

wwPDB EM Validation Summary Report (i)

Oct 14, 2024 – 10:20 AM EDT

PDB ID	:	8TOW
EMDB ID	:	EMD-41460
Title	:	Structure of a mutated photosystem II complex reveals perturbation of the
		oxygen-evolving complex
Authors	:	Flesher, D.A.; Liu, J.; Wang, J.; Gisriel, C.J.; Yang, K.R.; Batista, V.S.;
		Debus, R.J.; Brudvig, G.W.
Deposited on	:	2023-08-04
Resolution	:	2.14 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	2022.3.0, CSD as543be (2022)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.14 Å.

Ramachandran outliers

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

207382

206894

The table below summarises the geometric issues observed across the polymeric chains and their fit
to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues
that contain outliers for $>=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey
segment represents the fraction of residues that are not modelled. The numeric value for each
fraction is indicated below the corresponding segment, with a dot representing fractions $<\!\!=\!5\%$
The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM
map (all-atom inclusion $< 40\%$). The numeric value is given above the bar.

16835

16415

Mol	Chain	Length	Quality of chain	
1	А	360	92%	• 7%
1	a	360	92%	• 7%
2	В	507	98%	•
2	b	507	98%	•
3	С	460	96%	••
3	с	460	5% 96%	••
4	D	352	96%	••
4	d	352	96%	••
5	Е	81	94%	• •

20%

20%

•••

. .

Continued from previous page... Mol | Chain | Length Quality of chain 6% 581 е 94% 5% F 6 4480% 5% f 6 4480% ÷ 7Η 6495% •

7	h	64	95%	• •
8	т	38	5%	F 9/
0	I	00	92% 5%	5% •
8	i	38	92%	5% •
9	J	39	18%	
9	j	39	18%	
10	K	45	⊨	18%
10	k	45	76% 70%	18%
11	T	10	10/0 170	1076
11	L	39	97%	•
11	1	39	97%	•
12	М	35	83%	6% 11%
12	m	35	83%	6% 11%
13	0	274	86%	• 11%
13	0	274	14%	110/
10	0	211	54%	• 1176
14	Q	149	77% •	21%
14	q	149	77% •	21%
15	R	39	85%	• 13%
15		20	33%	
15	r	39	85%	• 13%
16	Т	31	94%	• •
16	t	31	94%	• •
17	U	131	69% ·	27%
17	u	131	69% ·	27%
	1	1	Continued a	on next page

Mol	Chain	Length	Quality of chain		
18	V	160	6%	•	16%
18	V	160	6%	•	16%
19	Х	39	5% 95%		• •
19	х	39	5% 95%		• •
20	Y	39	13%	5%	18%
20	у	39	15%	5%	18%
21	Z	62	44%		•
21	Z	62	42%		•

Continued from previous page...

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
25	CLA	А	405	Х	-	-	-
25	CLA	А	406	Х	-	-	-
25	CLA	А	408	Х	-	-	-
25	CLA	В	601	X	-	-	-
25	CLA	В	602	Х	_	-	-
25	CLA	В	603	Х	_	-	-
25	CLA	В	604	Х	_	-	-
25	CLA	В	605	Х	_	-	-
25	CLA	В	606	Х	_	-	-
25	CLA	В	607	X	_	-	-
25	CLA	В	608	Х	-	-	-
25	CLA	В	609	X	-	-	-
25	CLA	В	610	Х	_	-	-
25	CLA	В	611	Х	_	-	-
25	CLA	В	612	Х	_	-	-
25	CLA	В	613	Х	-	-	-
25	CLA	В	614	Х	_	-	-
25	CLA	В	615	Х	-	-	-
25	CLA	В	616	X	-	-	-
25	CLA	С	502	X	-	-	-
25	CLA	С	503	X	-	-	-
25	CLA	С	504	X	-	-	-
25	CLA	С	505	X	-	-	-

Continued from previous page											
Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density				
25	CLA	С	506	X	-	-	-				
25	CLA	С	507	X	-	-	-				
25	CLA	С	508	X	-	-	-				
25	CLA	С	509	X	-	-	-				
25	CLA	С	510	Х	-	-	-				
25	CLA	С	511	Х	-	-	-				
25	CLA	С	512	Х	-	-	-				
25	CLA	С	513	Х	-	-	-				
25	CLA	С	514	Х	-	-	-				
25	CLA	D	401	Х	-	-	-				
25	CLA	D	403	Х	-	-	-				
25	CLA	D	404	Х	-	-	-				
25	CLA	a	405	Х	-	-	-				
25	CLA	a	406	Х	-	-	-				
25	CLA	a	408	Х	-	_	-				
25	CLA	b	601	Х	-	-	-				
25	CLA	b	602	Х	-	_	-				
25	CLA	b	603	Х	-	-	-				
25	CLA	b	604	Х	_	-	_				
25	CLA	b	605	Х	_	-	_				
25	CLA	b	606	Х	-	-	_				
25	CLA	b	607	Х	-	-	-				
25	CLA	b	608	Х	-	-	-				
25	CLA	b	609	Х	_	-	-				
25	CLA	b	610	Х	-	-	-				
25	CLA	b	611	Х	-	-	-				
25	CLA	b	612	X	-	-	-				
25	CLA	b	613	X	-	-	-				
25	CLA	b	614	X	-	-	-				
25	CLA	b	615	X	-	-	-				
25	CLA	b	616	X	-	_	-				
25	CLA	с	502	X	-	_	-				
25	CLA	с	503	X	-	_	-				
25	CLA	с	504	X	-	_	-				
25	CLA	с	505	X	-	-	-				
25	CLA	с	506	Х	-	_	_				
25	CLA	с	507	X	-	_	-				
25	CLA	с	508	X	-	-	_				
25	CLA	С	509	X	-	-	_				
25	CLA	c	510	X	_	_	_				
$\frac{-5}{25}$	CLA	c	511	X	_	_	_				
25	CLA	c	512	X	_	_	_				
<u>4</u> 0	ULA	C	012		-	-	-				

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
25	CLA	с	513	Х	-	-	-
25	CLA	с	514	Х	-	-	-
25	CLA	d	401	Х	-	-	-
25	CLA	d	403	Х	-	-	-
25	CLA	d	404	Х	-	-	-

Continued from previous page...

2 Entry composition (i)

There are 38 unique types of molecules in this entry. The entry contains 54914 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Photosystem II protein D1 2.

Mol	Chain	Residues	Atoms				AltConf	Trace	
1	А	334	Total 2640	C 1728	N 431	O 466	${ m S}$ 15	2	0
1	a	334	Total 2640	C 1728	N 431	O 466	S 15	2	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	odelled Actual (Reference	
A	170	GLU	ASP	conflict	UNP P16033	
a	170	GLU	ASP	conflict	UNP P16033	

• Molecule 2 is a protein called Photosystem II CP47 reaction center protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	B	506	Total	С	Ν	0	\mathbf{S}	0	0
	000	3958	2584	662	699	13	0	Ū	
0	0 L	506	Total	С	Ν	0	\mathbf{S}	0	0
	500	3958	2584	662	699	13	U	U	

• Molecule 3 is a protein called Photosystem II CP43 reaction center protein.

Mol	Chain	Residues		At	AltConf	Trace				
3	С	C 450	Total	С	Ν	0	\mathbf{S}	0	0	
3 0	400	3493	2293	584	603	13	0	0		
2		450	Total	С	Ν	0	\mathbf{S}	0	0	
3	c	C 4	430	3493	2293	584	603	13	0	0

• Molecule 4 is a protein called Photosystem II D2 protein.

Mol	Chain	Residues		At	AltConf	Trace			
4	D	341	Total 2726	C 1807	N 443	0 464	S 12	0	0

Continued from previous page...

Mol	Chain	Residues		At	AltConf	Trace			
4	d	341	Total 2726	C 1807	N 443	0 464	S 12	0	0

• Molecule 5 is a protein called Cytochrome b559 subunit alpha.

Mol	Chain	Residues		At	oms	AltConf	Trace		
5	F	78	Total	С	Ν	0	S	0	0
5	5 E	10	645	419	104	121	1	0	0
5	0	78	Total	С	Ν	0	S	0	0
5	е	10	645	419	104	121	1	0	0

• Molecule 6 is a protein called Cytochrome b559 subunit beta.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
6	F	25	Total	С	Ν	Ο	S	0	0
0	Г	- 55	279	189	46	43	1	0	0
6	f	25	Total	С	Ν	Ο	S	0	0
0	1		279	189	46	43	1	0	0

• Molecule 7 is a protein called Photosystem II reaction center protein H.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace			
7	Ц	63	Total	С	Ν	0	S	0	0	
1 11	05	494	328	79	85	2	0	0		
7	h	63	Total	С	Ν	0	S	0	0	
(n	h 63	494	328	79	85	2	0	0	

• Molecule 8 is a protein called Photosystem II reaction center protein I.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
8	Т	37	Total	С	Ν	0	S	0	0
0	L	51	297	201	46	49	1	0	0
8	i	37	Total	С	Ν	Ο	\mathbf{S}	0	0
0	1	51	297	201	46	49	1	0	U

• Molecule 9 is a protein called Photosystem II reaction center protein J.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace			
0	т	20	Total	С	Ν	Ο	S	0	0	
9	J		279	188	43	46	2	0	0	
0	;	20	Total	С	Ν	Ο	S	0	0	
9	J	J 39	279	188	43	46	2	0	U	

• Molecule 10 is a protein called Photosystem II reaction center protein K.

Mol	Chain	Residues	Atoms	AltConf	Trace
10	K	37	Total C N O 299 210 42 47	0	0
10	k	37	Total C N O 299 210 42 47	0	0

• Molecule 11 is a protein called Photosystem II reaction center protein L.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace			
11	т	30	Total	С	Ν	Ο	\mathbf{S}	0	0	
		- 39	316	204	54	57	1	0	0	
11	1	20	Total	С	Ν	0	S	0	0	
	1	I	- 59	316	204	54	57	1	0	U

• Molecule 12 is a protein called Photosystem II reaction center protein M.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
19	М	21	Total	С	Ν	Ο	S	0	0
12	111	51	245	169	36	39	1	0	0
19	m	21	Total	С	Ν	Ο	S	0	0
	111	51	245	169	36	39	1	0	0

• Molecule 13 is a protein called Photosystem II manganese-stabilizing polypeptide.

Mol	Chain	Residues		At	AltConf	Trace				
12	0	243	Total	С	Ν	0	\mathbf{S}	0	0	
10		240	1873	1186	305	379	3	0	0	
12	0	242	Total	С	Ν	0	S	0	0	
10	0	240	1873	1186	305	379	3	0	0	

• Molecule 14 is a protein called Sll1638 protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
14	0	118	Total	С	Ν	Ο	S	0	0
14	14 Q	110	911	573	163	173	2	0	0
14	9	110	Total	С	Ν	0	\mathbf{S}	0	0
14	q	q 118	911	573	163	173	2	0	0

• Molecule 15 is a protein called Photosystem II protein Y.

Mol	Chain	Residues	Atoms			AltConf	Trace	
15	В	34	Total	С	Ν	0	0	0
10	п	- 54	258	170	45	43	0	0
15	r	34	Total	С	Ν	0	0	0
10	1	- 54	258	170	45	43	0	0

• Molecule 16 is a protein called Photosystem II reaction center protein T.

Mol	Chain	Residues	Atoms					AltConf	Trace
16	Т	30	Total	С	Ν	Ο	S	0	0
10	1 30	50	241	163	36	40	2	0	0
16	+	20	Total	С	Ν	Ο	S	0	0
10	t	30	241	163	36	40	2	0	0

• Molecule 17 is a protein called Photosystem II 12 kDa extrinsic protein.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
17	I	95	Total	С	Ν	Ο	0	0
11	0	95	740	461	123	156	0	0
17	11	05	Total	С	Ν	Ο	0	0
11	u	90	740	461	123	156	0	0

• Molecule 18 is a protein called Cytochrome c-550.

Mol	Chain	Residues	Atoms					AltConf	Trace
18	V	135	Total	С	Ν	0	S	0	0
18 V	v	155	1065	665	179	218	3	0	0
18	T.	135	Total	С	Ν	0	S	0	0
18	V	135	1065	665	179	218	3	0	0

• Molecule 19 is a protein called Photosystem II reaction center X protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	v	20	Total	С	Ν	Ο	\mathbf{S}	0	0
19	19 A	90	288	193	46	48	1	0	U
10	v	20	Total	С	Ν	Ο	S	0	0
19	х	x 38	288	193	46	48	1	0	0

• Molecule 20 is a protein called Photosystem II reaction center protein Ycf12.

Mol	Chain	Residues	Atoms			AltConf	Trace	
20	Y	32	Total 242	C 165	N 37	O 40	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms				AltConf	Trace
20	У	32	Total 242	C 165	N 37	O 40	0	0

• Molecule 21 is a protein called Photosystem II reaction center protein Z.

Mol	Chain	Residues	Atoms					AltConf	Trace
91	7	60	Total	С	Ν	Ο	\mathbf{S}	0	0
21		00	460	317	70	72	1	0	0
91	7	60	Total	С	Ν	0	S	0	0
21	Z	Z 00	460	317	70	72	1	0	0

• Molecule 22 is CA-MN4-O5 CLUSTER (three-letter code: OEX) (formula: CaMn₄O₅) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ator	ns		AltConf
22	А	1	Total	Ca	Mn	O F	0
			10 Total	$\frac{1}{C_2}$	$\frac{4}{Mn}$	$\frac{0}{0}$	
22	a	1	10001	1	4	5	0

• Molecule 23 is FE (II) ION (three-letter code: FE2) (formula: Fe).

Mol	Chain	Residues	Atoms	AltConf
23	А	1	Total Fe 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
23	a	1	Total Fe 1 1	0

• Molecule 24 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

Mol	Chain	Residues	Atoms	AltConf
24	А	2	Total Cl 2 2	0
24	a	2	Total Cl 2 2	0

• Molecule 25 is CHLOROPHYLL A (three-letter code: CLA) (formula: $C_{55}H_{72}MgN_4O_5$).

Mol	Chain	Residues		At	oms			AltConf
25	Δ	1	Total	С	Mg	Ν	0	0
20	A	1	65	55	1	4	5	0
25	Δ	1	Total	С	Mg	Ν	Ο	0
20	A	1	65	55	1	4	5	0
25	Δ	1	Total	С	Mg	Ν	0	0
20	A	1	60	50	1	4	5	0
25	Р	1	Total	С	Mg	Ν	0	0
20	D	1	45	35	1	4	5	0
25	Р	1	Total	С	Mg	Ν	Ο	0
20	D	1	65	55	1	4	5	0
25	D	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	U

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
25	D	1	Total	С	Mg	Ν	Ο	0
20	D	1	65	55	1	4	5	0
25	D	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
25	D	1	Total	С	Mg	Ν	0	0
20	D	1	60	50	1	4	5	0
25	Р	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
25	В	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
25	р	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
25	В	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
25	р	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
25	Р	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
25	D	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
25	Р	1	Total	С	Mg	Ν	Ο	0
20	D	1	65	55	1	4	5	0
25	Р	1	Total	С	Mg	Ν	0	0
2.0	D	1	65	55	1	4	5	0
25	Р	1	Total	С	Mg	Ν	0	0
20	D	1	60	50	1	4	5	0
25	С	1	Total	С	Mg	Ν	Ο	0
20	U	I	65	55	1	4	5	0
25	C	1	Total	С	Mg	Ν	Ο	0
20	U	I	65	55	1	4	5	0
25	C	1	Total	С	Mg	Ν	Ο	0
20	U	1	65	55	1	4	5	0
25	C	1	Total	С	Mg	Ν	Ο	0
20	0	Ĩ	65	55	1	4	5	0
25	C	1	Total	С	Mg	Ν	Ο	0
		1	55	45	1	4	5	0
25	C	1	Total	\mathbf{C}	Mg	Ν	0	0
		L	65	55	1	4	5	0
25	С	1	Total	\mathbf{C}	Mg	Ν	0	0
		1	65	55	1	4	5	0
25	C	1	Total	$\overline{\mathbf{C}}$	Mg	N	0	0
20		L	65	55	1	4	5	U

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
25	C	1	Total	С	Mg	Ν	0	0
20	U	1	65	55	1	4	5	0
25	C	1	Total	С	Mg	Ν	Ο	0
20	U	1	65	55	1	4	5	0
25	C	1	Total	С	Mg	Ν	Ο	0
20	U	1	65	55	1	4	5	0
25	C	1	Total	С	Mg	Ν	Ο	0
20	U	1	50	40	1	4	5	0
25	C	1	Total	С	Mg	Ν	0	0
20	U	1	65	55	1	4	5	0
25	D	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
25	D	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
25	D	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
25	_	1	Total	С	Mg	Ν	0	0
20	а	1	65	55	1	4	5	0
05		1	Total	С	Mg	Ν	0	0
25	a	1	65	55	1	4	5	0
05		1	Total	С	Mg	Ν	0	0
25	a	1	60	50	1	4	5	0
05	1	1	Total	С	Mg	Ν	0	0
20	d	1	45	35	1	4	5	0
25	1_	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
25	h	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
25	h	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
25	h	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
25	h	1	Total	С	Mg	Ν	0	0
20	D	1	60	50	1	4	5	0
25	h	1	Total	С	Mg	Ν	Ο	0
20	D	1	65	55	1	4	5	0
25	h	1	Total	С	Mg	Ν	0	0
20	U	L	65	55	1	4	5	U
25	h	1	Total	С	Mg	Ν	Ο	0
20	U	1	65	55	1	4	5	U
25	h	1	Total	С	Mg	Ν	Ο	0
20	U	1	65	55	1	4	5	U

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
25	1_	1	Total	С	Mg	Ν	Ο	0
20	d	1	65	55	1	4	5	0
25	h	1	Total	С	Mg	Ν	0	0
20	d	1	65	55	1	4	5	0
25	1_	1	Total	С	Mg	Ν	Ο	0
20	d	1	65	55	1	4	5	0
25	1_	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
25	h	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
25	h	1	Total	С	Mg	Ν	0	0
20	D	1	60	50	1	4	5	0
25		1	Total	С	Mg	Ν	0	0
20	С	1	65	55	1	4	5	0
25		1	Total	С	Mg	Ν	Ο	0
20	С	1	65	55	1	4	5	0
25		1	Total	С	Mg	Ν	Ο	0
20	С	1	65	55	1	4	5	0
25	_	1	Total	С	Mg	Ν	Ο	0
20	С	1	65	55	1	4	5	0
25		1	Total	С	Mg	Ν	Ο	0
20	С	1	55	45	1	4	5	0
25		1	Total	С	Mg	Ν	0	0
20	С	1	65	55	1	4	5	0
25		1	Total	С	Mg	Ν	0	0
20	С	1	65	55	1	4	5	0
25		1	Total	С	Mg	Ν	0	0
20	C	1	65	55	1	4	5	0
25	0	1	Total	С	Mg	Ν	0	0
20	C	1	65	55	1	4	5	0
25	0	1	Total	С	Mg	Ν	Ο	0
20	C	1	65	55	1	4	5	0
25	0	1	Total	С	Mg	Ν	Ο	0
20	C	1	65	55	1	4	5	0
25	0	1	Total	С	Mg	Ν	Ο	0
20	U	1	50	40	1	4	5	0
25	C	1	Total	С	Mg	Ν	0	0
		1	65	55	1	4	5	0
25	d	1	Total	С	Mg	Ν	0	0
	u	1	65	55	1	4	5	0
25	d	1	Total	С	Mg	Ν	0	Ο
20	u	L	65	55	1	4	5	0

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
25	d	1	Total 65	C 55	Mg 1	N 4	O 5	0

- Molecule 26 is PHEOPHYTIN A (three-letter code: PHO) (formula: $\mathrm{C}_{55}\mathrm{H}_{74}\mathrm{N}_4\mathrm{O}_5).$

РНО

Mol	Chain	Residues	Atoms	AltConf
26	Λ	1	Total C N O	0
20	A	1	64 55 4 5	0
26	Л	1	Total C N O	0
20	D	1	64 55 4 5	0
26	9	1	Total C N O	0
20	a	1	64 55 4 5	0
26	d	1	Total C N O	0
20	u		64 55 4 5	U

• Molecule 27 is BETA-CAROTENE (three-letter code: BCR) (formula: $C_{40}H_{56}$).

Mol	Chain	Residues	Atoms	AltConf
27	А	1	$\begin{array}{cc} \text{Total} & \text{C} \\ 40 & 40 \end{array}$	0
27	В	1	$\begin{array}{cc} \text{Total} & \text{C} \\ 40 & 40 \end{array}$	0
27	В	1	Total C 40 40	0
27	В	1	Total C 40 40	0
27	С	1	Total C 40 40	0
27	F	1	Total C 40 40	0
27	K	1	Total C 40 40	0
27	K	1	Total C 40 40	0
27	Ζ	1	Total C 40 40	0
27	a	1	Total C 40 40	0
27	b	1	Total C 40 40	0
27	b	1	Total C 40 40	0
27	b	1	Total C 40 40	0
27	с	1	Total C 40 40	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
27	f	1	Total C 40 40	0
27	k	1	Total C 40 40	0
27	k	1	Total C 40 40	0
27	Z	1	$\begin{array}{cc} \text{Total} & \text{C} \\ 40 & 40 \end{array}$	0

• Molecule 28 is 1,2-DISTEAROYL-MONOGALACTOSYL-DIGLYCERIDE (three-letter code: LMG) (formula: $C_{45}H_{86}O_{10}$).

Mol	Chain	Residues	Atoms	AltConf
28	А	1	Total C O 51 41 10	0
28	А	1	Total C O 36 26 10	0
28	В	1	Total C O 51 41 10	0
28	С	1	Total C O 51 41 10	0
28	С	1	Total C O 49 39 10	0
28	D	1	Total C O 44 34 10	0
28	Н	1	Total C O 47 37 10	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
28	a	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 51 & 41 & 10 \end{array}$	0
	0	1	J14110TotalCO	0
	a	I	36 26 10	0
28	b	1	Total C O 51 41 10	0
28	с	1	Total C O 51 41 10	0
28	с	1	Total C O 49 39 10	0
28	d	1	Total C O 44 34 10	0
28	h	1	Total C O 47 37 10	0

• Molecule 29 is 2,3-DIMETHYL-5-(3,7,11,15,19,23,27,31,35-NONAMETHYL-2,6,10,14,18 ,22,26,30,34-HEXATRIACONTANONAENYL-2,5-CYCLOHEXADIENE-1,4-DIONE-2, 3-DIMETHYL-5-SOLANESYL-1,4-BENZOQUINONE (three-letter code: PL9) (formula: $C_{53}H_{80}O_2$).

Mol	Chain	Residues	Atoms	AltConf
29	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 55 & 53 & 2 \end{array}$	0
29	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 55 & 53 & 2 \end{array}$	0
29	a	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 55 & 53 & 2 \end{array}$	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
29	d	1	Total C O 55 53 2	0

• Molecule 30 is 1,2-DI-O-ACYL-3-O-[6-DEOXY-6-SULFO-ALPHA-D-GLUCOPYRANOSY L]-SN-GLYCEROL (three-letter code: SQD) (formula: $C_{41}H_{78}O_{12}S$).

Mol	Chain	Residues	Atoms	AltConf
30	Δ	1	Total C O S	0
	11	I	54 41 12 1	0
30	А	1	Total C O S	0
		1	48 35 12 1	0
30	В	1	Total C O S	0
	D	1	54 41 12 1	0
30	С	1	Total C O S	0
		±	54 41 12 1	Ŭ
30	F	1	Total C O S	0
	-	-	34 21 12 1	
30	Н	1	Total C O S	0
		-	54 41 12 1	
30	K	1	Total C O	0
		-	41 32 9	Ŭ
30	a	1	Total C O S	0
		-	54 41 12 1	Ŭ
30	a	1	Total C O S	0
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*	48 35 12 1	
30	h	1	Total C O S	0
	×	*	54 $41$ $12$ $1$	Ŭ



Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
20	0	1	Total C O S	0
30	C	1	54 $41$ $12$ $1$	0
30	f	1	Total C O S	0
30	1	1	34 21 12 1	0
30	h	1	Total C O S	0
- 50	11	1	54 $41$ $12$ $1$	0
30	ŀ	1	Total C O	0
- 50	K	1	41 32 9	0

• Molecule 31 is DODECYL-BETA-D-MALTOSIDE (three-letter code: LMT) (formula:  $C_{24}H_{46}O_{11}$ ).



Mol	Chain	Residues	Atoms	AltConf
31	А	1	Total C O 35 24 11	0
31	А	1	Total         C         O           24         18         6	0
31	В	1	Total         C         O           35         24         11	0
31	В	1	Total         C         O           24         18         6	0
31	В	1	Total         C         O           35         24         11	0
31	В	1	Total         C         O           24         18         6	0
31	В	1	Total         C         O           35         24         11	0



Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
31	С	1	Total C O	0
01	0	1	24 18 6	0
31	С	1	Total C O	0
		_	35 24 11	
31	С	1	Total C O	0
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
31	D	1	$\begin{array}{cccc} 10tal & C & O \\ 24 & 18 & 6 \end{array}$	0
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
31	D	1	35 24 11	0
			Total C O	
31	D	1	35  24  11	0
0.1	D	1	Total C O	0
31	E	1	22 16 6	0
21	F	1	Total C O	0
51	E	L	35  24  11	0
31	F	1	Total C O	0
	1	1	35 24 11	0
31	Н	1	Total C O	0
		-	24 18 6	
31	Ι	1	Total C O	0
			$\frac{24}{18}$ 18 6	
31	Ι	1	Total C U	0
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
31	Ι	1	35 24 11	0
			$\begin{array}{c c} 55 & 24 & 11 \\ \hline Total & C & O \\ \end{array}$	
31	Ι	1	22  16  6	0
			Total C O	
31	J	1	24 18 6	0
21	V	1	Total C O	0
51	ñ	L	35  24  11	0
21	М	1	Total C O	0
51	101	1	35  24  11	0
31	М	1	Total C O	0
		-	24 18 6	
31	Т	1	Total C O	0
31	Х	1	Iotal C O	0
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
31	Х	1	$\begin{array}{ccc} 101a1 & \bigcirc & \bigcirc \\ 02 & 17 & \vDash \end{array}$	0
		22 11 J		



Continued from previous page...

31       X       1       Total       C       0         31       X       1       19       13       6       0         31       X       1       Total       C       0       0         31       Y       1       Total       C       0       0         31       a       1       Total       C       0       0         31       a       1       Total       C       0       0         31       a       1       Total       C       0       0         31       b       1       Total       C       0       0         31       c       1       Total       C	Mol	Chain	Residues	Atoms	AltConf
31       X       1       22       16       6       0         31       X       1       Total       C       O       0         31       a       1       Total       C       O       0         31       b       1       Total       C       O       0         31	21	v	1	Total C O	0
31       X       1       Total       C       0         31       X       1       Total       C       0         31       X       1       Total       C       0         31       Y       1       Total       C       0         31       a       1       Total       C       0         31       b       1       Total       C       0         31       c       1       Total       C       0 <t< td=""><td>51</td><td>Λ</td><td>L</td><td>22  16  6</td><td>0</td></t<>	51	Λ	L	22  16  6	0
31 $X$ $1$ $19$ $13$ $6$ $0$ $31$ $X$ $1$ $19$ $13$ $6$ $0$ $31$ $Y$ $1$ $21$ $15$ $6$ $0$ $31$ $a$ $1$ $7total$ $C$ $0$ $0$ $31$ $a$ $1$ $7total$ $C$ $0$ $31$ $a$ $1$ $7total$ $C$ $0$ $31$ $a$ $1$ $7total$ $C$ $0$ $31$ $b$ $1$ $7total$ $C$ $0$ $31$ $c$ $1$ $7total$ $C$ $0$	31	x	1	Total C O	0
31       X       1       Total       C       0         31       Y       1       Total       C       0         31       a       1       Total       C       0         31       b       1       Total       C       0       0         31       c       1       Total       C       0       0         31       c       1       Total       C	01		T	19 13 6	0
N       1       19       13       6       0         31       Y       1       Total       C       0         31       a       1       Total       C       0         31       b       1       Total       C       0         31       c       1       Total       C       0         31       c       1       Total       C       0         31       c       1       Total       C       0         3	31	X	1	Total C O	0
31       Y       1       Total       C       0         31       a       1 $21$ 15       6       0         31       a       1 $70tal$ C       0       0         31       a       1 $70tal$ C       0       0         31       a       1 $70tal$ C       0       0         31       b       1 $70tal$ C       0       0         31       c       1 $70tal$ C       0       0         31       c       1 $70tal$ C       0       0         31 <td></td> <td></td> <td>-</td> <td>19 13 6</td> <td></td>			-	19 13 6	
21         15         6           31         a         1         Total         C         O           31         b         1         Total         C         O           31         c         1         Total         C         O           31         c         1         Total         C         O           31         c         1         Total         C         O           31	31	Y	1	Total C O	0
31       a       1       Iotal C O O 24 11 0       0         31       a       1       Total C O 24 18 6       0         31       b       1       Total C O 24 18 6       0         31       b       1       Total C O 24 18 6       0         31       b       1       Total C O 24 18 6       0         31       b       1       Total C O 24 18 6       0         31       b       1       Total C O 35 24 11       0         31       b       1       Total C O 35 24 11       0         31       b       1       Total C O 20 35 24 11       0         31       b       1       Total C O 35 24 11       0         31       b       1       Total C O 35 24 11       0         31       b       1       Total C O 35 24 11       0         31       c       1       Total C O 35 24 11       0         31       c       1       Total C O 35 24 11       0         31       d       1       Total C O 35 24 11       0         31       d       1       Total C O 35 24 11       0         31       d       1       Total C O 3				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
31         a         1         Total         C         O           31         a         1         Total         C         O         0           31         b         1         Total         C         O         0           31         c         1         Total         C         O         0           31         c         1         Total         C         O         0           31         c         1         Total         C         O         0	31	a	1	Total C O	0
31       a       1       Iotal C O O O O O O O O O O O O O O O O O O				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	a	1	10tal C O	0
31       b       1       Iteration C = 0       0         31       b       1       Total = C = 0       0         31       b       1       Total = C = 0       0         31       b       1       Total = C = 0       0         31       b       1       Total = C = 0       0         31       b       1       Total = C = 0       0         31       b       1       Total = C = 0       0         31       b       1       Total = C = 0       0         31       b       1       Total = C = 0       0         31       c       1       Total = C = 0       0         31       c       1       Total = C = 0       0         31       c       1       Total = C = 0       0         31       c       1       Total = C = 0       0         31       d       1       Total = C = 0       0         31       d       1       Total = C = 0       0         31       d       1       Total = C = 0       0         31       d       1       Total = C = 0       0         31       e <td></td> <td></td> <td></td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td></td>				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
31         b         1         Total         C         0           31         b         1 $24$ 18         6         0           31         b         1 $35$ $24$ 11         0           31         b         1 $35$ $24$ 11         0           31         b         1 $70tal$ C         0         0           31         b         1 $70tal$ C         0         0           31         b         1 $70tal$ C         0         0           31         c         1 $70tal$ C         0         0           31         c         1 $70tal$ C         0         0           31         c         1 $70tal$ C         0         0           31         d         1 $70tal$ C         0         0           31         d         1 $70tal$ C         0         0           31         d         1 $70tal$ C         0         0 <td>31</td> <td>b</td> <td>1</td> <td>$35 \ 24 \ 11$</td> <td>0</td>	31	b	1	$35 \ 24 \ 11$	0
31       b       1       10tal       C       0         31       b       1       Total       C       0         31       c       1       Total       C       0         31       d       1       Total       C       0         31       d       1       Total       C       0       0         31       d       1       Total       C       0       0         31       d       1       Total       C				Total C O	
31         b         1         Total         C         0           31         b         1 $35$ $24$ $11$ 0           31         b         1 $24$ $18$ 6         0           31         b         1 $24$ $18$ 6         0           31         b         1 $70tal$ C         0         0           31         b         1 $70tal$ C         0         0           31         c         1 $70tal$ C         0         0           31         d         1 $70tal$ C         0         0           31         d         1 $70tal$ C         0         0           31         d         1 $70tal$ C         0         0	31	b	1	24 18 6	0
31       b       1 $35$ $24$ $11$ $0$ 31       b       1 $35$ $24$ $11$ $0$ 31       b       1 $24$ $18$ $6$ $0$ 31       b       1 $24$ $18$ $6$ $0$ 31       b       1 $35$ $24$ $11$ $0$ $31$ c       1 $35$ $24$ $11$ $0$ $31$ c       1 $70tal$ C $0$ $0$ $31$ c       1 $70tal$ C $0$ $0$ $31$ c       1 $70tal$ C $0$ $0$ $31$ d       1 $70tal$ C $0$ $0$ $31$ e       1 $70$				Total C O	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	b	1	35 24 11	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_		Total C O	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	b	1	24 18 6	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		,		Total C O	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	b	1	35  24  11	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	91		1	Total C O	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	С	1	24 18 6	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	91		1	Total C O	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	С	L	35  24  11	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	C	1	Total C O	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 51	C	I	21  15  6	0
of       d       1 $24$ 18       6       0         31       d       1       Total       C       O       0         31       e       1       Total       C       O       0         31       e       1       Total       C       O       0         31       e       1       Total       C       O       0         31       f       1       Total       C       O       0         31       f       1       Total       C       O       0         31       f       1       Total       C       O       0         31       h       1       Total       C       O       0         31       h       1       Total       C       O       0	31	d	1	Total C O	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	24 18 6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	d	1	Total C O	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				35 24 11	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	d	1	Total C O	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31	е	1	Total C U	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	е	1	$35 \ 94 \ 11$	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	f	1	35 9/ 11	0
$\begin{vmatrix} 31 \\ 1 \end{vmatrix}$ h $\begin{vmatrix} 1 \\ 24 \\ 18 \\ 6 \end{vmatrix}$ 0				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	31	h	1	24 18 6	0



Mol	Chain	Residues	Atoms	AltConf
31	i	1	Total         C         O           24         18         6	0
31	i	1	Total         C         O           24         18         6	0
31	i	1	Total         C         O           35         24         11	0
31	i	1	Total         C         O           22         16         6	0
31	j	1	Total         C         O           24         18         6	0
31	k	1	Total         C         O           35         24         11	0
31	m	1	Total         C         O           35         24         11	0
31	m	1	Total         C         O           24         18         6	0
31	t	1	Total         C         O           24         18         6	0
31	х	1	Total         C         O           24         18         6	0
31	x	1	Total         C         O           22         17         5	0
31	x	1	Total         C         O           22         16         6	0
31	x	1	Total         C         O           19         13         6	0
31	x	1	Total         C         O           19         13         6	0
31	У	1	Total         C         O           21         15         6	0

Continued from previous page...

• Molecule 32 is BICARBONATE ION (three-letter code: BCT) (formula:  $CHO_3$ ).





Mol	Chain	Residues	Atoms	AltConf
32	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 1 & 3 \end{array}$	0
32	a	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 1 & 3 \end{array}$	0

• Molecule 33 is 1,2-DIPALMITOYL-PHOSPHATIDYL-GLYCEROLE (three-letter code: LHG) (formula:  $C_{38}H_{75}O_{10}P$ ).



Mol	Chain	Residues	Atoms				AltConf
33	В	1	Total 49	C 38	O 10	Р 1	0



Mol	Chain	Residues	L A	Aton	ıs		AltConf
	р	1	Total	С	Ο	Р	0
- 33	В	1	49	38	10	1	0
22	р	1	Total	С	Ο	Р	0
- 33	D	1	49	38	10	1	0
99	р	1	Total	С	Ο	Р	0
55	D	L	49	38	10	1	0
22	Л	1	Total	С	Ο	Р	0
- 55	D	T	49	38	10	1	0
22	F	1	Total	С	Ο	Р	0
- 55	Ľ	T	40	29	10	1	0
33	7	1	Total	С	Ο	Р	0
- 55		T	36	27	8	1	0
33	h	1	Total	С	Ο	Р	0
- 00	U	I	49	38	10	1	0
33	h	1	Total	С	Ο	Р	0
00	D	1	49	38	10	1	0
33	d	1	Total	С	Ο	Р	0
- 00	u	I	49	38	10	1	0
33	d	1	Total	С	Ο	Р	0
- 00	u	I	49	38	10	1	0
33	d	1	Total	С	Ο	Р	0
	u	1	49	38	10	1	0
33	33 0	1	Total	С	Ο	Р	0
	C .	1	40	29	10	1	0
33	Z	1	Total	С	Ο	Р	0
	2	1 I	36	27	8	1	0

Continued from previous page...

• Molecule 34 is DIGALACTOSYL DIACYL GLYCEROL (DGDG) (three-letter code: DGD) (formula:  $C_{51}H_{96}O_{15}$ ).





Mol	Chain	Residues	Atoms	AltConf
34	С	1	Total         C         O           62         47         15	0
34	С	1	Total         C         O           62         47         15	0
34	С	1	Total         C         O           62         47         15	0
34	Н	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 62 & 47 & 15 \end{array}$	0
34	с	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 62 & 47 & 15 \end{array}$	0
34	с	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 62 & 47 & 15 \end{array}$	0
34	с	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 62 & 47 & 15 \end{array}$	0
34	h	1	Total         C         O           62         47         15	0

• Molecule 35 is PROTOPORPHYRIN IX CONTAINING FE (three-letter code: HEM) (formula:  $C_{34}H_{32}FeN_4O_4$ ).





Mol	Chain	Residues	Atoms				AltConf			
25	Ē	1	Total	С	Fe	Ν	0	0		
- 55	Ľ	1	43	34	1	4	4	0		
25	35 V	1	Total	С	Fe	Ν	0	0		
- 55			43	34	1	4	4	0		
25	0	1	Total	С	Fe	Ν	0	0		
- 55	е	е	e I	43	34	1	4	4	0	
35			Total	С	Fe	Ν	0	0		
	v	L	43	34	1	4	4	0		

• Molecule 36 is (3R)-beta,<br/>beta-caroten-3-ol (three-letter code: RRX) (formula:  $\rm C_{40}H_{56}O).$ 





Mol	Chain	Residues	Atoms	AltConf
36	Н	1	Total         C         O           41         40         1	0
36	h	1	Total         C         O           41         40         1	0

• Molecule 37 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	Atoms	AltConf
37	K	1	Total Ca 1 1	0
37	U	1	Total Ca 1 1	0
37	V	1	Total Ca 1 1	0
37	k	1	Total Ca 1 1	0
37	u	1	Total Ca 1 1	0
37	V	1	Total Ca 1 1	0

• Molecule 38 is water.

Mol	Chain	Residues	Atoms	AltConf
38	А	127	Total O 127 127	0
38	В	127	Total O 127 127	0
38	С	107	Total O 107 107	0
38	D	132	Total O 132 132	0
38	Ε	8	Total O 8 8	0
38	F	4	Total O 4 4	0
38	Н	17	Total O 17 17	0
38	Ι	1	Total O 1 1	0
38	J	2	Total O 2 2	0
38	L	14	Total         O           14         14	0



Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
38	М	6	Total O 6 6	0
38	0	37	$\begin{array}{ccc} \text{Total} & \text{O} \\ 37 & 37 \end{array}$	0
38	Т	12	Total O 12 12	0
38	U	21	Total O 21 21	0
38	V	17	Total O 17 17	0
38	Х	3	Total O 3 3	0
38	a	127	Total O 127 127	0
38	b	127	Total O 127 127	0
38	с	107	Total O 107 107	0
38	d	132	Total O 132 132	0
38	е	8	Total O 8 8	0
38	f	4	Total O 4 4	0
38	h	17	Total O 17 17	0
38	i	1	Total O 1 1	0
38	j	2	Total O 2 2	0
38	1	14	Total         O           14         14	0
38	m	6	Total O 6 6	0
38	0	37	Total         O           37         37	0
38	t	12	Total         O           12         12	0
38	u	21	Total         O           21         21	0
38	V	17	Total         O           17         17	0



Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
38	х	3	Total O 3 3	0



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Photosystem II protein D1 2













• Molecule 9: Photosystem II reaction center protein J



18% Chain j: 100%			
M1 F2 F4 G5 R5 R5 M39 M39			
• Molecule 10: Photosystem II reaction center protein K			
Chain K: 76%	7%	1	8%
• Molecule 10: Photosystem II reaction center protein K			
Chain k: 76%	7%	1	8%
MET THR THR TTR LEU LEU LEU LEO T20 LEO T20 LEO T20 LEO			
• Molecule 11: Photosystem II reaction center protein L			
Chain L: 97%			·
• Molecule 11: Photosystem II reaction center protein L			
Chain l: 97%			·
• Molecule 12: Photosystem II reaction center protein M			
Chain M: 83%		6%	11%
M1 F8 K31 GLN GLN SER CLU SER			
• Molecule 12: Photosystem II reaction center protein M			
Chain m: 83%		6%	11%
R CILI E CILI			



• Molecule 13: Photosy	stem II man	ganese-stabilizi	ng polypeptide			
Chain O:		86%		• 11%		
MET PHE PHE ARG PRO PRO PRO PRO CO SER VAL LEU VAL CVS PHE CVS PHE	THR PHE LEU TYR SER SER SER ALA	PHE ALA VALA B30 B32 Q33 C B32 D38	C48 E50 S52 S53 F54	R56 G57 T58 159 V61 E60 V61 F63	N64	
N87 K88 R89 R91 A89 K91 A118 K125 E159	C161 F162 T163 S164 S167 S167 S167	D187 R211 + S234 + E256 + T272 +	ASP VAL			
• Molecule 13: Photosy	stem II man	ganese-stabilizi	ng polypeptide			
Chain o:		86%		• 11%		
MET ARG PHE ARG ARG ARG SER VAL LEU LEU VAL LEU SER CYS CYS CYS	THR PHE LEU TYR SER SER SER SER	PHE ALA VALA B30 K31 G33 G32 G33 C32 G33 C32 C33 C33 C33 C33 C33 C33 C33 C33 C	C48 E50 S52 S53 F54 T55	R56 G57 158 159 662 662 P63	n64	
N87 K88 R88 R89 R90 K96 A91 A96 A118 A118 C119 E155 E155	P160 F161 F162 S164 S164	21 66 D187 2111 2334 ← 2334 ←	ASP VAL			
• Molecule 14: Sll1638	protein					
Chain Q:	54% 77%	%	·	21%		
MET SER ARG ARG ARG ELEU LEU LEU LEU LEU LEU VAL VAL VAL VAL	LEU VAL SER SER SER PRO GLN	VAL GLU 129 P30 733 733 733 733 733 735	E36 K37 138 440 440 L41 Q42 V43 V44	V45 N46 P47 A51 A51 R52 D53	E56 KS7 R55 L59 Q60 C61 L62 L62 I 63	
A64 D65 Q66 N67 W68 W68 L87 C88 L87 C88 L87 C88 C88 C88 C88 C88 S91 S92	L93 L94 K96 D97 Q98 D99	K100 A101 K102 T103 L104 A105 K106 E107	R114 4 A117 4 A118 4 A118 4 A119 4 K120 4 B121 4 R122 4 R122 4	G124 G125 G126 Q126 A127 K128 T129 Q130	Y131	r 142 L142 N143 L144
L145 P146 GLN ALA SER						
• Molecule 14: Sll1638	protein					
Chain q:	53% 77%	, o		21%		
		******		•••	*** ****	
MET SER ARG ARG ARG ARG ARG ARG ARG ARG ARG AR	VAL LEU VAL SER CYS SER SER SER PRO	VAL GLU 129 730 731 732 733 834 834	E36 K37 138 A39 Q40 Q42 Q42 Q42 V43 Y44	V45 N46 P47 A51 A51 R52 R52 D53	E56 K57 R58 L59 Q60 Q61 L62 L62 L63	
A64 D65 Q66 M67 W68 W68 M86 L87 C81 S91 S91 S92 S92 C93	L94 P95 K96 Q98 C199 K100	A101 K102 L103 A105 A105 K106 E107 B114	A117 A118 A118 A119 K120 B121 R122 N122	5125 5125 6126 A127 K128 (1129 (1129 (1130) Y131	0132 6133 A134 L135 A136 F135 F138 F138 F138 F140 F140 F140	L144 L144 L145




• Molecule 15: Photosystem II protein Y 33% Chain R: 85% 13% q32 D33 V34 L35 GLY ARG GLU ALA A27 128 • Molecule 15: Photosystem II protein Y 33% Chain r: 85% 13% Q32 D33 V34 V34 GLY GLY GLV ALA A27 128 R29 • Molecule 16: Photosystem II reaction center protein T Chain T: 94% . . • Molecule 16: Photosystem II reaction center protein T Chain t: 94% • • • Molecule 17: Photosystem II 12 kDa extrinsic protein 13% Chain U: 27% 69% • Molecule 17: Photosystem II 12 kDa extrinsic protein 13% Chain u: 69% 27%









• Molecule 21: Photosystem II reaction center protein Z



• Molecule 21: Photosystem II reaction center protein Z





# 4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	129229	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	38	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	2000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \times 4k)$	Depositor
Maximum map value	0.070	Depositor
Minimum map value	-0.026	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.001	Depositor
Recommended contour level	0.00432	Depositor
Map size (Å)	297.0, 297.0, 297.0	wwPDB
Map dimensions	360, 360, 360	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.825,  0.825,  0.825	Depositor



# 5 Model quality (i)

# 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: LMG, SQD, PL9, CLA, FE2, OEX, FME, BCT, HEM, DGD, LHG, RRX, CA, PHO, BCR, LMT, CL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	В	ond angles
WIOI	Ullalli	RMSZ	# Z  > 5	RMSZ	# Z  > 5
1	А	0.42	0/2724	0.62	2/3710~(0.1%)
1	a	0.42	0/2724	0.62	2/3710~(0.1%)
2	В	0.37	0/4091	0.57	1/5568~(0.0%)
2	b	0.38	0/4091	0.57	1/5568~(0.0%)
3	С	0.38	0/3608	0.60	1/4912~(0.0%)
3	с	0.38	0/3608	0.60	1/4912~(0.0%)
4	D	0.39	0/2823	0.60	2/3843~(0.1%)
4	d	0.39	0/2823	0.60	2/3843~(0.1%)
5	Е	0.40	0/664	0.71	2/906~(0.2%)
5	е	0.40	0/664	0.71	2/906~(0.2%)
6	F	0.38	0/288	0.59	0/393
6	f	0.38	0/288	0.59	0/393
7	Н	0.34	0/506	0.58	0/687
7	h	0.34	0/506	0.58	0/687
8	Ι	0.33	0/294	0.56	0/397
8	i	0.33	0/294	0.56	0/397
9	J	0.30	0/278	0.55	0/375
9	j	0.30	0/278	0.55	0/375
10	Κ	0.41	0/310	0.94	3/424~(0.7%)
10	k	0.42	0/310	0.94	3/424~(0.7%)
11	L	0.40	0/322	0.53	0/435
11	1	0.40	0/322	0.53	0/435
12	М	0.35	0/239	0.67	1/325~(0.3%)
12	m	0.35	0/239	0.67	1/325~(0.3%)
13	0	0.35	0/1911	0.64	$1/\overline{2590}~(0.0\%)$
13	0	0.35	0/1911	0.64	$1/\overline{2590}~(0.0\%)$
14	Q	0.28	0/925	0.54	$1/\overline{1250}~(0.1\%)$
14	q	0.28	0/925	0.54	1/1250~(0.1%)
15	R	0.27	0/262	0.59	0/361
15	r	0.27	0/262	0.59	0/361
16	Т	0.34	0/236	0.48	0/321



Mol Chain		Bond	Bond lengths		ond angles
	Unam	RMSZ	# Z  > 5	RMSZ	# Z  > 5
16	t	0.34	0/236	0.48	0/321
17	U	0.32	0/751	0.58	0/1018
17	u	0.32	0/751	0.58	0/1018
18	V	0.33	0/1086	0.60	1/1476~(0.1%)
18	V	0.34	0/1086	0.60	1/1476~(0.1%)
19	Х	0.32	0/293	0.59	0/399
19	Х	0.31	0/293	0.59	0/399
20	Y	0.37	0/247	0.60	0/335
20	у	0.37	0/247	0.60	0/335
21	Ζ	0.36	0/472	0.48	0/649
21	Z	0.36	0/472	0.48	0/649
All	All	0.37	0/44660	0.60	30/60748~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	2
1	a	0	2
All	All	0	4

There are no bond length outliers.

The worst 5 of 30 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
10	k	29	LEU	CA-CB-CG	7.40	132.33	115.30
10	K	29	LEU	CA-CB-CG	7.40	132.31	115.30
5	е	12	ASP	CB-CG-OD1	7.37	124.93	118.30
5	Е	12	ASP	CB-CG-OD1	7.36	124.93	118.30
1	А	288	MET	CG-SD-CE	6.74	110.99	100.20

There are no chirality outliers.

All (4) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	342	ASP	Mainchain
1	a	342	ASP	Mainchain



# 5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	333/360~(92%)	327~(98%)	6 (2%)	0	100	100
1	a	333/360~(92%)	327 (98%)	6 (2%)	0	100	100
2	В	504/507~(99%)	497 (99%)	7 (1%)	0	100	100
2	b	504/507~(99%)	497 (99%)	7 (1%)	0	100	100
3	С	448/460 (97%)	439 (98%)	9 (2%)	0	100	100
3	с	448/460~(97%)	439 (98%)	9 (2%)	0	100	100
4	D	339/352~(96%)	332 (98%)	7 (2%)	0	100	100
4	d	339/352~(96%)	332 (98%)	7 (2%)	0	100	100
5	Е	76/81~(94%)	74 (97%)	2 (3%)	0	100	100
5	е	76/81~(94%)	74 (97%)	2 (3%)	0	100	100
6	F	33/44~(75%)	33 (100%)	0	0	100	100
6	f	33/44~(75%)	33 (100%)	0	0	100	100
7	Н	61/64~(95%)	59 (97%)	2 (3%)	0	100	100
7	h	61/64~(95%)	59 (97%)	2 (3%)	0	100	100
8	Ι	35/38~(92%)	33 (94%)	2 (6%)	0	100	100
8	i	35/38~(92%)	33 (94%)	2 (6%)	0	100	100
9	J	37/39~(95%)	37 (100%)	0	0	100	100
9	j	37/39~(95%)	37 (100%)	0	0	100	100
10	K	35/45~(78%)	34 (97%)	1 (3%)	0	100	100
10	k	35/45~(78%)	34 (97%)	1 (3%)	0	100	100
11	L	37/39~(95%)	37 (100%)	0	0	100	100



Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
11	1	37/39~(95%)	37 (100%)	0	0	100	100
12	М	29/35~(83%)	28~(97%)	1 (3%)	0	100	100
12	m	29/35~(83%)	28 (97%)	1 (3%)	0	100	100
13	Ο	241/274 (88%)	225 (93%)	15 (6%)	1 (0%)	30	26
13	О	241/274 (88%)	225~(93%)	15 (6%)	1 (0%)	30	26
14	Q	116/149~(78%)	112 (97%)	4 (3%)	0	100	100
14	q	116/149~(78%)	112 (97%)	4 (3%)	0	100	100
15	R	32/39~(82%)	32 (100%)	0	0	100	100
15	r	32/39~(82%)	32 (100%)	0	0	100	100
16	Т	28/31~(90%)	28 (100%)	0	0	100	100
16	t	28/31~(90%)	28 (100%)	0	0	100	100
17	U	93/131~(71%)	91 (98%)	2 (2%)	0	100	100
17	u	93/131~(71%)	91 (98%)	2 (2%)	0	100	100
18	V	133/160~(83%)	128 (96%)	5 (4%)	0	100	100
18	v	133/160 (83%)	128 (96%)	5 (4%)	0	100	100
19	Х	36/39~(92%)	36 (100%)	0	0	100	100
19	x	36/39~(92%)	36 (100%)	0	0	100	100
20	Y	30/39~(77%)	30 (100%)	0	0	100	100
20	У	30/39~(77%)	30 (100%)	0	0	100	100
21	Z	58/62~(94%)	58 (100%)	0	0	100	100
21	Z	58/62~(94%)	58 (100%)	0	0	100	100
All	All	5468/5976~(92%)	5340 (98%)	126 (2%)	2(0%)	100	100

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
13	0	32	SER
13	0	32	SER

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.



Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	274/293~(94%)	272~(99%)	2(1%)	81	85
1	a	274/293~(94%)	272~(99%)	2(1%)	81	85
2	В	403/404~(100%)	395~(98%)	8 (2%)	50	53
2	b	403/404 (100%)	395~(98%)	8 (2%)	50	53
3	С	351/361~(97%)	342 (97%)	9 (3%)	41	41
3	с	351/361~(97%)	342~(97%)	9~(3%)	41	41
4	D	277/285~(97%)	275~(99%)	2 (1%)	81	85
4	d	277/285~(97%)	275~(99%)	2 (1%)	81	85
5	Ε	70/73~(96%)	70 (100%)	0	100	100
5	е	70/73~(96%)	70 (100%)	0	100	100
6	F	28/37~(76%)	28 (100%)	0	100	100
6	f	28/37~(76%)	28 (100%)	0	100	100
7	Н	53/54~(98%)	51 (96%)	2 (4%)	28	26
7	h	53/54~(98%)	51 (96%)	2 (4%)	28	26
8	Ι	32/33~(97%)	31 (97%)	1 (3%)	35	34
8	i	32/33~(97%)	31 (97%)	1 (3%)	35	34
9	J	24/24~(100%)	24 (100%)	0	100	100
9	j	24/24~(100%)	24 (100%)	0	100	100
10	К	31/38~(82%)	31 (100%)	0	100	100
10	k	31/38~(82%)	31 (100%)	0	100	100
11	L	36/36~(100%)	35~(97%)	1 (3%)	38	38
11	1	36/36~(100%)	35~(97%)	1 (3%)	38	38
12	М	27/31~(87%)	26 (96%)	1 (4%)	29	27
12	m	27/31~(87%)	26 (96%)	1 (4%)	29	27
13	О	207/233~(89%)	201 (97%)	6 (3%)	37	36
13	0	207/233~(89%)	201 (97%)	6 (3%)	37	36
14	Q	93/128 (73%)	91 (98%)	2 (2%)	47	49
14	q	93/128~(73%)	91 (98%)	2 (2%)	47	49
15	R	26/29~(90%)	25~(96%)	1 (4%)	28	26
15	r	26/29~(90%)	25 (96%)	1 (4%)	28	26

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.



Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
16	Т	24/25~(96%)	24 (100%)	0	100	100
16	t	24/25~(96%)	24 (100%)	0	100	100
17	U	83/111~(75%)	79~(95%)	4 (5%)	21	18
17	u	83/111 (75%)	79~(95%)	4(5%)	21	18
18	V	117/137~(85%)	111 (95%)	6 (5%)	20	16
18	v	117/137~(85%)	111 (95%)	6 (5%)	20	16
19	Х	32/33~(97%)	31~(97%)	1 (3%)	35	34
19	х	32/33~(97%)	31~(97%)	1 (3%)	35	34
20	Y	25/30~(83%)	23~(92%)	2(8%)	10	5
20	У	25/30~(83%)	23~(92%)	2(8%)	10	5
21	Z	49/52~(94%)	49 (100%)	0	100	100
21	Z	49/52~(94%)	49 (100%)	0	100	100
All	All	4524/4894 ( $92%$ )	4428 (98%)	96 (2%)	49	51

 $5~{\rm of}~96$  residues with a non-rotameric side chain are listed below:

Mol	Chain	$\mathbf{Res}$	Type
2	b	415	SER
8	i	35	LYS
3	с	84	TRP
3	с	342	THR
13	0	71	ASP

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 32 such side chains are listed below:

Mol	Chain	Res	Type
14	q	143	ASN
17	u	56	ASN
14	Q	143	ASN
13	0	227	GLN
17	u	127	ASN

### 5.3.3 RNA (i)

There are no RNA molecules in this entry.



# 5.4 Non-standard residues in protein, DNA, RNA chains (i)

8 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	B	ond leng	$\operatorname{gths}$	E	Bond ang	gles
IVIOI	туре	Unain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
9	FME	j	1	9	6,7,10	0.83	0	2,7,11	0.67	0
16	FME	Т	1	16	8,9,10	0.88	0	8,9,11	1.04	1 (12%)
16	FME	t	1	16	8,9,10	0.88	0	8,9,11	1.04	1 (12%)
8	FME	i	1	8	8,9,10	0.98	0	8,9,11	1.13	1 (12%)
12	FME	М	1	12	8,9,10	0.99	0	8,9,11	0.93	0
12	FME	m	1	12	8,9,10	0.98	0	8,9,11	0.93	0
8	FME	Ι	1	8	8,9,10	0.99	0	8,9,11	1.13	1 (12%)
9	FME	J	1	9	6,7,10	0.82	0	2,7,11	0.67	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	FME	j	1	9	-	3/5/6/11	-
16	FME	Т	1	16	-	4/7/9/11	-
16	FME	t	1	16	-	4/7/9/11	-
8	FME	i	1	8	-	2/7/9/11	-
12	FME	М	1	12	-	0/7/9/11	-
12	FME	m	1	12	-	0/7/9/11	-
8	FME	Ι	1	8	-	2/7/9/11	-
9	FME	J	1	9	-	3/5/6/11	-

There are no bond length outliers.

All (4) bond angle outliers are listed below:



Mol	Chain	Res	Type	Atoms	Ζ	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
8	i	1	FME	C-CA-N	2.50	114.31	109.50
8	Ι	1	FME	C-CA-N	2.48	114.28	109.50
16	Т	1	FME	C-CA-N	2.10	113.55	109.50
16	t	1	FME	C-CA-N	2.10	113.55	109.50

There are no chirality outliers.

5 of 18 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
9	J	1	FME	N-CA-CB-CG
9	J	1	FME	C-CA-CB-CG
16	Т	1	FME	N-CA-CB-CG
9	j	1	FME	N-CA-CB-CG
9	j	1	FME	C-CA-CB-CG

There are no ring outliers.

No monomer is involved in short contacts.

# 5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

## 5.6 Ligand geometry (i)

Of 232 ligands modelled in this entry, 12 are monoatomic - leaving 220 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type	Chain	Dec	Tink	В	ond leng	gths	Bond angles			
MOI	туре	Chain	nes		Counts	RMSZ	# Z  > 2	Counts	RMSZ	# Z >2
30	SQD	h	103	-	52,54,54	0.94	3 (5%)	62,65,65	1.53	8 (12%)
25	CLA	В	611	-	63,73,73	2.22	18 (28%)	74,113,113	2.48	24 (32%)
31	LMT	b	624	-	24,24,36	1.04	3 (12%)	29,29,47	0.90	0
34	DGD	С	516	-	63,63,67	1.33	8 (12%)	77,77,81	0.93	2 (2%)
36	RRX	h	101	-	42,42,42	1.33	8 (19%)	56,58,58	1.39	9 (16%)



Mal	Turne	Chain	Dec	Tink	Bond lengths		Bond angles			
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
28	LMG	В	621	-	$51,\!51,\!55$	1.46	8 (15%)	$59,\!59,\!63$	1.03	2 (3%)
31	LMT	С	525	-	21,21,36	1.01	1 (4%)	$26,\!26,\!47$	1.28	2 (7%)
22	OEX	А	401	1,3,38	0,15,15	-	-	-		-
25	CLA	A	405	-	63,73,73	2.21	18 (28%)	74,113,113	2.53	25 (33%)
25	CLA	b	613	-	63,73,73	2.22	20 (31%)	74,113,113	2.55	25 (33%)
28	LMG	b	621	-	$51,\!51,\!55$	1.46	8 (15%)	$59,\!59,\!63$	1.03	2 (3%)
33	LHG	В	628	-	48,48,48	0.93	2 (4%)	51,54,54	1.01	3 (5%)
25	CLA	С	507	-	$63,\!73,\!73$	2.25	20 (31%)	74,113,113	2.49	24 (32%)
27	BCR	А	409	-	41,41,41	2.64	6 (14%)	$56,\!56,\!56$	6.48	20 (35%)
31	LMT	с	524	-	36,36,36	1.18	4 (11%)	47,47,47	1.18	3 (6%)
34	DGD	h	104	-	63,63,67	1.34	8 (12%)	77,77,81	0.97	3 (3%)
34	DGD	С	517	-	63,63,67	1.33	8 (12%)	77,77,81	1.08	<mark>5 (6%)</mark>
28	LMG	h	105	-	47,47,55	1.41	6 (12%)	$55,\!55,\!63$	1.39	7 (12%)
25	CLA	a	406	38	63,73,73	2.29	21 (33%)	74,113,113	2.54	24 (32%)
27	BCR	В	617	-	41,41,41	2.69	6 (14%)	56,56,56	6.53	16 (28%)
27	BCR	b	619	-	41,41,41	2.70	6 (14%)	56,56,56	6.55	22 (39%)
31	LMT	Х	101	-	24,24,36	1.05	2 (8%)	29,29,47	1.06	1 (3%)
25	CLA	С	504	-	63,73,73	2.33	21 (33%)	74,113,113	2.53	26 (35%)
35	HEM	V	201	18	42,50,50	1.49	7 (16%)	46,82,82	2.20	12 (26%)
27	BCR	k	102	-	41,41,41	2.61	6 (14%)	$56,\!56,\!56$	<mark>6.89</mark>	21 (37%)
31	LMT	Е	101	-	22,22,36	1.08	2 (9%)	27,27,47	1.16	3 (11%)
26	PHO	А	407	-	50,69,69	1.04	4 (8%)	48,99,99	1.14	4 (8%)
26	PHO	d	402	-	50,69,69	1.01	4 (8%)	48,99,99	1.31	7 (14%)
25	CLA	В	613	-	63,73,73	2.22	20 (31%)	74,113,113	2.55	25 (33%)
31	LMT	i	101	-	24,24,36	1.06	2 (8%)	29,29,47	1.06	2 (6%)
25	CLA	С	505	38	63,73,73	2.24	19 (30%)	74,113,113	2.57	27 (36%)
28	LMG	А	414	-	36,36,55	1.11	2 (5%)	44,44,63	1.19	3 (6%)
27	BCR	f	101	-	41,41,41	2.60	6 (14%)	56,56,56	<mark>6.63</mark>	22 (39%)
25	CLA	b	602	-	63,73,73	2.26	19 (30%)	74,113,113	2.46	24 (32%)
25	CLA	d	404	-	63,73,73	2.27	20 (31%)	74,113,113	2.48	24 (32%)
28	LMG	с	523	-	49,49,55	1.44	6 (12%)	57,57,63	1.22	4 (7%)
28	LMG	D	409	-	43,43,55	1.30	5 (11%)	51,51,63	1.11	3 (5%)
31	LMT	Ι	101	-	24,24,36	1.06	2 (8%)	29,29,47	1.06	2 (6%)
25	CLA	В	610	38	63,73,73	2.31	20 (31%)	74,113,113	2.51	29 (39%)
31	LMT	В	629	-	36,36,36	1.18	5 (13%)	47,47,47	1.00	1 (2%)



Mal	Tuno	Chain	Dog	Link	В	ond leng	gths	Bond angles			
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
29	PL9	d	405	-	55,55,55	1.20	5 (9%)	$68,\!69,\!69$	1.42	11 (16%)	
31	LMT	i	104	-	22,22,36	1.05	2 (9%)	$27,\!27,\!47$	1.05	0	
31	LMT	m	102	-	24,24,36	1.07	2 (8%)	$29,\!29,\!47$	1.08	1 (3%)	
31	LMT	В	625	-	36,36,36	1.23	6 (16%)	47,47,47	1.06	1 (2%)	
25	CLA	С	509	-	63,73,73	2.27	19 (30%)	74,113,113	2.36	24 (32%)	
31	LMT	В	624	-	24,24,36	1.04	3 (12%)	29,29,47	0.90	0	
25	CLA	b	611	-	63,73,73	2.22	18 (28%)	74,113,113	2.48	24 (32%)	
33	LHG	Z	102	-	35,35,48	1.15	2 (5%)	38,40,54	1.16	3 (7%)	
25	CLA	В	603	-	63,73,73	2.28	18 (28%)	74,113,113	2.49	25 (33%)	
27	BCR	С	515	-	41,41,41	2.66	6 (14%)	$56,\!56,\!56$	6.60	16 (28%)	
33	LHG	D	406	-	48,48,48	0.91	3 (6%)	51,54,54	0.99	3 (5%)	
25	CLA	С	508	38	63,73,73	2.25	20 (31%)	74,113,113	2.50	27 (36%)	
33	LHG	D	408	-	48,48,48	0.91	2 (4%)	51,54,54	0.96	2 (3%)	
31	LMT	Ι	104	-	22,22,36	1.05	2 (9%)	27,27,47	1.05	0	
25	CLA	С	514	-	63,73,73	2.32	18 (28%)	74,113,113	2.42	24 (32%)	
31	LMT	D	412	-	36,36,36	1.17	5 (13%)	47,47,47	0.95	1 (2%)	
31	LMT	Н	102	-	24,24,36	1.07	2 (8%)	29,29,47	1.12	2 (6%)	
33	LHG	Е	102	_	39,39,48	1.03	2 (5%)	42,45,54	1.12	3 (7%)	
30	SQD	b	620	-	52,54,54	0.41	0	62,65,65	0.44	0	
25	CLA	В	609	-	63,73,73	2.30	20 (31%)	74,113,113	2.47	24 (32%)	
27	BCR	a	409	-	41,41,41	2.64	6 (14%)	56,56,56	6.48	20 (35%)	
25	CLA	b	610	38	63,73,73	2.31	19 (30%)	74,113,113	2.51	29 (39%)	
29	PL9	А	411	-	55,55,55	1.10	4 (7%)	68,69,69	1.46	11 (16%)	
33	LHG	е	102	-	39,39,48	1.03	2 (5%)	42,45,54	1.12	3 (7%)	
25	CLA	С	502	-	63,73,73	2.28	20 (31%)	74,113,113	2.53	26 (35%)	
25	CLA	a	405	-	63,73,73	2.21	18 (28%)	74,113,113	2.53	25 (33%)	
31	LMT	D	411	-	36,36,36	1.17	5 (13%)	47,47,47	0.92	0	
31	LMT	b	623	-	36,36,36	1.18	4 (11%)	47,47,47	1.10	4 (8%)	
25	CLA	В	601	38	43,53,73	2.62	20 (46%)	50,89,113	2.92	20 (40%)	
31	LMT	J	101	-	24,24,36	1.04	3 (12%)	29,29,47	1.19	4 (13%)	
31	LMT	b	625	-	36,36,36	1.23	6 (16%)	47,47,47	1.06	1 (2%)	
31	LMT	У	101	-	21,21,36	1.10	2 (9%)	26,26,47	1.05	1 (3%)	
31	LMT	е	101	-	22,22,36	1.09	2 (9%)	27,27,47	1.16	3 (11%)	
31	LMT	с	522	-	24,24,36	1.14	4 (16%)	29,29,47	1.33	5 (17%)	
31	LMT	d	410	-	24,24,36	0.99	2 (8%)	29,29,47	1.21	4 (13%)	



Mal	Trung	Chain	Dec	Tinle	Bond lengths		Bond angles			
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
32	BCT	a	417	-	3,3,3	1.15	0	2,3,3	4.17	2 (100%)
30	SQD	Н	103	-	52,54,54	0.94	3 (5%)	$62,\!65,\!65$	1.53	8 (12%)
28	LMG	А	410	-	51,51,55	1.48	8 (15%)	$59,\!59,\!63$	1.11	3 (5%)
31	LMT	t	101	-	24,24,36	1.09	2 (8%)	$29,\!29,\!47$	1.16	2 (6%)
33	LHG	d	408	-	48,48,48	0.91	2 (4%)	51,54,54	0.96	2 (3%)
36	RRX	Н	101	-	42,42,42	1.33	8 (19%)	$56,\!58,\!58$	1.39	9 (16%)
34	DGD	С	516	-	63,63,67	1.33	8 (12%)	77,77,81	0.93	2 (2%)
30	SQD	А	412	-	52,54,54	0.96	3 (5%)	62,65,65	1.69	15 (24%)
25	CLA	В	606	-	58,68,73	2.40	20 (34%)	68,107,113	2.51	25 (36%)
25	CLA	с	514	-	63,73,73	2.32	18 (28%)	74,113,113	2.41	24 (32%)
31	LMT	Х	103	-	22,22,36	1.01	2 (9%)	27,27,47	1.28	3 (11%)
31	LMT	х	102	-	22,22,36	1.10	2 (9%)	27,27,47	1.05	1 (3%)
25	CLA	С	511	-	63,73,73	2.27	20 (31%)	74,113,113	2.61	29 (39%)
25	CLA	b	616	-	58,68,73	2.35	18 (31%)	68,107,113	2.65	27 (39%)
31	LMT	D	410	-	24,24,36	0.99	2 (8%)	29,29,47	1.21	4 (13%)
31	LMT	f	103	-	36,36,36	1.20	6 (16%)	47,47,47	1.02	2 (4%)
31	LMT	Е	103	-	36,36,36	1.23	6 (16%)	47,47,47	1.57	6 (12%)
25	CLA	В	605	-	63,73,73	2.24	19 (30%)	74,113,113	2.61	24 (32%)
25	CLA	b	606	-	58,68,73	2.40	20 (34%)	68,107,113	2.51	25 (36%)
34	DGD	Н	104	-	63,63,67	1.34	8 (12%)	77,77,81	0.97	3 (3%)
31	LMT	i	103	-	36,36,36	1.19	5 (13%)	47,47,47	0.93	1 (2%)
31	LMT	b	626	-	24,24,36	1.01	2 (8%)	29,29,47	0.90	0
28	LMG	Н	105	-	47,47,55	1.41	6 (12%)	55,55,63	1.39	7 (12%)
27	BCR	b	618	-	41,41,41	2.68	6 (14%)	$56,\!56,\!56$	6.46	20 (35%)
31	LMT	Ι	102	-	24,24,36	1.03	3 (12%)	29,29,47	1.06	1 (3%)
35	HEM	V	201	18	42,50,50	1.49	7 (16%)	46,82,82	2.20	12 (26%)
33	LHG	b	628	-	48,48,48	0.93	2 (4%)	51,54,54	1.00	3 (5%)
25	CLA	В	608	-	63,73,73	2.28	20 (31%)	74,113,113	2.47	25 (33%)
31	LMT	K	105	-	36,36,36	1.20	6 (16%)	47,47,47	1.22	5 (10%)
31	LMT	х	101	-	24,24,36	1.04	2 (8%)	29,29,47	1.06	1 (3%)
26	PHO	D	402	-	50,69,69	1.00	4 (8%)	48,99,99	1.31	7 (14%)
31	LMT	М	101	-	36,36,36	1.17	6(16%)	47,47,47	1.04	2 (4%)
35	HEM	Е	104	6,5	42,50,50	1.33	6 (14%)	46,82,82	1.90	11 (23%)
30	SQD	А	413	-	46,48,54	1.00	3 (6%)	$56,\!59,\!65$	1.86	12 (21%)
25	CLA	b	603	-	63,73,73	2.28	18 (28%)	74,113,113	2.49	25 (33%)



Mol	Type	Chain	Ros	Link	Bond lengths		Bond angles			
	Type	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
25	CLA	b	604	-	63,73,73	2.24	17 (26%)	74,113,113	2.54	27 (36%)
25	CLA	с	506	-	53,63,73	2.47	19 (35%)	62,101,113	2.82	25 (40%)
25	CLA	b	615	-	63,73,73	2.24	19 (30%)	74,113,113	2.58	26 (35%)
25	CLA	b	608	-	63,73,73	2.28	20 (31%)	74,113,113	2.47	25 (33%)
25	CLA	С	510	-	63,73,73	2.32	21 (33%)	74,113,113	2.55	25 (33%)
28	LMG	d	409	-	43,43,55	1.30	5 (11%)	$51,\!51,\!63$	1.11	3 (5%)
30	SQD	a	412	-	52,54,54	0.96	3 (5%)	$62,\!65,\!65$	1.69	15 (24%)
31	LMT	b	629	-	36,36,36	1.18	5 (13%)	47,47,47	1.00	1 (2%)
29	PL9	a	411	_	55,55,55	1.10	4 (7%)	68,69,69	1.46	11 (16%)
31	LMT	i	102	-	24,24,36	1.04	3 (12%)	29,29,47	1.07	1 (3%)
30	SQD	F	102	-	32,34,54	1.20	4 (12%)	42,45,65	1.97	11 (26%)
30	SQD	a	413	-	46,48,54	1.00	3 (6%)	$56,\!59,\!65$	1.86	12 (21%)
31	LMT	с	525	-	21,21,36	1.00	1 (4%)	26,26,47	1.28	2 (7%)
31	LMT	А	416	-	24,24,36	1.07	3 (12%)	29,29,47	1.00	1 (3%)
31	LMT	В	626	-	24,24,36	1.01	2 (8%)	29,29,47	0.91	0
27	BCR	В	618	-	41,41,41	2.68	6 (14%)	56, 56, 56	6.46	20 (35%)
25	CLA	С	513	-	48,58,73	2.63	20 (41%)	56,95,113	2.83	19 (33%)
25	CLA	С	504	-	63,73,73	2.33	21 (33%)	74,113,113	2.53	26 (35%)
27	BCR	k	103	-	41,41,41	2.64	6 (14%)	$56,\!56,\!56$	6.56	26 (46%)
28	LMG	С	523	-	49,49,55	1.44	6 (12%)	57,57,63	1.22	4 (7%)
31	LMT	х	104	-	19,19,36	1.20	3(15%)	24,24,47	1.06	1 (4%)
31	LMT	Х	105	-	19,19,36	1.12	2 (10%)	24,24,47	1.00	0
31	LMT	А	415	-	36,36,36	1.19	5 (13%)	47,47,47	1.01	3 (6%)
31	LMT	х	105	-	19,19,36	1.12	2 (10%)	24,24,47	1.00	0
25	CLA	с	512	3	63,73,73	2.31	21 (33%)	74,113,113	2.64	26 (35%)
25	CLA	D	401	38	63,73,73	2.25	20 (31%)	74,113,113	2.54	25 (33%)
25	CLA	b	609	-	63,73,73	2.30	20 (31%)	74,113,113	2.46	24 (32%)
25	CLA	В	604	-	63,73,73	2.24	17 (26%)	74,113,113	2.54	27 (36%)
31	LMT	k	105	_	36,36,36	1.20	6 (16%)	47,47,47	1.22	5 (10%)
32	BCT	А	417	-	3,3,3	1.15	0	2,3,3	4.18	2 (100%)
27	BCR	с	515	-	41,41,41	2.66	6 (14%)	$56,\!56,\!56$	6.60	16 (28%)
25	CLA	В	614	-	63,73,73	2.28	19 (30%)	74,113,113	2.53	24 (32%)
28	LMG	с	519	-	51,51,55	1.47	8 (15%)	59,59,63	1.12	3 (5%)
30	SQD	K	101	-	41,41,54	1.04	3 (7%)	49,49,65	1.77	9 (18%)
25	CLA	b	612	-	63,73,73	2.30	20 (31%)	74,113,113	2.49	25 (33%)



Mol	Type	Chain	Dog	Link	Bond lengths		Bond angles			
	Type	Ullalli	nes	LIIIK	Counts	RMSZ	# Z  > 2	Counts	RMSZ	# Z  > 2
33	LHG	b	627	-	48,48,48	0.94	2 (4%)	51,54,54	1.06	2 (3%)
25	CLA	b	607	38	63,73,73	2.22	20 (31%)	74,113,113	2.53	27 (36%)
25	CLA	b	614	-	63,73,73	2.28	19 (30%)	74,113,113	2.53	24 (32%)
34	DGD	С	517	-	63,63,67	1.33	8 (12%)	77,77,81	1.08	5 (6%)
25	CLA	b	605	-	63,73,73	2.24	19 (30%)	74,113,113	2.61	23 (31%)
33	LHG	d	406	-	48,48,48	0.92	3 (6%)	$51,\!54,\!54$	0.99	3 (5%)
27	BCR	K	103	-	41,41,41	2.64	6 (14%)	$56,\!56,\!56$	6.56	26 (46%)
30	SQD	f	102	-	32,34,54	1.20	4 (12%)	42,45,65	1.97	11 (26%)
25	CLA	А	408	_	58,68,73	2.40	19 (32%)	68,107,113	2.65	23 (33%)
30	SQD	С	501	_	52,54,54	0.93	4 (7%)	62,65,65	1.62	9 (14%)
31	LMT	х	103	_	22,22,36	1.01	2 (9%)	27,27,47	1.28	3 (11%)
31	LMT	В	623	-	36,36,36	1.18	4 (11%)	47,47,47	1.10	4 (8%)
25	CLA	С	506	_	53,63,73	2.47	19 (35%)	62,101,113	2.82	25 (40%)
25	CLA	С	510	-	63,73,73	2.32	21 (33%)	74,113,113	2.55	25 (33%)
25	CLA	a	408	-	58,68,73	2.40	19 (32%)	68,107,113	2.65	23 (33%)
25	CLA	с	505	38	63,73,73	2.24	19 (30%)	74,113,113	2.57	27 (36%)
31	LMT	m	101	-	36,36,36	1.17	6 (16%)	47,47,47	1.04	2 (4%)
25	CLA	D	403	-	63,73,73	2.27	19 (30%)	74,113,113	2.60	23 (31%)
25	CLA	В	612	-	63,73,73	2.30	20 (31%)	74,113,113	2.49	25 (33%)
25	CLA	В	607	38	63,73,73	2.22	20 (31%)	74,113,113	2.54	27 (36%)
35	HEM	е	104	6,5	42,50,50	1.34	6 (14%)	46,82,82	1.90	11 (23%)
31	LMT	С	524	-	36,36,36	1.18	4 (11%)	47,47,47	1.18	3 (6%)
25	CLA	с	513	-	48,58,73	2.62	20 (41%)	56,95,113	2.83	19 (33%)
31	LMT	F	103	-	36,36,36	1.20	6 (16%)	47,47,47	1.02	2 (4%)
31	LMT	Ι	103	-	36,36,36	1.18	5 (13%)	47,47,47	0.93	1 (2%)
30	SQD	В	620	_	52,54,54	0.41	0	62,65,65	0.44	0
34	DGD	С	518	-	63,63,67	1.33	8 (12%)	77,77,81	1.05	3 (3%)
30	SQD	k	101	-	41,41,54	1.04	3 (7%)	49,49,65	1.77	9 (18%)
30	SQD	С	501	-	52,54,54	0.94	4 (7%)	$62,\!65,\!65$	1.63	9 (14%)
25	CLA	С	503	-	63,73,73	2.23	18 (28%)	74,113,113	2.46	28 (37%)
25	CLA	С	512	3	63,73,73	2.32	21 (33%)	74,113,113	2.64	26 (35%)
28	LMG	С	519	-	51,51,55	1.47	8 (15%)	$59,\!59,\!63$	1.12	3 (5%)
25	CLA	D	404	-	63,73,73	2.26	20 (31%)	74,113,113	2.47	24 (32%)
25	CLA	d	403	-	63,73,73	2.27	19 (30%)	74,113,113	2.60	23 (31%)
25	CLA	А	406	38	63,73,73	2.29	20 (31%)	74,113,113	2.54	24 (32%)



Mol	Type	Chain	Dog	Link	Bond lengths		Bond angles			
	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
25	CLA	В	602	-	63,73,73	2.26	19 (30%)	74,113,113	2.46	24 (32%)
25	CLA	с	511	-	63,73,73	2.27	20 (31%)	74,113,113	2.61	29 (39%)
27	BCR	Z	101	-	41,41,41	2.64	6 (14%)	$56,\!56,\!56$	6.49	20 (35%)
26	PHO	a	407	-	50,69,69	1.04	4 (8%)	48,99,99	1.14	4 (8%)
25	CLA	В	615	-	63,73,73	2.24	19 (30%)	74,113,113	2.57	26 (35%)
31	LMT	Y	101	-	21,21,36	1.10	2 (9%)	$26,\!26,\!47$	1.05	1 (3%)
31	LMT	Х	102	-	22,22,36	1.09	2 (9%)	27,27,47	1.05	1 (3%)
33	LHG	Z	102	-	35,35,48	1.15	2 (5%)	38,40,54	1.16	3 (7%)
25	CLA	с	507	-	63,73,73	2.25	20 (31%)	74,113,113	2.49	24 (32%)
25	CLA	b	601	38	43,53,73	2.62	20 (46%)	50,89,113	2.93	21 (42%)
25	CLA	В	616	_	58,68,73	2.35	18 (31%)	68,107,113	2.65	27 (39%)
25	CLA	с	508	38	63,73,73	2.25	19 (30%)	74,113,113	2.50	27 (36%)
27	BCR	Z	101	_	41,41,41	2.64	6 (14%)	$56,\!56,\!56$	6.49	20 (35%)
27	BCR	K	102	_	41,41,41	2.61	6 (14%)	$56,\!56,\!56$	6.89	21 (37%)
27	BCR	F	101	_	41,41,41	2.60	6 (14%)	$56,\!56,\!56$	6.63	22 (39%)
31	LMT	a	416	-	24,24,36	1.06	3 (12%)	29,29,47	1.00	1 (3%)
31	LMT	h	102	-	24,24,36	1.07	2 (8%)	29,29,47	1.11	2 (6%)
33	LHG	D	407	-	48,48,48	0.91	2 (4%)	51,54,54	1.07	4 (7%)
25	CLA	с	502	-	63,73,73	2.28	20 (31%)	74,113,113	2.53	26 (35%)
34	DGD	с	518	-	63,63,67	1.33	8 (12%)	77,77,81	1.05	3 (3%)
31	LMT	a	415	_	36,36,36	1.19	5 (13%)	47,47,47	1.01	3 (6%)
28	LMG	a	410	_	51,51,55	1.48	8 (15%)	59,59,63	1.11	3 (5%)
28	LMG	a	414	-	36,36,55	1.12	2 (5%)	44,44,63	1.19	3 (6%)
31	LMT	М	102	-	24,24,36	1.06	2 (8%)	29,29,47	1.08	1 (3%)
25	CLA	d	401	38	63,73,73	2.24	20 (31%)	74,113,113	2.54	25 (33%)
31	LMT	Х	104	_	19,19,36	1.20	3 (15%)	24,24,47	1.06	1 (4%)
22	OEX	a	401	1,3,38	0,15,15	-	-	-		
25	CLA	с	503	-	63,73,73	2.24	18 (28%)	74,113,113	2.46	28 (37%)
25	CLA	с	509	-	63,73,73	2.27	19 (30%)	74,113,113	2.36	24 (32%)
31	LMT	е	103	-	36,36,36	1.22	6 (16%)	47,47,47	1.57	6 (12%)
33	LHG	В	627	-	48,48,48	0.95	2 (4%)	$51,\!54,\!54$	1.06	2 (3%)
31	LMT	Т	101	-	24,24,36	1.09	2 (8%)	$29,\!29,\!47$	1.16	2 (6%)
31	LMT	d	411	-	36,36,36	1.17	5 (13%)	47,47,47	0.92	0
31	LMT	С	522	-	24,24,36	1.15	5 (20%)	29,29,47	1.32	5 (17%)
29	PL9	D	405	-	55,55,55	1.20	5 (9%)	68,69,69	1.41	11 (16%)



Mal	Turne	Chain	Dec	Tink	В	Bond lengths			Bond angles		
IVIOI	туре	Chain	nes	LIIK	Counts	RMSZ	# Z  > 2	Counts	RMSZ	# Z  > 2	
31	LMT	j	101	-	24,24,36	1.04	3 (12%)	29,29,47	1.19	4 (13%)	
31	LMT	d	412	-	36,36,36	1.17	5 (13%)	47,47,47	0.95	1 (2%)	
33	LHG	d	407	-	48,48,48	0.91	2 (4%)	51,54,54	1.07	4 (7%)	
27	BCR	В	619	-	41,41,41	2.70	6 (14%)	56, 56, 56	6.55	22 (39%)	
27	BCR	b	617	-	41,41,41	2.69	6 (14%)	56, 56, 56	6.53	16 (28%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
30	$\operatorname{SQD}$	h	103	-	-	16/49/69/69	0/1/1/1
25	CLA	В	611	-	1/1/15/20	9/37/115/115	-
31	LMT	b	624	-	-	9/15/35/61	0/1/1/2
34	DGD	$\mathbf{C}$	516	-	-	14/51/91/95	0/2/2/2
36	RRX	h	101	-	-	15/29/65/65	0/2/2/2
28	LMG	В	621	-	-	7/46/66/70	0/1/1/1
31	LMT	$\mathbf{C}$	525	-	-	8/12/32/61	0/1/1/2
25	CLA	А	405	-	1/1/15/20	9/37/115/115	-
25	CLA	b	613	-	1/1/15/20	8/37/115/115	-
28	LMG	b	621	-	-	7/46/66/70	0/1/1/1
33	LHG	В	628	-	-	24/53/53/53	-
25	CLA	С	507	-	1/1/15/20	14/37/115/115	-
27	BCR	А	409	-	-	9/29/63/63	0/2/2/2
31	LMT	с	524	-	-	10/21/61/61	0/2/2/2
34	DGD	h	104	-	-	11/51/91/95	0/2/2/2
34	DGD	$\mathbf{C}$	517	-	-	17/51/91/95	0/2/2/2
28	LMG	h	105	-	-	17/42/62/70	0/1/1/1
25	CLA	a	406	38	1/1/15/20	11/37/115/115	-
27	BCR	В	617	-	-	6/29/63/63	0/2/2/2
27	BCR	b	619	-	-	11/29/63/63	0/2/2/2
31	LMT	Х	101	-	-	6/15/35/61	0/1/1/2
25	CLA	с	504	-	1/1/15/20	5/37/115/115	-
35	HEM	v	201	18	-	2/12/54/54	-
27	BCR	k	102	-	-	15/29/63/63	0/2/2/2



Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
31	LMT	Е	101	-	-	5/13/33/61	0/1/1/2
26	PHO	А	407	-	-	7/37/103/103	0/5/6/6
26	PHO	d	402	-	-	4/37/103/103	0/5/6/6
25	CLA	В	613	-	1/1/15/20	8/37/115/115	-
31	LMT	i	101	-	-	11/15/35/61	0/1/1/2
25	CLA	С	505	38	1/1/15/20	13/37/115/115	-
28	LMG	А	414	-	-	6/31/51/70	0/1/1/1
27	BCR	f	101	-	-	9/29/63/63	0/2/2/2
25	CLA	b	602	-	1/1/15/20	15/37/115/115	-
25	CLA	d	404	-	1/1/15/20	11/37/115/115	-
28	LMG	с	523	-	-	17/44/64/70	0/1/1/1
28	LMG	D	409	-	-	14/38/58/70	0/1/1/1
31	LMT	Ι	101	-	-	11/15/35/61	0/1/1/2
25	CLA	В	610	38	1/1/15/20	10/37/115/115	-
31	LMT	В	629	-	-	10/21/61/61	0/2/2/2
29	PL9	d	405	-	-	9/53/73/73	0/1/1/1
31	LMT	i	104	-	-	9/13/33/61	0/1/1/2
31	LMT	m	102	-	-	4/15/35/61	0/1/1/2
31	LMT	В	625	-	-	11/21/61/61	0/2/2/2
25	CLA	С	509	-	1/1/15/20	9/37/115/115	-
31	LMT	В	624	-	-	9/15/35/61	0/1/1/2
25	CLA	b	611	-	1/1/15/20	9/37/115/115	-
33	LHG	Z	102	-	-	24/37/37/53	-
25	CLA	В	603	-	1/1/15/20	17/37/115/115	-
27	BCR	С	515	-	-	9/29/63/63	0/2/2/2
33	LHG	D	406	-	-	24/53/53/53	-
25	CLA	С	508	38	1/1/15/20	10/37/115/115	-
33	LHG	D	408	-	-	24/53/53/53	-
31	LMT	Ι	104	-	-	9/13/33/61	0/1/1/2
25	CLA	С	514	-	1/1/15/20	17/37/115/115	-
31	LMT	D	412	-	-	7/21/61/61	0/2/2/2
31	LMT	Н	102	-	-	9/15/35/61	0/1/1/2
33	LHG	E	102	-	-	29/44/44/53	-
30	SQD	b	620	-	-	24/49/69/69	0/1/1/1



Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
25	CLA	В	609	-	1/1/15/20	14/37/115/115	-
27	BCR	a	409	-	-	9/29/63/63	0/2/2/2
25	CLA	b	610	38	1/1/15/20	10/37/115/115	-
29	PL9	А	411	-	-	18/53/73/73	0/1/1/1
33	LHG	е	102	-	-	29/44/44/53	-
25	CLA	С	502	-	1/1/15/20	12/37/115/115	-
25	CLA	a	405	-	1/1/15/20	9/37/115/115	-
31	LMT	D	411	-	-	10/21/61/61	0/2/2/2
31	LMT	b	623	-	-	11/21/61/61	0/2/2/2
25	CLA	В	601	38	1/1/11/20	3/13/91/115	-
31	LMT	J	101	-	-	11/15/35/61	0/1/1/2
31	LMT	b	625	-	-	11/21/61/61	0/2/2/2
31	LMT	У	101	-	-	7/12/32/61	0/1/1/2
31	LMT	е	101	-	-	5/13/33/61	0/1/1/2
31	LMT	с	522	-	-	7/15/35/61	0/1/1/2
31	LMT	d	410	-	-	8/15/35/61	0/1/1/2
30	SQD	Н	103	-	-	16/49/69/69	0/1/1/1
28	LMG	А	410	-	-	22/46/66/70	0/1/1/1
31	LMT	t	101	-	-	11/15/35/61	0/1/1/2
33	LHG	d	408	-	-	24/53/53/53	-
36	RRX	Н	101	-	-	15/29/65/65	0/2/2/2
34	DGD	с	516	-	-	14/51/91/95	0/2/2/2
30	SQD	А	412	-	-	26/49/69/69	0/1/1/1
25	CLA	В	606	-	1/1/14/20	7/31/109/115	-
25	CLA	с	514	-	1/1/15/20	17/37/115/115	-
31	LMT	Х	103	-	-	3/13/33/61	0/1/1/2
31	LMT	x	102	-	-	9/12/32/61	0/1/1/2
25	CLA	С	511	-	1/1/15/20	11/37/115/115	-
25	CLA	b	616	-	1/1/14/20	16/31/109/115	-
31	LMT	D	410	-	-	8/15/35/61	0/1/1/2
31	LMT	f	103	-	-	11/21/61/61	0/2/2/2
31	LMT	Е	103	-	-	9/21/61/61	0/2/2/2
25	CLA	В	605	-	1/1/15/20	11/37/115/115	-
25	CLA	b	606	-	1/1/14/20	7/31/109/115	-



001111	nucu jio		is puye	•••			
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
34	DGD	Н	104	-	-	11/51/91/95	0/2/2/2
31	LMT	i	103	-	-	7/21/61/61	0/2/2/2
31	LMT	b	626	-	-	5/15/35/61	0/1/1/2
28	LMG	Н	105	-	-	17/42/62/70	0/1/1/1
27	BCR	b	618	-	-	6/29/63/63	0/2/2/2
31	LMT	Ι	102	-	-	8/15/35/61	0/1/1/2
35	HEM	V	201	18	-	2/12/54/54	-
33	LHG	b	628	-	-	24/53/53/53	-
25	CLA	В	608	-	1/1/15/20	8/37/115/115	-
31	LMT	K	105	-	-	13/21/61/61	0/2/2/2
31	LMT	x	101	-	-	6/15/35/61	0/1/1/2
26	PHO	D	402	-	-	4/37/103/103	0/5/6/6
31	LMT	М	101	-	-	10/21/61/61	0/2/2/2
35	HEM	Е	104	6,5	-	5/12/54/54	-
30	SQD	А	413	-	-	22/43/63/69	0/1/1/1
25	CLA	b	603	-	1/1/15/20	17/37/115/115	-
25	CLA	b	604	-	1/1/15/20	11/37/115/115	-
25	CLA	с	506	-	1/1/13/20	9/25/103/115	-
25	CLA	b	615	-	1/1/15/20	12/37/115/115	-
25	CLA	b	608	-	1/1/15/20	8/37/115/115	-
25	CLA	с	510	-	1/1/15/20	11/37/115/115	-
28	LMG	d	409	-	-	14/38/58/70	0/1/1/1
30	SQD	a	412	-	-	26/49/69/69	0/1/1/1
31	LMT	b	629	-	-	10/21/61/61	0/2/2/2
29	PL9	a	411	-	-	18/53/73/73	0/1/1/1
31	LMT	i	102	-	-	8/15/35/61	0/1/1/2
30	SQD	F	102	-	-	16/29/49/69	0/1/1/1
30	SQD	a	413	-	-	22/43/63/69	0/1/1/1
31	LMT	с	525	-	-	8/12/32/61	0/1/1/2
31	LMT	А	416	-	-	5/15/35/61	0/1/1/2
31	LMT	В	626	-	-	5/15/35/61	0/1/1/2
27	BCR	В	618	-	-	6/29/63/63	0/2/2/2
25	CLA	С	513	-	1/1/12/20	7/19/97/115	-
25	CLA	С	504	-	1/1/15/20	6/37/115/115	-



0 0	.eaca j.e	In proceed	- F-9-				
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
27	BCR	k	103	-	-	8/29/63/63	0/2/2/2
28	LMG	С	523	-	-	17/44/64/70	0/1/1/1
31	LMT	х	104	-	-	7/10/30/61	0/1/1/2
31	LMT	Х	105	-	-	6/10/30/61	0/1/1/2
31	LMT	А	415	-	-	10/21/61/61	0/2/2/2
31	LMT	х	105	-	-	6/10/30/61	0/1/1/2
25	CLA	с	512	3	1/1/15/20	19/37/115/115	-
25	CLA	D	401	38	1/1/15/20	9/37/115/115	-
25	CLA	b	609	-	1/1/15/20	14/37/115/115	-
25	CLA	В	604	-	1/1/15/20	11/37/115/115	-
31	LMT	k	105	-	-	13/21/61/61	0/2/2/2
27	BCR	с	515	-	-	9/29/63/63	0/2/2/2
25	CLA	В	614	-	1/1/15/20	14/37/115/115	-
28	LMG	с	519	-	-	17/46/66/70	0/1/1/1
30	SQD	K	101	-	-	21/35/55/69	0/1/1/1
25	CLA	b	612	-	1/1/15/20	10/37/115/115	-
33	LHG	b	627	-	-	30/53/53/53	-
25	CLA	b	607	38	1/1/15/20	10/37/115/115	-
25	CLA	b	614	-	1/1/15/20	14/37/115/115	-
34	DGD	с	517	-	-	17/51/91/95	0/2/2/2
25	CLA	b	605	-	1/1/15/20	11/37/115/115	-
33	LHG	d	406	-	-	24/53/53/53	-
27	BCR	K	103	-	-	8/29/63/63	0/2/2/2
30	SQD	f	102	-	-	16/29/49/69	0/1/1/1
25	CLA	А	408	-	1/1/14/20	14/31/109/115	-
30	SQD	С	501	-	-	28/49/69/69	0/1/1/1
31	LMT	х	103	-	-	3/13/33/61	0/1/1/2
31	LMT	В	623	-	-	11/21/61/61	0/2/2/2
25	CLA	С	506	-	1/1/13/20	9/25/103/115	-
25	CLA	С	510	-	1/1/15/20	11/37/115/115	-
25	CLA	a	408	-	1/1/14/20	14/31/109/115	-
25	CLA	с	505	38	1/1/15/20	13/37/115/115	-
31	LMT	m	101	-	-	10/21/61/61	0/2/2/2
25	CLA	D	403	-	1/1/15/20	9/37/115/115	-



Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
25	CLA	В	612	_	1/1/15/20	10/37/115/115	-
25	CLA	В	607	38	1/1/15/20	10/37/115/115	-
35	HEM	е	104	6,5	-	5/12/54/54	-
31	LMT	С	524	-	_	10/21/61/61	0/2/2/2
25	CLA	с	513	-	1/1/12/20	7/19/97/115	-
31	LMT	F	103	-	-	11/21/61/61	0/2/2/2
31	LMT	Ι	103	-	-	7/21/61/61	0/2/2/2
30	SQD	В	620	-	-	24/49/69/69	0/1/1/1
34	DGD	С	518	-	-	16/51/91/95	0/2/2/2
30	SQD	k	101	-	-	21/35/55/69	0/1/1/1
30	SQD	с	501	-	-	28/49/69/69	0/1/1/1
25	CLA	С	503	-	1/1/15/20	9/37/115/115	-
25	CLA	С	512	3	1/1/15/20	19/37/115/115	-
28	LMG	С	519	-	-	17/46/66/70	0/1/1/1
25	CLA	D	404	-	1/1/15/20	11/37/115/115	-
25	CLA	d	403	-	1/1/15/20	9/37/115/115	-
25	CLA	А	406	38	1/1/15/20	11/37/115/115	-
25	CLA	В	602	-	1/1/15/20	15/37/115/115	-
25	CLA	с	511	-	1/1/15/20	11/37/115/115	-
27	BCR	Z	101	-	-	8/29/63/63	0/2/2/2
26	PHO	а	407	-	-	7/37/103/103	0/5/6/6
25	CLA	В	615	-	1/1/15/20	12/37/115/115	-
31	LMT	Y	101	-	-	7/12/32/61	0/1/1/2
31	LMT	Х	102	-	-	9/12/32/61	0/1/1/2
33	LHG	Z	102	-	-	24/37/37/53	-
25	CLA	с	507	-	1/1/15/20	14/37/115/115	-
25	CLA	b	601	38	1/1/11/20	3/13/91/115	-
25	CLA	В	616	-	1/1/14/20	16/31/109/115	-
25	CLA	с	508	38	1/1/15/20	10/37/115/115	-
27	BCR	Z	101	-	-	8/29/63/63	0/2/2/2
27	BCR	K	102	-	-	15/29/63/63	0/2/2/2
27	BCR	F	101	-	-	9/29/63/63	0/2/2/2
31	LMT	a	416	-	-	5/15/35/61	0/1/1/2
31	LMT	h	102	-	_	9/15/35/61	0/1/1/2



Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
33	LHG	D	407	-	-	25/53/53/53	-
25	CLA	с	502	-	1/1/15/20	12/37/115/115	-
34	DGD	с	518	-	-	16/51/91/95	0/2/2/2
31	LMT	a	415	-	-	10/21/61/61	0/2/2/2
28	LMG	a	410	-	-	22/46/66/70	0/1/1/1
28	LMG	a	414	-	-	6/31/51/70	0/1/1/1
31	LMT	М	102	-	-	4/15/35/61	0/1/1/2
25	CLA	d	401	38	1/1/15/20	10/37/115/115	-
31	LMT	Х	104	-	-	7/10/30/61	0/1/1/2
25	CLA	с	509	-	1/1/15/20	9/37/115/115	-
25	CLA	с	503	-	1/1/15/20	9/37/115/115	-
31	LMT	е	103	-	-	9/21/61/61	0/2/2/2
33	LHG	В	627	-	-	30/53/53/53	-
31	LMT	Т	101	-	-	11/15/35/61	0/1/1/2
31	LMT	d	411	-	-	10/21/61/61	0/2/2/2
31	LMT	С	522	-	-	7/15/35/61	0/1/1/2
29	PL9	D	405	-	-	9/53/73/73	0/1/1/1
31	LMT	j	101	-	-	11/15/35/61	0/1/1/2
31	LMT	d	412	-	-	7/21/61/61	0/2/2/2
33	LHG	d	407	-	-	25/53/53/53	-
27	BCR	В	619	-	-	11/29/63/63	0/2/2/2
27	BCR	b	617	-	-	6/29/63/63	0/2/2/2

The worst 5 of 1980 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
27	Ζ	101	BCR	C8-C9	-8.72	1.27	1.46
27	Z	101	BCR	C8-C9	-8.72	1.27	1.46
27	В	619	BCR	C8-C9	-8.48	1.27	1.46
27	b	619	BCR	C8-C9	-8.48	1.27	1.46
27	В	617	BCR	C8-C9	-8.48	1.27	1.46

The worst 5 of 2620 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
27	k	102	BCR	C16-C17-C18	23.42	160.12	127.28
27	Κ	102	BCR	C16-C17-C18	23.40	160.10	127.28



Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
27	Κ	102	BCR	C20-C21-C22	23.22	159.84	127.28
27	k	102	BCR	C20-C21-C22	23.20	159.81	127.28
27	С	515	BCR	C20-C21-C22	21.80	157.85	127.28

5 of 70 chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
25	А	405	CLA	ND
25	А	406	CLA	ND
25	А	408	CLA	ND
25	В	601	CLA	ND
25	В	602	CLA	ND

5 of 2568 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
25	А	405	CLA	CBD-CGD-O2D-CED
25	В	601	CLA	C1A-C2A-CAA-CBA
25	В	601	CLA	C3A-C2A-CAA-CBA
25	В	614	CLA	CAD-CBD-CGD-O1D
25	В	614	CLA	CAD-CBD-CGD-O2D

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.








































































































































































































































































































































































# 5.7 Other polymers (i)

There are no such residues in this entry.

# 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-41460. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

# 6.1 Orthogonal projections (i)

#### 6.1.1 Primary map



6.1.2 Raw map



The images above show the map projected in three orthogonal directions.



# 6.2 Central slices (i)

## 6.2.1 Primary map







Y Index: 180



Z Index: 180

### 6.2.2 Raw map



X Index: 180

Y Index: 180



The images above show central slices of the map in three orthogonal directions.



# 6.3 Largest variance slices (i)

## 6.3.1 Primary map



X Index: 192





Z Index: 191

### 6.3.2 Raw map



X Index: 168

Y Index: 146



The images above show the largest variance slices of the map in three orthogonal directions.



# 6.4 Orthogonal standard-deviation projections (False-color) (i)

## 6.4.1 Primary map



#### 6.4.2 Raw map



The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.



### 6.5 Orthogonal surface views (i)

#### 6.5.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.00432. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

#### 6.5.2 Raw map



These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

### 6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



# 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

# 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



## 7.2 Volume estimate (i)



The volume at the recommended contour level is  $262 \text{ nm}^3$ ; this corresponds to an approximate mass of 237 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



# 7.3 Rotationally averaged power spectrum (i)



*Reported resolution corresponds to spatial frequency of 0.467  ${\rm \AA^{-1}}$ 



# 8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

## 8.1 FSC (i)



*Reported resolution corresponds to spatial frequency of 0.467  $\mathrm{\AA^{-1}}$ 



# 8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{A}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.14	-	-
Author-provided FSC curve	2.13	2.45	2.15
Unmasked-calculated*	2.57	3.09	2.65

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 2.57 differs from the reported value 2.14 by more than 10 %



# 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-41460 and PDB model 8TOW. Per-residue inclusion information can be found in section 3 on page 32.

# 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.00432 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



## 9.2 Q-score mapped to coordinate model (i)



The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

#### 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.00432).



# 9.4 Atom inclusion (i)



At the recommended contour level, 84% of all backbone atoms, 84% of all non-hydrogen atoms, are inside the map.



1.0

0.0 <0.0

# 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.00432) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.8390	0.6860
А	0.9280	0.7330
В	0.9220	0.7210
С	0.8760	0.6950
D	0.9540	0.7430
Е	0.8100	0.6680
F	0.7770	0.6340
Н	0.8390	0.6850
Ι	0.6350	0.6560
J	0.7250	0.6350
K	0.7770	0.6040
L	0.9680	0.7420
М	0.8880	0.6880
0	0.7630	0.6520
Q	0.3080	0.4660
R	0.5280	0.5230
Т	0.9040	0.7030
U	0.7290	0.6390
V	0.8060	0.6640
Х	0.6730	0.6300
Y	0.6020	0.5660
Ζ	0.4320	0.5510
a	0.9270	0.7340
b	0.9220	0.7210
с	0.8770	0.6960
d	0.9540	0.7430
е	0.8090	0.6670
f	0.7800	0.6360
h	0.8360	0.6850
i	0.6370	0.6550
j	0.7280	0.6340
k	0.7800	0.6020
1	0.9640	0.7440
m	0.8850	0.6900
0	0.7610	0.6540

Continued on next page...



Continued from previous page...

Chain	Atom inclusion	Q-score
q	0.3070	0.4660
r	0.5280	0.5180
t	0.9040	0.7080
u	0.7290	0.6370
V	0.8080	0.6650
x	0.6780	0.6360
У	0.5900	0.5640
Z	0.4320	0.5470

