

wwPDB X-ray Structure Validation Summary Report (i)

Dec 17, 2023 – 04:59 PM EST

:	4U3C
:	Docking Site of Maltohexaose in the Mtb GlgE
:	Ronning, D.R.; Lindenberger, J.J.
:	2014-07-19
:	3.98 Å(reported)
	: : : :

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.98 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	130704	1039 (4.26-3.70)
Clashscore	141614	1099 (4.26-3.70)
Ramachandran outliers	138981	$1061 \ (4.26-3.70)$
Sidechain outliers	138945	1053 (4.26-3.70)
RSRZ outliers	127900	1021 (4.30-3.66)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality o	of chain	
1	А	723	55%	33%	•• 9%
1	В	723	58%	31%	• 9%
1	С	723	9%	33%	• 9%
1	D	723	50%	37%	•• 9%
1	Е	723	53%	34%	• • 9%

Mol	Chain	Length	Quality of	chain
1	F	723	<u>6%</u> 56%	32% · 9%
2	G	2	50%	50%
2	Ι	2	50%	50%
2	K	2	100%	
2	М	2	50%	50%
2	0	2	50%	50%
2	Q	2	100%	
3	Н	6	50%	50%
3	J	6	33%	67%
3	L	6	67%	33%
3	Ν	6	50%	50%
3	Р	6	50%	50%
3	R	6	50%	50%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	GLC	N	1	-	-	-	Х

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 31938 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	660	Total	С	Ν	0	S	0	0	0
	A	000	5233	3359	910	950	14	0	0	0
1	р	660	Total	С	Ν	0	S	0	0	0
1	D	000	5233	3359	910	950	14	0	0	0
1	С	660	Total	С	Ν	0	S	0	0	0
1		000	5233	3359	910	950	14		0	0
1	П	660	Total	С	Ν	0	S	0	0	0
1	D	000	5233	3359	910	950	14	0	0	U
1	F	660	Total	С	Ν	0	S	0	0	0
		000	5233	3359	910	950	14	0	0	0
1	Б	660	Total	С	Ν	0	S	0	0	0
	Г	000	5233	3359	910	950	14	0	U	

• Molecule 1 is a protein called Alpha-1,4-glucan:maltose-1-phosphate maltosyltransferase.

There are 132 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	-21	MET	-	expression tag	UNP P9WQ16
А	-20	GLY	-	expression tag	UNP P9WQ16
А	-19	SER	-	expression tag	UNP P9WQ16
А	-18	SER	-	expression tag	UNP P9WQ16
А	-17	HIS	-	expression tag	UNP P9WQ16
А	-16	HIS	-	expression tag	UNP P9WQ16
А	-15	HIS	-	expression tag	UNP P9WQ16
А	-14	HIS	-	expression tag	UNP P9WQ16
А	-13	HIS	-	expression tag	UNP P9WQ16
А	-12	HIS	-	expression tag	UNP P9WQ16
А	-11	SER	-	expression tag	UNP P9WQ16
А	-10	SER	-	expression tag	UNP P9WQ16
А	-9	GLY	-	expression tag	UNP P9WQ16
A	-8	LEU	-	expression tag	UNP P9WQ16
A	-7	GLU	-	expression tag	UNP P9WQ16
A	-6	VAL	-	expression tag	UNP P9WQ16
A	-5	LEU	_	expression tag	UNP P9WQ16

Chain	Residue	Modelled	Actual	Comment	Reference
A	-4	PHE	-	expression tag	UNP P9WQ16
A	-3	GLN	-	expression tag	UNP P9WQ16
A	-2	GLY	-	expression tag	UNP P9WQ16
A	-1	PRO	-	expression tag	UNP P9WQ16
A	0	HIS	-	expression tag	UNP P9WQ16
В	-21	MET	-	expression tag	UNP P9WQ16
В	-20	GLY	-	expression tag	UNP P9WQ16
В	-19	SER	-	expression tag	UNP P9WQ16
В	-18	SER	-	expression tag	UNP P9WQ16
В	-17	HIS	-	expression tag	UNP P9WQ16
В	-16	HIS	-	expression tag	UNP P9WQ16
В	-15	HIS	-	expression tag	UNP P9WQ16
В	-14	HIS	-	expression tag	UNP P9WQ16
В	-13	HIS	-	expression tag	UNP P9WQ16
В	-12	HIS	-	expression tag	UNP P9WQ16
В	-11	SER	-	expression tag	UNP P9WQ16
В	-10	SER	-	expression tag	UNP P9WQ16
В	-9	GLY	-	expression tag	UNP P9WQ16
В	-8	LEU	-	expression tag	UNP P9WQ16
В	-7	GLU	-	expression tag	UNP P9WQ16
В	-6	VAL	-	expression tag	UNP P9WQ16
В	-5	LEU	-	expression tag	UNP P9WQ16
В	-4	PHE	-	expression tag	UNP P9WQ16
В	-3	GLN	-	expression tag	UNP P9WQ16
В	-2	GLY	-	expression tag	UNP P9WQ16
В	-1	PRO	_	expression tag	UNP P9WQ16
В	0	HIS	-	expression tag	UNP P9WQ16
C	-21	MET	-	expression tag	UNP P9WQ16
С	-20	GLY	-	expression tag	UNP P9WQ16
С	-19	SER	-	expression tag	UNP P9WQ16
С	-18	SER	-	expression tag	UNP P9WQ16
С	-17	HIS	-	expression tag	UNP P9WQ16
С	-16	HIS	-	expression tag	UNP P9WQ16
С	-15	HIS	-	expression tag	UNP P9WQ16
С	-14	HIS	-	expression tag	UNP P9WQ16
С	-13	HIS	-	expression tag	UNP P9WQ16
С	-12	HIS	-	expression tag	UNP P9WQ16
С	-11	SER	-	expression tag	UNP P9WQ16
С	-10	SER	-	expression tag	UNP P9WQ16
С	-9	GLY	-	expression tag	UNP P9WQ16
С	-8	LEU	-	expression tag	UNP P9WQ16
С	-7	GLU	-	expression tag	UNP P9WQ16

Chain	Besidue	Modelled	Actual	Comment	Reference
C	6	VAL	neuai	ovprossion tag	UNP P0W016
	-0	IFU	-	expression tag	UNP POWO16
	-5	DHE	-	expression tag	UNI 19WQ10
	-4		-	expression tag	UNF F9WQ10
	-ə 9	GLN	-	expression tag	UNP P9WQ10
	-2		-	expression tag	UNP P9WQ10
	-1	PRO	-	expression tag	UNP P9WQ10
	0	HIS	-	expression tag	UNP P9WQ16
D	-21	MET	-	expression tag	UNP P9WQ16
D	-20	GLY	-	expression tag	UNP P9WQ16
D	-19	SER	-	expression tag	UNP P9WQ16
D	-18	SER	-	expression tag	UNP P9WQ16
D	-17	HIS	-	expression tag	UNP P9WQ16
D	-16	HIS	-	expression tag	UNP P9WQ16
D	-15	HIS	-	expression tag	UNP P9WQ16
D	-14	HIS	-	expression tag	UNP P9WQ16
D	-13	HIS	-	expression tag	UNP P9WQ16
D	-12	HIS	-	expression tag	UNP P9WQ16
D	-11	SER	-	expression tag	UNP P9WQ16
D	-10	SER	-	expression tag	UNP P9WQ16
D	-9	GLY	-	expression tag	UNP P9WQ16
D	-8	LEU	-	expression tag	UNP P9WQ16
D	-7	GLU	-	expression tag	UNP P9WQ16
D	-6	VAL	-	expression tag	UNP P9WQ16
D	-5	LEU	-	expression tag	UNP P9WQ16
D	-4	PHE	-	expression tag	UNP P9WQ16
D	-3	GLN	-	expression tag	UNP P9WQ16
D	-2	GLY	-	expression tag	UNP P9WQ16
D	-1	PRO	-	expression tag	UNP P9WQ16
D	0	HIS	-	expression tag	UNP P9WQ16
Е	-21	MET	-	expression tag	UNP P9WQ16
Е	-20	GLY	-	expression tag	UNP P9WQ16
Е	-19	SER	-	expression tag	UNP P9WQ16
Е	-18	SER	_	expression tag	UNP P9WQ16
E	-17	HIS	_	expression tag	UNP P9WQ16
E	-16	HIS	-	expression tag	UNP P9WQ16
E	-15	HIS	-	expression tag	UNP P9WQ16
E	-14	HIS	-	expression tag	UNP P9WQ16
Е	-13	HIS	_	expression tag	UNP P9WO16
 E	-12	HIS	-	expression tag	UNP P9W016
E	-11	SER	_	expression tag	UNP P9W016
E E	-10	SER	_	expression tag	UNP P9WQ16
E	_9	GLY	_	expression tag	UNP P9W016
	. <u> </u>		1		

Chain	Residue	Modelled	Actual	Comment	Reference
Е	-8	LEU	-	expression tag	UNP P9WQ16
Е	-7	GLU	-	expression tag	UNP P9WQ16
Е	-6	VAL	-	expression tag	UNP P9WQ16
Е	-5	LEU	-	expression tag	UNP P9WQ16
Е	-4	PHE	-	expression tag	UNP P9WQ16
Е	-3	GLN	-	expression tag	UNP P9WQ16
Е	-2	GLY	-	expression tag	UNP P9WQ16
Е	-1	PRO	-	expression tag	UNP P9WQ16
Е	0	HIS	-	expression tag	UNP P9WQ16
F	-21	MET	-	expression tag	UNP P9WQ16
F	-20	GLY	-	expression tag	UNP P9WQ16
F	-19	SER	-	expression tag	UNP P9WQ16
F	-18	SER	-	expression tag	UNP P9WQ16
F	-17	HIS	-	expression tag	UNP P9WQ16
F	-16	HIS	-	expression tag	UNP P9WQ16
F	-15	HIS	-	expression tag	UNP P9WQ16
F	-14	HIS	-	expression tag	UNP P9WQ16
F	-13	HIS	-	expression tag	UNP P9WQ16
F	-12	HIS	-	expression tag	UNP P9WQ16
F	-11	SER	-	expression tag	UNP P9WQ16
F	-10	SER	-	expression tag	UNP P9WQ16
F	-9	GLY	-	expression tag	UNP P9WQ16
F	-8	LEU	-	expression tag	UNP P9WQ16
F	-7	GLU	-	expression tag	UNP P9WQ16
F	-6	VAL	-	expression tag	UNP P9WQ16
F	-5	LEU	-	expression tag	UNP P9WQ16
F	-4	PHE	-	expression tag	UNP P9WQ16
F	-3	GLN	-	expression tag	UNP P9WQ16
F	-2	GLY	-	expression tag	UNP P9WQ16
F	-1	PRO	-	expression tag	UNP P9WQ16
F	0	HIS	-	expression tag	UNP P9WQ16

• Molecule 2 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace	
2	G	2	Total 23	C 12	0 11	0	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace				
2	Т	2	Total C O	0	0	0				
4	1	-	23 12 11	Ŭ	0	Ū				
9	K	n	Total C O	0	0	0				
	Γ	Δ	23 12 11	0	0					
2	М	М	М	М	М	M 9	Total C O	0	0	0
	IVI	2	23 12 11	0	0	U				
2	О	0	0	Total C O	0	0	0			
Z			23 12 11	0	0	0				
2	0	0 0	Total C O	0	0	0				
	Q	Q	Δ	23 12 11	0	0	0			

• Molecule 3 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranoye-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyr

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
3	Н	6	Total C O 67 36 31	0	0	0
3	J	6	Total C O 67 36 31	0	0	0
3	L	6	Total C O 67 36 31	0	0	0
3	Ν	6	Total C O 67 36 31	0	0	0
3	Р	6	Total C O 67 36 31	0	0	0
3	R	6	Total C O 67 36 31	0	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Alpha-1,4-glucan:maltose-1-phosphate maltosyltransferase

• Molecule 1: Alpha-1,4-glucan:maltose-1-phosphate maltosyltransferase

9%

Chain B: 58% 31%

• Molecule 1: Alpha-1,4-glucan:maltose-1-phosphate maltosyltransferase

• Molecule 2: alp	oha-D-glucopyranose-((1-4)-alpha-D-glucopyranose	
Chain O:	50%	50%	
GLC2 GLC2			
• Molecule 2: alp	bha-D-glucopyranose-((1-4)-alpha-D-glucopyranose	
Chain Q:		100%	
GLC1 GLC2			
• Molecule 3: alp 1-4)-alpha-D-glue	bha-D-glucopyranose-(copyranose-(1-4)-alpha	(1-4)-alpha-D-glucopyranose-(1-4)-alp a-D-glucopyranose-(1-4)-alpha-D-gluc	pha-D-glucopyranose-(copyranose
Chain H:	50%	50%	1
GLC1 GLC2 GLC3 GLC4 GLC5 GLC5 GLC6			
• Molecule 3: alp 1-4)-alpha-D-glue	bha-D-glucopyranose-(copyranose-(1-4)-alpha	(1-4)-alpha-D-glucopyranose-(1-4)-alp a-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1	pha-D-glucopyranose-(copyranose
Chain J:	33%	67%	
Chain J:	33%	67%	
Chain J: <mark>탈登탈탈탈</mark> • Molecule 3: alp 1-4)-alpha-D-gluo	33% Dha-D-glucopyranose-(copyranose-(1-4)-alpha	67% (1-4)-alpha-D-glucopyranose-(1-4)-alp a-D-glucopyranose-(1-4)-alpha-D-gluc	pha-D-glucopyranose-(copyranose
Chain J:	33% bha-D-glucopyranose-(copyranose-(1-4)-alpha 67%	67% (1-4)-alpha-D-glucopyranose-(1-4)-alp a-D-glucopyranose-(1-4)-alpha-B-glucopyranose-(1-4)-alpha-B-glucopyranose-(1-4)-alpha-B-glucopyranose-(1-4)-alpha-B-glucopyranose-(1-4)-alpha-B-glucopyranose-(1-4)-alpha-B-glucopyranose-(1-4)-alpha-B-glucopyranose-(1-4)-alpha-B-glucopyranose-(1-4)-alpha-B-glucopyranoy	pha-D-glucopyranose-(copyranose
Chain J: Solution: Molecule 3: alp 1-4)-alpha-D-glue Chain L: Solution: Chain L:	33% Dha-D-glucopyranose-(copyranose-(1-4)-alpha 67%	67% (1-4)-alpha-D-glucopyranose-(1-4)-alp a-D-glucopyranose-(1-4)-alpha-D-gluc	pha-D-glucopyranose-(copyranose
Chain J: Solution State	33% Dha-D-glucopyranose-(copyranose-(1-4)-alpha 67% Dha-D-glucopyranose-(copyranose-(1-4)-alpha	67% (1-4)-alpha-D-glucopyranose-(1-4)-alp a-D-glucopyranose-(1-4)-alpha-D-gluc 33% (1-4)-alpha-D-glucopyranose-(1-4)-alp a-D-glucopyranose-(1-4)-alpha-D-gluc	pha-D-glucopyranose-(copyranose pha-D-glucopyranose-(copyranose
 Chain J: Second Structure Molecule 3: alp 1-4)-alpha-D-gluc Chain L: Second Structure Molecule 3: alp 1-4)-alpha-D-gluc Chain N: 	33% oha-D-glucopyranose-(copyranose-(1-4)-alpha 67% oha-D-glucopyranose-(copyranose-(1-4)-alpha 50%	67% (1-4)-alpha-D-glucopyranose-(1-4)-alp a-D-glucopyranose-(1-4)-alpha-D-gluc 33% (1-4)-alpha-D-glucopyranose-(1-4)-alp a-D-glucopyranose-(1-4)-alpha-D-gluc	pha-D-glucopyranose-(copyranose pha-D-glucopyranose-(copyranose
Chain J: Image: State Sta	33% oha-D-glucopyranose-(copyranose-(1-4)-alpha 67% oha-D-glucopyranose-(copyranose-(1-4)-alpha 50%	67% (1-4)-alpha-D-glucopyranose-(1-4)-alp a-D-glucopyranose-(1-4)-alpha-D-gluc 33% (1-4)-alpha-D-glucopyranose-(1-4)-alp a-D-glucopyranose-(1-4)-alpha-D-gluc 50%	pha-D-glucopyranose-(copyranose pha-D-glucopyranose-(copyranose
 Chain J: Sigging Sigging Molecule 3: alp 1-4)-alpha-D-gluc Chain L: Sigging Sigging Molecule 3: alp 1-4)-alpha-D-gluc Chain N: Sigging Sigging Molecule 3: alp 1-4)-alpha-D-gluc 	33% oha-D-glucopyranose-(copyranose-(1-4)-alpha 67% oha-D-glucopyranose-(copyranose-(1-4)-alpha 50% oha-D-glucopyranose-(copyranose-(1-4)-alpha	67% (1-4)-alpha-D-glucopyranose-(1-4)-alp a-D-glucopyranose-(1-4)-alpha-D-gluc 33% (1-4)-alpha-D-glucopyranose-(1-4)-alp a-D-glucopyranose-(1-4)-alpha-D-gluc 50% (1-4)-alpha-D-glucopyranose-(1-4)-alp a-D-glucopyranose-(1-4)-alpha-D-gluc	pha-D-glucopyranose-(copyranose pha-D-glucopyranose-(copyranose

GLC1 GLC2 GLC3 GLC4 GLC5 GLC5 GLC5

• Molecule 3: alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose

50%

Chain R: 50%

GLC1 GLC2 GLC3 GLC3 GLC5 GLC5 GLC5

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	338.42Å 239.42Å 239.45Å	Deneiten
a, b, c, α , β , γ	90.00° 134.90° 90.00°	Depositor
$\mathbf{P}_{\text{acclution}}(\hat{\mathbf{A}})$	43.73 - 3.98	Depositor
Resolution (A)	43.74 - 3.98	EDS
% Data completeness	97.9 (43.73-3.98)	Depositor
(in resolution range)	88.0 (43.74-3.98)	EDS
R _{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.41 (at 4.00 \text{\AA})$	Xtriage
Refinement program	PHENIX (phenix.refine: 1.9_1692)	Depositor
D D	0.224 , 0.256	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.240 , 0.267	DCC
R_{free} test set	5681 reflections (5.02%)	wwPDB-VP
Wilson B-factor $(Å^2)$	105.0	Xtriage
Anisotropy	0.128	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.32 , 44.4	EDS
L-test for twinning ²	$< L > = 0.50, < L^2 > = 0.33$	Xtriage
	0.013 for h+2*l,k,-h-l	
	0.015 for k+l,h+l,-l	
	0.014 for -k+l,-h-l,-l	
	0.015 for -h+k-l,-l,-k	
	0.013 for -h-k-l,l,k	
Estimated twinning fraction	0.410 for h-k+l,l,-h-l	Xtriage
Ŭ	0.409 for -k-l,-h-l,k	Ŭ
	0.418 for h+k+l,-l,-h-l	
	0.418 for k-l,h+l,-k	
	0.015 for hkh-l	
	0.418 for -h-2*lk.l	
F_o, F_c correlation	0.91	EDS
Total number of atoms	31938	wwPDB-VP
Average B, all atoms $(Å^2)$	121.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.06% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GLC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.38	0/5396	0.74	7/7380~(0.1%)
1	В	0.39	0/5396	0.76	6/7380~(0.1%)
1	С	0.39	0/5396	0.76	5/7380~(0.1%)
1	D	0.41	0/5396	0.81	10/7380~(0.1%)
1	Е	0.40	0/5396	0.78	6/7380~(0.1%)
1	F	0.38	0/5396	0.78	8/7380~(0.1%)
All	All	0.39	0/32376	0.77	$42/44280 \ (0.1\%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
1	В	0	1
1	D	0	3
1	Е	0	2
All	All	0	7

There are no bond length outliers.

The worst 5 of 42 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Е	366	LEU	CA-CB-CG	8.78	135.49	115.30
1	Е	698	LEU	CA-CB-CG	8.69	135.29	115.30
1	В	505	LEU	CA-CB-CG	8.41	134.65	115.30
1	А	560	LEU	CA-CB-CG	8.29	134.37	115.30
1	F	195	LEU	CA-CB-CG	7.42	132.37	115.30

There are no chirality outliers.

5 of 7 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	202	GLU	Peptide
1	В	292	ASN	Sidechain
1	D	292	ASN	Sidechain
1	D	484	ASN	Sidechain
1	D	488	GLU	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	5233	0	5044	235	0
1	В	5233	0	5044	223	0
1	С	5233	0	5044	229	0
1	D	5233	0	5044	269	0
1	Е	5233	0	5045	232	1
1	F	5233	0	5045	209	1
2	G	23	0	21	0	0
2	Ι	23	0	21	0	0
2	К	23	0	21	2	0
2	М	23	0	21	4	0
2	0	23	0	21	1	0
2	Q	23	0	21	1	0
3	Н	67	0	57	3	0
3	J	67	0	57	3	0
3	L	67	0	57	3	0
3	N	67	0	57	3	0
3	Р	67	0	57	4	0
3	R	67	0	57	5	0
All	All	31938	0	30734	1378	2

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 22.

The worst 5 of 1378 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:D:487:ALA:HA	1:D:488:GLU:HB2	1.13	1.11
1:C:487:ALA:HB1	1:C:488:GLU:HB3	1.30	1.08
1:D:154:LEU:HD22	1:D:183:LEU:HD22	1.38	1.03
1:D:487:ALA:HA	1:D:488:GLU:CB	1.90	1.02
1:B:165:ALA:HB1	1:B:173:ARG:HD2	1.43	0.97

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:E:29:CYS:CB	1:E:29:CYS:SG[2_556]	1.75	0.45
1:F:29:CYS:SG	$1:F:29:CYS:SG[2_555]$	2.03	0.17

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	654/723~(90%)	629 (96%)	20 (3%)	5 (1%)	19	57
1	В	654/723~(90%)	624 (95%)	21 (3%)	9 (1%)	11	45
1	С	654/723~(90%)	628 (96%)	20 (3%)	6 (1%)	17	54
1	D	654/723~(90%)	621 (95%)	24 (4%)	9 (1%)	11	45
1	Ε	654/723~(90%)	624 (95%)	22 (3%)	8 (1%)	13	49
1	F	654/723~(90%)	629~(96%)	19 (3%)	6 (1%)	17	54
All	All	3924/4338 (90%)	3755 (96%)	126 (3%)	43 (1%)	14	50

5 of 43 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	69	TYR
1	А	151	SER
1	В	68	ARG

 $Continued \ from \ previous \ page...$

Mol	Chain	Res	Type
1	В	69	TYR
1	В	150	LEU

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	542/597~(91%)	514 (95%)	28~(5%)	23	51
1	В	542/597~(91%)	525~(97%)	17 (3%)	40	63
1	С	542/597~(91%)	515~(95%)	27~(5%)	24	52
1	D	542/597~(91%)	520 (96%)	22~(4%)	30	57
1	Ε	542/597~(91%)	508 (94%)	34~(6%)	18	45
1	F	542/597~(91%)	516~(95%)	26~(5%)	25	52
All	All	3252/3582~(91%)	3098 (95%)	154 (5%)	26	53

5 of 154 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	Ε	414	PHE
1	F	385	TYR
1	Е	563	ARG
1	F	174	ASP
1	F	662	GLU

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 23 such side chains are listed below:

Mol	Chain	Res	Type
1	D	484	ASN
1	Е	286	HIS
1	Е	108	HIS
1	Е	314	HIS
1	В	388	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

48 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	ol Type Chain Bes Link		Tink	Bo	ond leng	ths	Bond angles			
IVIOI	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
2	GLC	G	1	2	12,12,12	0.65	0	17,17,17	1.67	4 (23%)
2	GLC	G	2	2	11,11,12	0.62	0	15,15,17	0.77	0
3	GLC	Н	1	3	12,12,12	2.08	5 (41%)	17,17,17	1.35	3 (17%)
3	GLC	Н	2	3	11,11,12	2.72	7 (63%)	15,15,17	1.66	4 (26%)
3	GLC	Н	3	3	11,11,12	2.85	5 (45%)	15,15,17	1.47	3 (20%)
3	GLC	Н	4	3	11,11,12	2.78	6 (54%)	15,15,17	1.52	4 (26%)
3	GLC	Н	5	3	11,11,12	2.98	7 (63%)	15,15,17	2.13	3 (20%)
3	GLC	Н	6	3	11,11,12	2.63	4 (36%)	15,15,17	0.75	0
2	GLC	Ι	1	2	12,12,12	0.59	0	17,17,17	0.97	1 (5%)
2	GLC	Ι	2	2	11,11,12	0.63	0	15,15,17	0.70	0
3	GLC	J	1	3	12,12,12	2.08	5 (41%)	17,17,17	1.05	3 (17%)
3	GLC	J	2	3	11,11,12	2.70	7 (63%)	15,15,17	1.73	4 (26%)
3	GLC	J	3	3	11,11,12	2.83	5 (45%)	15,15,17	1.60	4 (26%)
3	GLC	J	4	3	11,11,12	2.90	6 (54%)	15,15,17	1.43	2 (13%)
3	GLC	J	5	3	11,11,12	2.93	7 (63%)	15,15,17	2.06	4 (26%)
3	GLC	J	6	3	11,11,12	2.60	4 (36%)	15,15,17	1.46	3 (20%)
2	GLC	K	1	2	12,12,12	0.58	0	17,17,17	1.11	1 (5%)
2	GLC	K	2	2	11,11,12	0.66	0	15,15,17	0.79	1 (6%)

Mal	Tuno	Chain	Dog	Link	Bond lengths		B	Bond angles		
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	GLC	L	1	3	12,12,12	2.10	5 (41%)	$17,\!17,\!17$	1.06	0
3	GLC	L	2	3	11,11,12	2.69	8 (72%)	15,15,17	1.26	3 (20%)
3	GLC	L	3	3	11,11,12	2.86	4 (36%)	15,15,17	1.26	3 (20%)
3	GLC	L	4	3	11,11,12	2.78	6 (54%)	15,15,17	1.21	1 (6%)
3	GLC	L	5	3	11,11,12	2.84	5 (45%)	15,15,17	1.79	3 (20%)
3	GLC	L	6	3	11,11,12	2.62	4 (36%)	15,15,17	1.09	0
2	GLC	М	1	2	12,12,12	0.56	0	17,17,17	1.40	2 (11%)
2	GLC	М	2	2	11,11,12	0.73	0	$15,\!15,\!17$	0.78	0
3	GLC	Ν	1	3	12,12,12	2.09	5 (41%)	17,17,17	0.96	0
3	GLC	Ν	2	3	11,11,12	2.70	7 (63%)	15,15,17	1.28	2 (13%)
3	GLC	Ν	3	3	11,11,12	2.93	5 (45%)	15,15,17	2.18	2 (13%)
3	GLC	Ν	4	3	11,11,12	2.96	7 (63%)	15,15,17	1.89	4 (26%)
3	GLC	Ν	5	3	11,11,12	2.92	8 (72%)	15,15,17	2.00	6 (40%)
3	GLC	Ν	6	3	11,11,12	2.59	4 (36%)	15,15,17	1.10	0
2	GLC	0	1	2	12,12,12	0.55	0	17,17,17	1.34	2 (11%)
2	GLC	0	2	2	11,11,12	0.64	0	$15,\!15,\!17$	0.61	0
3	GLC	Р	1	3	12,12,12	2.12	5 (41%)	17,17,17	0.83	0
3	GLC	Р	2	3	11,11,12	2.70	7 (63%)	15,15,17	1.18	2 (13%)
3	GLC	Р	3	3	11,11,12	2.90	5 (45%)	15,15,17	1.46	3 (20%)
3	GLC	Р	4	3	11,11,12	2.76	6 (54%)	15,15,17	1.07	2 (13%)
3	GLC	Р	5	3	11,11,12	2.73	5 (45%)	15,15,17	1.98	4 (26%)
3	GLC	Р	6	3	11,11,12	2.61	4 (36%)	15,15,17	1.26	2 (13%)
2	GLC	Q	1	2	12,12,12	0.45	0	17,17,17	0.90	1 (5%)
2	GLC	Q	2	2	11,11,12	0.64	0	15,15,17	0.71	0
3	GLC	R	1	3	12,12,12	2.11	5 (41%)	17,17,17	1.00	0
3	GLC	R	2	3	11,11,12	2.69	8 (72%)	$15,\!15,\!17$	1.43	2 (13%)
3	GLC	R	3	3	11,11,12	2.97	5 (45%)	$15,\!15,\!17$	1.86	2 (13%)
3	GLC	R	4	3	11,11,12	2.77	6 (54%)	15,15,17	1.47	4 (26%)
3	GLC	R	5	3	11,11,12	3.01	8 (72%)	15,15,17	2.27	7 (46%)
3	GLC	R	6	3	11,11,12	2.60	4 (36%)	15,15,17	1.05	1 (6%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

4U	3C
_	

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	GLC	G	1	2	-	2/2/22/22	0/1/1/1
2	GLC	G	2	2	-	0/2/19/22	0/1/1/1
3	GLC	Н	1	3	-	2/2/22/22	0/1/1/1
3	GLC	Н	2	3	-	2/2/19/22	0/1/1/1
3	GLC	Н	3	3	-	2/2/19/22	0/1/1/1
3	GLC	Н	4	3	-	2/2/19/22	0/1/1/1
3	GLC	Н	5	3	-	2/2/19/22	0/1/1/1
3	GLC	Н	6	3	-	2/2/19/22	0/1/1/1
2	GLC	Ι	1	2	-	0/2/22/22	0/1/1/1
2	GLC	Ι	2	2	-	0/2/19/22	0/1/1/1
3	GLC	J	1	3	-	2/2/22/22	0/1/1/1
3	GLC	J	2	3	-	2/2/19/22	0/1/1/1
3	GLC	J	3	3	-	1/2/19/22	0/1/1/1
3	GLC	J	4	3	-	2/2/19/22	0/1/1/1
3	GLC	J	5	3	-	2/2/19/22	0/1/1/1
3	GLC	J	6	3	-	2/2/19/22	0/1/1/1
2	GLC	K	1	2	-	0/2/22/22	0/1/1/1
2	GLC	К	2	2	-	0/2/19/22	0/1/1/1
3	GLC	L	1	3	-	2/2/22/22	0/1/1/1
3	GLC	L	2	3	-	2/2/19/22	0/1/1/1
3	GLC	L	3	3	-	0/2/19/22	0/1/1/1
3	GLC	L	4	3	-	2/2/19/22	0/1/1/1
3	GLC	L	5	3	-	1/2/19/22	0/1/1/1
3	GLC	L	6	3	-	1/2/19/22	0/1/1/1
2	GLC	М	1	2	-	0/2/22/22	0/1/1/1
2	GLC	М	2	2	-	1/2/19/22	0/1/1/1
3	GLC	N	1	3	-	2/2/22/22	0/1/1/1
3	GLC	Ν	2	3	-	2/2/19/22	0/1/1/1
3	GLC	Ν	3	3	-	2/2/19/22	0/1/1/1
3	GLC	Ν	4	3	-	2/2/19/22	0/1/1/1
3	GLC	Ν	5	3	-	2/2/19/22	0/1/1/1
3	GLC	Ν	6	3	-	2/2/19/22	0/1/1/1
2	GLC	0	1	2	-	0/2/22/22	0/1/1/1
2	GLC	0	2	2	-	1/2/19/22	0/1/1/1
3	GLC	Р	1	3	-	2/2/22/22	0/1/1/1
3	GLC	Р	2	3	-	2/2/19/22	0/1/1/1
3	GLC	Р	3	3	-	0/2/19/22	0/1/1/1
3	GLC	Р	4	3	-	2/2/19/22	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	GLC	Р	5	3	-	2/2/19/22	0/1/1/1
3	GLC	Р	6	3	-	2/2/19/22	0/1/1/1
2	GLC	Q	1	2	-	0/2/22/22	0/1/1/1
2	GLC	Q	2	2	-	0/2/19/22	0/1/1/1
3	GLC	R	1	3	-	2/2/22/22	0/1/1/1
3	GLC	R	2	3	-	2/2/19/22	0/1/1/1
3	GLC	R	3	3	-	2/2/19/22	0/1/1/1
3	GLC	R	4	3	-	2/2/19/22	0/1/1/1
3	GLC	R	5	3	-	0/2/19/22	0/1/1/1
3	GLC	R	6	3	-	2/2/19/22	0/1/1/1

The worst 5 of 204 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
3	Р	6	GLC	O5-C5	6.07	1.55	1.43
3	Р	3	GLC	O5-C5	6.01	1.55	1.43
3	R	3	GLC	O5-C5	6.01	1.55	1.43
3	Н	6	GLC	O5-C5	6.01	1.55	1.43
3	R	6	GLC	O5-C5	5.99	1.55	1.43

The worst 5 of 102 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
3	Ν	3	GLC	C1-O5-C5	6.30	120.73	112.19
3	R	3	GLC	C1-O5-C5	5.67	119.88	112.19
3	Н	5	GLC	C1-O5-C5	5.59	119.77	112.19
3	J	5	GLC	C1-O5-C5	5.33	119.41	112.19
3	Ν	4	GLC	C1-O5-C5	4.99	118.96	112.19

There are no chirality outliers.

5 of 67 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	Н	2	GLC	O5-C5-C6-O6
3	R	2	GLC	O5-C5-C6-O6
3	R	6	GLC	O5-C5-C6-O6
2	G	1	GLC	O5-C5-C6-O6
3	L	1	GLC	O5-C5-C6-O6

There are no ring outliers.

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	Н	2	GLC	1	0
3	N	1	GLC	1	0
3	J	4	GLC	1	0
2	М	2	GLC	2	0
3	L	5	GLC	2	0
3	Р	5	GLC	2	0
3	R	6	GLC	2	0
3	Р	2	GLC	1	0
2	Κ	2	GLC	1	0
3	J	5	GLC	1	0
3	R	2	GLC	1	0
3	L	2	GLC	1	0
3	N	6	GLC	1	0
3	Н	6	GLC	1	0
3	R	5	GLC	2	0
3	J	1	GLC	1	0
3	N	5	GLC	1	0
3	Н	5	GLC	1	0
2	М	1	GLC	2	0
2	Q	2	GLC	1	0
2	K	1	GLC	1	0
3	Р	6	GLC	1	0
3	J	2	GLC	1	0
2	0	1	GLC	1	0

24 monomers are involved in 29 short contacts:

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	660/723~(91%)	0.94	54 (8%) 11 10	86, 118, 165, 185	0
1	В	660/723~(91%)	0.92	54 (8%) 11 10	86, 117, 162, 185	0
1	С	660/723~(91%)	0.99	66 (10%) 7 7	88, 119, 167, 201	0
1	D	660/723~(91%)	0.90	54 (8%) 11 10	87, 117, 162, 192	0
1	Е	660/723~(91%)	0.88	49 (7%) 14 12	85, 119, 165, 191	0
1	F	660/723~(91%)	0.90	41 (6%) 20 17	84, 117, 167, 190	0
All	All	3960/4338~(91%)	0.92	318 (8%) 12 11	84, 118, 165, 201	0

The worst 5 of 318 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	356	ALA	4.8
1	С	377	PRO	4.5
1	D	449	PHE	3.9
1	В	180	ALA	3.8
1	А	347	LEU	3.7

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
2	GLC	G	1	12/12	0.69	0.24	111,143,149,153	0
2	GLC	Ι	1	12/12	0.72	0.25	117,147,154,155	0
2	GLC	Q	1	12/12	0.72	0.23	122,142,150,156	0
2	GLC	K	1	12/12	0.73	0.31	110,148,156,163	0
2	GLC	М	1	12/12	0.77	0.23	127,150,159,160	0
3	GLC	N	1	12/12	0.77	0.45	109,117,121,122	0
2	GLC	0	1	12/12	0.80	0.28	121,147,155,156	0
3	GLC	J	1	12/12	0.84	0.38	109,115,117,122	0
3	GLC	Р	2	11/12	0.84	0.28	119,128,134,137	0
3	GLC	Н	1	12/12	0.85	0.52	108,117,120,121	0
3	GLC	Р	1	12/12	0.85	0.38	117,125,130,130	0
2	GLC	0	2	11/12	0.85	0.47	135,144,149,150	0
3	GLC	L	1	12/12	0.86	0.30	110,118,124,126	0
3	GLC	R	1	12/12	0.86	0.38	108,117,120,125	0
3	GLC	Р	3	11/12	0.87	0.23	123,129,131,136	0
3	GLC	J	6	11/12	0.88	0.24	106,123,136,147	0
3	GLC	J	2	11/12	0.88	0.24	112,120,127,130	0
3	GLC	L	2	11/12	0.88	0.26	120,125,128,132	0
3	GLC	J	5	11/12	0.88	0.30	$146,\!159,\!169,\!171$	0
3	GLC	Н	3	11/12	0.89	0.21	123,127,130,130	0
3	GLC	Ν	2	11/12	0.89	0.32	118,123,127,127	0
3	GLC	J	3	11/12	0.89	0.26	114,128,130,136	0
2	GLC	Ι	2	11/12	0.90	0.35	132,137,145,146	0
2	GLC	М	2	11/12	0.90	0.43	140,144,148,155	0
2	GLC	Q	2	11/12	0.91	0.48	129,136,144,144	0
3	GLC	Н	6	11/12	0.91	0.26	105,118,126,126	0
3	GLC	J	4	11/12	0.91	0.25	133,139,154,160	0
3	GLC	L	6	11/12	0.91	0.29	$115,\!121,\!130,\!131$	0
3	GLC	Р	4	11/12	0.91	0.20	124,127,133,134	0
2	GLC	G	2	11/12	0.91	0.46	132,139,147,148	0
3	GLC	R	2	11/12	0.91	0.28	116,119,126,126	0
3	GLC	R	3	11/12	0.91	0.22	116,123,130,130	0
3	GLC	Н	4	11/12	0.92	0.29	118,126,132,133	0
3	GLC	L	5	11/12	0.92	0.26	117,128,131,131	0
3	GLC	R	4	11/12	0.92	0.28	116,122,127,130	0
3	GLC	Ν	5	11/12	0.93	0.30	120,124,126,133	0
3	GLC	Ν	6	11/12	0.93	0.24	111,116,128,129	0
3	GLC	Н	2	11/12	0.93	0.34	$118,\!1\overline{23},\!127,\!133$	0
3	GLC	L	3	11/12	0.93	0.33	119,126,130,131	0
3	GLC	N	3	11/12	0.93	0.23	$\overline{116, 126, 128, 129}$	0
3	GLC	L	4	11/12	0.94	0.26	122,128,140,141	0
2	GLC	K	2	11/12	0.94	0.34	132,137,140,141	0
3	GLC	N	4	11/12	0.94	0.25	115,126,133,134	0

Jerry Jerry Level and Level an									
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9	
3	GLC	Р	5	11/12	0.94	0.26	116,125,129,137	0	
3	GLC	R	6	11/12	0.94	0.33	110,121,132,132	0	
3	GLC	Р	6	11/12	0.95	0.27	110,118,129,130	0	
3	GLC	R	5	11/12	0.95	0.28	118,128,135,148	0	
3	GLC	Н	5	11/12	0.95	0.26	109,125,132,139	0	

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

