

Apr 27, 2024 – 12:15 PM EDT

PDB ID	:	8TUN
EMDB ID	:	EMD-41626
Title	:	S. thermodepolymerans KpsM-KpsE in Glycolipid 1 state with rigid body
		fitted KpsT
Authors	:	Kuklewicz, J.; Zimmer, J.
Deposited on	:	2023-08-16
Resolution	:	3.40 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (#Entries)	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain					
1	А	234	6%	74%	21%	••		
1	В	234	6%	6	34%	••		
2	С	274		76%	18%	• 6%		
2	D	274		71%	22%	• 7%		
3	Е	390	37%	13%	50%			
3	F	390	41%	13% •	46%			
3	G	390	47%	8%	44%			
3	Н	390	45%	13% •	41%			

Mol	Chain	Length	Quality of chain				
3	Ι	390	48%	9% •	42%		
3	J	390	46%	11% •	43%		
3	K	390	• 49%	11%	40%		
3	L	390	43%	13% •	44%		

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 22046 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called ABC transporter ATP-binding protein.

Mol	Chain	Residues	Atoms				AltConf	Trace	
1	Δ	226	Total	С	Ν	0	\mathbf{S}	0	0
	Π	220	1771	1122	309	329	11	0	0
1	р	226	Total	С	Ν	0	S	0	0
	D	220	1771	1122	309	329	11	U	0

Chain	Residue	Modelled	Actual	Comment	Reference
А	227	ASP	-	expression tag	UNP A0A2S5T4B3
А	228	TYR	-	expression tag	UNP A0A2S5T4B3
А	229	LYS	-	expression tag	UNP A0A2S5T4B3
А	230	ASP	-	expression tag	UNP A0A2S5T4B3
А	231	ASP	-	expression tag	UNP A0A2S5T4B3
А	232	ASP	-	expression tag	UNP A0A2S5T4B3
А	233	ASP	-	expression tag	UNP A0A2S5T4B3
А	234	LYS	-	expression tag	UNP A0A2S5T4B3
В	227	ASP	-	expression tag	UNP A0A2S5T4B3
В	228	TYR	-	expression tag	UNP A0A2S5T4B3
В	229	LYS	-	expression tag	UNP A0A2S5T4B3
В	230	ASP	-	expression tag	UNP A0A2S5T4B3
В	231	ASP	-	expression tag	UNP A0A2S5T4B3
В	232	ASP	-	expression tag	UNP A0A2S5T4B3
В	233	ASP	-	expression tag	UNP A0A2S5T4B3
В	234	LYS	-	expression tag	UNP A0A2S5T4B3

There are 16 discrepancies between the modelled and reference sequences:

• Molecule 2 is a protein called Transport permease protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	С	258	Total 2055	C 1378	N 346	0 324	${ m S} 7$	0	0
2	D	256	Total 2039	C 1367	N 343	O 322	${f S}{7}$	0	0

Chain	Residue	Modelled	Actual	Comment	Reference
С	-2	MET	-	initiating methionine	UNP A0A2S5T447
С	-1	GLY	-	expression tag	UNP A0A2S5T447
С	0	LYS	-	expression tag	UNP A0A2S5T447
С	1	ILE	-	expression tag	UNP A0A2S5T447
С	2	HIS	-	expression tag	UNP A0A2S5T447
С	3	LEU	-	expression tag	UNP A0A2S5T447
D	-2	MET	-	initiating methionine	UNP A0A2S5T447
D	-1	GLY	-	expression tag	UNP A0A2S5T447
D	0	LYS	-	expression tag	UNP A0A2S5T447
D	1	ILE	-	expression tag	UNP A0A2S5T447
D	2	HIS	-	expression tag	UNP A0A2S5T447
D	3	LEU	-	expression tag	UNP A0A2S5T447

There are 12 discrepancies between the modelled and reference sequences:

• Molecule 3 is a protein called Capsular biosynthesis protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	F	106	Total	С	Ν	0	S	0	0
0	Ľ	150	1609	1042	274	285	8	0	0
2	Б	210	Total	С	Ν	Ο	\mathbf{S}	0	0
0	Г	210	1727	1112	300	306	9	0	0
3	С	210	Total	С	Ν	Ο	\mathbf{S}	0	0
0	G	219	1783	1146	308	321	8	0	0
3	Ц	230	Total	С	Ν	0	\mathbf{S}	0	0
0	11	230	1867	1200	319	340	8	0	0
3	т	226	Total	С	Ν	0	\mathbf{S}	0	0
0	1	220	1839	1184	313	334	8	0	0
3	т	224	Total	С	Ν	0	S	0	0
5	J	224	1827	1174	317	327	9	0	0
3	K	234	Total	С	Ν	0	S	0	0
0	Γ	234	1908	1224	330	346	8	0	0
3	2 I	220	Total	С	Ν	0	S	0	0
5		220	1795	1158	309	320	8	U	U

There are 184 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
E	-2	MET	-	initiating methionine	UNP A0A2S5T4A0
Е	-1	GLY	-	expression tag	UNP A0A2S5T4A0
E	0	LYS	-	expression tag	UNP A0A2S5T4A0
Е	1	ILE	-	expression tag	UNP A0A2S5T4A0
Е	2	HIS	-	expression tag	UNP A0A2S5T4A0
Е	77	CYS	LEU	conflict	UNP A0A2S5T4A0

Chain	Residue	Modelled	Actual	Comment	Reference
Е	138	CYS	SER	conflict	UNP A0A2S5T4A0
Е	372	GLY	-	expression tag	UNP A0A2S5T4A0
Е	373	SER	-	expression tag	UNP A0A2S5T4A0
Е	374	GLY	-	expression tag	UNP A0A2S5T4A0
Е	375	SER	-	expression tag	UNP A0A2S5T4A0
Е	376	GLY	-	expression tag	UNP A0A2S5T4A0
Е	377	SER	_	expression tag	UNP A0A2S5T4A0
Е	378	HIS	-	expression tag	UNP A0A2S5T4A0
Е	379	HIS	-	expression tag	UNP A0A2S5T4A0
Е	380	HIS	-	expression tag	UNP A0A2S5T4A0
Е	381	HIS	-	expression tag	UNP A0A2S5T4A0
Е	382	HIS	-	expression tag	UNP A0A2S5T4A0
Е	383	HIS	-	expression tag	UNP A0A2S5T4A0
Е	384	HIS	-	expression tag	UNP A0A2S5T4A0
Е	385	HIS	-	expression tag	UNP A0A2S5T4A0
Е	386	HIS	-	expression tag	UNP A0A2S5T4A0
Е	387	HIS	-	expression tag	UNP A0A2S5T4A0
F	-2	MET	-	initiating methionine	UNP A0A2S5T4A0
F	-1	GLY	-	expression tag	UNP A0A2S5T4A0
F	0	LYS	-	expression tag	UNP A0A2S5T4A0
F	1	ILE	-	expression tag	UNP A0A2S5T4A0
F	2	HIS	-	expression tag	UNP A0A2S5T4A0
F	77	CYS	LEU	conflict	UNP A0A2S5T4A0
F	138	CYS	SER	conflict	UNP A0A2S5T4A0
F	372	GLY	-	expression tag	UNP A0A2S5T4A0
F	373	SER	-	expression tag	UNP A0A2S5T4A0
F	374	GLY	-	expression tag	UNP A0A2S5T4A0
F	375	SER	-	expression tag	UNP A0A2S5T4A0
F	376	GLY	-	expression tag	UNP A0A2S5T4A0
F	377	SER	-	expression tag	UNP A0A2S5T4A0
F	378	HIS	-	expression tag	UNP A0A2S5T4A0
F	379	HIS	-	expression tag	UNP A0A2S5T4A0
F	380	HIS	-	expression tag	UNP A0A2S5T4A0
F	381	HIS	-	expression tag	UNP A0A2S5T4A0
F	382	HIS	-	expression tag	UNP A0A2S5T4A0
F	383	HIS	-	expression tag	UNP A0A2S5T4A0
F	384	HIS	-	expression tag	UNP A0A2S5T4A0
F	385	HIS	-	expression tag	UNP A0A2S5T4A0
F	386	HIS	-	expression tag	UNP A0A2S5T4A0
F	387	HIS	-	expression tag	UNP A0A2S5T4A0
G	-2	MET	-	initiating methionine	UNP A0A2S5T4A0
G	-1	GLY	-	expression tag	UNP A0A2S5T4A0

Chain	Residue	Modelled	Actual	Comment	Reference
G	0	LYS	-	expression tag	UNP A0A2S5T4A0
G	1	ILE	-	expression tag	UNP A0A2S5T4A0
G	2	HIS	-	expression tag	UNP A0A2S5T4A0
G	77	CYS	LEU	conflict	UNP A0A2S5T4A0
G	138	CYS	SER	conflict	UNP A0A2S5T4A0
G	372	GLY	-	expression tag	UNP A0A2S5T4A0
G	373	SER	-	expression tag	UNP A0A2S5T4A0
G	374	GLY	-	expression tag	UNP A0A2S5T4A0
G	375	SER	-	expression tag	UNP A0A2S5T4A0
G	376	GLY	-	expression tag	UNP A0A2S5T4A0
G	377	SER	-	expression tag	UNP A0A2S5T4A0
G	378	HIS	-	expression tag	UNP A0A2S5T4A0
G	379	HIS	-	expression tag	UNP A0A2S5T4A0
G	380	HIS	-	expression tag	UNP A0A2S5T4A0
G	381	HIS	-	expression tag	UNP A0A2S5T4A0
G	382	HIS	-	expression tag	UNP A0A2S5T4A0
G	383	HIS	-	expression tag	UNP A0A2S5T4A0
G	384	HIS	-	expression tag	UNP A0A2S5T4A0
G	385	HIS	-	expression tag	UNP A0A2S5T4A0
G	386	HIS	-	expression tag	UNP A0A2S5T4A0
G	387	HIS	-	expression tag	UNP A0A2S5T4A0
Н	-2	MET	-	initiating methionine	UNP A0A2S5T4A0
Н	-1	GLY	-	expression tag	UNP A0A2S5T4A0
H	0	LYS	-	expression tag	UNP A0A2S5T4A0
Н	1	ILE	-	expression tag	UNP A0A2S5T4A0
Н	2	HIS	-	expression tag	UNP A0A2S5T4A0
H	77	CYS	LEU	conflict	UNP A0A2S5T4A0
H	138	CYS	SER	conflict	UNP A0A2S5T4A0
H	372	GLY	-	expression tag	UNP A0A2S5T4A0
H	373	SER	-	expression tag	UNP A0A2S5T4A0
H	374	GLY	-	expression tag	UNP A0A2S5T4A0
H	375	SER	-	expression tag	UNP A0A2S5T4A0
H	376	GLY	-	expression tag	UNP A0A2S5T4A0
H	377	SER	-	expression tag	UNP A0A2S5T4A0
H	378	HIS	-	expression tag	UNP A0A2S5T4A0
H	379	HIS	-	expression tag	UNP A0A2S5T4A0
H	380	HIS	-	expression tag	UNP A0A2S5T4A0
H	381	HIS	-	expression tag	UNP A0A2S5T4A0
H	382	HIS	-	expression tag	UNP A0A2S5T4A0
H	383	HIS	-	expression tag	UNP A0A2S5T4A0
H	384	HIS	-	expression tag	UNP A0A2S5T4A0
H	385	HIS	-	expression tag	UNP A0A2S5T4A0

Chain	Residue	Modelled	Actual	Comment	Reference
Н	386	HIS	-	expression tag	UNP A0A2S5T4A0
Н	387	HIS	-	expression tag	UNP A0A2S5T4A0
Ι	-2	MET	-	initiating methionine	UNP A0A2S5T4A0
Ι	-1	GLY	-	expression tag	UNP A0A2S5T4A0
Ι	0	LYS	-	expression tag	UNP A0A2S5T4A0
Ι	1	ILE	-	expression tag	UNP A0A2S5T4A0
Ι	2	HIS	-	expression tag	UNP A0A2S5T4A0
Ι	77	CYS	LEU	conflict	UNP A0A2S5T4A0
Ι	138	CYS	SER	conflict	UNP A0A2S5T4A0
Ι	372	GLY	-	expression tag	UNP A0A2S5T4A0
Ι	373	SER	-	expression tag	UNP A0A2S5T4A0
Ι	374	GLY	-	expression tag	UNP A0A2S5T4A0
Ι	375	SER	-	expression tag	UNP A0A2S5T4A0
Ι	376	GLY	-	expression tag	UNP A0A2S5T4A0
Ι	377	SER	-	expression tag	UNP A0A2S5T4A0
Ι	378	HIS	-	expression tag	UNP A0A2S5T4A0
Ι	379	HIS	-	expression tag	UNP A0A2S5T4A0
Ι	380	HIS	-	expression tag	UNP A0A2S5T4A0
Ι	381	HIS	-	expression tag	UNP A0A2S5T4A0
Ι	382	HIS	-	expression tag	UNP A0A2S5T4A0
Ι	383	HIS	-	expression tag	UNP A0A2S5T4A0
Ι	384	HIS	-	expression tag	UNP A0A2S5T4A0
Ι	385	HIS	-	expression tag	UNP A0A2S5T4A0
Ι	386	HIS	-	expression tag	UNP A0A2S5T4A0
Ι	387	HIS	-	expression tag	UNP A0A2S5T4A0
J	-2	MET	-	initiating methionine	UNP A0A2S5T4A0
J	-1	GLY	-	expression tag	UNP A0A2S5T4A0
J	0	LYS	-	expression tag	UNP A0A2S5T4A0
J	1	ILE	-	expression tag	UNP A0A2S5T4A0
J	2	HIS	-	expression tag	UNP A0A2S5T4A0
J	77	CYS	LEU	conflict	UNP A0A2S5T4A0
J	138	CYS	SER	conflict	UNP A0A2S5T4A0
J	372	GLY	-	expression tag	UNP A0A2S5T4A0
J	373	SER	-	expression tag	UNP A0A2S5T4A0
J	374	GLY	-	expression tag	UNP A0A2S5T4A0
J	375	SER	-	expression tag	UNP A0A2S5T4 $\overline{A0}$
J	376	GLY	-	expression tag	UNP A0A2S5T4A0
J	377	SER	-	expression tag	UNP A0A2S5T4A0
J	378	HIS	-	expression tag	UNP A0A2S5T4A0
J	379	HIS	-	expression tag	UNP A0A2S5T4A0
J	380	HIS	-	expression tag	UNP A0A2S5T4 $\overline{A0}$
J	381	HIS	_	expression tag	UNP A0A2S5T4A0

Chain	Residue	Modelled	Actual	Comment	Reference
J	382	HIS	-	expression tag	UNP A0A2S5T4A0
J	383	HIS	-	expression tag	UNP A0A2S5T4A0
J	384	HIS	-	expression tag	UNP A0A2S5T4A0
J	385	HIS	-	expression tag	UNP A0A2S5T4A0
J	386	HIS	-	expression tag	UNP A0A2S5T4A0
J	387	HIS	-	expression tag	UNP A0A2S5T4A0
K	-2	MET	-	initiating methionine	UNP A0A2S5T4A0
K	-1	GLY	-	expression tag	UNP A0A2S5T4A0
K	0	LYS	-	expression tag	UNP A0A2S5T4A0
K	1	ILE	-	expression tag	UNP A0A2S5T4A0
K	2	HIS	-	expression tag	UNP A0A2S5T4A0
K	77	CYS	LEU	conflict	UNP A0A2S5T4A0
K	138	CYS	SER	conflict	UNP A0A2S5T4A0
K	372	GLY	-	expression tag	UNP A0A2S5T4A0
K	373	SER	-	expression tag	UNP A0A2S5T4A0
K	374	GLY	-	expression tag	UNP A0A2S5T4A0
K	375	SER	-	expression tag	UNP A0A2S5T4A0
K	376	GLY	-	expression tag	UNP A0A2S5T4A0
K	377	SER	-	expression tag	UNP A0A2S5T4A0
K	378	HIS	-	expression tag	UNP A0A2S5T4A0
K	379	HIS	-	expression tag	UNP A0A2S5T4A0
K	380	HIS	-	expression tag	UNP A0A2S5T4A0
K	381	HIS	-	expression tag	UNP A0A2S5T4A0
K	382	HIS	-	expression tag	UNP A0A2S5T4A0
K	383	HIS	-	expression tag	UNP A0A2S5T4A0
K	384	HIS	-	expression tag	UNP A0A2S5T4A0
K	385	HIS	-	expression tag	UNP A0A2S5T4A0
K	386	HIS	-	expression tag	UNP A0A2S5T4A0
K	387	HIS	-	expression tag	UNP A0A2S5T4A0
L	-2	MET	-	initiating methionine	UNP A0A2S5T4A0
L	-1	GLY	-	expression tag	UNP A0A2S5T4A0
L	0	LYS	-	expression tag	UNP A0A2S5T4A0
L	1	ILE	-	expression tag	UNP A0A2S5T4A0
L	2	HIS	-	expression tag	UNP A0A2S5T4A0
L	77	CYS	LEU	conflict	UNP A0A2S5T4A0
L	138	CYS	SER	conflict	UNP A0A2S5T4A0
L	372	GLY	-	expression tag	UNP A0A2S5T4A0
L	373	SER	-	expression tag	UNP A0A2S5T4A0
L	374	GLY	-	expression tag	UNP A0A2S5T4A0
L	375	SER	-	expression tag	UNP A0A2S5T4A0
L	376	GLY	-	expression tag	UNP A0A2S5T4A0
L	377	SER	-	expression tag	UNP A0A2S5T4A0

Chain	Residue	Modelled	Actual	Comment	Reference
L	378	HIS	-	expression tag	UNP A0A2S5T4A0
L	379	HIS	-	expression tag	UNP A0A2S5T4A0
L	380	HIS	-	expression tag	UNP A0A2S5T4A0
L	381	HIS	-	expression tag	UNP A0A2S5T4A0
L	382	HIS	-	expression tag	UNP A0A2S5T4A0
L	383	HIS	-	expression tag	UNP A0A2S5T4A0
L	384	HIS	-	expression tag	UNP A0A2S5T4A0
L	385	HIS	-	expression tag	UNP A0A2S5T4A0
L	386	HIS	-	expression tag	UNP A0A2S5T4A0
L	387	HIS	-	expression tag	UNP A0A2S5T4A0

• Molecule 4 is (2R,5S,8S)-2,5-dihydroxy-5,10-dioxo-8-[(undecanoyloxy)methyl]-4,6,9-tr ioxa-5lambda 5 -phosphahenicosan-1-yl 3-deoxy-alpha-L-altro-oct-2-ulopyranosidoni c acid (three-letter code: KJ9) (formula: C₃₇H₆₉O₁₇P) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms			AltConf	
4	С	1	Total	\mathbf{C}	Ο	Р	0
T			55	37	17	1	

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: ABC transporter ATP-binding protein

• Molecule 2: Transport permease protein

Chain D:		71%		22% • 7%	6
MET GLY LYS LYS LYS TLE HIS LEU ALA YAL SER	ARG SER SER SER ARG VAR LYS R14 R14 R14 R14 R14 R16 R119 R119 R119 R119 R119 R119 R119	q 20 124 124 125 125 129 129 129 129 129 129 129 129 129 129	M69 L78 G81 L82 M87 R89 R89 R89	R94 L95 M96 E97 E97 E97 S101 N102 R103	6104 L105 Q110 118
A119 R120 A121 A122 L123 C128 Q128	1132 1134 1134 1138 8158 8158 8158 8163	NI 77 E178 RI 83 RI 83 SI 89 SI 80 SI 80 S	F102 F194 F196 F201 F201 F201 F202 V203	1211 1213 1213 1214 1214 1214 1216 1220	L225 S226 R227 A228 S229
L242 L250 F254 S269 VAL VAL					
• Molecule 3	: Capsular biosy	nthesis protein			
Chain E:	37%	13%	50%		
MET MET GLY LYS LYS HIS MET LYS LEU VAL	ABEN ALL ALL ALT ALT ALT ALT ALT ALT ALT ALT	122 124 124 124 123 123 123 123 123 123 123 123 123 123	D36 D36 SER ASN ASN ALA FRR GLY GLY	SER GLY ALA ALA LEU LEU ALA GLY	LEU THR PRO ALA S72 R73
E74 995 L98 P109 L110	E124 E124 E133 M133 D136 D136 D136 D136 D136	R158 E163 R166 N169 H173 R177	GLN GLN GLN GLN GLU ALA ALA ALA GLU GLU GLU	ALA THR ALA ALA ARG GLU GLU CYS	AKG GLN LEU ALA PHE
GLN ALA LYS LYS HIS LYS LEU LEU LEU ASP PRU	ALA ALA GLN GLN GLN THR THR THR THR THR THR THR	LEU LEU ALA ALA ALA LEU THR THR CLU GLU GLU	ALA ALA ALA ALA ALA THR THR TYR LEU ASN ASP	TYR GLN VAL LYS ALA ALA ARG SER GLN	ILE ASN ALA LEU ARG GLN
GLN ILE ASP GLU GLU ARG ALA ALA	ALA ALA GLY GLY ASP ASP ASP ASP ALA ALA ALA ALA VAL	ALLA ALLA GLU PHE ALTA ALTA ALTA CLU CLU CLU CLU CLU CLU CLU CLU	r nu dia dia dia dia dia dia dia dia dia	VAL VAL GLU SER ALA ARG GLU GLU THR	ARG K320 K322 K322 I335
R340 R341 V342 V343 V343 N344 T347	V350 V350 C352 C353 L354 L354 V358 V358 V358	HIST ASP GLN GLY SER GLY SER HIS HIS	STH STH STH STH STH STH STH STH		
• Molecule 3	: Capsular biosy	nthesis protein			
Chain F:	41%	13% •	46	%	-
MET GLY LYS LYS LYS HILE HILE HILE R8 R3 L9	R13 L14 Q15 Q15 V16 V16 V19 V20 V20 M23 M23	127 127 128 128 128 128 128 128 128 128	ND2 PLA CLA CLY GLY GLY SET SET SET SLA ALA ALA	LEU LEU LEU ALA GLY THR THR PRO S72 S72	E74 E74 L79 T104
P105 L106 P107 P108 P109 R112 V132	D135 D136 1137 1137 0138 0138 0138 0138 0138 0138 1142 1142 1142 1142 1143 1142	E1 63 R1 66 E1 70 H1 73 M1 74 M1 75 A1 76 A1 76	6179 6179 617 617 617 711 715 611 611 611 611 611 611	ALLA THR ALLA ALLA ALLA GLU GLU ALLA ALLA	ARG GLN LEU ILE ALA PHE
GLN ALA LYS LYS LYS LYS LEU LEU LEU ASP PRO	ALA ALA GLN GLN GLN THR THR THR THR THR THR THR	LEU GLN ALA ALA ALA LEU ARG GLN GLN GLU	AEC ASR ASR ASR ASR THR THR TYR CEU ASN ASP SFR	TYR GLN VAL LYS ALA LEU SER GLN GLN	ILE ASN ALA LEU ARG GLN
GLN TLE ASP GLU GLU ARG ARG ALA	ALA GLY GLY GLY GLY ASP ASP ASP ASP ALA ALA ALA ALA	ALA ALA GLU CLU CLU ASP CLU CLU CLU CLU CLU CLU	rnt Ala GLA Ala Ala Lys Leu Ala Ala	ALL GLU SER ALA ARG GLU GLU THR THR	K319 K322 P330 V331
L332 Y343 T347 Y356 V359	V362 V363 1366 1366 437 437 61Y 5ER 61Y 5ER	SER HIS HIS HIS HIS HIS HIS HIS HIS			

• Molecule 3: Capsular biosynthesis protein

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	79301	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	1800	Depositor
Magnification	Not provided	
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	60.187	Depositor
Minimum map value	-33.491	Depositor
Average map value	-0.008	Depositor
Map value standard deviation	1.420	Depositor
Recommended contour level	5.0	Depositor
Map size (Å)	388.80002, 388.80002, 388.80002	wwPDB
Map dimensions	360, 360, 360	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.08, 1.08, 1.08	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: KJ9

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles	
			# Z > 5	RMSZ	# Z > 5
1	А	0.28	0/1807	0.63	0/2436
1	В	0.38	0/1807	0.63	0/2436
2	С	0.30	0/2111	0.57	0/2877
2	D	0.30	0/2095	0.55	0/2856
3	Ε	0.29	0/1643	0.57	0/2230
3	F	0.34	0/1762	0.55	0/2388
3	G	0.30	0/1818	0.55	0/2467
3	Н	0.31	0/1904	0.58	0/2583
3	Ι	0.28	0/1875	0.58	0/2543
3	J	0.30	0/1863	0.56	0/2525
3	Κ	0.30	0/1945	0.58	0/2637
3	L	0.28	0/1832	0.53	0/2485
All	All	0.31	0/22462	0.57	0/30463

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1771	0	1745	27	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	В	1771	0	1745	72	0
2	С	2055	0	2178	37	0
2	D	2039	0	2156	36	0
3	Е	1609	0	1635	25	0
3	F	1727	0	1756	37	0
3	G	1783	0	1803	18	0
3	Н	1867	0	1876	38	0
3	Ι	1839	0	1855	23	0
3	J	1827	0	1851	28	0
3	K	1908	0	1924	25	0
3	L	1795	0	1818	32	0
4	C	55	0	0	1	0
All	All	22046	0	22342	382	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 9.

All (382) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:140:MET:HE3	1:B:167:VAL:HB	1.33	1.07
3:F:109:PRO:HA	3:F:112:ARG:HG2	1.54	0.86
3:F:9:LEU:HB3	3:F:14:LEU:HD21	1.57	0.85
1:B:140:MET:CE	1:B:167:VAL:HB	2.09	0.83
3:L:16:TRP:HA	3:L:20:TYR:HD2	1.43	0.82
1:B:140:MET:SD	1:B:167:VAL:HG21	2.23	0.78
1:B:172:VAL:HG22	1:B:177:MET:SD	2.28	0.74
3:L:19:VAL:HG22	3:L:352:CYS:HB3	1.70	0.72
3:H:18:LEU:HD13	3:H:355:ILE:HG22	1.72	0.72
1:B:71:PRO:HG2	1:B:74:LEU:HD22	1.71	0.71
1:B:121:LEU:HD12	1:B:122:PRO:HD2	1.73	0.69
3:H:18:LEU:HD12	3:H:359:VAL:HG11	1.75	0.69
1:B:36:LEU:HG	1:B:44:LYS:HE3	1.75	0.68
2:C:180:PRO:HA	2:C:183:ARG:NH2	2.09	0.68
1:B:164:SER:O	1:B:167:VAL:HG22	1.93	0.68
1:B:115:ILE:HD11	1:B:133:ARG:HD2	1.77	0.67
1:B:140:MET:HE3	1:B:167:VAL:CB	2.19	0.65
3:F:15:GLN:HB3	3:F:20:TYR:CE2	2.33	0.64
2:C:94:ARG:HG3	2:C:120:ARG:HH11	1.64	0.63
3:H:172:SER:HB2	3:H:321:LEU:HD12	1.81	0.62
3:H:44:ILE:HD12	3:H:324:LEU:HD11	1.81	0.62

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:L:14:LEU:O	3:L:18:LEU:HB2	1.99	0.62
1:A:75:SER:HB2	1:A:131:ARG:HD3	1.81	0.61
3:H:19:VAL:O	3:H:22:PRO:HD2	2.01	0.61
3:H:47:ARG:NH1	3:I:74:GLU:OE2	2.33	0.61
3:L:135:ASP:O	3:L:139:GLY:N	2.33	0.61
1:B:163:LYS:O	1:B:167:VAL:HG13	2.01	0.61
3:K:44:ILE:HB	3:K:324:LEU:HD11	1.83	0.61
2:D:208:PRO:O	2:D:211:LEU:HB2	2.01	0.60
3:J:132:VAL:HG12	3:J:143:VAL:HG22	1.84	0.60
3:E:74:GLU:OE2	3:L:47:ARG:NH2	2.35	0.60
1:A:2:ILE:HB	1:A:28:PHE:HB2	1.83	0.60
3:K:6:VAL:HG12	3:K:367:ARG:HH21	1.67	0.60
3:F:174:ARG:HD3	3:F:177:ARG:HH22	1.67	0.59
3:K:49:THR:HG21	3:K:323:SER:HB3	1.84	0.59
1:B:206:GLU:OE1	1:B:206:GLU:N	2.36	0.59
3:G:135:ASP:O	3:G:139:GLY:N	2.35	0.59
3:F:14:LEU:O	3:F:17:ALA:HB3	2.01	0.59
3:K:331:VAL:HG21	3:L:86:MET:HG2	1.83	0.58
1:B:147:TYR:CZ	1:B:171:ARG:HD2	2.39	0.58
2:C:182:ALA:HA	2:C:185:ILE:HG12	1.85	0.58
3:H:19:VAL:HG23	3:H:20:TYR:H	1.68	0.58
3:I:128:SER:OG	3:I:129:ARG:NH1	2.37	0.58
1:B:140:MET:SD	1:B:167:VAL:CG2	2.92	0.58
2:D:102:ASN:HD22	2:D:105:LEU:HD23	1.69	0.58
3:K:48:GLN:HA	3:K:322:LYS:HE2	1.86	0.57
3:H:16:TRP:CE3	3:H:20:TYR:CD2	2.92	0.57
1:B:112:PHE:CE2	1:B:140:MET:SD	2.98	0.57
3:H:16:TRP:HE3	3:H:20:TYR:CD2	2.23	0.57
3:H:24:LEU:C	3:H:26:ALA:H	2.08	0.56
3:E:154:GLN:OE1	3:E:158:ARG:NH1	2.39	0.56
3:G:39:VAL:HG12	3:G:146:GLN:HG2	1.87	0.56
1:B:34:ILE:HD11	1:B:195:VAL:HG22	1.87	0.56
3:K:363:VAL:O	3:K:367:ARG:HG2	2.05	0.56
3:I:16:TRP:HA	3:I:20:TYR:HD1	1.71	0.56
3:J:169:ASN:ND2	3:J:322:LYS:O	2.38	0.56
3:K:72:SER:OG	3:K:73:ARG:N	2.37	0.56
1:B:2:ILE:HB	1:B:28:PHE:HB2	1.88	0.56
3:E:10:THR:OG1	3:E:11:ALA:N	2.39	0.56
3:E:169:ASN:ND2	3:E:322:LYS:O	2.39	0.56
3:H:154:GLN:OE1	3:H:158:ARG:NH2	2.39	0.56
3:I:18:LEU:HG	3:I:19:VAL:HG13	1.88	0.55

	to us page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:101:ASP:O	1:B:105:LYS:HG2	2.07	0.55
1:B:156:GLY:O	1:B:161:ARG:NH1	2.39	0.55
3:L:101:HIS:O	3:L:104:THR:OG1	2.25	0.55
1:B:140:MET:SD	1:B:167:VAL:HG11	2.47	0.55
3:I:44:ILE:HG22	3:I:326:VAL:HG12	1.89	0.55
3:K:318:THR:O	3:K:320:LYS:NZ	2.39	0.55
3:F:8:ARG:HG2	3:F:13:ARG:HH12	1.72	0.55
1:A:91:VAL:HG11	1:A:138:LEU:HD11	1.88	0.55
3:H:17:ALA:O	3:H:22:PRO:HD3	2.07	0.55
3:K:187:LEU:HD13	3:K:306:ALA:HB1	1.88	0.55
1:B:193:VAL:HG12	1:B:206:GLU:HA	1.88	0.55
3:F:74:GLU:OE2	3:F:74:GLU:N	2.36	0.55
2:C:176:THR:OG1	2:C:183:ARG:NH1	2.40	0.54
3:G:132:VAL:HG22	3:G:143:VAL:HG22	1.87	0.54
2:C:176:THR:O	2:C:183:ARG:NH1	2.35	0.54
3:F:29:TYR:HA	3:F:33:PHE:HB2	1.89	0.54
3:H:169:ASN:ND2	3:H:322:LYS:O	2.35	0.54
3:H:19:VAL:C	3:H:22:PRO:HD2	2.28	0.54
1:A:39:ARG:HH12	1:A:218:SER:HB2	1.72	0.54
3:H:21:LEU:HB2	3:H:22:PRO:HD3	1.90	0.54
3:K:19:VAL:HG13	3:K:352:CYS:HB3	1.89	0.53
1:B:122:PRO:HB3	1:B:124:LYS:HZ3	1.73	0.53
3:H:16:TRP:O	3:H:21:LEU:HG	2.07	0.53
3:K:138:CYS:HB3	3:K:140:LEU:HD23	1.90	0.53
3:H:18:LEU:CD1	3:H:359:VAL:HG11	2.37	0.53
3:F:132:VAL:HG22	3:F:143:VAL:HG22	1.90	0.53
3:K:43:VAL:HB	3:K:328:GLU:HB3	1.90	0.53
1:A:4:LEU:HB3	1:A:7:LEU:HD11	1.90	0.53
2:C:78:LEU:O	2:C:82:LEU:HB2	2.08	0.53
2:D:177:ASN:ND2	2:D:178:GLU:OE1	2.42	0.53
3:L:23:MET:O	3:L:27:THR:HG23	2.09	0.53
3:L:154:GLN:HE21	3:L:158:ARG:HH22	1.54	0.53
3:K:84:HIS:HB3	3:K:127:ARG:HE	1.73	0.53
1:B:168:PHE:O	1:B:172:VAL:HG23	2.09	0.53
1:A:82:LEU:HD11	2:C:30:ARG:HG3	1.91	0.53
1:B:140:MET:HB2	1:B:171:ARG:HH21	1.74	0.53
1:A:194:VAL:HG23	1:A:208:VAL:HG22	1.91	0.53
1:B:140:MET:SD	1:B:167:VAL:CB	2.97	0.53
3:F:34:SER:HA	3:F:108:ASP:OD2	2.08	0.53
3:H:144:ARG:HH21	3:H:338:TYR:HE2	1.55	0.52
3:I:30:PHE:HB3	3:I:341:ARG:HB3	1.91	0.52

Atom-1	Atom-2	Interatomic	Clash
1100111-1	1100111-2	distance (Å)	overlap (Å)
3:L:117:THR:OG1	3:L:118:SER:N	2.42	0.52
3:E:36:ASP:OD1	3:E:341:ARG:NH2	2.41	0.52
3:I:29:TYR:HA	3:I:33:PHE:HB2	1.92	0.52
3:L:138:CYS:HB3	3:L:140:LEU:HD12	1.91	0.52
3:E:95:GLN:NE2	3:E:163:GLU:OE2	2.41	0.52
3:H:48:GLN:OE1	3:H:49:THR:N	2.43	0.52
1:B:44:LYS:HE2	1:B:180:VAL:HG13	1.91	0.52
3:H:43:VAL:HB	3:H:328:GLU:HB3	1.92	0.52
1:A:112:PHE:HE2	1:A:167:VAL:HG21	1.74	0.51
3:J:39:VAL:HG12	3:J:146:GLN:HG2	1.92	0.51
3:L:16:TRP:O	3:L:20:TYR:HB2	2.09	0.51
2:C:87:MET:HA	2:C:128:GLN:HG3	1.93	0.51
3:E:12:LYS:HA	3:E:15:GLN:HB3	1.91	0.51
3:H:156:LEU:O	3:H:160:ILE:HG13	2.10	0.51
2:D:100:ASP:HA	2:D:103:ARG:HD3	1.91	0.51
3:G:136:ASP:OD1	3:G:136:ASP:N	2.38	0.51
1:A:15:HIS:O	1:A:18:ARG:NH1	2.44	0.51
3:H:37:ARG:NH1	3:H:146:GLN:OE1	2.44	0.51
3:J:105:PRO:HG2	3:J:148:PHE:CZ	2.45	0.51
1:B:85:ARG:O	1:B:89:LYS:HG3	2.11	0.51
3:G:10:THR:HG22	3:G:13:ARG:HG3	1.91	0.51
3:J:105:PRO:HG2	3:J:148:PHE:CE2	2.46	0.51
1:A:79:GLN:HB3	1:A:82:LEU:HD12	1.93	0.50
1:B:91:VAL:HA	1:B:94:ILE:HD12	1.92	0.50
3:J:359:VAL:HA	3:J:362:VAL:HG12	1.93	0.50
1:B:39:ARG:HH22	1:B:219:LEU:HA	1.75	0.50
3:L:163:GLU:OE2	3:L:166:ARG:NH1	2.43	0.50
3:F:109:PRO:CA	3:F:112:ARG:HG2	2.36	0.50
3:H:32:VAL:HG12	3:H:33:PHE:HD1	1.77	0.50
2:C:178:GLU:O	2:C:180:PRO:HD3	2.11	0.50
3:L:103:GLY:O	3:L:112:ARG:NH1	2.45	0.50
1:B:87:ASN:O	1:B:91:VAL:HG23	2.12	0.50
1:B:107:ARG:O	1:B:110:GLU:HG3	2.12	0.50
3:F:137:ILE:H	3:F:137:ILE:HD12	1.77	0.50
3:I:162:GLU:OE2	3:I:166:ARG:NH2	2.45	0.50
3:J:323:SER:OG	3:K:175:MET:SD	2.70	0.50
3:L:79:LEU:O	3:L:83:ILE:HG12	2.12	0.50
3:G:154:GLN:OE1	3:G:158:ARG:NH2	2.44	0.49
1:B:140:MET:HB2	1:B:171:ARG:NH2	2.27	0.49
2:C:97:GLU:HG2	2:C:183:ARG:HD2	1.94	0.49
1:B:122:PRO:HB3	1:B:124:LYS:NZ	2.28	0.49

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:112:PHE:HE2	1:B:167:VAL:HG11	1.77	0.49
1:B:169:ASP:HA	1:B:172:VAL:HG23	1.94	0.49
3:F:16:TRP:HE3	3:F:20:TYR:CD2	2.31	0.49
3:F:163:GLU:OE2	3:F:166:ARG:NH1	2.45	0.49
3:I:18:LEU:HD21	3:I:356:TYR:HA	1.94	0.49
3:F:359:VAL:HA	3:F:362:VAL:HG12	1.94	0.49
1:B:106:VAL:HA	1:B:109:VAL:HG12	1.95	0.48
2:D:94:ARG:O	2:D:120:ARG:NH1	2.45	0.48
3:F:23:MET:O	3:F:27:THR:OG1	2.26	0.48
1:B:140:MET:CE	1:B:167:VAL:CG1	2.91	0.48
1:B:3:GLU:HB3	1:B:63:VAL:HB	1.95	0.48
1:B:140:MET:CE	1:B:167:VAL:CB	2.84	0.48
3:F:50:SER:HB3	3:F:322:LYS:HE2	1.94	0.48
3:H:88:LEU:HD21	3:H:160:ILE:HG23	1.96	0.48
2:D:100:ASP:OD2	2:D:183:ARG:NH1	2.43	0.48
3:F:16:TRP:HE3	3:F:20:TYR:HD2	1.61	0.48
3:H:46:VAL:HG11	3:H:75:ASP:HB3	1.96	0.48
2:C:100:ASP:OD2	2:C:183:ARG:NH2	2.46	0.48
2:D:24:LEU:HD12	2:D:122:MET:HE3	1.95	0.48
2:D:24:LEU:HD12	2:D:122:MET:CE	2.44	0.48
3:I:135:ASP:O	3:I:139:GLY:N	2.47	0.48
3:K:311:GLU:HA	3:K:314:ARG:NH1	2.29	0.48
3:L:23:MET:HE1	3:L:349:LEU:HD11	1.95	0.48
2:C:126:SER:O	2:C:130:ILE:HG13	2.14	0.48
3:F:363:VAL:HA	3:F:366:ILE:HG22	1.96	0.48
3:J:104:THR:O	3:J:106:LEU:HD22	2.14	0.48
3:K:162:GLU:OE1	3:K:166:ARG:NH2	2.47	0.48
1:B:153:MET:HE1	1:B:168:PHE:HB2	1.96	0.47
3:F:15:GLN:HA	3:F:19:VAL:CG2	2.44	0.47
3:I:24:LEU:O	3:I:28:VAL:HG12	2.15	0.47
1:A:8:THR:HB	1:A:59:GLU:HB2	1.97	0.47
1:B:3:GLU:CG	1:B:5:ARG:HE	2.27	0.47
1:B:105:LYS:HZ1	1:B:142:PHE:HD1	1.56	0.47
3:F:135:ASP:O	3:F:139:GLY:N	2.47	0.47
3:I:48:GLN:NE2	3:I:321:LEU:O	2.47	0.47
1:B:77:GLY:HA2	2:D:104:GLY:O	2.15	0.47
3:F:135:ASP:O	3:F:139:GLY:CA	2.63	0.47
3:H:173:HIS:NE2	3:H:319:ARG:O	2.40	0.47
1:B:178:ILE:O	1:B:179:LEU:HD12	2.15	0.46
2:D:28:PHE:CE1	2:D:123:LEU:HG	2.50	0.46
3:F:157:ASN:HB3	3:F:330:PRO:HB3	1.96	0.46

Atom-1	Atom-2	Interatomic distance $(\hat{\lambda})$	Clash
2.C.188.II F.HC23	2.D.101.I FU.HD12	1 07	0.46
2.0.100.ILD.IIG25 3.I.16.TRP.HΔ	2.D.191.LE0.IID12 3.I.20.TVB.CD1	2.50	0.40
3.1.162.CLU.OE1	3.I.20.1110.0D1	2.50	0.40
1.B.70.TRD.HH2	1.B.149.PHF.CF2	2.40	0.40
3.1.163.CLU.HA	3.L.166.ARC.HC2	2.55	0.40
1. A. 176. A SN: OD1	1.A.177.MET.N	2.40	0.40
3.C.40.SEB.O	3.C.40.SFB.OC	2.49	0.40
3.0.40.5DIt.0	3.U.127.ARC.HF	1 70	0.40
3.1.04.1115.11D3	3.1.127.ARG.HE	2.15	0.40
1. A.4. I FU-O	$\frac{1.4.25.4 \text{ SN} \cdot \text{H}}{1.4.25.4 \text{ SN} \cdot \text{H}}$	2.15	0.40
1.R.4.LLU.U	1.R.20.MET.HC2	2.15	0.40
1.D.130.ME1.II	1.D.130.ME1.IIG3	2.15	0.40
2.D.212.DDO.UA	2.D.215.CI N.UC2	2.15	0.40
2.D.212.1 INO.IIA 2.C.42.VAL.HB	2.D.213.GLN.IIG3	1.97	0.40
2.C.111.DUE.O	2.C.125.TVD.OU	1.97	0.40
δ:G:III:PΠE:U	5:G:125:1 1 К:ОП 9:C:961: A DC:UA	2.20	0.40
2:0:201:ARG:HD2	2:0:201:ARG:ПА 2:D:122:MET.IIC2	1.79	0.40
2:D:110:ILE:U	2:D:122:ME1:IG2	2.10	0.40
2:D:203:VAL:HG11	2:D:220:LE0:HD11 2.E.24.CED.HD2	1.98	0.40
3:E:30:PHE:HA	3:E:34:5ER:HB3	1.97	0.40
3:J:79:LEU:HD12	3:J:79:LEU:HA	1.08	0.40
1:B:187:1LE:HD12	1:D:18/:ILE:H	1.81	0.40
2:D:87:ME1:HA	2:D:128:GLN:HG3	1.98	0.40
3:E:340:ARG:0	3:E:344:ASN:ND2	2.44	0.40
3:F:135:ASP:0	3:F:139:GLY:HA2	2.15	0.40
1:B:159:GLN:U	1:B:163:LYS:HG2	2.10	0.46
1:B:49:AKG:HH12	1:D:55:GLU:HG5	1.82	0.45
2:D:97:GLU:HB2	2:D:120:ARG:HH12	1.81	0.45
3:F:1/0:GLU:HA	3:F:1/3:HIS:HB2	1.97	0.45
3:F:343:1YK:U	3:F:347:1HR:HG23	2.15	0.45
3:G:79:LEU:HD23	3:G:79:LEU:HA	1.78	0.45
3:H:15:GLN:U	3:H:19:VAL:HG22	2.10	0.45
3:K:27:THR:HG23	3:K:31:LEU:HD23	1.98	0.45
3:G:40:SER:O	3:G:157:ASN:ND2	2.49	0.45
3:E:1/:ALA:HA	3:E:21:LEU:HD13	1.97	0.45
3:E:343:TYK:U	3:E:34/:THK:HG22	2.15	0.45
1:B:140:MET:SD	1:B:167:VAL:HB	2.55	0.45
3:F:10:TKP:0	3:F:21:LEU:HB2	2.17	0.45
3:E:18:LEU:HD21	3:E:355:1LE:HG22	1.99	0.45
3:G:138:CYS:HB3	3:G:140:LEU:HD13	1.98	0.45
3:L:99:AKG:HA	3:L:99:ARG:HD2	1.67	0.45
⊥ 1:B:153:MET:CE	⊢ 1:B:168:PHE:HB2	2.46	0.45

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:J:22:PRO:HA	3:J:25:VAL:HG22	1.99	0.45	
2:C:199:VAL:HA	2:C:227:ARG:HH22	1.82	0.45	
3:H:366:ILE:HD12	3:H:366:ILE:HA	1.86	0.45	
3:J:351:VAL:O	3:J:355:ILE:HG22	2.17	0.45	
3:G:315:ILE:HA	3:G:318:THR:HG22	1.99	0.45	
3:H:138:CYS:SG	3:H:140:LEU:HD12	2.57	0.45	
1:A:169:ASP:HA	1:A:172:VAL:HG23	1.99	0.45	
1:B:153:MET:HB3	1:B:165:ARG:HH21	1.82	0.45	
2:C:193:LEU:HD12	2:C:193:LEU:HA	1.83	0.45	
3:L:101:HIS:HE1	3:L:149:GLU:HG2	1.81	0.45	
1:B:147:TYR:HB3	1:B:168:PHE:CZ	2.52	0.44	
2:C:57:MET:HB2	2:C:78:LEU:HD21	1.99	0.44	
3:H:24:LEU:C	3:H:26:ALA:N	2.70	0.44	
3:L:169:ASN:ND2	3:L:320:LYS:HE3	2.32	0.44	
1:B:79:GLN:HG2	2:D:30:ARG:HH21	1.82	0.44	
3:L:39:VAL:HG22	3:L:146:GLN:HG2	1.99	0.44	
1:A:212:ILE:O	1:A:216:GLN:HG2	2.17	0.44	
3:E:29:TYR:HA	3:E:33:PHE:HB2	1.99	0.44	
3:E:109:PRO:HG2	3:E:110:LEU:HD12	1.99	0.44	
1:A:72:VAL:HG22	1:A:149:ILE:HA	1.99	0.44	
1:A:184:MET:O	1:A:188:LYS:HG3	2.18	0.44	
1:B:90:PHE:CE2	2:D:105:LEU:HD11	2.52	0.44	
3:F:104:THR:O	3:F:106:LEU:HD22	2.18	0.44	
3:J:106:LEU:HD22	3:J:106:LEU:H	1.83	0.44	
2:C:55:ALA:O	2:C:59:THR:HG23	2.18	0.44	
2:C:233:GLN:HE22	3:F:135:ASP:HA	1.83	0.44	
1:A:65:ASP:OD1	1:A:65:ASP:N	2.49	0.43	
2:D:81:GLY:HA3	2:D:227:ARG:HH21	1.83	0.43	
3:J:46:VAL:HG21	3:J:75:ASP:HB2	2.00	0.43	
3:J:104:THR:OG1	3:J:105:PRO:HD3	2.18	0.43	
3:L:92:LEU:HD13	3:L:156:LEU:HD11	2.00	0.43	
2:C:31:GLU:OE2	2:C:120:ARG:NE	2.52	0.43	
2:C:191:LEU:HD12	2:D:188:ILE:HG23	2.00	0.43	
2:D:19:ILE:HG13	3:K:369:HIS:CE1	2.53	0.43	
3:F:18:LEU:HD11	3:F:356:TYR:HB2	2.00	0.43	
3:L:16:TRP:HA	3:L:20:TYR:CD2	2.36	0.43	
2:D:17:TRP:O	2:D:21:GLN:HG3	2.18	0.43	
3:E:136:ASP:OD1	3:E:136:ASP:N	2.44	0.43	
3:I:163:GLU:OE2	3:I:166:ARG:NH1	2.51	0.43	
3:K:49:THR:HG22	3:L:175:MET:HG3	2.00	0.43	
2:C:181:GLN:C	2:C:183:ARG:H	2.21	0.43	

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:J:43:VAL:HG23	3:J:327:VAL:HB	2.00	0.43
3:L:24:LEU:O	3:L:28:VAL:HG12	2.17	0.43
2:C:27:LEU:HD21	2:C:116:THR:HG22	2.00	0.43
2:D:134:ILE:O	2:D:138:THR:HG22	2.19	0.43
1:B:4:LEU:HB2	1:B:7:LEU:CD2	2.48	0.43
2:C:36:LEU:HD23	2:C:36:LEU:HA	1.84	0.43
3:F:108:ASP:O	3:F:112:ARG:HB3	2.19	0.43
3:F:50:SER:O	3:F:50:SER:OG	2.34	0.43
3:J:104:THR:N	3:J:105:PRO:CD	2.82	0.43
1:A:103:LEU:O	1:A:107:ARG:HG3	2.19	0.43
3:L:23:MET:HB3	3:L:23:MET:HE2	1.82	0.43
1:B:108:PHE:HZ	1:B:140:MET:HE2	1.84	0.43
1:B:159:GLN:H	1:B:159:GLN:CD	2.22	0.43
2:C:13:LYS:HD3	2:C:13:LYS:HA	1.75	0.43
2:D:78:LEU:O	2:D:82:LEU:HB2	2.19	0.43
3:J:16:TRP:HA	3:J:20:TYR:HD2	1.83	0.43
2:D:225:LEU:HD12	2:D:242:LEU:HD13	2.01	0.43
3:F:32:VAL:HG23	3:F:33:PHE:HD1	1.84	0.42
3:J:106:LEU:O	3:J:107:ARG:C	2.56	0.42
1:A:167:VAL:O	1:A:171:ARG:HG2	2.19	0.42
2:C:178:GLU:OE1	2:C:178:GLU:N	2.52	0.42
3:E:358:VAL:O	3:E:362:VAL:HG13	2.19	0.42
2:D:24:LEU:HD11	2:D:118:ILE:HB	2.00	0.42
3:H:47:ARG:NH2	3:I:78:TYR:OH	2.51	0.42
3:J:134:MET:HG2	3:J:141:LEU:HD12	2.00	0.42
1:B:4:LEU:HB2	1:B:7:LEU:HD21	2.00	0.42
1:B:78:PHE:HB2	1:B:87:ASN:OD1	2.19	0.42
3:E:120:GLU:O	3:E:124:GLU:HG2	2.19	0.42
3:E:335:ILE:HD12	3:E:335:ILE:HA	1.85	0.42
3:H:98:LEU:H	3:H:98:LEU:HD12	1.83	0.42
2:C:176:THR:HG1	2:C:183:ARG:NH1	2.17	0.42
3:F:135:ASP:HB3	3:F:140:LEU:HB2	2.01	0.42
3:L:19:VAL:O	3:L:22:PRO:HD2	2.19	0.42
1:A:106:VAL:HA	1:A:109:VAL:HG22	2.01	0.42
2:C:203:VAL:HG13	2:C:237:LEU:HD11	2.02	0.42
2:D:89:ARG:HG3	2:D:190:LEU:HD13	2.01	0.42
3:J:363:VAL:HA	3:J:366:ILE:HG22	2.01	0.42
1:A:22:ARG:HD3	1:A:22:ARG:HA	1.81	0.42
3:E:350:VAL:O	3:E:354:LEU:HD13	2.20	0.42
3:F:141:LEU:HD12	3:F:141:LEU:HA	1.90	0.42
3:H:135:ASP:O	3:H:139:GLY:N	2.53	0.42

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:J:46:VAL:HG12	3:J:324:LEU:HD12	2.02	0.42	
2:C:266:GLN:OE1	2:C:266:GLN:N	2.52	0.42	
3:E:355:ILE:HD13	3:E:355:ILE:HA	1.89	0.42	
3:I:179:GLN:HE21	3:I:179:GLN:HB2	1.63	0.42	
3:J:36:ASP:HB3	3:J:336:ALA:HB2	2.02	0.42	
3:J:343:TYR:O	3:J:347:THR:HG22	2.20	0.42	
2:D:96:MET:HA	2:D:173:ALA:HB2	2.02	0.41	
3:G:362:VAL:O	3:G:366:ILE:HG22	2.20	0.41	
3:K:73:ARG:HE	3:K:73:ARG:HB2	1.66	0.41	
2:C:149:VAL:HG23	2:C:150:ARG:HG2	2.01	0.41	
2:D:192:PRO:O	2:D:196:VAL:HG12	2.21	0.41	
3:H:39:VAL:HG21	3:H:338:TYR:HD2	1.86	0.41	
1:A:28:PHE:HE2	1:A:34:ILE:HG21	1.85	0.41	
1:B:136:PHE:HZ	1:B:152:ALA:HB1	1.86	0.41	
1:B:143:ASP:HA	1:B:147:TYR:OH	2.21	0.41	
2:C:99:ILE:HG22	2:C:103:ARG:HH21	1.86	0.41	
3:E:133:LEU:HB2	3:E:142:THR:HG23	2.02	0.41	
3:E:173:HIS:O	3:E:177:ARG:HB2	2.20	0.41	
3:K:306:ALA:O	3:K:310:VAL:HG23	2.20	0.41	
1:A:7:LEU:O	1:A:23:ASN:N	2.53	0.41	
1:A:85:ARG:O	1:A:89:LYS:HG3	2.19	0.41	
1:B:181:SER:OG	1:B:182:HIS:N	2.53	0.41	
2:D:60:LEU:HD23	2:D:60:LEU:HA	1.88	0.41	
2:D:190:LEU:HD23	2:D:190:LEU:HA	1.87	0.41	
3:H:35:ALA:N	3:H:108:ASP:OD2	2.53	0.41	
2:C:89:ARG:HD2	4:C:301:KJ9:C10	2.51	0.41	
2:C:251:LEU:HD23	2:C:251:LEU:HA	1.89	0.41	
3:E:19:VAL:O	3:E:23:MET:HG2	2.21	0.41	
3:E:352:CYS:SG	3:E:353:CYS:N	2.94	0.41	
3:F:24:LEU:O	3:F:28:VAL:HG13	2.20	0.41	
1:B:9:LYS:HA	1:B:9:LYS:HD3	1.87	0.41	
1:B:116:GLY:O	1:B:119:PHE:HB3	2.20	0.41	
2:C:190:LEU:HD23	2:C:190:LEU:HA	1.89	0.41	
3:H:19:VAL:HG23	3:H:20:TYR:CD2	2.56	0.41	
3:J:18:LEU:HD12	3:J:359:VAL:HG11	2.02	0.41	
2:D:127:LEU:HD23	2:D:127:LEU:HA	1.86	0.41	
3:E:20:TYR:O	3:E:24:LEU:HD22	2.20	0.41	
3:I:13:ARG:HA	3:I:13:ARG:HD2	1.81	0.41	
3:K:76:THR:HA	3:K:79:LEU:HB2	2.02	0.41	
1:B:130:MET:O	1:B:134:VAL:HG22	2.20	0.41	
1:B:149:ILE:HD12	1:B:179:LEU:HD11	2.02	0.41	

Atom-1Atom-2Interactinic distance (Å)Overlap (Å) $2:C:180:PRO:HD2$ $2:C:181:GLN:OE1$ 2.21 0.41 $2:D:31:GLU:OE2$ $2:D:120:ARG:NE$ 2.53 0.41 $2:D:152:LEU:HD23$ $2:D:152:LEU:HA$ 1.85 0.41 $3:H:49:THR:HA$ $3:I:175:MET:HE1$ 2.02 0.41 $3:J:109:PRO:O$ $3:J:112:ARG:HG2$ 2.21 0.41 $1:B:151:GLU:N$ $1:B:180:VAL:O$ 2.54 0.41 $2:C:95:LEU:HD11$ $2:C:121:ALA:HB2$ 2.03 0.41 $3:G:169:ASN:HD21$ $3:G:320:LYS:HE3$ 1.85 0.41 $3:L:20:TYR:O$ $3:L:24:LEU:HD23$ 2.21 0.41 $3:L:48:GLN:HE21$ $3:L:50:SER:OG$ 2.38 0.41 $3:L:20:TYR:O$ $3:L:24:LEU:HD23$ 2.21 0.40 $2:C:180:PRO:O$ $2:C:183:ARG:HG3$ 2.21 0.40 $2:C:180:PRO:O$ $2:C:183:ARG:HG3$ 2.21 0.40 $2:D:25:PHE:HZ$ $3:J:364:ALA:HB1$ 1.85 0.40 $3:H:79:LEU:HD23$ $3:H:79:LEU:HA$ 1.76 0.40 $3:H:79:LEU:HD23$ $3:H:79:LEU:HA$ 1.76 0.40 $3:L:129:ARG:HA$ $3:H:129:ARG:HH11$ 1.86 0.40 $3:K:47:ARG:CZ$ $3:K:48:GLN:H$ 2.19 0.40 $3:L:154:GLN:HE21$ $3:L:158:ARG:NH2$ 2.19 0.40 $3:L:154:GLN:HE21$ $3:L:158:ARG:NH2$ 2.19 0.40			Intoratomic	Clash
Christance (A)Overlap (A)2:C:180:PRO:HD22:C:181:GLN:OE12.210.412:D:31:GLU:OE22:D:120:ARG:NE2.530.412:D:152:LEU:HD232:D:152:LEU:HA1.850.413:H:49:THR:HA3:I:175:MET:HE12.020.413:J:109:PRO:O3:J:112:ARG:HG22.210.411:B:151:GLU:N1:B:180:VAL:O2.540.412:C:95:LEU:HD112:C:121:ALA:HB22.030.413:G:169:ASN:HD213:G:320:LYS:HE31.850.413:L:20:TYR:O3:L:24:LEU:HD232.210.413:L:20:TYR:O3:L:24:LEU:HD232.210.411:B:167:VAL:O1:B:171:ARG:HG22.210.402:C:180:PRO:O2:C:183:ARG:HG32.210.402:D:25:PHE:HZ3:J:364:ALA:HB11.850.403:G:159:ALA:HA3:G:162:GLU:HG22.030.403:H:79:LEU:HD233:H:79:LEU:HA1.760.403:H:79:LEU:HD233:H:79:LEU:HA1.760.403:L:154:GLN:HE213:L:158:ARG:NH22.190.403:L:154:GLN:HE213:L:158:ARG:NH22.190.40	Atom-1	Atom-2	distance (\AA)	α overlap (\AA)
2:D:160:1410:1122 2:D:110:1410:011 2:21 0:41 2:D:31:GLU:OE2 2:D:120:ARG:NE 2:53 0.41 2:D:152:LEU:HD23 2:D:152:LEU:HA 1.85 0.41 3:H:49:THR:HA 3:I:175:MET:HE1 2.02 0.41 3:J:109:PRO:O 3:J:112:ARG:HG2 2.21 0.41 1:B:151:GLU:N 1:B:180:VAL:O 2.54 0.41 2:C:95:LEU:HD11 2:C:121:ALA:HB2 2.03 0.41 3:G:169:ASN:HD21 3:G:320:LYS:HE3 1.85 0.41 3:L:20:TYR:O 3:L:24:LEU:HD23 2.21 0.41 3:L:20:TYR:O 3:L:24:LEU:HD23 2.21 0.41 3:L:48:GLN:HE21 3:L:50:SER:H 1.69 0.41 1:B:167:VAL:O 1:B:171:ARG:HG2 2.21 0.40 2:C:180:PRO:O 2:C:183:ARG:HG3 2.21 0.40 2:D:25:PHE:HZ 3:J:364:ALA:HB1 1.85 0.40 3:H:79:LEU:HD23 3:H:79:LEU:HG2 2.03 0.40 3:H:79:LEU:HD23 3:H:79:LEU:HA 1.76 0.40 3:H:79:LEU:HD23 3:H:79:LEU:HA 0.40 3:L:154:GLN:HE21	2.C.180.PRO.HD2	$2 \cdot C \cdot 181 \cdot CLN \cdot OF1$	2.91	$\frac{0.41}{0.41}$
2:D:31:0E0:0E2 2:D:120:AR0:RCE 2:35 0:41 2:D:152:LEU:HD23 2:D:152:LEU:HA 1.85 0.41 3:H:49:THR:HA 3:I:175:MET:HE1 2.02 0.41 3:J:109:PRO:O 3:J:112:ARG:HG2 2.21 0.41 1:B:151:GLU:N 1:B:180:VAL:O 2.54 0.41 2:C:95:LEU:HD11 2:C:121:ALA:HB2 2.03 0.41 3:G:169:ASN:HD21 3:G:320:LYS:HE3 1.85 0.41 3:L:20:TYR:O 3:L:24:LEU:HD23 2.21 0.41 3:L:20:TYR:O 3:L:24:LEU:HD23 2.21 0.41 3:L:48:GLN:HE21 3:L:50:SER:H 1.69 0.41 1:B:167:VAL:O 1:B:171:ARG:HG2 2.21 0.40 2:C:180:PRO:O 2:C:183:ARG:HG3 2.21 0.40 2:D:25:PHE:HZ 3:J:364:ALA:HB1 1.85 0.40 3:G:159:ALA:HA 3:G:162:GLU:HG2 2.03 0.40 3:H:79:LEU:HD23 3:H:79:LEU:HA 1.76 0.40 3:H:79:LEU:HD23 3:H:79:LEU:HA 1.76 0.40 3:H:79:LEU:HD23 3:K:48:GLN:H 2.34 0.40	2.0.180.1 I I 0.11D 2	2.0.101.0LIV.0EI 2.0.120.ABC.NE	2.21	0.41
2.D.152.LEC.HIA 1.33 0.41 3:H:49:THR:HA 3:I:175:MET:HE1 2.02 0.41 3:J:109:PRO:O 3:J:112:ARG:HG2 2.21 0.41 1:B:151:GLU:N 1:B:180:VAL:O 2.54 0.41 2:C:95:LEU:HD11 2:C:121:ALA:HB2 2.03 0.41 3:G:169:ASN:HD21 3:G:320:LYS:HE3 1.85 0.41 3:L:20:TYR:O 3:L:24:LEU:HD23 2.21 0.41 3:L:20:TYR:O 3:L:24:LEU:HD23 2.21 0.41 3:L:20:TYR:O 3:L:250:SER:H 1.69 0.41 1:B:167:VAL:O 1:B:171:ARG:HG2 2.21 0.40 2:C:180:PRO:O 2:C:183:ARG:HG3 2.21 0.40 2:D:25:PHE:HZ 3:J:364:ALA:HB1 1.85 0.40 3:G:159:ALA:HA 3:G:162:GLU:HG2 2.03 0.40 3:H:79:LEU:HD23 3:H:79:LEU:HA 1.76 0.40 3:L:129:ARG:HA 3:I:129:ARG:HH11 1.86 0.40 3:K:47:ARG:CZ 3:K:48:GLN:H 2.34 0.40 3:L:154:GLN:HE21 3:L:158:ARG:NH2 2.19 0.40	2.D.31.GL0.0E2	2.D.120.ARG.NE 2.D.152.I FU.HA	2.05	0.41
3:II:49: FIRCHA 3:I:175.0011.1011 2:02 0.41 3:J:109:PRO:O 3:J:112:ARG:HG2 2.21 0.41 1:B:151:GLU:N 1:B:180:VAL:O 2.54 0.41 2:C:95:LEU:HD11 2:C:121:ALA:HB2 2.03 0.41 3:G:169:ASN:HD21 3:G:320:LYS:HE3 1.85 0.41 3:I:50:SER:O 3:I:50:SER:OG 2.38 0.41 3:L:20:TYR:O 3:L:24:LEU:HD23 2.21 0.41 3:L:48:GLN:HE21 3:L:50:SER:H 1.69 0.41 1:B:167:VAL:O 1:B:171:ARG:HG2 2.21 0.40 2:C:180:PRO:O 2:C:183:ARG:HG3 2.21 0.40 2:D:25:PHE:HZ 3:J:364:ALA:HB1 1.85 0.40 3:G:159:ALA:HA 3:G:162:GLU:HG2 2.03 0.40 3:H:79:LEU:HD23 3:H:79:LEU:HA 1.76 0.40 3:I:129:ARG:HA 3:I:129:ARG:HH11 1.86 0.40 3:K:47:ARG:CZ 3:K:48:GLN:H 2.34 0.40 3:L:154:GLN:HE21 3:L:158:ARG:NH2 2.19 0.40 1:B:24:LEU:HD21 1:B:201:GLN:HE21 1.87 0.40 <	2.D.152.LEU.IID25	2.D.152.LEU.IIA 2.I.175.MET.HE1	2.02	0.41
3.3.109.PRO:O 3.3.112.ARG.HG2 2.21 0.41 1:B:151:GLU:N 1:B:180:VAL:O 2.54 0.41 2:C:95:LEU:HD11 2:C:121:ALA:HB2 2.03 0.41 3:G:169:ASN:HD21 3:G:320:LYS:HE3 1.85 0.41 3:L:50:SER:O 3:L:50:SER:OG 2.38 0.41 3:L:20:TYR:O 3:L:24:LEU:HD23 2.21 0.41 3:L:0:TYR:O 3:L:24:LEU:HD23 2.21 0.40 2:C:180:PRO:O 2:C:183:ARG:HG2 2.21 0.40 2:D:25:PHE:HZ 3:J:364:ALA:HB1 1.85 0.40 3:G:159:ALA:HA 3:G:162:GLU:HG2 2.03 0.40 3:H:79:LEU:HD23 3:H:79:LEU:HA 1.76 0.40 3:I:129:ARG:HA 3:I:129:ARG:HH11 1.86 0.40 3:K:47:ARG:CZ 3:K:48:GLN:H 2.34 0.40 <td< td=""><td>3.11.49.1 nn.mA</td><td><u> 3.1.173.МЕТ.ПЕТ</u> 2.1.119.АРС.ЦС9</td><td>2.02</td><td>0.41</td></td<>	3.11.49.1 nn.mA	<u> 3.1.173.МЕТ.ПЕТ</u> 2.1.119.АРС.ЦС9	2.02	0.41
1:B:131:GLU:N1:B:180:VAL:O2.540.412:C:95:LEU:HD112:C:121:ALA:HB22.030.413:G:169:ASN:HD213:G:320:LYS:HE31.850.413:I:50:SER:O3:I:50:SER:OG2.380.413:L:20:TYR:O3:L:24:LEU:HD232.210.413:L:48:GLN:HE213:L:50:SER:H1.690.411:B:167:VAL:O1:B:171:ARG:HG22.210.402:C:180:PRO:O2:C:183:ARG:HG32.210.402:D:25:PHE:HZ3:J:364:ALA:HB11.850.403:G:159:ALA:HA3:G:162:GLU:HG22.030.403:H:79:LEU:HD233:H:79:LEU:HA1.760.403:I:129:ARG:HA3:I:129:ARG:HH111.860.403:L:154:GLN:HE213:L:158:ARG:NH22.190.401:B:24:LEU:HD211:B:201:GLN:HE211.870.40	5:J:109:P KU:U	5.J.112:ARG:IIG2	2.21	0.41
2:C:95:LEU:HD112:C:121:ALA:HB22.030.413:G:169:ASN:HD213:G:320:LYS:HE31.850.413:L:50:SER:O3:L:50:SER:OG2.380.413:L:20:TYR:O3:L:24:LEU:HD232.210.413:L:48:GLN:HE213:L:50:SER:H1.690.411:B:167:VAL:O1:B:171:ARG:HG22.210.402:C:180:PRO:O2:C:183:ARG:HG32.210.402:D:25:PHE:HZ3:J:364:ALA:HB11.850.403:G:159:ALA:HA3:G:162:GLU:HG22.030.403:H:79:LEU:HD233:H:79:LEU:HA1.760.403:L:129:ARG:HA3:L:129:ARG:HH111.860.403:L:154:GLN:HE213:L:158:ARG:NH22.190.401:B:24:LEU:HD211:B:201:GLN:HE211.870.40	1:D:101:GLU:N	1:D:180:VAL:U	2.54	0.41
3:G:169:ASN:HD21 3:G:320:LYS:HE3 1.85 0.41 3:I:50:SER:O 3:I:50:SER:OG 2.38 0.41 3:L:20:TYR:O 3:L:24:LEU:HD23 2.21 0.41 3:L:48:GLN:HE21 3:L:50:SER:H 1.69 0.41 1:B:167:VAL:O 1:B:171:ARG:HG2 2.21 0.40 2:C:180:PRO:O 2:C:183:ARG:HG3 2.21 0.40 2:D:25:PHE:HZ 3:J:364:ALA:HB1 1.85 0.40 3:G:159:ALA:HA 3:G:162:GLU:HG2 2.03 0.40 3:H:79:LEU:HD23 3:H:79:LEU:HA 1.76 0.40 3:I:129:ARG:HA 3:I:129:ARG:HH11 1.86 0.40 3:K:47:ARG:CZ 3:K:48:GLN:H 2.34 0.40 3:L:154:GLN:HE21 3:L:158:ARG:NH2 2.19 0.40 1:B:24:LEU:HD21 1:B:201:GLN:HE21 1.87 0.40	2:0:95:LE0:HD11	2:0:121:ALA:HB2	2.03	0.41
3:1:50:SER:O 3:1:50:SER:OG 2.38 0.41 3:L:20:TYR:O 3:L:24:LEU:HD23 2.21 0.41 3:L:48:GLN:HE21 3:L:50:SER:H 1.69 0.41 1:B:167:VAL:O 1:B:171:ARG:HG2 2.21 0.40 2:C:180:PRO:O 2:C:183:ARG:HG3 2.21 0.40 2:D:25:PHE:HZ 3:J:364:ALA:HB1 1.85 0.40 3:G:159:ALA:HA 3:G:162:GLU:HG2 2.03 0.40 3:H:79:LEU:HD23 3:H:79:LEU:HA 1.76 0.40 3:I:129:ARG:HA 3:I:129:ARG:HH11 1.86 0.40 3:K:47:ARG:CZ 3:K:48:GLN:H 2.34 0.40 3:L:154:GLN:HE21 3:L:158:ARG:NH2 2.19 0.40 1:B:24:LEU:HD21 1:B:201:GLN:HE21 1.87 0.40	3:G:169:ASN:HD21	3:G:320:LYS:HE3	1.85	0.41
3:L:20:TYR:O 3:L:24:LEU:HD23 2.21 0.41 3:L:48:GLN:HE21 3:L:50:SER:H 1.69 0.41 1:B:167:VAL:O 1:B:171:ARG:HG2 2.21 0.40 2:C:180:PRO:O 2:C:183:ARG:HG3 2.21 0.40 2:D:25:PHE:HZ 3:J:364:ALA:HB1 1.85 0.40 3:G:159:ALA:HA 3:G:162:GLU:HG2 2.03 0.40 3:H:79:LEU:HD23 3:H:79:LEU:HA 1.76 0.40 3:I:129:ARG:HA 3:I:129:ARG:HH11 1.86 0.40 3:K:47:ARG:CZ 3:K:48:GLN:H 2.34 0.40 3:L:154:GLN:HE21 3:L:158:ARG:NH2 2.19 0.40 1:B:24:LEU:HD21 1:B:201:GLN:HE21 1.87 0.40	3:1:50:SER:O	3:1:50:SER:OG	2.38	0.41
3:L:48:GLN:HE21 3:L:50:SER:H 1.69 0.41 1:B:167:VAL:O 1:B:171:ARG:HG2 2.21 0.40 2:C:180:PRO:O 2:C:183:ARG:HG3 2.21 0.40 2:D:25:PHE:HZ 3:J:364:ALA:HB1 1.85 0.40 3:G:159:ALA:HA 3:G:162:GLU:HG2 2.03 0.40 3:H:79:LEU:HD23 3:H:79:LEU:HA 1.76 0.40 3:I:129:ARG:HA 3:I:129:ARG:HH11 1.86 0.40 3:K:47:ARG:CZ 3:K:48:GLN:H 2.34 0.40 3:L:154:GLN:HE21 3:L:158:ARG:NH2 2.19 0.40 1:B:24:LEU:HD21 1:B:201:GLN:HE21 1.87 0.40	3:L:20:TYR:O	3:L:24:LEU:HD23	2.21	0.41
1:B:167:VAL:O 1:B:171:ARG:HG2 2.21 0.40 2:C:180:PRO:O 2:C:183:ARG:HG3 2.21 0.40 2:D:25:PHE:HZ 3:J:364:ALA:HB1 1.85 0.40 3:G:159:ALA:HA 3:G:162:GLU:HG2 2.03 0.40 3:H:79:LEU:HD23 3:H:79:LEU:HA 1.76 0.40 3:I:129:ARG:HA 3:I:129:ARG:HH11 1.86 0.40 3:K:47:ARG:CZ 3:K:48:GLN:H 2.34 0.40 3:L:154:GLN:HE21 3:L:158:ARG:NH2 2.19 0.40 1:B:24:LEU:HD21 1:B:201:GLN:HE21 1.87 0.40	3:L:48:GLN:HE21	3:L:50:SER:H	1.69	0.41
2:C:180:PRO:O2:C:183:ARG:HG32.210.402:D:25:PHE:HZ3:J:364:ALA:HB11.850.403:G:159:ALA:HA3:G:162:GLU:HG22.030.403:H:79:LEU:HD233:H:79:LEU:HA1.760.403:I:129:ARG:HA3:I:129:ARG:HH111.860.403:K:47:ARG:CZ3:K:48:GLN:H2.340.403:L:154:GLN:HE213:L:158:ARG:NH22.190.401:B:24:LEU:HD211:B:201:GLN:HE211.870.40	1:B:167:VAL:O	1:B:171:ARG:HG2	2.21	0.40
2:D:25:PHE:HZ3:J:364:ALA:HB11.850.403:G:159:ALA:HA3:G:162:GLU:HG22.030.403:H:79:LEU:HD233:H:79:LEU:HA1.760.403:I:129:ARG:HA3:I:129:ARG:HH111.860.403:K:47:ARG:CZ3:K:48:GLN:H2.340.403:L:154:GLN:HE213:L:158:ARG:NH22.190.401:B:24:LEU:HD211:B:201:GLN:HE211.870.40	2:C:180:PRO:O	2:C:183:ARG:HG3	2.21	0.40
3:G:159:ALA:HA 3:G:162:GLU:HG2 2.03 0.40 3:H:79:LEU:HD23 3:H:79:LEU:HA 1.76 0.40 3:I:129:ARG:HA 3:I:129:ARG:HH11 1.86 0.40 3:K:47:ARG:CZ 3:K:48:GLN:H 2.34 0.40 3:L:154:GLN:HE21 3:L:158:ARG:NH2 2.19 0.40 1:B:24:LEU:HD21 1:B:201:GLN:HE21 1.87 0.40	2:D:25:PHE:HZ	3:J:364:ALA:HB1	1.85	0.40
3:H:79:LEU:HD23 3:H:79:LEU:HA 1.76 0.40 3:I:129:ARG:HA 3:I:129:ARG:HH11 1.86 0.40 3:K:47:ARG:CZ 3:K:48:GLN:H 2.34 0.40 3:L:154:GLN:HE21 3:L:158:ARG:NH2 2.19 0.40 1:B:24:LEU:HD21 1:B:201:GLN:HE21 1.87 0.40	3:G:159:ALA:HA	3:G:162:GLU:HG2	2.03	0.40
3:I:129:ARG:HA 3:I:129:ARG:HH11 1.86 0.40 3:K:47:ARG:CZ 3:K:48:GLN:H 2.34 0.40 3:L:154:GLN:HE21 3:L:158:ARG:NH2 2.19 0.40 1:B:24:LEU:HD21 1:B:201:GLN:HE21 1.87 0.40	3:H:79:LEU:HD23	3:H:79:LEU:HA	1.76	0.40
3:K:47:ARG:CZ3:K:48:GLN:H2.340.403:L:154:GLN:HE213:L:158:ARG:NH22.190.401:B:24:LEU:HD211:B:201:GLN:HE211.870.40	3:I:129:ARG:HA	3:I:129:ARG:HH11	1.86	0.40
3:L:154:GLN:HE213:L:158:ARG:NH22.190.401:B:24:LEU:HD211:B:201:GLN:HE211.870.40	3:K:47:ARG:CZ	3:K:48:GLN:H	2.34	0.40
1:B:24:LEU:HD21 1:B:201:GLN:HE21 1.87 0.40	3:L:154:GLN:HE21	3:L:158:ARG:NH2	2.19	0.40
	1:B:24:LEU:HD21	1:B:201:GLN:HE21	1.87	0.40
3:G:74:GLU:OE2 3:G:74:GLU:N 2.44 0.40	3:G:74:GLU:OE2	3:G:74:GLU:N	2.44	0.40
1:A:37:ILE:HG23 1:A:196:LEU:HD23 2.03 0.40	1:A:37:ILE:HG23	1:A:196:LEU:HD23	2.03	0.40
1:A:105:LYS:HE3 1:A:141:ALA:HB1 2.03 0.40	1:A:105:LYS:HE3	1:A:141:ALA:HB1	2.03	0.40
3:G:98:LEU:HD23 3:G:152:PHE:HZ 1.85 0.40	3:G:98:LEU:HD23	3:G:152:PHE:HZ	1.85	0.40
3:I:123:LEU:HD21 3:I:127:ARG:CZ 2.52 0.40	3:I:123:LEU:HD21	3:I:127:ARG:CZ	2.52	0.40
3:J:340:ARG:O 3:J:344:ASN:ND2 2.52 0.40	3:J:340:ARG:O	3:J:344:ASN:ND2	2.52	0.40
3:K:314:ARG:NH1 3:K:314:ARG:HB2 2.37 0.40	3:K:314:ARG:NH1	3:K:314:ARG:HB2	2.37	0.40
3:K:314:ARG:HB2 3:K:314:ARG:HH11 1.84 0.40	3:K:314:ARG:HB2	3:K:314:ARG:HH11	1.84	0.40
1:B:150:ASP:HA 1:B:180:VAL:HB 2.03 0.40	1:B:150:ASP:HA	1:B:180:VAL:HB	2.03	0.40
2:D:250:LEU:HD12 2:D:250:LEU:HA 1.92 0.40	2:D:250:LEU:HD12	2:D:250:LEU:HA	1.92	0.40
3:F:79:LEU:HA 3:F:79:LEU:HD23 1.73 0.40	3:F:79:LEU:HA	3:F:79:LEU:HD23	1.73	0.40
3:I:300:GLU:HB2 3:I:301:ASP:H 1.63 0.40	3:1:300:GLU:HB2	3:1:301:ASP:H	1.63	0.40
3:L:354:LEU:HD12 3:L:354:LEU:HA 1.94 0.40	3:L:354:LEU:HD12	3:L:354:LEU:HA	1.94	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	224/234~(96%)	219 (98%)	5 (2%)	0	100	100
1	В	224/234~(96%)	215~(96%)	9 (4%)	0	100	100
2	С	256/274~(93%)	243 (95%)	13 (5%)	0	100	100
2	D	254/274~(93%)	243 (96%)	11 (4%)	0	100	100
3	Е	190/390~(49%)	185 (97%)	5 (3%)	0	100	100
3	F	204/390~(52%)	197 (97%)	7 (3%)	0	100	100
3	G	213/390~(55%)	211 (99%)	2 (1%)	0	100	100
3	Н	224/390~(57%)	215 (96%)	9 (4%)	0	100	100
3	Ι	220/390~(56%)	210 (96%)	10 (4%)	0	100	100
3	J	218/390~(56%)	210 (96%)	8 (4%)	0	100	100
3	Κ	228/390~(58%)	221 (97%)	7 (3%)	0	100	100
3	L	214/390~(55%)	209~(98%)	5 (2%)	0	100	100
All	All	2669/4136~(64%)	2578 (97%)	91 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	186/194~(96%)	176~(95%)	10 (5%)	22 52
1	В	186/194~(96%)	176 (95%)	10 (5%)	22 52

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	С	218/232~(94%)	209~(96%)	9~(4%)	30	59
2	D	216/232~(93%)	201~(93%)	15 (7%)	15	45
3	Ε	178/325~(55%)	173 (97%)	5(3%)	43	70
3	F	192/325~(59%)	188 (98%)	4 (2%)	53	76
3	G	195/325~(60%)	191 (98%)	4 (2%)	53	76
3	Н	201/325~(62%)	193 (96%)	8 (4%)	31	60
3	Ι	199/325~(61%)	190 (96%)	9~(4%)	27	58
3	J	200/325~(62%)	196 (98%)	4 (2%)	55	77
3	K	207/325~(64%)	202~(98%)	5(2%)	49	74
3	L	195/325~(60%)	184 (94%)	11 (6%)	21	51
All	All	2373/3452~(69%)	2279 (96%)	94 (4%)	35	60

All (94) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	10	TRP
1	А	11	TYR
1	А	22	ARG
1	А	79	GLN
1	А	112	PHE
1	А	130	MET
1	А	144	PHE
1	А	160	PHE
1	А	168	PHE
1	А	199	GLN
1	В	1	MET
1	В	99	HIS
1	В	121	LEU
1	В	127	SER
1	В	130	MET
1	В	144	PHE
1	В	168	PHE
1	В	183	ASN
1	В	201	GLN
1	В	215	TYR
2	С	14	ARG
2	С	30	ARG
2	С	31	GLU

Mol	Chain	Res	Type
2	С	41	LEU
2	С	44	PHE
2	С	95	LEU
2	С	109	ARG
2	С	195	PHE
2	С	211	LEU
2	D	25	PHE
2	D	69	MET
2	D	102	ASN
2	D	110	GLN
2	D	123	LEU
2	D	132	TYR
2	D	158	SER
2	D	163	MET
2	D	187	ARG
2	D	194	TYR
2	D	201	PHE
2	D	213	LEU
2	D	216	LEU
2	D	229	SER
2	D	254	PHE
3	Е	31	LEU
3	Е	98	LEU
3	Е	134	MET
3	Е	166	ARG
3	Е	321	LEU
3	F	112	ARG
3	F	173	HIS
3	F	175	MET
3	F	332	LEU
3	G	40	SER
3	G	99	ARG
3	G	164	SER
3	G	181	GLN
3	Н	13	ARG
3	H	24	LEU
3	H	48	GLN
3	Н	134	MET
3	Н	182	PHE
3	Н	301	ASP
3	Н	312	SER
3	Н	369	HIS

Mol	Chain	Res	Type
3	Ι	16	TRP
3	Ι	40	SER
3	Ι	73	ARG
3	Ι	172	SER
3	Ι	186	GLU
3	Ι	320	LYS
3	Ι	321	LEU
3	Ι	341	ARG
3	Ι	356	TYR
3	J	5	LEU
3	J	20	TYR
3	J	75	ASP
3	J	182	PHE
3	K	93	ASP
3	К	136	ASP
3	К	182	PHE
3	K	321	LEU
3	K	338	TYR
3	L	13	ARG
3	L	73	ARG
3	L	76	THR
3	L	134	MET
3	L	136	ASP
3	L	166	ARG
3	L	172	SER
3	L	178	GLU
3	L	321	LEU
3	L	340	ARG
3	L	349	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (2) such sidechains are listed below:

Mol	Chain	Res	Type
2	D	177	ASN
3	К	369	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

1 ligand is modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	B	ond leng	gths	B	ond ang	les
	туре	Chain	nes	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	KJ9	С	301	-	54,55,55	2.02	13 (24%)	63,70,70	1.03	4 (6%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	KJ9	С	301	-	-	37/60/78/78	1/1/1/1

All (13) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
4	С	301	KJ9	C45-C46	-5.80	1.44	1.53
4	С	301	KJ9	O17-C18	5.30	1.48	1.33
4	С	301	KJ9	C11-C12	4.47	1.63	1.50
4	С	301	KJ9	C51-C50	4.32	1.61	1.52
4	С	301	KJ9	O14-C12	3.99	1.45	1.34
4	С	301	KJ9	C46-C48	-3.85	1.46	1.52
4	С	301	KJ9	C20-C18	3.56	1.61	1.50
4	С	301	KJ9	C16-C15	3.44	1.61	1.50

	•	-					
Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
4	С	301	KJ9	OA0-C41	3.43	1.47	1.42
4	С	301	KJ9	O54-C51	-2.58	1.37	1.43
4	С	301	KJ9	C30-C15	2.20	1.57	1.50
4	С	301	KJ9	C39-C37	-2.13	1.43	1.51
4	С	301	KJ9	C21-C20	2.11	1.60	1.52

All (4) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
4	С	301	KJ9	OA0-C50-C48	3.37	113.31	108.52
4	С	301	KJ9	C51-C50-C48	-3.04	108.99	114.03
4	С	301	KJ9	O14-C12-C11	2.93	117.81	111.50
4	С	301	KJ9	O17-C18-C20	2.60	120.05	111.91

There are no chirality outliers.

All (37) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	С	301	KJ9	O40-C41-C42-O43
4	С	301	KJ9	C45-C41-O40-C39
4	С	301	KJ9	C42-C41-O40-C39
4	С	301	KJ9	OA0-C41-O40-C39
4	С	301	KJ9	C30-O31-P32-O34
4	С	301	KJ9	C11-C12-O14-C15
4	С	301	KJ9	O13-C12-O14-C15
4	С	301	KJ9	C48-C50-C51-C52
4	С	301	KJ9	C48-C50-C51-O54
4	С	301	KJ9	OA0-C50-C51-O54
4	С	301	KJ9	C50-C51-C52-O53
4	С	301	KJ9	O54-C51-C52-O53
4	С	301	KJ9	C36-O35-P32-O31
4	С	301	KJ9	C36-O35-P32-O34
4	С	301	KJ9	C20-C18-O17-C16
4	С	301	KJ9	O19-C18-O17-C16
4	С	301	KJ9	O35-C36-C37-O38
4	С	301	KJ9	O35-C36-C37-C39
4	С	301	KJ9	C06-C07-C08-C09
4	С	301	KJ9	C05-C06-C07-C08
4	С	301	KJ9	$C25-C26-C27-\overline{C28}$
4	С	301	KJ9	C01-C02-C03-C04
4	С	301	KJ9	C18-C20-C21-C22
4	С	301	KJ9	C30-C15-C16-O17

Mol	Chain	Res	Type	Atoms
4	С	301	KJ9	C37-C39-O40-C41
4	С	301	KJ9	O14-C15-C16-O17
4	С	301	KJ9	O40-C41-C42-O44
4	С	301	KJ9	C15-C30-O31-P32
4	С	301	KJ9	C30-O31-P32-O35
4	С	301	KJ9	C30-O31-P32-O33
4	С	301	KJ9	C24-C25-C26-C27
4	С	301	KJ9	C21-C22-C23-C24
4	С	301	KJ9	C02-C03-C04-C05
4	С	301	KJ9	C07-C08-C09-C10
4	С	301	KJ9	OA0-C41-C42-O43
4	С	301	KJ9	C03-C04-C05-C06
4	С	301	KJ9	C10-C11-C12-O14

All (1) ring outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	С	301	KJ9	C41-C45-C46-C48-C50-OA0

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	С	301	KJ9	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-41626. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 180

Y Index: 180

Z Index: 180

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 198

Y Index: 184

Z Index: 152

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 5.0. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 391 $\rm nm^3;$ this corresponds to an approximate mass of 353 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.294 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-41626 and PDB model 8TUN. Per-residue inclusion information can be found in section 3 on page 11.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 5.0 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (5.0).

9.4 Atom inclusion (i)

At the recommended contour level, 98% of all backbone atoms, 90% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (5.0) and Q-score for the entire model and for each chain.

7	Q-score	Atom inclusion	Chain
	0.4390	0.8970	All
1.0	0.3090	0.8100	А
7	0.2660	0.7950	В
0.0	0.4970	0.9280	С
	0.4910	0.9290	D
	0.4630	0.9190	E
	0.4690	0.9280	F
	0.4880	0.9380	G
	0.4560	0.9040	Н
	0.4490	0.9050	Ι
	0.4640	0.9130	J
	0.4470	0.9100	K
7	0.4440	0.8780	L

