

Full wwPDB X-ray Structure Validation Report (i)

Jun 12, 2024 – 08:01 PM EDT

PDB ID	:	3U3I
Title	:	A RNA binding protein from Crimean-Congo hemorrhagic fever virus
Authors	:	Guo, Y.; Wang, W.M.; Ji, W.; Deng, M.; Sun, Y.N.; Lou, Z.Y.; Rao, Z.H.
Deposited on	:	2011-10-06
Resolution	:	2.30 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.20.1
EDS	:	2.36.2
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 2.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$		
R_{free}	130704	5042(2.30-2.30)		
Clashscore	141614	5643 (2.30-2.30)		
Ramachandran outliers	138981	5575(2.30-2.30)		
Sidechain outliers	138945	5575(2.30-2.30)		
RSRZ outliers	127900	4938 (2.30-2.30)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length		Quality of chain		
			3%			
1	А	482	35%	44%	14%	• 5%

3U3I

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 3995 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Nucleocapsid protein.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
1	А	460	Total 3626	C 2308	N 615	O 685	S 18	0	0	0

• Molecule 2 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	369	Total O 369 369	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Nucleocapsid protein

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	58.34Å 67.90Å 131.51Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution(A)	43.64 - 2.30	Depositor
Resolution (A)	43.64 - 2.30	EDS
% Data completeness	89.1 (43.64-2.30)	Depositor
(in resolution range)	89.3 (43.64-2.30)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$6.88 (at 2.29 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.6.1_357	Depositor
D D.	0.224 , 0.257	Depositor
n, n_{free}	0.260 , 0.307	DCC
R_{free} test set	1144 reflections (5.08%)	wwPDB-VP
Wilson B-factor $(Å^2)$	37.5	Xtriage
Anisotropy	0.683	Xtriage
Bulk solvent $k_{sol}(e/A^3)$, $B_{sol}(A^2)$	0.27 , 62.4	EDS
L-test for $twinning^2$	$ < L >=0.48, < L^2>=0.31$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.92	EDS
Total number of atoms	3995	wwPDB-VP
Average B, all atoms $(Å^2)$	49.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.03% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.94	6/3699~(0.2%)	0.96	5/4989~(0.1%)	

All (6) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	А	108	GLU	CG-CD	5.96	1.60	1.51
1	А	74	CYS	CB-SG	-5.64	1.72	1.81
1	А	404	ALA	CA-CB	5.61	1.64	1.52
1	А	464	SER	C-O	5.36	1.33	1.23
1	А	124	ALA	CA-CB	5.19	1.63	1.52
1	А	392	PHE	CD1-CE1	5.10	1.49	1.39

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	27	VAL	N-CA-C	-5.46	96.25	111.00
1	А	269	ASP	CB-CG-OD2	-5.44	113.40	118.30
1	А	348	LEU	CA-CB-CG	5.34	127.58	115.30
1	А	298	ARG	N-CA-CB	-5.26	101.14	110.60
1	А	408	GLY	N-CA-C	5.06	125.76	113.10

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3626	0	3614	417	0
2	А	369	0	0	21	0
All	All	3995	0	3614	417	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 58.

All (417) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:157:LYS:CG	1:A:420:THR:HG22	1.17	1.55
1:A:148:LEU:CA	1:A:149:SER:HB2	1.45	1.40
1:A:157:LYS:CG	1:A:420:THR:CG2	2.04	1.36
1:A:1:MET:HA	1:A:2:GLU:CB	1.44	1.35
1:A:29:THR:CG2	1:A:30:PHE:CE2	2.14	1.30
1:A:157:LYS:HG2	1:A:420:THR:CG2	1.60	1.27
1:A:148:LEU:HA	1:A:149:SER:CB	1.60	1.26
1:A:157:LYS:CB	1:A:420:THR:CG2	2.15	1.24
1:A:29:THR:HG21	1:A:30:PHE:CE2	1.70	1.23
1:A:4:LYS:HE2	1:A:398:ALA:O	1.40	1.18
1:A:1:MET:CA	1:A:2:GLU:HB2	1.75	1.16
1:A:1:MET:CA	1:A:2:GLU:CB	2.22	1.15
1:A:228:ILE:HG12	1:A:283:HIS:CE1	1.80	1.15
1:A:373:ILE:HG12	1:A:374:TYR:N	1.50	1.13
1:A:424:ASN:OD1	1:A:428:LYS:HD2	1.49	1.12
1:A:373:ILE:CG1	1:A:374:TYR:H	1.56	1.12
1:A:58:GLN:HG2	1:A:61:SER:HB2	1.18	1.12
1:A:235:LEU:HD12	1:A:290:LEU:HB3	1.19	1.10
1:A:3:ASN:HA	1:A:397:VAL:HG13	1.27	1.10
1:A:157:LYS:HB3	1:A:420:THR:HG23	1.33	1.09
1:A:424:ASN:N	1:A:425:PRO:HD3	1.65	1.08
1:A:157:LYS:HB3	1:A:420:THR:CG2	1.78	1.07
1:A:235:LEU:CD1	1:A:290:LEU:HB3	1.83	1.07
1:A:58:GLN:N	1:A:59:LYS:HB2	1.69	1.07
1:A:1:MET:HA	1:A:2:GLU:HB2	1.30	1.07
1:A:58:GLN:HA	1:A:60:ASP:N	1.69	1.07
1:A:45:ARG:HG3	1:A:45:ARG:HH11	1.12	1.06
1:A:26:LEU:N	1:A:26:LEU:CD2	2.12	1.05
1:A:420:THR:O	1:A:421:GLU:HB2	1.55	1.05
1:A:58:GLN:HG2	1:A:61:SER:CB	1.88	1.03
1:A:1:MET:HA	1:A:2:GLU:HB3	1.09	1.03
1:A:2:GLU:HB3	1:A:4:LYS:NZ	1.74	1.02

		Interatomic Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:225:ARG:O	1:A:226:SER:HB2	1.55	1.02	
1:A:29:THR:HG21	1:A:30:PHE:HE2	1.19	1.01	
1:A:29:THR:HG22	1:A:30:PHE:CD2	1.96	1.00	
1:A:3:ASN:HA	1:A:397:VAL:CG1	1.92	1.00	
1:A:29:THR:CG2	1:A:30:PHE:CD2	2.47	0.98	
1:A:475:ASN:ND2	1:A:476:ALA:N	2.11	0.98	
1:A:164:MET:HE3	1:A:164:MET:HA	1.45	0.98	
1:A:157:LYS:HG3	1:A:420:THR:HG22	1.41	0.98	
1:A:26:LEU:N	1:A:26:LEU:HD22	1.78	0.98	
1:A:234:GLY:HA3	2:A:864:HOH:O	1.62	0.98	
1:A:419:ASN:H	1:A:419:ASN:HD22	1.06	0.98	
1:A:419:ASN:HD22	1:A:419:ASN:N	1.60	0.96	
1:A:475:ASN:ND2	1:A:476:ALA:H	1.63	0.96	
1:A:45:ARG:HG3	1:A:45:ARG:NH1	1.73	0.95	
1:A:419:ASN:H	1:A:419:ASN:ND2	1.64	0.95	
1:A:30:PHE:HD2	1:A:30:PHE:N	1.65	0.94	
1:A:475:ASN:CG	1:A:476:ALA:H	1.71	0.94	
1:A:159:PRO:HD2	1:A:162:ILE:HD11	1.49	0.94	
1:A:228:ILE:CG1	1:A:283:HIS:CE1	2.50	0.94	
1:A:18:GLU:OE2	1:A:18:GLU:HA	1.68	0.93	
1:A:58:GLN:HG3	1:A:61:SER:H	1.33	0.93	
1:A:228:ILE:CG2	1:A:231:VAL:HG23	1.97	0.93	
1:A:228:ILE:HG12	1:A:283:HIS:HE1	1.26	0.92	
1:A:2:GLU:HB3	1:A:4:LYS:HZ3	1.28	0.92	
1:A:120:ILE:HG22	2:A:591:HOH:O	1.68	0.92	
1:A:169:MET:O	1:A:173:MET:HG2	1.70	0.92	
1:A:220:ILE:HG12	1:A:280:LEU:HD21	1.52	0.92	
1:A:29:THR:HG22	1:A:30:PHE:CE2	2.02	0.91	
1:A:58:GLN:HG3	1:A:61:SER:N	1.86	0.91	
1:A:1:MET:N	1:A:2:GLU:HB2	1.84	0.91	
1:A:373:ILE:HG12	1:A:374:TYR:H	0.76	0.91	
1:A:424:ASN:N	1:A:425:PRO:CD	2.34	0.90	
1:A:231:VAL:HG13	1:A:287:ALA:N	1.87	0.90	
1:A:30:PHE:CD2	1:A:30:PHE:N	2.36	0.90	
1:A:390:VAL:HG21	1:A:411:LYS:HB2	1.54	0.90	
1:A:58:GLN:CG	1:A:61:SER:H	1.85	0.89	
1:A:26:LEU:HD23	1:A:26:LEU:H	1.36	0.89	
1:A:228:ILE:HG22	1:A:231:VAL:HG23	1.51	0.88	
1:A:249:GLU:O	1:A:253:THR:HG23	1.72	0.88	
1:A:45:ARG:HH11	1:A:45:ARG:CG	1.87	0.87	
1:A:164:MET:HA	1:A:164:MET:CE	2.04	0.87	

	lous page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:148:LEU:CB	1:A:149:SER:HB2	2.04	0.87
1:A:157:LYS:CB	1:A:420:THR:HG22	1.89	0.87
1:A:35:SER:HB3	1:A:37:CYS:H	1.41	0.86
1:A:262:ASN:O	1:A:265:LYS:HG2	1.76	0.86
1:A:339:ARG:HD3	1:A:339:ARG:N	1.89	0.86
1:A:58:GLN:HA	1:A:60:ASP:H	1.37	0.85
1:A:231:VAL:HG12	1:A:290:LEU:HD12	1.57	0.84
1:A:26:LEU:N	1:A:26:LEU:HD23	1.90	0.84
1:A:148:LEU:CA	1:A:149:SER:CB	2.30	0.83
1:A:238:LEU:HD23	1:A:246:VAL:HB	1.61	0.83
1:A:1:MET:H1	1:A:2:GLU:HB2	1.43	0.82
1:A:58:GLN:CA	1:A:59:LYS:HB2	2.10	0.81
1:A:228:ILE:HG22	1:A:231:VAL:H	1.44	0.81
1:A:238:LEU:HD22	1:A:247:PHE:CE2	2.16	0.81
1:A:58:GLN:N	1:A:59:LYS:CB	2.44	0.81
1:A:205:VAL:HG13	1:A:249:GLU:HB3	1.61	0.81
1:A:162:ILE:O	1:A:166:VAL:HG23	1.79	0.81
1:A:423:ASN:C	1:A:425:PRO:HD3	2.02	0.81
1:A:421:GLU:O	1:A:422:THR:OG1	1.98	0.80
1:A:25:GLY:C	1:A:26:LEU:HD22	2.02	0.80
1:A:29:THR:HB	1:A:30:PHE:CD2	2.16	0.80
1:A:201:CYS:O	1:A:205:VAL:HG23	1.83	0.79
1:A:235:LEU:HD12	1:A:290:LEU:CB	2.08	0.78
1:A:157:LYS:HG2	1:A:420:THR:HG22	0.78	0.78
1:A:95:TRP:HZ2	1:A:132:LYS:HG2	1.49	0.78
1:A:29:THR:CB	1:A:30:PHE:CD2	2.68	0.77
1:A:103:ILE:HG23	1:A:106:TRP:CH2	2.18	0.77
1:A:298:ARG:HH11	1:A:298:ARG:CG	1.98	0.77
1:A:435:GLU:O	1:A:439:THR:HG22	1.84	0.77
1:A:220:ILE:CG1	1:A:280:LEU:HD21	2.15	0.77
1:A:428:LYS:O	1:A:432:LYS:HG3	1.84	0.76
1:A:174:ILE:O	1:A:177:ARG:HB3	1.85	0.76
1:A:170:LEU:HA	1:A:173:MET:HG3	1.68	0.75
1:A:157:LYS:CB	1:A:420:THR:HG21	2.15	0.75
1:A:366:ASP:HB3	2:A:731:HOH:O	1.85	0.74
1:A:205:VAL:CG1	1:A:249:GLU:HB3	2.17	0.74
1:A:300:GLN:HG2	1:A:470:TYR:CE1	2.23	0.74
1:A:103:ILE:HG22	1:A:107:ASP:HB2	1.69	0.74
1:A:57:ALA:C	1:A:59:LYS:HB2	2.08	0.74
1:A:90:LYS:HD3	2:A:785:HOH:O	1.87	0.73
1:A:202:ARG:HA	1:A:237:LYS:NZ	2.03	0.73

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:121:GLU:CD	1:A:121:GLU:H	1.88	0.73
1:A:220:ILE:HG12	1:A:280:LEU:CD2	2.19	0.72
1:A:174:ILE:HG22	1:A:175:ARG:N	2.05	0.72
1:A:29:THR:CB	1:A:30:PHE:CE2	2.73	0.72
1:A:152:VAL:HG21	1:A:475:ASN:O	1.88	0.72
1:A:422:THR:HG23	2:A:589:HOH:O	1.87	0.72
1:A:142:ASN:O	1:A:146:THR:HG23	1.89	0.71
1:A:385:ILE:HD13	1:A:388:MET:HE3	1.72	0.71
1:A:337:GLN:HB3	1:A:339:ARG:CD	2.20	0.71
1:A:339:ARG:HD3	1:A:339:ARG:H	1.53	0.71
1:A:35:SER:OG	1:A:74:CYS:HA	1.91	0.70
1:A:363:PHE:CE1	1:A:380:LEU:HD13	2.26	0.70
1:A:453:HIS:HB2	2:A:803:HOH:O	1.90	0.69
1:A:103:ILE:HG23	1:A:106:TRP:CZ2	2.25	0.69
1:A:119:LYS:HB2	1:A:122:GLN:HG3	1.74	0.69
1:A:235:LEU:HD23	1:A:235:LEU:O	1.91	0.69
1:A:221:ASN:HD21	1:A:279:ASN:ND2	1.90	0.69
1:A:169:MET:HG2	1:A:434:PHE:CE2	2.28	0.68
1:A:306:THR:HG22	1:A:391:CYS:SG	2.33	0.68
1:A:29:THR:HB	1:A:30:PHE:HD2	1.54	0.68
1:A:339:ARG:HB3	1:A:343:LYS:HD3	1.75	0.68
1:A:419:ASN:N	1:A:419:ASN:ND2	2.30	0.68
1:A:30:PHE:HD2	1:A:30:PHE:H	1.39	0.68
1:A:148:LEU:HA	1:A:149:SER:HB2	0.72	0.68
1:A:375:MET:O	1:A:376:HIS:CB	2.42	0.68
1:A:164:MET:CE	1:A:164:MET:CA	2.72	0.67
1:A:335:GLY:HA3	1:A:407:SER:OG	1.94	0.67
1:A:228:ILE:CG2	1:A:230:LEU:HB3	2.24	0.67
1:A:334:LEU:HD11	1:A:344:MET:HG2	1.76	0.67
1:A:148:LEU:HB3	1:A:149:SER:CB	2.25	0.66
1:A:79:GLU:HB3	1:A:466:PHE:CD2	2.31	0.66
1:A:117:VAL:HG13	1:A:118:PRO:HD2	1.77	0.66
1:A:55:ASP:C	1:A:57:ALA:H	1.99	0.66
1:A:238:LEU:HD22	1:A:247:PHE:CZ	2.31	0.65
1:A:169:MET:O	1:A:173:MET:CG	2.44	0.65
1:A:304:ILE:N	1:A:304:ILE:HD12	2.11	0.65
1:A:55:ASP:O	1:A:57:ALA:N	2.30	0.65
1:A:3:ASN:CA	1:A:397:VAL:HG13	2.17	0.64
1:A:111:THR:O	1:A:114:LYS:HB2	1.97	0.64
1:A:337:GLN:OE1	1:A:339:ARG:HG2	1.96	0.64
1:A:58:GLN:CG	1:A:61:SER:N	2.50	0.64

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:424:ASN:OD1	1:A:428:LYS:CD	2.38	0.64	
1:A:18:GLU:OE2	1:A:21:LYS:HE3	1.97	0.63	
1:A:234:GLY:C	1:A:238:LEU:HD12	2.17	0.63	
1:A:317:ALA:O	1:A:358:LYS:HD3	1.99	0.62	
1:A:158:VAL:HG13	1:A:162:ILE:CD1	2.29	0.62	
1:A:375:MET:O	1:A:376:HIS:HB2	2.00	0.62	
1:A:202:ARG:HA	1:A:237:LYS:HZ2	1.61	0.62	
1:A:169:MET:HE3	1:A:455:LEU:HD22	1.81	0.62	
1:A:95:TRP:CZ2	1:A:132:LYS:HG2	2.34	0.62	
1:A:251:LYS:NZ	2:A:627:HOH:O	2.25	0.62	
1:A:325:PRO:HB3	1:A:397:VAL:HG12	1.82	0.62	
1:A:399:ASN:HB3	2:A:543:HOH:O	2.00	0.61	
1:A:230:LEU:HD12	1:A:230:LEU:O	2.00	0.61	
1:A:93:LEU:HD21	1:A:314:LEU:HB3	1.83	0.61	
1:A:424:ASN:N	1:A:424:ASN:ND2	2.49	0.61	
1:A:159:PRO:O	1:A:162:ILE:HD13	2.01	0.60	
1:A:109:SER:O	1:A:113:LEU:HG	2.00	0.60	
1:A:169:MET:HG2	1:A:434:PHE:CD2	2.37	0.60	
1:A:159:PRO:HG3	1:A:424:ASN:HB3	1.82	0.60	
1:A:29:THR:CB	1:A:30:PHE:HD2	2.12	0.60	
1:A:164:MET:HE3	1:A:164:MET:CA	2.26	0.60	
1:A:220:ILE:CD1	1:A:280:LEU:HD21	2.32	0.60	
1:A:249:GLU:O	1:A:250:ALA:C	2.39	0.60	
1:A:230:LEU:HD21	1:A:280:LEU:CD2	2.32	0.60	
1:A:35:SER:HG	1:A:74:CYS:HA	1.68	0.59	
1:A:148:LEU:HB3	1:A:149:SER:HB3	1.83	0.59	
1:A:158:VAL:HG13	1:A:162:ILE:HD11	1.82	0.59	
1:A:29:THR:CG2	1:A:30:PHE:HE2	1.81	0.59	
1:A:109:SER:O	1:A:113:LEU:CG	2.51	0.59	
1:A:159:PRO:HG3	1:A:424:ASN:CB	2.32	0.59	
1:A:167:LYS:HA	1:A:170:LEU:HB2	1.83	0.59	
1:A:421:GLU:C	1:A:422:THR:HG1	2.00	0.59	
1:A:109:SER:O	1:A:113:LEU:HB2	2.03	0.59	
1:A:225:ARG:O	1:A:226:SER:CB	2.39	0.58	
1:A:151:LYS:HG3	1:A:473:LYS:O	2.03	0.58	
1:A:450:ALA:HA	2:A:803:HOH:O	2.02	0.58	
1:A:58:GLN:HA	1:A:59:LYS:C	2.21	0.58	
1:A:29:THR:HB	1:A:30:PHE:CE2	2.38	0.58	
1:A:420:THR:O	1:A:421:GLU:CB	2.40	0.58	
1:A:197:HIS:HB3	1:A:217:TRP:CZ3	2.39	0.58	
1:A:333:GLU:HG2	2:A:608:HOH:O	2.03	0.58	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:449:VAL:HG12	1:A:452:GLU:H	1.67	0.57	
1:A:238:LEU:CD2	1:A:247:PHE:CZ	2.87	0.57	
1:A:298:ARG:HH11	1:A:298:ARG:HG3	1.68	0.57	
1:A:363:PHE:HE1	1:A:380:LEU:CD1	2.18	0.57	
1:A:148:LEU:CB	1:A:149:SER:CB	2.73	0.57	
1:A:207:GLY:HA2	1:A:253:THR:HB	1.85	0.57	
1:A:230:LEU:HD23	1:A:283:HIS:CD2	2.40	0.56	
1:A:237:LYS:O	1:A:237:LYS:HG3	2.03	0.56	
1:A:238:LEU:CD2	1:A:246:VAL:HB	2.32	0.56	
1:A:230:LEU:HD12	1:A:230:LEU:C	2.25	0.56	
1:A:30:PHE:HD1	1:A:40:VAL:HG23	1.70	0.56	
1:A:411:LYS:HB3	1:A:465:PRO:HB3	1.87	0.56	
1:A:30:PHE:CD1	1:A:40:VAL:HG23	2.41	0.56	
1:A:372:ARG:O	1:A:373:ILE:C	2.43	0.56	
1:A:442:ASN:HB3	1:A:445:ASP:OD2	2.06	0.55	
1:A:230:LEU:CD2	1:A:280:LEU:HD23	2.36	0.55	
1:A:298:ARG:NH1	1:A:298:ARG:HG2	2.21	0.55	
1:A:157:LYS:HD2	1:A:158:VAL:H	1.72	0.55	
1:A:376:HIS:CE1	1:A:378:ALA:HB3	2.41	0.55	
1:A:159:PRO:HD2	1:A:162:ILE:CD1	2.31	0.55	
1:A:159:PRO:CD	1:A:162:ILE:HD11	2.30	0.55	
1:A:180:ILE:HG23	1:A:180:ILE:O	2.06	0.55	
1:A:238:LEU:HD23	1:A:242:GLU:O	2.07	0.55	
1:A:282:LYS:HD2	2:A:791:HOH:O	2.07	0.55	
1:A:103:ILE:CG2	1:A:107:ASP:HB2	2.37	0.54	
1:A:177:ARG:NH2	1:A:475:ASN:ND2	2.56	0.54	
1:A:385:ILE:HD13	1:A:388:MET:CE	2.37	0.54	
1:A:49:GLN:O	1:A:52:SER:HB2	2.06	0.54	
1:A:228:ILE:HG13	1:A:283:HIS:CE1	2.42	0.54	
1:A:363:PHE:HE1	1:A:380:LEU:HD13	1.67	0.54	
1:A:17:PHE:CE2	1:A:21:LYS:HD3	2.43	0.54	
1:A:58:GLN:N	1:A:59:LYS:CG	2.71	0.54	
1:A:58:GLN:HG3	1:A:60:ASP:HB2	1.89	0.53	
1:A:58:GLN:HA	1:A:59:LYS:HB2	1.88	0.53	
1:A:201:CYS:SG	1:A:233:THR:HB	2.48	0.53	
1:A:228:ILE:HG21	1:A:283:HIS:ND1	2.24	0.53	
1:A:253:THR:O	1:A:256:ALA:HB3	2.07	0.53	
1:A:390:VAL:HG21	1:A:411:LYS:CB	2.31	0.53	
1:A:300:GLN:HG2	1:A:470:TYR:HE1	1.71	0.53	
1:A:215:PRO:HB2	1:A:218:GLY:O	2.09	0.53	
1:A:228:ILE:CG1	1:A:283:HIS:HE1	2.02	0.53	

			Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:475:ASN:HD22	1:A:476:ALA:N	2.03	0.53	
1:A:423:ASN:C	1:A:425:PRO:CD	2.76	0.52	
1:A:332:PHE:CG	1:A:396:PRO:HG3	2.45	0.52	
1:A:364:ALA:O	1:A:365:ASP:HB2	2.09	0.52	
1:A:42:ASN:ND2	1:A:44:ASP:H	2.07	0.52	
1:A:419:ASN:ND2	2:A:681:HOH:O	2.42	0.52	
1:A:109:SER:O	1:A:113:LEU:CB	2.58	0.52	
1:A:304:ILE:N	1:A:304:ILE:CD1	2.73	0.52	
1:A:366:ASP:OD2	1:A:366:ASP:N	2.43	0.52	
1:A:43:LEU:CD2	1:A:69:GLU:HB3	2.39	0.52	
1:A:305:ASP:HA	2:A:826:HOH:O	2.10	0.52	
1:A:157:LYS:HD2	1:A:158:VAL:N	2.24	0.52	
1:A:79:GLU:HB3	1:A:466:PHE:HD2	1.73	0.51	
1:A:448:ILE:HG23	1:A:449:VAL:N	2.24	0.51	
1:A:299:ALA:O	1:A:302:ALA:HB3	2.11	0.51	
1:A:385:ILE:CD1	1:A:388:MET:CE	2.89	0.51	
1:A:205:VAL:HB	1:A:237:LYS:NZ	2.26	0.51	
1:A:235:LEU:C	1:A:235:LEU:CD2	2.78	0.51	
1:A:453:HIS:O	1:A:456:HIS:HB3	2.11	0.51	
1:A:43:LEU:HD22	1:A:69:GLU:HB3	1.93	0.51	
1:A:228:ILE:HG21	1:A:231:VAL:HG23	1.86	0.51	
1:A:320:THR:HB	1:A:322:GLU:OE2	2.11	0.51	
1:A:10:LYS:HB3	1:A:141:VAL:CG2	2.41	0.51	
1:A:327:VAL:HG22	1:A:355:TRP:CE2	2.46	0.51	
1:A:97:GLU:O	1:A:97:GLU:CG	2.58	0.50	
1:A:174:ILE:CG2	1:A:175:ARG:N	2.75	0.50	
1:A:373:ILE:CG1	1:A:374:TYR:N	2.30	0.50	
1:A:235:LEU:HD23	1:A:235:LEU:C	2.31	0.50	
1:A:103:ILE:HG22	1:A:103:ILE:O	2.11	0.50	
1:A:298:ARG:HH11	1:A:298:ARG:HG2	1.70	0.50	
1:A:347:ALA:O	1:A:351:THR:HG22	2.10	0.50	
1:A:424:ASN:ND2	1:A:424:ASN:H	2.09	0.50	
1:A:58:GLN:CA	1:A:59:LYS:CB	2.74	0.50	
1:A:120:ILE:O	1:A:123:LEU:HB2	2.11	0.50	
1:A:337:GLN:HB3	1:A:339:ARG:HD3	1.93	0.50	
1:A:58:GLN:CG	1:A:61:SER:CB	2.77	0.50	
1:A:205:VAL:HB	1:A:237:LYS:HZ1	1.77	0.50	
1:A:1:MET:HB3	2:A:594:HOH:O	2.11	0.49	
1:A:42:ASN:HD22	1:A:43:LEU:N	2.10	0.49	
1:A:238:LEU:O	1:A:242:GLU:HA	2.11	0.49	
1:A:345:LYS:HE2	2:A:560:HOH:O	2.12	0.49	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:357:LYS:HD3	2:A:600:HOH:O	2.12	0.49
1:A:46:PHE:CE2	1:A:66:ALA:HA	2.46	0.49
1:A:152:VAL:HG12	1:A:474:GLY:HA3	1.93	0.49
1:A:230:LEU:O	1:A:233:THR:OG1	2.30	0.49
1:A:321:PRO:O	1:A:323:THR:N	2.44	0.49
1:A:43:LEU:HB3	1:A:46:PHE:HD2	1.77	0.49
1:A:244:LYS:N	1:A:244:LYS:HD2	2.28	0.49
1:A:337:GLN:HB3	1:A:339:ARG:CG	2.42	0.49
1:A:376:HIS:CG	1:A:377:PRO:HD2	2.48	0.49
1:A:35:SER:CB	1:A:37:CYS:H	2.18	0.49
1:A:164:MET:HE3	1:A:167:LYS:HB2	1.95	0.49
1:A:332:PHE:CD2	1:A:396:PRO:HG3	2.48	0.49
1:A:339:ARG:N	1:A:339:ARG:CD	2.69	0.49
1:A:230:LEU:CD2	1:A:280:LEU:CD2	2.91	0.48
1:A:205:VAL:HG21	1:A:237:LYS:CE	2.43	0.48
1:A:55:ASP:C	1:A:57:ALA:N	2.65	0.48
1:A:161:GLU:HG2	1:A:162:ILE:HG23	1.94	0.48
1:A:235:LEU:HD12	1:A:290:LEU:HD13	1.95	0.48
1:A:285:ALA:O	1:A:289:GLU:HG3	2.14	0.48
1:A:436:ILE:HG22	1:A:437:GLN:N	2.28	0.48
1:A:63:TYR:CE1	1:A:437:GLN:HG3	2.48	0.48
1:A:452:GLU:O	1:A:456:HIS:HB2	2.14	0.48
1:A:58:GLN:HG2	1:A:61:SER:H	1.72	0.48
1:A:337:GLN:HG2	1:A:339:ARG:HE	1.77	0.48
1:A:96:PHE:C	1:A:98:LYS:H	2.17	0.48
1:A:158:VAL:HG13	1:A:162:ILE:HG12	1.96	0.48
1:A:203:GLU:HB3	1:A:211:MET:SD	2.54	0.48
1:A:38:GLU:HA	1:A:38:GLU:OE1	2.14	0.48
1:A:58:GLN:H	1:A:59:LYS:CG	2.27	0.47
1:A:337:GLN:HB3	1:A:339:ARG:NE	2.29	0.47
1:A:157:LYS:HB2	1:A:420:THR:HG21	1.94	0.47
1:A:238:LEU:HD21	1:A:247:PHE:CD1	2.50	0.47
1:A:49:GLN:O	1:A:52:SER:CB	2.63	0.47
1:A:97:GLU:O	1:A:97:GLU:HG3	2.15	0.47
1:A:337:GLN:CG	1:A:339:ARG:HE	2.27	0.47
1:A:422:THR:O	1:A:423:ASN:C	2.53	0.47
1:A:42:ASN:HD21	1:A:44:ASP:CG	2.18	0.47
1:A:152:VAL:HG11	1:A:475:ASN:N	2.30	0.47
1:A:176:ARG:NH1	1:A:446:MET:O	2.43	0.47
1:A:205:VAL:O	1:A:249:GLU:CG	2.63	0.47
1:A:238:LEU:HD22	1:A:247:PHE:CD2	2.49	0.47

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:383:GLY:CA	2:A:626:HOH:O	2.62	0.47	
1:A:199:GLU:O	1:A:202:ARG:N	2.47	0.47	
1:A:205:VAL:CG1	1:A:249:GLU:CB	2.92	0.47	
1:A:220:ILE:HD11	1:A:280:LEU:HD21	1.97	0.47	
1:A:248:ASP:O	1:A:251:LYS:HB2	2.14	0.47	
1:A:29:THR:CB	1:A:30:PHE:HE2	2.24	0.46	
1:A:138:GLY:C	1:A:140:ARG:H	2.19	0.46	
1:A:394:THR:HG22	1:A:409:HIS:HD2	1.80	0.46	
1:A:1:MET:HA	1:A:4:LYS:NZ	2.31	0.46	
1:A:351:THR:HA	1:A:352:PRO:HD3	1.79	0.46	
1:A:202:ARG:HA	1:A:237:LYS:HZ3	1.78	0.46	
1:A:203:GLU:CB	1:A:211:MET:SD	3.04	0.46	
1:A:205:VAL:O	1:A:249:GLU:HG2	2.15	0.46	
1:A:204:PHE:C	1:A:204:PHE:CD2	2.89	0.46	
1:A:383:GLY:HA2	2:A:626:HOH:O	2.15	0.45	
1:A:7:VAL:HG12	2:A:546:HOH:O	2.16	0.45	
1:A:98:LYS:HE3	1:A:98:LYS:HB3	1.52	0.45	
1:A:12:GLU:O	1:A:13:MET:C	2.54	0.45	
1:A:234:GLY:O	1:A:238:LEU:HD12	2.17	0.45	
1:A:138:GLY:C	1:A:140:ARG:N	2.70	0.45	
1:A:231:VAL:HG11	1:A:286:LYS:HG3	1.98	0.45	
1:A:231:VAL:CG1	1:A:287:ALA:N	2.69	0.45	
1:A:249:GLU:O	1:A:252:LYS:N	2.49	0.45	
1:A:56:ASP:O	1:A:57:ALA:C	2.54	0.45	
1:A:385:ILE:HD13	1:A:385:ILE:HA	1.75	0.45	
1:A:44:ASP:O	1:A:45:ARG:C	2.55	0.45	
1:A:298:ARG:HB3	1:A:299:ALA:H	1.59	0.45	
1:A:112:GLU:CD	1:A:112:GLU:H	2.20	0.45	
1:A:336:LYS:HB3	1:A:336:LYS:HE2	1.41	0.45	
1:A:15:LYS:HD3	2:A:743:HOH:O	2.15	0.45	
1:A:250:ALA:O	1:A:254:VAL:HG23	2.17	0.45	
1:A:347:ALA:O	1:A:351:THR:CG2	2.65	0.45	
1:A:257:LEU:HG	1:A:261:LEU:HD11	1.99	0.44	
1:A:244:LYS:N	1:A:244:LYS:CD	2.81	0.44	
1:A:294:SER:O	1:A:298:ARG:HB2	2.18	0.44	
1:A:228:ILE:HG22	1:A:228:ILE:O	2.17	0.44	
1:A:386:SER:O	1:A:390:VAL:HG23	2.17	0.44	
1:A:449:VAL:HG11	1:A:452:GLU:CD	2.38	0.44	
1:A:173:MET:HG2	1:A:173:MET:H	1.50	0.43	
1:A:231:VAL:HG13	1:A:287:ALA:H	1.80	0.43	
1:A:131:LEU:O	1:A:132:LYS:C	2.55	0.43	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:230:LEU:HD21	1:A:280:LEU:HD22	1.99	0.43
1:A:27:VAL:C	1:A:29:THR:H	2.21	0.43
1:A:45:ARG:NH2	1:A:69:GLU:OE1	2.52	0.43
1:A:65:SER:O	1:A:68:VAL:HB	2.19	0.43
1:A:425:PRO:O	1:A:426:CYS:C	2.57	0.43
1:A:106:TRP:CD1	1:A:106:TRP:N	2.87	0.43
1:A:305:ASP:C	1:A:305:ASP:OD2	2.57	0.43
1:A:31:THR:HA	1:A:415:ASN:O	2.18	0.43
1:A:316:LYS:HD2	1:A:316:LYS:HA	1.77	0.43
1:A:462:LYS:HA	1:A:467:GLN:OE1	2.18	0.43
1:A:385:ILE:CD1	1:A:388:MET:HE1	2.48	0.43
1:A:206:LYS:HE2	1:A:208:LYS:HE3	2.01	0.43
1:A:251:LYS:O	1:A:255:GLU:HG3	2.19	0.43
1:A:313:TRP:CH2	1:A:380:LEU:HD23	2.54	0.43
1:A:140:ARG:H	1:A:140:ARG:HG3	1.46	0.42
1:A:1:MET:CG	1:A:1:MET:O	2.67	0.42
1:A:30:PHE:HA	1:A:417:ARG:HD2	2.00	0.42
1:A:158:VAL:HG13	1:A:162:ILE:CG1	2.49	0.42
1:A:196:GLU:H	1:A:196:GLU:HG3	1.64	0.42
1:A:75:ALA:HA	1:A:76:PRO:HD3	1.66	0.42
1:A:91:LYS:HB3	1:A:137:ILE:HG22	2.01	0.42
1:A:424:ASN:H	1:A:425:PRO:HD3	1.69	0.42
1:A:18:GLU:OE2	1:A:18:GLU:CA	2.49	0.42
1:A:205:VAL:HG12	1:A:249:GLU:HB3	1.99	0.42
1:A:63:TYR:HE1	1:A:437:GLN:HG3	1.85	0.42
1:A:235:LEU:HG	1:A:291:TYR:N	2.35	0.41
1:A:380:LEU:HD21	1:A:388:MET:CE	2.50	0.41
1:A:419:ASN:HB2	1:A:423:ASN:ND2	2.36	0.41
1:A:83:VAL:O	1:A:83:VAL:HG12	2.20	0.41
1:A:447:ASP:OD1	1:A:447:ASP:N	2.53	0.41
1:A:418:THR:HG22	1:A:426:CYS:HB3	2.02	0.41
1:A:448:ILE:HD12	1:A:448:ILE:HA	1.89	0.41
1:A:174:ILE:O	1:A:177:ARG:N	2.53	0.41
1:A:230:LEU:HD21	1:A:280:LEU:HD23	1.98	0.41
1:A:119:LYS:N	1:A:122:GLN:OE1	2.50	0.41
1:A:380:LEU:HD21	1:A:388:MET:HE2	2.01	0.41
1:A:449:VAL:HG11	1:A:452:GLU:OE2	2.20	0.41
1:A:159:PRO:HG2	1:A:162:ILE:HD12	2.02	0.41
1:A:324:PHE:O	1:A:327:VAL:N	2.52	0.41
1:A:360:TYR:O	1:A:363:PHE:HB2	2.20	0.41
1:A:120:ILE:H	1:A:120:ILE:HG13	1.39	0.41

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:152:VAL:HG23	1:A:460:VAL:HA	2.02	0.41
1:A:297:LEU:HA	1:A:297:LEU:HD23	1.75	0.41
1:A:322:GLU:CD	1:A:322:GLU:H	2.23	0.41
1:A:385:ILE:CD1	1:A:388:MET:HE3	2.45	0.41
1:A:31:THR:OG1	1:A:35:SER:HB2	2.20	0.41
1:A:449:VAL:HG12	1:A:449:VAL:O	2.22	0.40
1:A:137:ILE:H	1:A:137:ILE:HG12	1.79	0.40
1:A:179:LEU:HA	1:A:179:LEU:HD23	1.86	0.40
1:A:426:CYS:O	1:A:430:ILE:HG13	2.21	0.40
1:A:254:VAL:HG21	1:A:284:ILE:HD11	2.03	0.40
1:A:294:SER:HA	1:A:297:LEU:HB2	2.04	0.40
1:A:419:ASN:HB2	1:A:423:ASN:HD22	1.87	0.40
1:A:453:HIS:CB	2:A:803:HOH:O	2.60	0.40
1:A:43:LEU:O	1:A:44:ASP:C	2.60	0.40
1:A:103:ILE:HG21	1:A:103:ILE:HD13	1.73	0.40
1:A:169:MET:CE	1:A:455:LEU:HD22	2.51	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	452/482~(94%)	360 (80%)	65 (14%)	27~(6%)	1 0

All (27) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	2	GLU
1	А	149	SER
1	А	180	ILE
1	А	322	GLU
1	А	365	ASP

Mol	Chain	Res	Type
1	А	373	ILE
1	А	374	TYR
1	А	376	HIS
1	А	56	ASP
1	А	165	SER
1	А	226	SER
1	А	421	GLU
1	А	423	ASN
1	А	478	SER
1	А	164	MET
1	А	211	MET
1	А	45	ARG
1	А	47	VAL
1	А	250	ALA
1	А	425	PRO
1	А	471	ASN
1	А	6	GLU
1	А	59	LYS
1	А	160	GLY
1	А	422	THR
1	А	207	GLY
1	А	224	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	389/408~(95%)	308~(79%)	81 (21%)	1 1

All (81) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	10	LYS
1	А	15	LYS
1	А	18	GLU
1	А	22	LYS

1 A 26 LEU 1 A 30 PHE 1 A 35 SER 1 A 35 SER 1 A 38 GLU 1 A 42 ASN 1 A 45 ARG 1 A 54 THR 1 A 55 ASP 1 A 61 SER 1 A 67 LEU 1 A 67 LEU 1 A 106 TRP 1 A 106 TRP 1 A 111 THR 1 A 1120 ILE 1 A 121 GLU 1 A 123 ILE 1 A 124 GLN 1 A 127 GLU 1 A 128 GLN 1 A 140 ARG 1 A	Mol	Chain	Res	Type
1 A 30 PHE 1 A 35 SER 1 A 38 GLU 1 A 42 ASN 1 A 42 ASN 1 A 45 ARG 1 A 54 THR 1 A 55 ASP 1 A 61 SER 1 A 67 LEU 1 A 67 LEU 1 A 106 TRP 1 A 106 TRP 1 A 120 ILE 1 A 121 GLU 1 A 120 ILE 1 A 123 GLN 1 A 124 GLN 1 A 125 GLN 1 A 126 ILE 1 A 140 ARG 1 A 140 ARG 1 A	1	А	26	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	30	PHE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	35	SER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	38	GLU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	42	ASN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	45	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	54	THR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	55	ASP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	56	ASP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	61	SER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	67	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	97	GLU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	106	TRP
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	А	111	THR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	114	LYS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	А	120	ILE
1 A 128 GLN 1 A 137 ILE 1 A 140 ARG 1 A 140 ARG 1 A 141 VAL 1 A 142 ASN 1 A 142 ASN 1 A 142 ILE 1 A 162 ILE 1 A 170 LEU 1 A 171 SER 1 A 173 MET 1 A 177 ARG 1 A 180 ILE	1	А	121	GLU
1 A 137 ILE 1 A 140 ARG 1 A 140 ARG 1 A 141 VAL 1 A 142 ASN 1 A 142 ASN 1 A 142 ILE 1 A 162 ILE 1 A 162 ILE 1 A 170 LEU 1 A 171 SER 1 A 173 MET 1 A 177 ARG 1 A 180 ILE	1	А	128	GLN
1 A 140 ARG 1 A 141 VAL 1 A 141 VAL 1 A 142 ASN 1 A 142 ASN 1 A 142 ASN 1 A 142 Image: ASN 1 A 142 Image: ASN 1 A 142 Image: ASN 1 A 162 ILE 1 A 170 LEU 1 A 171 SER 1 A 173 MET 1 A 177 ARG 1 A 180 ILE	1	А	137	ILE
1 A 141 VAL 1 A 142 ASN 1 A 142 ASN 1 A 142 ASN 1 A 142 ASN 1 A 142 IEU 1 A 162 ILE 1 A 170 LEU 1 A 171 SER 1 A 173 MET 1 A 177 ARG 1 A 180 ILE	1	А	140	ARG
1 A 142 ASN 1 A 148 LEU 1 A 162 ILE 1 A 162 ILE 1 A 170 LEU 1 A 171 SER 1 A 173 MET 1 A 177 ARG 1 A 180 ILE	1	А	141	VAL
1 A 148 LEU 1 A 162 ILE 1 A 170 LEU 1 A 171 SER 1 A 173 MET 1 A 177 ARG 1 A 180 ILE	1	А	142	ASN
1 A 162 ILE 1 A 170 LEU 1 A 171 SER 1 A 173 MET 1 A 177 ARG 1 A 180 ILE	1	А	148	LEU
1 A 170 LEU 1 A 171 SER 1 A 173 MET 1 A 177 ARG 1 A 180 ILE	1	А	162	ILE
1 A 171 SER 1 A 173 MET 1 A 177 ARG 1 A 180 ILE	1	А	170	LEU
1 A 173 MET 1 A 177 ARG 1 A 180 ILE	1	А	171	SER
1 A 177 ARG 1 A 180 ILE	1	А	173	MET
1 A 180 ILE	1	А	177	ARG
	1	А	180	ILE
1 A 195 ARG	1	А	195	ARG
1 A 196 GLU	1	А	196	GLU
1 A 198 VAL	1	А	198	VAL
1 A 201 CYS	1	А	201	CYS
1 A 211 MET	1	А	211	MET
1 A 220 ILE	1	А	220	ILE
1 A 225 ARG	1	А	225	ARG
1 A 226 SER	1	А	226	SER
1 A 228 ILE	1	А	228	ILE
1 A 235 LEU	1	А	235	LEU
1 A 237 LYS	1	А	237	LYS
1 A 241 THR	1	А	241	THR
1 A 242 GLU	1	A	242	GLU

Mol	Chain	Res	Type
1	А	249	GLU
1	А	253	THR
1	А	263	LYS
1	А	265	LYS
1	А	268	VAL
1	А	272	SER
1	А	278	THR
1	А	295	SER
1	А	298	ARG
1	А	304	ILE
1	А	309	SER
1	А	326	THR
1	А	336	LYS
1	А	339	ARG
1	А	342	LYS
1	А	343	LYS
1	А	350	SER
1	А	351	THR
1	А	366	ASP
1	А	372	ARG
1	А	373	ILE
1	А	380	LEU
1	А	397	VAL
1	А	399	ASN
1	А	413	ILE
1	А	419	ASN
1	А	420	THR
1	А	423	ASN
1	А	424	ASN
1	А	436	ILE
1	A	439	THR
1	А	446	MET
1	А	447	ASP
1	A	448	ILE
1	А	463	GLN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (9) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	42	ASN
1	А	279	ASN
1	А	283	HIS

Continued from previous page...

Mol	Chain	Res	Type
1	А	399	ASN
1	А	409	HIS
1	А	419	ASN
1	А	423	ASN
1	А	444	GLN
1	А	475	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	460/482~(95%)	0.09	16 (3%) 44 51	25, 46, 82, 151	0

All (16) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	27	VAL	5.5
1	А	420	THR	4.9
1	А	140	ARG	3.9
1	А	372	ARG	3.4
1	А	244	LYS	3.3
1	А	235	LEU	3.1
1	А	29	THR	2.9
1	А	195	ARG	2.7
1	А	338	PRO	2.3
1	А	366	ASP	2.2
1	А	443	ILE	2.2
1	А	180	ILE	2.1
1	А	238	LEU	2.1
1	А	423	ASN	2.1
1	А	55	ASP	2.0
1	А	421	GLU	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

