

wwPDB EM Validation Summary Report (i)

Apr 25, 2024 – 12:14 PM EDT

PDB ID	:	8UU4
EMDB ID	:	EMD-42554
Title	:	Cryo-EM structure of the Listeria innocua 70S ribosome in complex with HPF
		(structure I-A)
Authors	:	Seely, S.M.; Basu, R.S.; Gagnon, M.G.
Deposited on	:	2023-10-31
Resolution	:	3.00 Å(reported)
Based on initial model	:	7NHN

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 92
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	a	1550	81%	16% •
2	b	249	89%	11%
3	с	218	94%	6%
4	d	200	99%	
5	е	167	93%	• 7%
6	f	97	96%	• •
7	g	156	96%	•••
8	h	132	99%	·

Continued on next page...

Mol	Chain	Length	Quality of chain	
9	i	130	96%	•••
10	j	102	94%	6%
11	k	129	89%	11%
12	1	137	98%	·
13	m	121	90%	10%
14	n	61	98%	·
15	О	89	97%	•
16	р	90	97%	
17	q	87	92%	8%
18	r	79	82%	18%
19	s	92	87%	• 12%
20	t	84	98%	·
21	W	187	8% 54% • 45%	
22	А	2932	82%	17% •
23	В	116	88%	10% ·
24	С	277	99%	•
25	D	209	99%	•
26	Е	207	99%	•
27	F	179	97%	• •
28	G	178	96%	• •
29	L	145	99%	•
30	М	122	100%	
31	Ν	146	100%	
32	О	144	93%	7%
33	Р	135	90%	• 10%

Continued from previous page...

Continued on next page...

Mol	Chain	Length	Quality of chain	
34	Q	119	100%	
35	R	114	99%	·
36	S	119	98%	•
37	Т	102	99%	•
38	U	118	94%	6%
39	V	94	98%	•
40	W	103	96%	•
41	Y	96	79%	21%
42	Ζ	62	97%	•
43	1	63	95%	5%
44	2	59	95%	5%
45	3	81	96%	••
46	4	57	93%	7%
47	5	49	98%	·
48	6	44	100%	
49	7	66	97%	•
50	8	37	97%	•

Continued from previous page...

2 Entry composition (i)

There are 53 unique types of molecules in this entry. The entry contains 139761 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 16S Ribosomal RNA.

Mol	Chain	Residues		I	AltConf	Trace			
1	a	1516	Total 32515	C 14504	N 5960	O 10535	Р 1516	0	0

• Molecule 2 is a protein called Small ribosomal subunit protein uS2.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	b	221	Total 1709	C 1087	N 301	0 314	${ m S} 7$	0	0

• Molecule 3 is a protein called Small ribosomal subunit protein uS3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
3	С	204	Total 1583	C 988	N 297	O 295	${ m S} { m 3}$	0	0

• Molecule 4 is a protein called Small ribosomal subunit protein uS4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
4	d	199	Total 1499	C 938	N 282	0 277	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 5 is a protein called Small ribosomal subunit protein uS5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
5	е	156	Total 1146	С 719	N 210	0 215	${ m S} { m 2}$	0	0

• Molecule 6 is a protein called Small ribosomal subunit protein bS6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
6	f	94	Total 786	C 497	N 137	O 150	${S \over 2}$	0	0

• Molecule 7 is a protein called Small ribosomal subunit protein uS7.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	g	154	Total 1167	C 728	N 220	O 210	S 9	0	0

• Molecule 8 is a protein called Small ribosomal subunit protein uS8.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	h	131	Total 1022	C 651	N 180	0 189	${ m S} { m 2}$	0	0

• Molecule 9 is a protein called Small ribosomal subunit protein uS9.

Mol	Chain	Residues		At	oms			AltConf	Trace
9	i	126	Total 960	$\begin{array}{c} \mathrm{C} \\ 605 \end{array}$	N 188	0 166	S 1	0	0

• Molecule 10 is a protein called Small ribosomal subunit protein uS10.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	j	96	Total 699	C 440	N 127	0 131	S 1	0	0

• Molecule 11 is a protein called Small ribosomal subunit protein uS11.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	k	115	Total 841	C 517	N 162	0 159	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called Small ribosomal subunit protein uS12.

Mol	Chain	Residues		At	oms		AltConf	Trace	
12	1	134	Total 1040	C 645	N 209	0 184	${ m S} { m 2}$	0	0

• Molecule 13 is a protein called Small ribosomal subunit protein uS13.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	m	109	Total 767	C 471	N 155	0 140	S 1	0	0

• Molecule 14 is a protein called Small ribosomal subunit protein uS14.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
14	n	60	Total	C 313	N 07	0 75	S 5	0	0

• Molecule 15 is a protein called Small ribosomal subunit protein uS15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	О	86	Total 722	C 448	N 145	0 127	${S \over 2}$	0	0

• Molecule 16 is a protein called Small ribosomal subunit protein bS16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	р	88	Total 711	C 450	N 132	0 126	${ m S} { m 3}$	0	0

• Molecule 17 is a protein called Small ribosomal subunit protein uS17.

Mol	Chain	Residues		At	oms		AltConf	Trace	
17	q	80	Total 656	C 413	N 123	0 119	S 1	0	0

• Molecule 18 is a protein called Small ribosomal subunit protein bS18.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
18	r	65	Total 527	C 339	N 96	O 90	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 19 is a protein called Small ribosomal subunit protein uS19.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
19	S	81	Total 634	C 406	N 117	O 109	${ m S} { m 2}$	0	0

• Molecule 20 is a protein called Small ribosomal subunit protein bS20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	t	82	Total 624	C 378	N 127	0 118	S 1	0	0

• Molecule 21 is a protein called Ribosome hibernation promoting factor.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	W	102	Total 847	C 536	N 150	O 160	S 1	0	0

• Molecule 22 is a RNA chain called 23S Ribosomal RNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
22	А	2903	Total 62360	C 27830	N 11535	O 20092	Р 2903	0	0

• Molecule 23 is a RNA chain called 5S Ribosomal RNA.

Mol	Chain	Residues		A	AltConf	Trace			
23	В	114	Total 2428	C 1082	N 428	0 804	Р 114	0	0

• Molecule 24 is a protein called Large ribosomal subunit protein uL2.

Mol	Chain	Residues		Ate	AltConf	Trace			
24	С	273	Total 2108	C 1307	N 415	0 379	S 7	0	0

• Molecule 25 is a protein called Large ribosomal subunit protein uL3.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	D	206	Total 1583	C 995	N 291	O 293	$\frac{S}{4}$	0	0

• Molecule 26 is a protein called Large ribosomal subunit protein uL4.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
26	Е	204	Total 1560	C 988	N 287	O 285	0	0

• Molecule 27 is a protein called Large ribosomal subunit protein uL5.

Mol	Chain	Residues	Atoms					AltConf	Trace
27	F	174	Total 1283	C 812	N 221	0 245	${ m S}{ m 5}$	0	0

• Molecule 28 is a protein called Large ribosomal subunit protein uL6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	G	172	Total 1316	C 828	N 242	0 245	S 1	0	0

• Molecule 29 is a protein called Large ribosomal subunit protein uL13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	L	143	Total 1128	C 715	N 205	O 205	${ m S} { m 3}$	0	0

• Molecule 30 is a protein called Large ribosomal subunit protein uL14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	М	122	Total 925	C 573	N 175	0 172	${ m S}{ m 5}$	0	0

• Molecule 31 is a protein called Large ribosomal subunit protein uL15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	Ν	146	Total 1112	C 687	N 216	O 208	S 1	0	0

• Molecule 32 is a protein called Large ribosomal subunit protein uL16.

Mol	Chain	Residues		At	oms			AltConf	Trace
32	О	134	Total 1063	C 680	N 206	0 171	S 6	0	0

• Molecule 33 is a protein called Large ribosomal subunit protein bL17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	Р	122	Total 982	C 616	N 193	0 172	S 1	0	0

• Molecule 34 is a protein called Large ribosomal subunit protein uL18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	Q	119	Total 900	C 555	N 176	0 168	S 1	0	0

• Molecule 35 is a protein called Large ribosomal subunit protein bL19.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	R	113	Total 909	C 573	N 181	0 154	S 1	0	0

• Molecule 36 is a protein called Large ribosomal subunit protein bL20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	S	117	Total 944	C 599	N 186	0 155	$\frac{S}{4}$	0	0

• Molecule 37 is a protein called Large ribosomal subunit protein bL21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	Т	101	Total 785	C 506	N 134	0 144	S 1	0	0

• Molecule 38 is a protein called Large ribosomal subunit protein uL22.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
38	U	111	Total 855	C 539	N 161	O 155	0	0

• Molecule 39 is a protein called Large ribosomal subunit protein uL23.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	V	92	Total 751	C 477	N 131	0 140	${ m S} { m 3}$	0	0

• Molecule 40 is a protein called Large ribosomal subunit protein uL24.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	W	99	Total 752	C 476	N 139	0 134	${ m S} { m 3}$	0	0

• Molecule 41 is a protein called Large ribosomal subunit protein bL27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	Y	76	Total 585	C 357	N 114	0 113	S 1	0	0

• Molecule 42 is a protein called Large ribosomal subunit protein bL28.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
42	Z	60	Total	С	N	0	S	0	0
			467	289	98	78	2		

• Molecule 43 is a protein called Large ribosomal subunit protein uL29.

Mol	Chain	Residues	Atoms				AltConf	Trace	
43	1	60	Total 495	C 304	N 95	0 95	S 1	0	0

• Molecule 44 is a protein called Large ribosomal subunit protein uL30.

Mol	Chain	Residues	Atoms				AltConf	Trace	
44	2	56	Total 433	C 272	N 82	0 78	S 1	0	0

• Molecule 45 is a protein called Large ribosomal subunit protein bL31B.

Mol	Chain	Residues	Atoms				AltConf	Trace	
45	2	70	Total	С	Ν	Ο	\mathbf{S}	0	0
40	3	19	491	308	89	93	1	0	0

• Molecule 46 is a protein called Large ribosomal subunit protein bL32.

Mol	Chain	Residues	Atoms				AltConf	Trace	
46	4	53	Total 425	C 259	N 87	0 74	${ m S}{ m 5}$	0	0

• Molecule 47 is a protein called Large ribosomal subunit protein bL33.

Mol	Chain	Residues	Atoms				AltConf	Trace	
47	Б	18	Total	С	Ν	Ο	S	0	0
41	5	40	408	248	82	74	4	0	0

• Molecule 48 is a protein called Large ribosomal subunit protein bL34.

Mol	Chain	Residues	Atoms					AltConf	Trace
48	6	44	Total 370	C 225	N 89	0 54	${S \over 2}$	0	0

• Molecule 49 is a protein called Large ribosomal subunit protein bL35.

Mol	Chain	Residues	Atoms				AltConf	Trace	
49	7	64	Total 520	C 322	N 114	O 79	${ m S}{ m 5}$	0	0

• Molecule 50 is a protein called Large ribosomal subunit protein bL36.

Mol	Chain	Residues	Atoms				AltConf	Trace	
50	8	36	Total 292	C 183	N 59	0 44	S 6	0	0

• Molecule 51 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
51	a	167	Total Mg 167 167	0
51	А	280	Total Mg 280 280	0
51	В	1	Total Mg 1 1	0
51	С	1	Total Mg 1 1	0

• Molecule 52 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
52	n	1	Total Zn 1 1	0
52	4	1	Total Zn 1 1	0
52	5	1	Total Zn 1 1	0
52	8	1	Total Zn 1 1	0

• Molecule 53 is water.

Mol	Chain	Residues	Atoms	AltConf
53	a	47	$\begin{array}{cc} \text{Total} & \text{O} \\ 47 & 47 \end{array}$	0
53	d	1	Total O 1 1	0
53	t	1	Total O 1 1	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
53	А	80	Total O 80 80	0
53	Е	1	Total O 1 1	0
53	Ν	1	Total O 1 1	0
53	3	1	Total O 1 1	0
53	6	1	Total O 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 16S Ribosomal RNA

Chain b: 89%

11%

• Molecule 10: Small ribosomal subunit protein uS10

Chain j:	94%	6%
MET ALA LYS GLN KG LYS LYS LLU		
• Molecule 11: Small ri	bosomal subunit protein uS11	
Chain k:	89%	11%
MEI ALA ARG TTR TTR ARG ARG ARG ARG VAL LYS LYS LYS V12 V129		
• Molecule 12: Small ri	bosomal subunit protein uS12	
Chain l:	98%	
P2 P135 LYS LYS		
• Molecule 13: Small ri	bosomal subunit protein uS13	
Chain m:	90%	10%
MET ARG ARG ARG SER SER SER VAL VAL LYS LYS LYS LYS LYS		
• Molecule 14: Small ri	bosomal subunit protein uS14	
Chain n:	98%	
MET MG1 W61		
• Molecule 15: Small ri	bosomal subunit protein uS15	
Chain o:	97%	•
ALA L3 R88 ARG		
• Molecule 16: Small ri	bosomal subunit protein bS16	
Chain p:	97%	

• Molecule 17: Small ribosomal subunit protein uS17

Chain q:	92%	8%	I
MET ALA ASP ASP E83 ALA VAL TLE	ITE		
• Molecule 1	— 18: Small ribosomal subunit protein bS18		
Chain r:	82%	18%	
MET ALA GLY GLY ARG GLY GLY ARG	ARG LARG K13 ETT GLU LYS		
• Molecule 1	19: Small ribosomal subunit protein uS19		
Chain s:	87%	• 12%	
MET GLY R3 S25 E26 K27	R81 B83 ALA ASP ASP LVS LVS LVS ASP ASP ASP ASP ASP ASP		
• Molecule 2	20: Small ribosomal subunit protein $bS20$		
Chain t:	98%	·	
MET P2 A83 LYS			
• Molecule 2	21: Ribosome hibernation promoting factor		
Chain w:	^{3%} 54% • 45%		
M1 L2 Y4 N5 R7 R7	HIO HII HII HII HII HII HII HII	THR PRO GLU GLU ASN	GLY ASP PHE ASP CLU CLU CLU VAL ARG
THR LYS GLN PHE SER LEU LYS PRO MET	ASP ASP SER GLU ALA ALA GLU GLU CLU CLU ALA ALA ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	LEO GLU ASN	
• Molecule 2	22: 23S Ribosomal RNA		
Chain A:	82%	17%	1
6 6 13 13 627 627 8 22	U34 G51 G51 G51 G51 G56 G46 G46 G46 G46 C460 C490 C490 C490 C410 C410 C410 C410 C410 C410 C410 C41	U167 C186 C187 A198	A199 C200 A201 A215 A215

 \bullet Molecule 23: 5S Ribosomal RNA

Chain B:	88%	10% •
U C2 U10 U23 C24 C23 C39 C40 C40 C40 C40 C40 C40 C40 C40 C40 C40		
• Molecule 24: Large rib	osomal subunit protein uL2	
Chain C:	99%	
MET A2 LYS LYS LYS LYS		
• Molecule 25: Large rib	osomal subunit protein uL3	
Chain D:	99%	
MET T2 R207 ALA LYS		
• Molecule 26: Large rib	osomal subunit protein uL4	
Chain E:	99%	
MET PRO K3 L206 AllA		
• Molecule 27: Large rib	osomal subunit protein uL5	
Chain F:	97%	
MET N2 R7 PHI 75 PHI 75 CLVS		
• Molecule 28: Large rib	osomal subunit protein uL6	
Chain G:	96%	
MET SER ARG 14 14 14 Clys Lys		
• Molecule 29: Large rib	osomal subunit protein uL13	
Chain L:	99%	
MET R2 R144 GLY		
• Molecule 30: Large rib	osomal subunit protein uL14	

Chain M:	100%	
There are no	outlier residues recorded for this chain.	
• Molecule 31	l: Large ribosomal subunit protein uL15	
Chain N:	100%	
There are no	outlier residues recorded for this chain.	
• Molecule 32	2: Large ribosomal subunit protein uL16	
Chain O:	93%	7%
M1 R134 GLU GLU GLU GLY GLY GLU	ASN GLU SER	
• Molecule 33	3: Large ribosomal subunit protein bL17	
Chain P:	90%	• 10%
MET GLY V76 V76 ASP ALA LYS GLY LYS	ASP SER THR LYAL LYAL L134 V135	
• Molecule 34	4: Large ribosomal subunit protein uL18	
Chain Q:	100%	
There are no	outlier residues recorded for this chain.	
• Molecule 35	5: Large ribosomal subunit protein bL19	
Chain R:	99%	
M1 1113 ARG		
• Molecule 36	5: Large ribosomal subunit protein bL20	
Chain S:	98%	·
MET P2 A118 LYS		
• Molecule 37	7: Large ribosomal subunit protein bL21	
Chain T:	99%	
M1 N101 ALA		

- Molecule 38: Large ribosomal subunit protein uL22 Chain U: 94% 6% MET ALA SER GLU • Molecule 39: Large ribosomal subunit protein uL23 Chain V: 98% GLU VAL • Molecule 40: Large ribosomal subunit protein uL24 Chain W: 96% VAL ILE ASP LYS • Molecule 41: Large ribosomal subunit protein bL27 Chain Y: 79% 21% MET LEU LYS PHE ASP ILE GLN HIS PHE ALA HIS LYS CLYS GLY GLY VAL GLN GLU ALA • Molecule 42: Large ribosomal subunit protein bL28 Chain Z: 97% VAL • Molecule 43: Large ribosomal subunit protein uL29 Chain 1: 5% 95% MET LYS ALA • Molecule 44: Large ribosomal subunit protein uL30 Chain 2: 95% 5% • Molecule 45: Large ribosomal subunit protein bL31B
 - PROTEIN DATA BANK

Chain 3:	96%	
M1 Q62 679 679	LFU	
• Molecul	e 46: Large ribosomal subunit protein bL32	
Chain 4:	93%	7%
MET A2 V54 ALA ASN SER		
• Molecul	e 47: Large ribosomal subunit protein bL33	
Chain 5:	98%	
M1 T48 LYS		
• Molecul	e 48: Large ribosomal subunit protein bL34	
Chain 6:	100%	
There are	no outlier residues recorded for this chain.	
• Molecul	e 49: Large ribosomal subunit protein bL35	
Chain 7:	97%	•
MET P2 M65 LYS		
• Molecul	e 50: Large ribosomal subunit protein bL36	
Chain 8:	97%	·
M1 Q36 GLY		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	303270	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40.0	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	2300	Depositor
Magnification	96000	Depositor
Image detector	FEI FALCON III $(4k \ge 4k)$	Depositor
Maximum map value	1.498	Depositor
Minimum map value	-0.520	Depositor
Average map value	-0.006	Depositor
Map value standard deviation	0.078	Depositor
Recommended contour level	0.15	Depositor
Map size (Å)	435.2, 435.2, 435.2	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.85, 0.85, 0.85	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles	
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
1	а	0.43	0/36403	0.79	10/56778~(0.0%)
2	b	0.27	0/1736	0.49	0/2341
3	с	0.27	0/1608	0.55	0/2173
4	d	0.28	0/1526	0.51	0/2065
5	е	0.29	0/1159	0.52	0/1565
6	f	0.31	0/798	0.56	0/1069
7	g	0.25	0/1182	0.52	0/1591
8	h	0.30	0/1035	0.54	0/1392
9	i	0.26	0/978	0.55	0/1321
10	j	0.25	0/709	0.47	0/962
11	k	0.27	0/855	0.55	0/1155
12	l	0.30	0/1056	0.59	0/1418
13	m	0.26	0/773	0.55	0/1046
14	n	0.28	0/500	0.56	0/664
15	0	0.29	0/732	0.55	0/980
16	р	0.28	0/724	0.53	0/970
17	q	0.28	0/665	0.54	0/889
18	r	0.30	0/535	0.54	0/716
19	s	0.26	0/650	0.49	0/878
20	t	0.25	0/627	0.49	0/835
21	W	0.27	0/859	0.56	0/1157
22	А	0.69	0/69865	0.83	11/108989~(0.0%)
23	В	0.38	0/2711	0.75	0/4224
24	С	0.41	0/2144	0.59	0/2875
25	D	0.41	0/1605	0.58	0/2156
26	Ε	0.37	0/1580	0.56	0/2129
27	F	0.29	0/1298	0.55	0/1758
28	G	0.28	0/1338	0.51	0/1807
29	L	0.38	0/1151	0.51	0/1546
30	М	0.41	0/932	0.59	0/1248
31	N	0.36	0/1123	0.57	0/1492
32	0	0.35	0/1085	0.55	0/1449

Mol Chain		Bond lengths		Bond angles	
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
33	Р	0.38	0/993	0.63	1/1328~(0.1%)
34	Q	0.28	0/908	0.55	0/1214
35	R	0.39	0/921	0.61	0/1234
36	S	0.43	0/957	0.54	0/1273
37	Т	0.41	0/798	0.52	0/1071
38	U	0.38	0/865	0.57	0/1170
39	V	0.39	0/760	0.61	0/1017
40	W	0.32	0/762	0.49	0/1017
41	Y	0.39	0/592	0.60	0/788
42	Ζ	0.37	0/472	0.58	0/626
43	1	0.30	0/496	0.55	0/662
44	2	0.33	0/436	0.58	0/585
45	3	0.25	0/498	0.48	0/681
46	4	0.44	0/433	0.62	0/577
47	5	0.35	0/412	0.61	0/551
48	6	0.43	0/373	0.70	0/486
49	7	0.36	0/527	0.61	0/685
50	8	0.35	0/295	0.62	0/387
All	All	0.55	0/151440	0.76	22/226990~(0.0%)

There are no bond length outliers.

The worst 5 of 22 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	a	1036	C	N3-C2-O2	-7.39	116.73	121.90
22	А	1028	С	N3-C2-O2	-7.35	116.76	121.90
1	a	336	С	C2-N1-C1'	6.44	125.89	118.80
22	А	1357	U	C2-N1-C1'	6.38	125.36	117.70
22	А	1110	С	N1-C2-O2	6.32	122.69	118.90

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	b	219/249~(88%)	198 (90%)	21 (10%)	0	100	100
3	с	202/218~(93%)	190 (94%)	12~(6%)	0	100	100
4	d	197/200~(98%)	182 (92%)	15 (8%)	0	100	100
5	е	154/167~(92%)	148 (96%)	5(3%)	1 (1%)	25	64
6	f	92/97~(95%)	87~(95%)	5 (5%)	0	100	100
7	g	152/156~(97%)	139~(91%)	10 (7%)	3~(2%)	7	34
8	h	129/132~(98%)	127~(98%)	2 (2%)	0	100	100
9	i	124/130~(95%)	116 (94%)	8 (6%)	0	100	100
10	j	94/102~(92%)	84 (89%)	10 (11%)	0	100	100
11	k	113/129~(88%)	108 (96%)	5 (4%)	0	100	100
12	1	132/137~(96%)	125~(95%)	7 (5%)	0	100	100
13	m	107/121 (88%)	99~(92%)	8 (8%)	0	100	100
14	n	58/61~(95%)	54 (93%)	4 (7%)	0	100	100
15	О	84/89~(94%)	83 (99%)	1 (1%)	0	100	100
16	р	86/90~(96%)	82 (95%)	4 (5%)	0	100	100
17	q	78/87~(90%)	75~(96%)	3 (4%)	0	100	100
18	r	63/79~(80%)	62 (98%)	1 (2%)	0	100	100
19	s	79/92~(86%)	74 (94%)	5 (6%)	0	100	100
20	t	80/84~(95%)	80 (100%)	0	0	100	100
21	W	100/187~(54%)	93~(93%)	7 (7%)	0	100	100
24	С	271/277 (98%)	260 (96%)	11 (4%)	0	100	100
25	D	204/209~(98%)	189 (93%)	15 (7%)	0	100	100
26	Е	202/207~(98%)	186 (92%)	16 (8%)	0	100	100
27	F	172/179~(96%)	160 (93%)	12 (7%)	0	100	100
28	G	170/178~(96%)	156 (92%)	14 (8%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
29	L	141/145~(97%)	137 (97%)	4 (3%)	0	100	100
30	М	120/122~(98%)	110 (92%)	10 (8%)	0	100	100
31	N	144/146 (99%)	134 (93%)	10 (7%)	0	100	100
32	Ο	132/144 (92%)	130 (98%)	2 (2%)	0	100	100
33	Р	118/135 (87%)	110 (93%)	8 (7%)	0	100	100
34	Q	117/119 (98%)	108 (92%)	9 (8%)	0	100	100
35	R	111/114 (97%)	102 (92%)	9 (8%)	0	100	100
36	S	115/119 (97%)	113 (98%)	2 (2%)	0	100	100
37	Т	99/102~(97%)	94 (95%)	5 (5%)	0	100	100
38	U	109/118~(92%)	104 (95%)	5 (5%)	0	100	100
39	V	90/94~(96%)	81 (90%)	9 (10%)	0	100	100
40	W	97/103~(94%)	93 (96%)	4 (4%)	0	100	100
41	Y	74/96~(77%)	66 (89%)	8 (11%)	0	100	100
42	Z	58/62~(94%)	54 (93%)	4 (7%)	0	100	100
43	1	58/63~(92%)	55 (95%)	3 (5%)	0	100	100
44	2	54/59~(92%)	52 (96%)	2 (4%)	0	100	100
45	3	77/81~(95%)	57 (74%)	19 (25%)	1 (1%)	12	45
46	4	51/57~(90%)	47 (92%)	4 (8%)	0	100	100
47	5	46/49~(94%)	46 (100%)	0	0	100	100
48	6	42/44~(96%)	41 (98%)	1 (2%)	0	100	100
49	7	62/66~(94%)	57 (92%)	5 (8%)	0	100	100
50	8	34/37~(92%)	32 (94%)	2 (6%)	0	100	100
All	All	5311/5732~(93%)	4980 (94%)	326 (6%)	5 (0%)	54	85

Continued from previous page...

All (5) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
5	е	27	LYS
45	3	70	ARG
7	g	17	ILE
7	g	61	VAL
7	g	3	ARG

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
2	b	172/214~(80%)	172 (100%)	0	100	100
3	с	156/177~(88%)	156 (100%)	0	100	100
4	d	142/170~(84%)	141 (99%)	1 (1%)	84	94
5	е	122/131~(93%)	122 (100%)	0	100	100
6	f	83/85~(98%)	82 (99%)	1 (1%)	71	90
7	g	116/130~(89%)	115 (99%)	1 (1%)	78	92
8	h	109/110~(99%)	109 (100%)	0	100	100
9	i	91/102~(89%)	90 (99%)	1 (1%)	73	90
10	j	66/93~(71%)	66 (100%)	0	100	100
11	k	86/100 (86%)	86 (100%)	0	100	100
12	1	115/118 (98%)	115 (100%)	0	100	100
13	m	66/102~(65%)	66 (100%)	0	100	100
14	n	51/52~(98%)	51 (100%)	0	100	100
15	0	79/81~(98%)	79 (100%)	0	100	100
16	р	78/80~(98%)	77 (99%)	1 (1%)	69	89
17	q	73/78~(94%)	73 (100%)	0	100	100
18	r	58/67~(87%)	58 (100%)	0	100	100
19	s	64/78~(82%)	63 (98%)	1 (2%)	62	86
20	t	64/66~(97%)	64 (100%)	0	100	100
21	W	96/170~(56%)	95~(99%)	1 (1%)	76	91
24	С	221/225~(98%)	221 (100%)	0	100	100
25	D	169/171~(99%)	169 (100%)	0	100	100
26	Е	$1\overline{68/174}\ (97\%)$	168 (100%)	0	100	100
27	F	130/155~(84%)	129 (99%)	1 (1%)	81	93
28	G	140/147~(95%)	139 (99%)	1 (1%)	84	94
29	L	120/121~(99%)	120 (100%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
30	М	101/101 (100%)	101 (100%)	0	100	100
31	Ν	115/115~(100%)	115 (100%)	0	100	100
32	О	106/113 (94%)	106 (100%)	0	100	100
33	Р	$102/111 \ (92\%)$	102 (100%)	0	100	100
34	Q	91/97~(94%)	91 (100%)	0	100	100
35	R	98/99~(99%)	98 (100%)	0	100	100
36	S	95/97~(98%)	95 (100%)	0	100	100
37	Т	82/82~(100%)	82 (100%)	0	100	100
38	U	92/97~(95%)	92 (100%)	0	100	100
39	V	82/84~(98%)	82 (100%)	0	100	100
40	W	84/88~(96%)	84 (100%)	0	100	100
41	Y	61/76~(80%)	61 (100%)	0	100	100
42	Z	50/53~(94%)	50 (100%)	0	100	100
43	1	53/55~(96%)	53 (100%)	0	100	100
44	2	50/52~(96%)	50 (100%)	0	100	100
45	3	29/73~(40%)	29 (100%)	0	100	100
46	4	47/50~(94%)	47 (100%)	0	100	100
47	5	47/48~(98%)	47 (100%)	0	100	100
48	6	39/39~(100%)	39 (100%)	0	100	100
49	7	54/56~(96%)	54 (100%)	0	100	100
50	8	35/35~(100%)	35 (100%)	0	100	100
All	All	4348/4818 (90%)	4339 (100%)	9 (0%)	93	98

Continued from previous page...

5 of 9 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
27	F	78	ARG
28	G	69	ARG
9	i	106	ARG
16	р	71	ARG
19	s	81	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 67 such side chains are listed below:

Mol	Chain	Res	Type
41	Y	58	ASN
42	Ζ	23	ASN
47	5	26	ASN
16	р	61	HIS
15	0	28	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	a	1512/1550~(97%)	255~(16%)	0
22	А	2899/2932~(98%)	474 (16%)	30 (1%)
23	В	113/116~(97%)	12 (10%)	0
All	All	4524/4598~(98%)	741 (16%)	30~(0%)

5 of 741 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	a	8	А
1	а	9	G
1	a	22	G
1	a	31	G
1	a	32	А

5 of 30 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
22	А	1248	А
22	А	2535	G
22	А	1528	G
22	А	2809	А
22	А	2320	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 453 ligands modelled in this entry, 453 are monoatomic - leaving 0 for Mogul analysis. There are no bond length outliers. There are no bond angle outliers. There are no chirality outliers. There are no torsion outliers. There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-42554. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

Orthogonal projections (i) 6.1

6.1.1**Primary** map

Х

Ζ

6.1.2Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 256

Y Index: 256

Z Index: 256

6.2.2 Raw map

X Index: 256

Y Index: 256

Z Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 240

Z Index: 288

6.3.2 Raw map

X Index: 240

Y Index: 251

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.15. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{42554}msk_{1.map}$ (i) 6.6.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1950 nm^3 ; this corresponds to an approximate mass of 1761 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.333 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.333 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.00	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	3.26	3.95	3.32

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-42554 and PDB model 8UU4. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.15 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.15).

9.4 Atom inclusion (i)

At the recommended contour level, 97% of all backbone atoms, 97% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.15) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.9740	0.5080
1	0.9270	0.4940
2	0.9620	0.5450
3	0.9280	0.4080
4	0.9680	0.5580
5	0.9390	0.5390
6	0.9910	0.5830
7	0.9780	0.5870
8	0.9720	0.5510
А	0.9910	0.5250
В	0.9980	0.4730
С	0.9780	0.5740
D	0.9670	0.5610
E	0.9650	0.5370
F	0.9160	0.4230
G	0.9470	0.4310
L	0.9710	0.5590
М	0.9510	0.5580
N	0.9580	0.5250
Ο	0.9810	0.5510
Р	0.9730	0.5520
Q	0.9590	0.4660
R	0.9550	0.5570
S	0.9790	0.5620
<u> </u>	0.9670	0.5570
U	0.9760	0.5610
V	0.9580	0.5390
W	0.9150	0.5000
<u>Y</u>	0.9730	0.5630
Z	0.9850	0.5540
a	0.9930	0.4850
b	0.8180	0.4100
c	0.8480	0.4510
d	0.9400	0.4670
е	0.9090	0.5050

Continued on next page...

Chain	Atom inclusion	Q-score
f	0.9280	0.4860
g	0.9250	0.4230
h	0.9320	0.4960
i	0.9360	0.4400
j	0.9180	0.4420
k	0.9330	0.4740
1	0.9190	0.5080
m	0.9500	0.4450
n	0.9070	0.4810
0	0.9610	0.5000
р	0.9390	0.4680
q	0.8980	0.4720
r	0.9280	0.5080
S	0.8830	0.4430
t	0.9340	0.4600
W	0.6900	0.4350

Continued from previous page...

