0	0	0
4	7	9	Total C N O 76 49 11 16	0	0	0
4	8	9	Total C N O 76 49 11 16	0	0	0

• Molecule 4 is a protein called peptide.

• Molecule 5 is a protein called Beta-2-microglobulin.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
5	Л	00	Total	С	Ν	0	S	0	0	0
0	D	99	829	528	140	158	3	0	0	0
5	Ц	00	Total	С	Ν	Ο	S	0	0	0
0	11	99	829	528	140	158	3	0	0	0
5	т	00	Total	С	Ν	Ο	\mathbf{S}	0	0	0
0		99	829	528	140	158	3		0	0
5	D	00	Total	С	Ν	Ο	S	0	0	0
0	1	99	829	528	140	158	3	0		
5		т 00	Total	С	Ν	0	\mathbf{S}	0	0	0
0	T	33	829	528	140	158	3	0		
5	v	90	Total	С	Ν	0	\mathbf{S}	0	0	0
0	Λ	33	829	528	140	158	3	0	0	0
5	b 00	90	Total	С	Ν	Ο	\mathbf{S}	0	0	0
0	U	33	829	528	140	158	3	0	0	0
5	f	99	Total	C	Ν	Ō	S	0	0	0
0	1	55	829	528	140	158	3			0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Light chain from antibody JTK191b E07

Chain A: 95% ·	
GLN 1108 PRD CON CON CON CON CON CON CON CON CON CON	
\bullet Molecule 1: Light chain from antibody JTK191b E07	
Chain E: 94% · ·	
S2 1108 1118 MLA MLA MLA MLA MLA MLA MLA MLA MLA SER SER	
\bullet Molecule 1: Light chain from antibody JTK191b E07	
Chain I: 94% · ·	
GLN V97 V97 VAL ALL ALL ALL CTS CTS SER SER	
\bullet Molecule 1: Light chain from antibody JTK191b E07	
Chain M: 94% · ·	
GLN 82 1108 11108 1111 1110 1110 1110 1110	
\bullet Molecule 1: Light chain from antibody JTK191b E07	
Chain Q: 94% · ·	
82 HB8 HB8 HB8 HB8 HB7 HB7 HB7 HB7 HB7 HB7 HB7 HB7 HB7 HB7	
\bullet Molecule 1: Light chain from antibody JTK191b E07	

Chain U:

94%

• Molecule 3: MHC class I antigen (Fragment)

Chain K:	95%		5%	-
G1 110 835 845 845 845 845 882 882 882 882 882 882 882 8131	1142 R156 0180 1206 1206 N268 N268 N268 N268			
• Molecule 3: MHC class I	antigen (Fragment)			
Chain O:	95%		5%	
G1 M46 R48 R48 R48 R131 S132 S132 S132 S132 S132 S132 S132 S	1206 1223 1223 1223 1223 1223			
• Molecule 3: MHC class I	antigen (Fragment)			
Chain S:	93%		7%	
G1 R17 G18 G18 G18 G19 M45 M45 M45 M45 M45 M45 M45 M45 M45 D61	E128 E129 R131 1142 R136 R156 R156 R156 R156 R156 D1223	K268 W274		
• Molecule 3: MHC class I	antigen (Fragment)			
Chain W:	95%		5%	6
G1 R35 M45 M45 R48 R48 D61 D90 D90 D129 L130 R131 R131	1142 R156 Q180 L206 L206 H274			
• Molecule 3: MHC class I	antigen (Fragment)			
Chain a:	62%	5%	34%	-
G1 R17 R17 R18 R21 R21 R21 M67 M67 M67 L128 L128 L128 L128 L128 L128 L128 R131	N1 22 N1 25 N1 65 N1 85 N1 82 N1 82 N1 82 N1 82 N1 182 N1	HIS PRO ILE SER ASP ALA ALA THR	LEU ARG CYS CYS ALA ALA LEU CLEU CLEU CLEU TYR PHE	ALA GLU TLE THR LEU
THR TRP GLN GLN ARG GLY GLV GLU CLN GLU CLN CLN CLN CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	ALA ALA ASP GLY GLY GLN THR CLN CLN CLN CLN CLN CLN CNS CLN CNS CNS CNS CNS CNS CNS CNS CNS CNS CN	GLY GLU GLU GLU GLN GLN GLN TYR TYR THR CYS	VAL GLN HIS GLV GLV GLY LEU PRO PRO PRO	THR LEU ARG TRP
• Molecule 3: MHC class I	antigen (Fragment)			
Chain e:	64%	•	34%	
G1 110 817 835 835 843 843 843 843 8143 815 8156 8156 8156 8156	T 142 PRO PRO PRO PRO PRO PRO HIS HIS SER ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	GLU THR LEU ARG CYS CYS ALA ALA	GLT TYR ALA ALA CLU THR THR THR	TRP GLN ARG ASP GLY
GLU ASP CLN THR CLN THR ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	GLN LYS ALA ALA ALA ALA VAL VAL VAL VAL CALU GLU GLU GLU GLU GLU	THR CYS HIS VAL GLN GLN GLV GLV LEU	PRU LYS PRO LEU THR LEU ARG TRP	

• Molecule 3: MHC class I antigen (Fragment)

Chain i:	63%	• 349	6
61 819 061 061 875 886 8128	R131 R156 R165 R163 R163 ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	PRO TILE SER SER ASP ALS ALA ALA ALA CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS	PHE PHE PNC PNC PNC PNC PLC CLU TLE TLEU TLEU CLEU CLEU ARG
ASP GLY GLU ASP GLN THR GLN GLU CLU LEU VLAL GLU	THR PARG ARG GLY GLY THR CLYS CLYS ALA ALA ALA ALA VAL VAL PRO PRO FRO	GLU GLU GLU GLU GLU GLU HIS CYR HIS GLU GLU LEU	PRO LVS PRO LEU LEU LEU ARG TRP
• Molecule 4: pep	otide		
Chain 0:	78%		22%
V401 H404 L407 L407 V409			
• Molecule 4: pep	otide		
Chain 1:	78%		22%
V401 H404 D405 T406 T406 V409			
• Molecule 4: pep	otide		
Chain 2:	78%		22%
V401 H404 D405 T406 Y409			
• Molecule 4: pep	otide		
Chain 3:	89%		11%
V401 1406 Y409			
• Molecule 4: pep	otide		
Chain 4:	100%		
There are no outl	ier residues recorded for th	is chain.	
• Molecule 4: pep	otide		
Chain 5:	67%	33	3%
V401 H404 H406 T406 L407 V409			
• Molecule 4: pep	otide		

Chain 6:	67%		33%
V401 H404 D405 L407 L408 Y409			
• Molecule 4: p	eptide		
	-F		
Chain 7:	44%		56%
V401 T402 E403 E403 H404 D405 T406 L407 L408 V409			
• Molecule 4: p	eptide		
Chain 8:	44%		56%
•	++/0		
V401 T402 E403 H404 D405 L407 L407 L408 V409 Y409			
• Molecule 5: E	Beta-2-microglobulin		
Chain D:		100%	
There are no ou	utlier residues recorded f	or this chain.	
• Molecule 5: E	Beta-2-microglobulin		
Chain H:		100%	
There are no ou	tlier residues recorded f	or this chain.	
• Molecule 5: E	Beta-2-microglobulin		
Chain L:		100%	
There are no or	utlier residues recorded f	or this chain.	
• Molecule 5: E	Beta-2-microglobulin		
Chain P:		100%	
There are no ou	tlier residues recorded f	or this chain.	
• Molecule 5: E	Beta-2-microglobulin		
Chain T:		99%	·
11 828 M99			
• Molecule 5: E	Beta-2-microglobulin		

Chain X:	99% .				
• Molecule 5: Beta-2-microglobulin					
Chain b:	100%				
There are no outlier residues recorded f	There are no outlier residues recorded for this chain.				
• Molecule 5: Beta-2-microglobulin					
Chain f:	100%				
11 855 19 19					

4 Data and refinement statistics (i)

Property	Value	Source	
Space group	C 1 2 1	Depositor	
Cell constants	357.08Å 259.58Å 255.36Å	Descrite	
a, b, c, α , β , γ	90.00° 133.13° 90.00°	Depositor	
$\mathbf{P}_{\text{exclution}}\left(\hat{\mathbf{A}}\right)$	30.13 - 3.84	Depositor	
Resolution (A)	30.13 - 3.84	EDS	
% Data completeness	95.7 (30.13-3.84)	Depositor	
(in resolution range)	90.6(30.13-3.84)	EDS	
R _{merge}	0.17	Depositor	
R _{sym}	(Not available)	Depositor	
$< I/\sigma(I) > 1$	1.86 (at 3.86 Å)	Xtriage	
Refinement program	PHENIX v1.20.1_4487	Depositor	
D D	0.216 , 0.263	Depositor	
$\mathbf{n}, \mathbf{n}_{free}$	0.217 , 0.261	DCC	
R_{free} test set	152406 reflections $(1.30%)$	wwPDB-VP	
Wilson B-factor $(Å^2)$	95.5	Xtriage	
Anisotropy	0.211	Xtriage	
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.32 , 83.6	EDS	
L-test for twinning ²	$< L > = 0.47, < L^2 > = 0.30$	Xtriage	
	0.016 for h+2*l,k,-h-l		
	0.018 for k+l,h+l,-l		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
Estimated twinning fraction	0.077 for h-k+l,l,-h-l	Xtriage	
	0.054 for -k-l,-h-l,k		
	0.045 for h+k+l,-l,-h-l		
	0.068 for k-l,h+l,-k		
	0.023 for h,-k,-h-l		
	0.044 for -h-2*l,-k,l		
F_o, F_c correlation	0.88	EDS	
Total number of atoms	63611	wwPDB-VP	
Average B, all atoms $(Å^2)$	122.0	wwPDB-VP	

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.92% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

 $^{^1 \}mathrm{Intensities}$ estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
WIOI	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.30	0/1574	0.52	0/2152	
1	Е	0.30	0/1574	0.53	0/2152	
1	Ι	0.31	0/1574	0.53	0/2152	
1	М	0.31	0/1574	0.56	0/2152	
1	Q	0.30	0/1574	0.53	0/2152	
1	U	0.31	0/1574	0.55	0/2152	
1	Y	0.29	0/1574	0.52	0/2152	
1	с	0.28	0/1574	0.53	0/2152	
1	g	0.28	0/1574	0.55	0/2152	
1	k	0.27	0/1574	0.52	0/2152	
1	0	0.27	0/1556	0.53	0/2129	
1	s	0.27	0/1574	0.52	0/2152	
2	В	0.31	0/1728	0.56	0/2357	
2	F	0.31	0/1728	0.57	0/2357	
2	J	0.32	0/1719	0.57	0/2346	
2	Ν	0.37	0/1719	0.62	0/2346	
2	R	0.32	0/1723	0.57	0/2351	
2	V	0.31	0/1719	0.58	0/2346	
2	Ζ	0.32	0/1724	0.54	0/2352	
2	d	0.30	0/1723	0.56	0/2350	
2	h	0.29	0/1738	0.57	0/2370	
2	1	0.28	0/1710	0.53	0/2334	
2	р	0.28	0/1704	0.52	0/2326	
2	t	0.29	0/1723	0.56	0/2351	
3	С	0.32	0/2287	0.57	0/3101	
3	G	0.32	0/2287	0.56	0/3101	
3	К	0.32	0/2287	0.59	0/3101	
3	0	0.32	0/2287	0.58	0/3101	
3	S	0.32	0/2287	0.58	0/3101	
3	W	0.33	0/2287	0.58	0/3101	
3	a	0.29	0/1517	0.57	0/2045	
3	е	0.32	0/1517	0.60	0/2045	
3	i	0.28	0/1517	0.58	0/2045	
4	0	0.29	0/77	0.70	0/105	

87	Γ7R
01	

Mal	Chain	Bond	lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
4	1	0.34	0/77	0.60	0/105	
4	2	0.37	0/77	0.61	0/105	
4	3	0.34	0/77	0.65	0/105	
4	4	0.33	0/77	0.80	0/105	
4	5	0.35	0/77	0.69	0/105	
4	6	0.25	0/77	0.49	0/105	
4	7	0.30	0/77	0.53	0/105	
4	8	0.37	0/77	0.56	0/105	
5	D	0.29	0/852	0.52	0/1152	
5	Н	0.31	0/852	0.53	0/1152	
5	L	0.28	0/852	0.51	0/1152	
5	Р	0.30	0/852	0.53	0/1152	
5	Т	0.30	0/852	0.54	0/1152	
5	Х	0.29	0/852	0.54	0/1152	
5	b	0.28	0/852	0.55	0/1152	
5	f	0.27	0/852	0.55	0/1152	
All	All	0.30	0/65310	0.56	0/88889	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	А	203/214~(95%)	188 (93%)	15 (7%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	Е	203/214~(95%)	187 (92%)	16 (8%)	0	100	100
1	Ι	203/214~(95%)	189 (93%)	14 (7%)	0	100	100
1	М	203/214~(95%)	188 (93%)	15 (7%)	0	100	100
1	Q	203/214~(95%)	190 (94%)	13~(6%)	0	100	100
1	U	203/214~(95%)	189 (93%)	14 (7%)	0	100	100
1	Y	203/214~(95%)	187 (92%)	16 (8%)	0	100	100
1	с	203/214~(95%)	188 (93%)	15 (7%)	0	100	100
1	g	203/214~(95%)	188 (93%)	15 (7%)	0	100	100
1	k	203/214~(95%)	187 (92%)	16 (8%)	0	100	100
1	О	201/214~(94%)	187 (93%)	14 (7%)	0	100	100
1	s	203/214~(95%)	186 (92%)	17 (8%)	0	100	100
2	В	217/240~(90%)	207 (95%)	10 (5%)	0	100	100
2	F	217/240~(90%)	205 (94%)	12 (6%)	0	100	100
2	J	216/240~(90%)	204 (94%)	12 (6%)	0	100	100
2	N	216/240~(90%)	207 (96%)	9 (4%)	0	100	100
2	R	217/240~(90%)	208 (96%)	9 (4%)	0	100	100
2	V	216/240~(90%)	206 (95%)	10 (5%)	0	100	100
2	Z	216/240~(90%)	206 (95%)	10 (5%)	0	100	100
2	d	216/240~(90%)	206 (95%)	10 (5%)	0	100	100
2	h	219/240~(91%)	209 (95%)	10 (5%)	0	100	100
2	1	215/240~(90%)	205 (95%)	10 (5%)	0	100	100
2	р	214/240~(89%)	205 (96%)	9 (4%)	0	100	100
2	t	217/240~(90%)	205 (94%)	12 (6%)	0	100	100
3	С	272/274~(99%)	256 (94%)	16 (6%)	0	100	100
3	G	272/274~(99%)	258 (95%)	14 (5%)	0	100	100
3	К	272/274~(99%)	257 (94%)	15 (6%)	0	100	100
3	Ο	272/274~(99%)	259~(95%)	13 (5%)	0	100	100
3	S	272/274~(99%)	258 (95%)	14 (5%)	0	100	100
3	W	272/274~(99%)	259~(95%)	13 (5%)	0	100	100
3	a	180/274~(66%)	170 (94%)	10 (6%)	0	100	100
3	е	180/274~(66%)	171 (95%)	9 (5%)	0	100	100

8T7	R
-----	---

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	i	180/274~(66%)	167~(93%)	13~(7%)	0	100	100
4	0	7/9~(78%)	7~(100%)	0	0	100	100
4	1	7/9~(78%)	7 (100%)	0	0	100	100
4	2	7/9~(78%)	7~(100%)	0	0	100	100
4	3	7/9~(78%)	7~(100%)	0	0	100	100
4	4	7/9~(78%)	7 (100%)	0	0	100	100
4	5	7/9~(78%)	7 (100%)	0	0	100	100
4	6	7/9~(78%)	7 (100%)	0	0	100	100
4	7	7/9~(78%)	7 (100%)	0	0	100	100
4	8	7/9~(78%)	7 (100%)	0	0	100	100
5	D	97/99~(98%)	92~(95%)	5 (5%)	0	100	100
5	Н	97/99~(98%)	92~(95%)	5 (5%)	0	100	100
5	L	97/99~(98%)	91 (94%)	6 (6%)	0	100	100
5	Р	97/99~(98%)	90~(93%)	7 (7%)	0	100	100
5	Т	97/99~(98%)	92~(95%)	5 (5%)	0	100	100
5	Х	97/99~(98%)	92~(95%)	5 (5%)	0	100	100
5	b	97/99~(98%)	92~(95%)	5 (5%)	0	100	100
5	f	97/99~(98%)	93 (96%)	4 (4%)	0	100	100
All	All	8041/8787~(92%)	7579 (94%)	462 (6%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	172/180~(96%)	171 (99%)	1 (1%)	84 88
1	Ε	172/180~(96%)	169~(98%)	3~(2%)	56 72
1	Ι	172/180~(96%)	169 (98%)	3(2%)	56 72

Continued from previous page...

Mol	Chain	Analysed	Rotameric	otameric Outliers		\mathbf{ntiles}
1	М	172/180~(96%)	169~(98%)	3~(2%)	56	72
1	Q	172/180~(96%)	168~(98%)	4(2%)	45	64
1	U	172/180~(96%)	169~(98%)	3~(2%)	56	72
1	Υ	172/180~(96%)	170~(99%)	2(1%)	67	78
1	с	172/180~(96%)	170~(99%)	2(1%)	67	78
1	g	172/180~(96%)	171~(99%)	1 (1%)	84	88
1	k	172/180~(96%)	168~(98%)	4 (2%)	45	64
1	О	170/180~(94%)	168 (99%)	2(1%)	67	78
1	S	172/180~(96%)	170 (99%)	2 (1%)	67	78
2	В	187/205~(91%)	177 (95%)	10 (5%)	19	45
2	F	187/205~(91%)	175 (94%)	12 (6%)	14	40
2	J	186/205~(91%)	171 (92%)	15 (8%)	9	33
2	Ν	186/205~(91%)	174 (94%)	12 (6%)	14	39
2	R	186/205~(91%)	180 (97%)	6 (3%)	34	57
2	V	186/205~(91%)	173~(93%)	13 (7%)	12	37
2	Ζ	187/205~(91%)	176 (94%)	11 (6%)	16	42
2	d	187/205~(91%)	178 (95%)	9~(5%)	21	47
2	h	188/205~(92%)	179~(95%)	9~(5%)	21	47
2	1	185/205~(90%)	176 (95%)	9~(5%)	21	46
2	р	184/205~(90%)	176 (96%)	8 (4%)	25	50
2	t	186/205~(91%)	179~(96%)	7 (4%)	28	53
3	С	231/231~(100%)	214 (93%)	17 (7%)	11	35
3	G	231/231~(100%)	214 (93%)	17 (7%)	11	35
3	К	231/231~(100%)	216 (94%)	15 (6%)	14	39
3	О	231/231~(100%)	218 (94%)	13 (6%)	17	44
3	S	231/231~(100%)	212 (92%)	19 (8%)	9	33
3	W	231/231~(100%)	216 (94%)	15 (6%)	14	39
3	a	151/231~(65%)	138 (91%)	13 (9%)	8	32
3	е	151/231~(65%)	143~(95%)	8 (5%)	19	45
3	i	151/231~(65%)	142 (94%)	9 (6%)	16	42
4	0	9/9~(100%)	7 (78%)	2 (22%)	1	5

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
4	1	9/9~(100%)	7 (78%)	2(22%)	1	5
4	2	9/9~(100%)	7 (78%)	2(22%)	1	5
4	3	9/9~(100%)	8 (89%)	1 (11%)	5	21
4	4	9/9~(100%)	9~(100%)	0	100	100
4	5	9/9~(100%)	6~(67%)	3~(33%)	0	1
4	6	9/9~(100%)	6~(67%)	3~(33%)	0	1
4	7	9/9~(100%)	4 (44%)	5 (56%)	0	0
4	8	9/9~(100%)	4 (44%)	5 (56%)	0	0
5	D	94/94~(100%)	94 (100%)	0	100	100
5	Н	94/94~(100%)	94 (100%)	0	100	100
5	L	94/94~(100%)	94 (100%)	0	100	100
5	Р	94/94~(100%)	94 (100%)	0	100	100
5	Т	94/94~(100%)	93~(99%)	1 (1%)	70	79
5	Х	94/94~(100%)	93~(99%)	1 (1%)	70	79
5	b	94/94~(100%)	94 (100%)	0	100	100
5	f	94/94 (100%)	94 (100%)	0	100	100
All	All	6969/7532~(92%)	6667~(96%)	302 (4%)	25	50

All (302) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	А	108	LEU
2	В	27	PHE
2	В	96	CYS
2	В	100	ARG
2	В	112	ASP
2	В	124	SER
2	В	128	LYS
2	В	195	VAL
2	В	197	SER
2	В	204	THR
2	В	210	ASN
3	С	14	ARG
3	С	17	ARG
3	С	19	GLU
3	С	35	ARG

Mol	Chain	Res	Type
3	С	45	MET
3	С	48	ARG
3	С	61	ASP
3	С	71	SER
3	С	86	ASN
3	С	90	ASP
3	С	131	ARG
3	С	142	ILE
3	С	156	ARG
3	С	180	GLN
3	С	206	LEU
3	С	223	ASP
3	C	268	LYS
4	0	404	HIS
4	0	407	LEU
1	Е	2	SER
1	Е	108	LEU
1	Е	137	LEU
2	F	96	CYS
2	F	98	LYS
2	F	100	ARG
2	F	128	LYS
2	F	157	PHE
2	F	192	VAL
2	F	193	VAL
2	F	194	THR
2	F	199	SER
2	F	200	LEU
2	F	202	THR
2	F	204	THR
3	G	19	GLU
3	G	35	ARG
3	G	45	MET
3	G	48	ARG
3	G	61	ASP
3	G	67	MET
3	G	75	ARG
3	G	90	ASP
3	G	94	THR
3	G	129	ASP
3	G	131	ARG
3	G	132	SER

Mol	Chain	Res	Type
3	G	142	ILE
3	G	156	ARG
3	G	180	GLN
3	G	206	LEU
3	G	223	ASP
4	1	404	HIS
4	1	406	THR
1	Ι	88	HIS
1	Ι	97	VAL
1	Ι	108	LEU
2	J	27	PHE
2	J	96	CYS
2	J	100	ARG
2	J	112	ASP
2	J	122	VAL
2	J	157	PHE
2	J	192	VAL
2	J	193	VAL
2	J	194	THR
2	J	195	VAL
2	J	197	SER
2	J	199	SER
2	J	200	LEU
2	J	204	THR
2	J	210	ASN
3	Κ	10	THR
3	K	35	ARG
3	Κ	45	MET
3	Κ	61	ASP
3	K	75	ARG
3	K	82	ARG
3	K	90	ASP
3	K	94	THR
3	K	131	ARG
3	K	142	ILE
3	K	156	ARG
3	K	180	GLN
3	K	206	LEU
3	K	223	ASP
3	K	268	LYS
4	2	404	HIS
4	2	406	THR

Mol	Chain	Res	Type
1	М	88	HIS
1	М	108	LEU
1	М	137	LEU
2	Ν	1	GLN
2	Ν	29	PHE
2	Ν	72	ARG
2	Ν	104	LEU
2	Ν	112	ASP
2	N	122	VAL
2	Ν	128	LYS
2	Ν	146	THR
2	Ν	157	PHE
2	Ν	199	SER
2	N	200	LEU
2	N	204	THR
3	0	45	MET
3	0	48	ARG
3	0	61	ASP
3	0	75	ARG
3	0	90	ASP
3	0	131	ARG
3	0	132	SER
3	0	142	ILE
3	0	156	ARG
3	0	180	GLN
3	0	206	LEU
3	0	223	ASP
3	0	268	LYS
4	3	406	THR
1	Q	88	HIS
1	Q	97	VAL
1	Q	108	LEU
1	Q	137	LEU
2	R	100	ARG
2	R	111	PHE
2	R	112	ASP
2	R	122	VAL
2	R	157	PHE
2	R	200	LEU
3	S	17	ARG
3	S	19	GLU
3	S	35	ARG

Mol	Chain	Res	Type
3	S	45	MET
3	S	48	ARG
3	S	61	ASP
3	S	71	SER
3	S	75	ARG
3	S	90	ASP
3	S	128	GLU
3	S	129	ASP
3	S	131	ARG
3	S	142	ILE
3	S	156	ARG
3	S	169	ARG
3	S	180	GLN
3	S	206	LEU
3	S	223	ASP
3	S	268	LYS
5	Т	28	SER
1	U	104	LYS
1	U	108	LEU
1	U	137	LEU
2	V	27	PHE
2	V	30	SER
2	V	53	TYR
2	V	96	CYS
2	V	100	ARG
2	V	101	ILE
2	V	104	LEU
2	V	112	ASP
2	V	128	LYS
2	V	157	PHE
2	V	198	SER
2	V	199	SER
2	V	200	LEU
3	W	35	ARG
3	W	45	MET
3	W	48	ARG
3	W	61	ASP
3	W	75	ARG
3	W	90	ASP
3	W	94	THR
3	W	129	ASP
3	W	130	LEU

Mol	Chain	Res	Type
3	W	131	ARG
3	W	142	ILE
3	W	156	ARG
3	W	180	GLN
3	W	206	LEU
3	W	223	ASP
4	5	404	HIS
4	5	406	THR
4	5	408	LEU
5	Х	28	SER
1	Y	88	HIS
1	Y	137	LEU
2	Ζ	27	PHE
2	Z	96	CYS
2	Ζ	100	ARG
2	Ζ	111	PHE
2	Ζ	112	ASP
2	Ζ	114	TRP
2	Ζ	128	LYS
2	Ζ	197	SER
2	Ζ	199	SER
2	Ζ	200	LEU
2	Ζ	204	THR
3	a	17	ARG
3	a	19	GLU
3	a	21	ARG
3	a	46	GLU
3	a	61	ASP
3	a	67	MET
3	a	116	ASP
3	a	128	GLU
3	a	129	ASP
3	a	130	LEU
3	a	132	SER
3	a	156	ARG
3	a	163	ARG
4	6	404	HIS
4	6	406	THR
4	6	407	LEU
1	с	108	LEU
1	С	137	LEU
2	d	96	CYS

Mol	Chain	Res	Type
2	d	100	ARG
2	d	122	VAL
2	d	140	LYS
2	d	195	VAL
2	d	197	SER
2	d	199	SER
2	d	204	THR
2	d	210	ASN
3	е	17	ARG
3	е	35	ARG
3	е	48	ARG
3	е	61	ASP
3	е	75	ARG
3	е	126	LEU
3	е	156	ARG
3	е	163	ARG
4	7	402	THR
4	7	404	HIS
4	7	406	THR
4	7	407	LEU
4	7	408	LEU
1	g	88	HIS
2	h	27	PHE
2	h	53	TYR
2	h	100	ARG
2	h	104	LEU
2	h	157	PHE
2	h	195	VAL
2	h	199	SER
2	h	205	TYR
2	h	210	ASN
3	i	19	GLU
3	i	48	ARG
3	i	61	ASP
3	i	75	ARG
3	i	86	ASN
3	i	128	GLU
3	i	131	ARG
3	i	156	ARG
3	i	163	ARG
4	8	401	VAL
4	8	402	THR

Mol	Chain	Res	Type
4	8	404	HIS
4	8	406	THR
4	8	407	LEU
1	k	16	GLN
1	k	88	HIS
1	k	108	LEU
1	k	137	LEU
2	1	27	PHE
2	1	96	CYS
2	1	100	ARG
2	1	105	SER
2	1	111	PHE
2	1	122	VAL
2	1	128	LYS
2	1	157	PHE
2	1	204	THR
1	0	88	HIS
1	0	97	VAL
2	р	27	PHE
2	р	96	CYS
2	р	100	ARG
2	р	112	ASP
2	р	199	SER
2	р	200	LEU
2	р	204	THR
2	р	205	TYR
1	S	88	HIS
1	S	108	LEU
2	t	27	PHE
2	t	100	ARG
2	t	109	TRP
2	t	128	LYS
2	t	157	PHE
2	t	195	VAL
2	t	199	SER

Continued from previous page...

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (13) such sidechains are listed below:

Mol	Chain	Res	Type
3	С	70	HIS
3	С	224	GLN
3	G	62	GLN

Mol	Chain	Res	Type
3	G	66	ASN
3	G	127	ASN
5	L	8	GLN
1	М	65	ASN
2	N	57	HIS
1	Y	68	ASN
3	a	54	GLN
1	с	65	ASN
3	i	72	GLN
1	0	65	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q<0.9
1	А	205/214~(95%)	-0.35	0 100 100	83, 110, 158, 171	0
1	Е	205/214~(95%)	-0.40	0 100 100	80,106,145,172	0
1	Ι	205/214~(95%)	-0.34	0 100 100	77, 102, 149, 163	0
1	М	205/214~(95%)	-0.37	0 100 100	74,104,138,154	0
1	Q	205/214~(95%)	-0.40	0 100 100	72, 97, 133, 165	0
1	U	205/214~(95%)	-0.33	0 100 100	69, 103, 155, 171	0
1	Y	205/214~(95%)	-0.26	1 (0%) 87 75	97, 120, 142, 163	0
1	с	205/214~(95%)	-0.06	1 (0%) 87 75	106, 143, 164, 183	0
1	g	205/214~(95%)	0.14	1 (0%) 87 75	111, 152, 169, 174	0
1	k	205/214~(95%)	-0.08	1 (0%) 87 75	135, 159, 176, 183	0
1	0	203/214~(94%)	-0.09	1 (0%) 87 75	137, 160, 176, 181	0
1	s	205/214~(95%)	0.02	1 (0%) 87 75	140, 167, 181, 190	0
2	В	221/240~(92%)	-0.19	1 (0%) 87 75	82, 114, 163, 184	0
2	F	221/240~(92%)	-0.26	0 100 100	77, 115, 163, 193	0
2	J	220/240~(91%)	-0.29	0 100 100	76,114,160,187	0
2	Ν	220/240~(91%)	-0.24	1 (0%) 87 75	74,110,150,179	0
2	R	221/240~(92%)	-0.28	1 (0%) 87 75	77, 107, 143, 174	0
2	V	220/240~(91%)	-0.25	1 (0%) 87 75	73, 110, 158, 175	0
2	Z	220/240~(91%)	-0.08	5 (2%) 61 46	100, 126, 160, 179	0
2	d	220/240~(91%)	-0.07	2 (0%) 81 67	112, 135, 164, 179	0
2	h	223/240~(92%)	0.21	5 (2%) 62 47	118, 146, 172, 190	0
2	1	219/240~(91%)	0.01	6 (2%) 56 44	138, 161, 177, 182	0
2	р	218/240~(90%)	0.02	6 (2%) 55 43	129, 160, 179, 190	0
2	t	221/240 (92%)	0.12	4 (1%) 67 51	132, 159, 180, 189	0

Continued from previous page...

Mol	Chain	Analysed	$<$ RSRZ $>$	# RSRZ :	>2	$OWAB(Å^2)$	Q<0.9
3	С	274/274~(100%)	-0.31	0 100 1	.00	78, 102, 151, 170	0
3	G	274/274~(100%)	-0.33	1 (0%) 89	79	74, 97, 147, 175	0
3	Κ	274/274~(100%)	-0.41	0 100 1	.00	70, 94, 137, 164	0
3	Ο	274/274~(100%)	-0.40	0 100 1	.00	69, 93, 142, 166	0
3	S	274/274~(100%)	-0.41	0 100 1	.00	70, 91, 146, 177	0
3	W	274/274~(100%)	-0.32	0 100 1	.00	72, 92, 150, 187	0
3	a	182/274~(66%)	-0.07	0 100 1	.00	104, 125, 142, 162	0
3	е	182/274~(66%)	0.07	1 (0%) 87	75	118, 135, 152, 166	0
3	i	182/274~(66%)	0.21	1 (0%) 87	75	126, 147, 167, 180	0
4	0	9/9~(100%)	-0.31	0 100 1	.00	84, 89, 104, 109	0
4	1	9/9~(100%)	-0.17	0 100 1	.00	76, 92, 101, 106	0
4	2	9/9~(100%)	-0.21	0 100 1	.00	78, 84, 105, 110	0
4	3	9/9~(100%)	-0.24	0 100 1	.00	76, 83, 98, 100	0
4	4	9/9~(100%)	-0.49	0 100 1	.00	70, 83, 97, 99	0
4	5	9/9~(100%)	-0.03	0 100 1	.00	77, 79, 96, 100	0
4	6	9/9~(100%)	0.13	0 100 1	.00	118, 126, 137, 147	0
4	7	9/9~(100%)	0.41	0 100 1	.00	118, 131, 136, 141	0
4	8	9/9~(100%)	0.74	1 (11%) 12	14	130, 142, 150, 151	0
5	D	99/99~(100%)	-0.33	0 100 1	.00	89, 110, 138, 149	0
5	Н	99/99~(100%)	-0.33	0 100 1	.00	76,105,131,141	0
5	L	99/99~(100%)	-0.34	0 100 1	.00	73,103,131,152	0
5	Р	99/99~(100%)	-0.45	0 100 1	.00	76, 99, 128, 143	0
5	Т	99/99~(100%)	-0.43	0 100 1	.00	74, 95, 125, 141	0
5	Х	99/99~(100%)	-0.31	0 100 1	.00	78, 106, 140, 153	0
5	b	99/99~(100%)	-0.26	0 100 1	.00	106, 125, 146, 165	0
5	f	99/99~(100%)	0.03	2 (2%) 64	49	122, 140, 158, 173	0
All	All	8165/8787~(92%)	-0.20	44 (0%) 87	75	69, 122, 170, 193	0

All (44) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ		
2	Ζ	33	GLY	4.9		
2	h	101	ILE	4.4		

Mol	Chain	Res	Type	RSRZ
2	Ζ	99	ALA	4.2
2	1	104	LEU	3.9
2	1	33	GLY	3.5
2	t	107	PRO	3.3
2	h	104	LEU	3.3
2	h	205	TYR	3.3
2	Z	104	LEU	3.0
2	р	104	LEU	3.0
1	g	108	LEU	2.9
2	р	205	TYR	2.9
2	d	33	GLY	2.7
2	р	107	PRO	2.7
2	h	161	VAL	2.7
2	t	33	GLY	2.6
2	d	104	LEU	2.6
1	Y	144	GLY	2.5
2	р	33	GLY	2.5
2	Ν	104	LEU	2.5
2	h	112	ASP	2.5
2	р	108	ALA	2.4
3	е	10	THR	2.4
2	1	99	ALA	2.4
2	1	107	PRO	2.4
2	1	35	HIS	2.4
2	р	109	TRP	2.3
2	t	178	PRO	2.3
2	R	33	GLY	2.3
2	V	104	LEU	2.3
5	f	54	LEU	2.3
1	0	108	LEU	2.2
2	Ζ	101	ILE	2.2
2	В	104	LEU	2.2
2	1	170	LEU	2.2
3	i	169	ARG	2.1
2	Z	106	ALA	2.1
3	G	254	GLU	2.1
1	k	4	SER	2.0
5	f	55	SER	2.0
2	t	104	LEU	2.0
1	S	12	VAL	2.0
1	с	191	ARG	2.0
4	8	407	LEU	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

