

Apr 30, 2024 – 12:56 PM EDT

PDB ID	:	8UUA
EMDB ID	:	EMD-42577
Title	:	Cryo-EM structure of the Listeria innocua 50S ribosomal subunit in complex
		with HflXr (structure III)
Authors	:	Seely, S.M.; Basu, R.S.; Gagnon, M.G.
Deposited on	:	2023-10-31
Resolution	:	2.70 Å(reported)
Based on initial model	·	7NHN

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	v	418	8%	
2	А	2932	71%	23% ••
3	В	116	70%	28% ••
4	С	277	87%	12% •
5	D	209	85%	13% •
6	Е	207	89%	9% •
7	F	179	76%	21% ••

Mol	Chain	Length	Quality of chain		
8	G	178	• 78%	21% •	1
9	L	145	90%	8% •	1
10	М	122	84%	16%	•
11	Ν	146	91%	8% •	
12	О	144	82%	10% 8%	1
13	Р	135	85%	•• 10%	1
14	Q	119	82%	18%	•
15	R	114	83%	7% 10%	1
16	S	119	91%	7% •	,
17	Т	102	93%	6% •	1
18	U	118	79%	14% 7%	1
19	V	94	88%	7% •	
20	W	103	82%	17% •	1
21	Y	96	73% 6%	21%	1
22	Z	62	81%	15% 5%	, D
23	1	63	81%	13% 6%	1
24	2	59	90%	5% 5%	1
25	3	81	9% 70% ·	27%	
26	4	57	88%	5% 7%	1
27	5	49	88%	8% •	1
28	6	44	82%	16% •	1
29	7	66	89%	6% 5%	
30	8	37	84%	14% •	

2 Entry composition (i)

There are 35 unique types of molecules in this entry. The entry contains 91008 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called GTPase HflX.

Mol	Chain	Residues		At	AltConf	Trace			
1	V	418	Total 3294	C 2073	N 566	0 644	S 11	0	0

• Molecule 2 is a RNA chain called 23S Ribosomal RNA.

Mol	Chain	Residues			AltConf	Trace			
2	А	2894	Total 62168	C 27745	N 11501	O 20028	Р 2894	0	0

• Molecule 3 is a RNA chain called 5S Ribosomal RNA.

Mol	Chain	Residues		A	AltConf	Trace			
3	В	114	Total 2428	C 1082	N 428	0 804	Р 114	0	0

• Molecule 4 is a protein called Large ribosomal subunit protein uL2.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	С	273	Total 2108	C 1307	N 415	O 379	${ m S} 7$	0	0

• Molecule 5 is a protein called Large ribosomal subunit protein uL3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
5	D	206	Total 1583	C 995	N 291	O 293	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 6 is a protein called Large ribosomal subunit protein uL4.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
6	F	203	Total	С	Ν	Ο	0	0
0	Ľ	203	1539	974	285	280	0	0

• Molecule 7 is a protein called Large ribosomal subunit protein uL5.

Mol	Chain	Residues		At	oms		AltConf	Trace	
7	F	175	Total 1171	C 730	N 207	O 229	${ m S}{ m 5}$	0	0

• Molecule 8 is a protein called Large ribosomal subunit protein uL6.

Mol	Chain	Residues		At	AltConf	Trace			
8	G	177	Total 1355	C 851	N 251	0 252	S 1	0	0

• Molecule 9 is a protein called Large ribosomal subunit protein uL13.

Mol	Chain	Residues		At	oms		AltConf	Trace	
9	L	142	Total 1117	C 709	N 201	0 204	${ m S} { m 3}$	0	0

• Molecule 10 is a protein called Large ribosomal subunit protein uL14.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	М	122	Total 925	C 573	N 175	0 172	${ m S}{ m 5}$	0	0

• Molecule 11 is a protein called Large ribosomal subunit protein uL15.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
11	Ν	144	Total 1057	C 654	N 207	O 196	0	0

• Molecule 12 is a protein called Large ribosomal subunit protein uL16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	О	133	Total 1045	C 669	N 201	O 170	${ m S}{ m 5}$	0	0

• Molecule 13 is a protein called Large ribosomal subunit protein bL17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	Р	122	Total 957	C 601	N 187	0 168	S 1	0	0

• Molecule 14 is a protein called Large ribosomal subunit protein uL18.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
14	Q	118	Total 913	C 563	N 176	0 174	0	0

• Molecule 15 is a protein called Large ribosomal subunit protein bL19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	R	103	Total 802	C 508	N 156	0 137	S 1	0	0

• Molecule 16 is a protein called Large ribosomal subunit protein bL20.

Mol	Chain	Residues		At	AltConf	Trace			
16	S	116	Total 939	C 596	N 185	0 154	$\frac{S}{4}$	0	0

• Molecule 17 is a protein called Large ribosomal subunit protein bL21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	Т	101	Total 762	C 493	N 131	0 137	S 1	0	0

• Molecule 18 is a protein called Large ribosomal subunit protein uL22.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
18	U	110	Total 823	C 521	N 155	0 147	0	0

• Molecule 19 is a protein called Large ribosomal subunit protein uL23.

Mol	Chain	Residues		At	oms		AltConf	Trace	
19	V	90	Total 720	C 457	N 123	0 138	${ m S} { m 2}$	0	0

• Molecule 20 is a protein called Large ribosomal subunit protein uL24.

Mol	Chain	Residues	Atoms					AltConf	Trace
20	W	102	Total 719	C 459	N 135	0 122	${ m S} { m 3}$	0	0

• Molecule 21 is a protein called Large ribosomal subunit protein bL27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	Y	76	Total 571	$\begin{array}{c} \mathrm{C} \\ 350 \end{array}$	N 111	O 109	S 1	0	0

• Molecule 22 is a protein called Large ribosomal subunit protein bL28.

Mol	Chain	Residues	Atoms					AltConf	Trace
22	Ζ	59	Total 450	C 277	N 95	O 76	${ m S} { m 2}$	0	0

• Molecule 23 is a protein called Large ribosomal subunit protein uL29.

Mol	Chain	Residues		Atoms					Trace
23	1	59	Total 483	C 296	N 94	O 92	S 1	0	0

• Molecule 24 is a protein called Large ribosomal subunit protein uL30.

Mol	Chain	Residues		Atoms					Trace
24	2	56	Total	С	Ν	0	S	0	0
	_		433	272	82	78	1		

• Molecule 25 is a protein called Large ribosomal subunit protein bL31B.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
25	3	59	Total 292	$\begin{array}{c} \mathrm{C} \\ 174 \end{array}$	N 59	O 59	0	0

• Molecule 26 is a protein called Large ribosomal subunit protein bL32.

Mol	Chain	Residues	Atoms					AltConf	Trace
26	4	53	Total 425	C 259	N 87	0 74	${ m S}{ m 5}$	0	0

• Molecule 27 is a protein called Large ribosomal subunit protein bL33.

Mol	Chain	Residues	Atoms					AltConf	Trace
27	5	47	Total 390	C 238	N 78	0 71	${ m S} { m 3}$	0	0

• Molecule 28 is a protein called Large ribosomal subunit protein bL34.

Mol	Chain	Residues		Atoms					Trace
28	6	43	Total 365	C 222	N 88	O 53	${ m S} { m 2}$	0	0

• Molecule 29 is a protein called Large ribosomal subunit protein bL35.

Mol	Chain	Residues	Atoms					AltConf	Trace
29	7	63	Total 512	C 317	N 113	0 78	${S \over 4}$	0	0

• Molecule 30 is a protein called Large ribosomal subunit protein bL36.

Mol	Chain	Residues	Atoms					AltConf	Trace
30	8	36	Total 292	C 183	N 59	0 44	S 6	0	0

• Molecule 31 is PHOSPHOMETHYLPHOSPHONIC ACID GUANYLATE ESTER (three-letter code: GCP) (formula: $C_{11}H_{18}N_5O_{13}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
31	v	1	Total	С	N	0	Р	0
			32	11	5	13	3	

• Molecule 32 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Ato	AltConf	
32	А	192	Total 192	Mg 192	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
32	С	2	Total Mg 2 2	0
32	D	1	Total Mg 1 1	0
32	М	1	Total Mg 1 1	0
32	Ν	1	Total Mg 1 1	0
32	V	1	Total Mg 1 1	0
32	Ζ	1	Total Mg 1 1	0
32	6	1	Total Mg 1 1	0

• Molecule 33 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
33	О	1	Total K 1 1	0

• Molecule 34 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
34	4	1	Total Zn 1 1	0
34	5	1	Total Zn 1 1	0
34	8	1	Total Zn 1 1	0

• Molecule 35 is water.

Mol	Chain	Residues	Atoms	AltConf
35	А	130	Total O 130 130	0
35	Ν	1	Total O 1 1	0
35	Р	1	Total O 1 1	0
35	4	1	Total O 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
35	8	1	Total O 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: GTPase HflX

G1093	A1102 A1103 11104	G1105 U1106	01107 61108 61109	A1115 A1116 A1116	G1117 C1124	U1127 U1128	61129 A1130 A1131	A1134 G1135 U1136	U1140 A1141 A1142	01143	C1140 C1150 C1150	61152 61152	G1156 A1157 G1158	A1161	G1171 A1172 A1173	A1174	A1179 C1180 C1181	G1182 G1185	C1186 U1187 A1188	-				
A1203	A1213 A1214	01 <mark>217</mark> C 	טככ	G G A1224	U1227 U1228 U1228	G1229 G1230	01245 C1246 U1247 A1248	A1240 A1249 G1250	G1255 G1264 A1265	G1283	G1295 A1296 A1296	61297 A1298	61301 C1302	G1311 G1316 G1316	A1317 A1318 A1319	G1320 U1332	C1333 U1336	U1337	A1345	C1358				
G1364	61369 C1369	U1373	C1394 C1395	01396 C1401	G1402 A1409	U1423	A1429 C1430 A1431 C1432	G1433 G1433 U1434 A1435	A1439 U1440	G1445	61451 01452 61453	A1456 A1457	01458 01459 61460	<mark>U1461</mark> U1462 U1463	A1464 A1465	A1469 U1470 G1471	C1478	G1 <mark>482</mark> A1483 A1484	A1493 A1493 A1494					
G1497	A1502	A1509	C1517 C1518 A1519	G1528 U1529	G1530 U1531 G1532	A1533 G1534 A1535	A1536 G1537 U1538 A1539	A1533 C1542 A1543	A1544 A1545 U1546 C1547	C154 / C1548 G1549 C1550	01551 01552 01552	01554 01554 01555	G1558	A1560	01570 01571 01571	A1573 A1573 U1574 C1575	A1579	61581 G	A A U	n				
A A	D 4	C1593 G1594	61595 A1596	C1611 G1612	A1618 A1619 G1620	A1621 U1630	A1634 A1635 A1635	41630 61638	U1642 C1656 A1657	A105/ A1658 A1659 C1660	A1681	G1682 A1683 A1684	01685 C1686	A1695 G1696 C1697	G1698 A1699 G1700	A1701 U1708	U1712	G1716 G1723	C1724	-				
U1762 U1763	61765	A1771 A1772	A178	G1781 A1782 G1783	C1787 A1788	G1789 G1796	61797 A1806	G1809 U1812	C1815 A1816 A1817	A161/ A1818 A1819	C1823 A1824	U1829 C1830	C1833 A1834	A1835 A1836	C1849 A1862	A1881	A1886 A1887	G1891 G1895	C1896 U1897	U1902				
U1903 C1904 C1905	61906 61906 61907	C1915	A1922 A1923	<mark>C19</mark> 28	C1938 G1939	U1944 A1945 A1946	C1947 U1948 A1949	U1950 G1962 G1963	A1970	A1971 U1972 U1973	U1988	C1996 G1997	C2000	A2004 G2005	U2024 G2025 112026	A2030	G2043 U2044	u2052	A2056 G2060	-				
A2064 G2065	12067 12067 12068	C2069 A2070	G2071	C2076	G2089 A2093	G2094 A2095 C2096	C2098 C2098	G2101 G2102 G2103 A2104	G2105 C2106 U2107 U2107	02108 G2125 C2136	42127 A2127	42134 U2135 ♦ A2136 ●	C2137	G2139 C2140	U2141	G2143 U2144 A2145	C2146 A2147	G2149 G2149 A2150	U2151	62153 62154	A2156 G2157 G2157			
159	161		1165	1167	122	1173	1176	1178	181	184 185	186			192 1193	1 <mark>95</mark>	197	200	203 203	205	207 208	210 211	212 213	215 216 216	218
0	3 3	6 6 7	1 62 62	5 6 7	0 2 0	8 7 6 7 2 <u>6</u> 7 2 <u>6</u>	1 1 1 1	1 C2 42 U2	- 9 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	2 42 42 42	6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 6 7 7	6 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 8 8 8 8	6 0 F	4 4 A2 A2			6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 42	4 U2	C C C		3 <u>5</u> 5	
6 A222	6222	C222 A222 U222	4 5 A223	8 9 6223 0 7223 7223	1 2 3	4 A225	G226 U226	6226 6227 6227	8 0 0227 0227	625 <u>6</u>	6 (230) 6 (230) 6 (230)	8 A230 A230	c C231	9 A231 A232	7 U232	5 C232 C232 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.232 0.232 2	6233 6233 6233 8	1 6234	3 A234				
1 U234 C2346 C2346	02348		A2356	62358 0 02358 1 A2360	A236: A236: A236:	G236t C236t A236t	C2360	C238	G2408	A2410 A2411 G2412	62416 62416	C2416 C2416	2436 G2436	0 C2438	0 G2441	C2456 3 U2456 C2457	A2456	A2463	5 U2471 A2475	t C2473				
5 C247	2042W	3 U249 C2494	02496 C2496	C2490 C2500 A2503	1 U250	9 A250	02621 C2622	0 C253 G253	2 8 6253(6253)	7 G254 0254 0254	A255	3 02561	0,0256	1 C257	3 U258	0 U258	8 A259	9 A260 0 C260 62607	2 3 62611	2 C262-				
3 G262	20250	6 C264	2 02640 3 A264 1 02648	6 0266	1 02670 62673	3 C2675	4 62696 62716 62716	c 62715	0 U272 A272	1 G2741	8 C2766	G2768	6 0 0 0 0 0 0 0	1 2 A278; A278;	5 A278	8 A2790 9 A2793	A2798 G2798	A280 G281(A2811	U2815 G2815	C282				
A2825 U2824	C2827	U2826	G2831 A2833 A2834	A2835 G2836 U2837	A2841 U2842	C2840 A2862	62864 A2864	G2877	U2896 G2896	G2901 A2902	A2905	G2915	A2910	G2921 G2922	U2926 U2926 A2927	A2928 C2929 C2930	A A							

WORLDWIDE PROTEIN DATA BANK • Molecule 3: 5S Ribosomal RNA

• Molecule 4: Large ribosomal subunit protein uL2

Chain C:	87%	12% •
MET A2 MET 110 110 111 110 111 122 123 123 123 123 137 137 137 137 137	K59 R60 961 762 863 863 863 866 767 767 767 102 8102 1105 1105 1105 1133 8133 8146	L154 V155 S161 S161 E166 E168 A186 A186 Q194 Q194 Q194 B226 M225 B226
248 254 254 254 254 274 273		

• Molecule 5: Large ribosomal subunit protein uL3

• Molecule 6: Large ribosomal subunit protein uL4

Chain E:	89%		9% •	
MET PRO LYS LYS K8 M13 A14 G15 K31 K31 K31	H49 R88 R84 P92 P92 P92 P92 P101 P102 P102 P102 P102 S160 P105 S160 P105 S160 V196 K196 K196	L206 ALA		
• Molecule 7: Large	ribosomal subunit protein uL5			
Chain F:	76%	21%		
MET N2 131 131 134 134 134 138 138 138 138 138 138 138	A45 K48 K48 K48 K48 K53 K54 K54 K54 K64 K77 K77 K78 K77 K78 K78 K78 K78 K78 K78	T90 L91 M96 D123 V132	Y143 D144 Q145 Q151 M152 D153	V157
1158 1164 1164 1165 1168 1176 1176 1176 1176 1176 1176 1176				
• Molecule 8: Large	ribosomal subunit protein uL6			
Chain G:	78%	21%		
MET 18 19 111 111 111 111 111 111 111 111 1	I 43 846 846 846 846 848 849 853 853 853 853 853 853 853 853 853 853	E88 L89 V104 E114 I132	P154 E155 P156 P156 T162 Y163 Y163 Y164 E165 E165 G166	,

		٠	
E167	R171	K178	

 \bullet Molecule 9: Large ribosomal subunit protein uL13

Chain L:	90%	8% •
MET R2 T4 T4 T4 T4 N3 N3 R88 N33 C1115 C115 C1	Y 126 H133 Q 136 K137 P138 ARG GLY GLY	
• Molecule 10: Large r	ibosomal subunit protein uL14	
Chain M:	84%	16%
M 13 64 64 65 73 73 73 75 65 65 65 65 65 65 65 65 65 65 65 65 65	R64 122 122 122 133 136 136 136 136 136 136 136 136 136	
• Molecule 11: Large ri	ibosomal subunit protein uL15	
Chain N:	91%	8% •
MET LYS LYS L3 R4 R6 R60 R60 R60 R60 R60 R60 R102 R102 R102 R102	11 11 11 11 11 11 11 11 11 11 11 11 11	
• Molecule 12: Large ri	ibosomal subunit protein uL16	
Chain O:	82%	10% 8%
MET L2 L2 L2 133 G33 G33 G33 G35 G35 G35 G35 G35 C34 C34 L34 V64 V64	R82 V97 C100 C100 C100 C100 C100 C101 C112 C100 C101 C112 C112	
• Molecule 13: Large r	ibosomal subunit protein bL17	
Chain P:	85%	•• 10%
MET GLY 73 73 45 76 45 76 45 7 45 7 6 17 6 17 5 17 5 17 5 17 5 17 5 17 5	THR VAL LVAS LVAS K118 K118 V130 V130 V135	
• Molecule 14: Large ri	ibosomal subunit protein uL18	
Chain Q:	82%	18% •
MET 12 R11 R11 820 820 050 V51 V51 F63 F63	E67 D71 K75 K75 E78 E78 K82 K83 K83 K83 K83 K83 K83 K83 K83 K83 K106 K106 K106 K110 K112 K1112 K112 K112 K112 K112 K11	
• Molecule 15: Large ri	ibosomal subunit protein bL19	
Chain R:	83%	7% 10%

• Molecule 23: Large ribosomal subunit protein uL29

Chain 1:	81%	13%	6%
MET LYS LYS S10 310 112 E112 E112	016 016 016 017 17 1800 ALA ALA		
• Molecule	24: Large ribosomal subunit protein uL30		
Chain 2:	90%	59	% 5%
MET ALA K3 K3 I43 I43	VAL E58		
• Molecule	25: Large ribosomal subunit protein bL31B		
Chain 3:	9% 70% •	27%	_
M1 K2 I5 T17 D20	330 331 532 532 532 532 533 533 533 533		
• Molecule	26: Large ribosomal subunit protein bL32		
Chain 4:	88%	5%	7%
MET A2 A2 A2 L24 P25 P25	ALA ASIX SER		
• Molecule	27: Large ribosomal subunit protein bL33		
Chain 5:	88%	8%	6 •
MET E31 K34 R40	R46 E4.7 Tra8 LYS		
• Molecule	28: Large ribosomal subunit protein bL34		
Chain 6:	82%	16%	·
M1 S8 K11 R19 R19	R28 R29 ALA		
• Molecule	29: Large ribosomal subunit protein bL35		
Chain 7:	89%	6%	% 5%

• Molecule 30: Large ribosomal subunit protein bL36

Chain 8:

84%

14%

•

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	332513	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40.0	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	2300	Depositor
Magnification	96000	Depositor
Image detector	FEI FALCON III $(4k \ge 4k)$	Depositor
Maximum map value	2.373	Depositor
Minimum map value	-0.712	Depositor
Average map value	-0.002	Depositor
Map value standard deviation	0.084	Depositor
Recommended contour level	0.3	Depositor
Map size (Å)	435.2, 435.2, 435.2	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.85, 0.85, 0.85	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GCP, K, MG, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	V	0.28	0/3336	0.52	0/4499
2	А	0.81	0/69651	0.89	25/108655~(0.0%)
3	В	0.47	0/2711	0.79	0/4224
4	С	0.41	0/2144	0.61	0/2875
5	D	0.42	0/1605	0.59	0/2156
6	Е	0.37	0/1559	0.62	1/2104~(0.0%)
7	F	0.30	0/1180	0.57	0/1606
8	G	0.32	0/1377	0.53	0/1857
9	L	0.41	0/1140	0.57	0/1532
10	М	0.41	0/932	0.61	0/1248
11	N	0.36	0/1068	0.57	0/1427
12	0	0.42	0/1067	0.60	0/1428
13	Р	0.41	0/968	0.63	1/1297~(0.1%)
14	Q	0.30	0/922	0.55	0/1231
15	R	0.39	0/814	0.61	0/1097
16	S	0.43	0/952	0.60	0/1266
17	Т	0.44	0/775	0.54	0/1045
18	U	0.40	0/833	0.61	0/1127
19	V	0.41	0/728	0.53	0/977
20	W	0.36	0/727	0.51	0/976
21	Y	0.42	0/578	0.61	0/770
22	Ζ	0.39	0/455	0.64	0/604
23	1	0.34	0/484	0.58	0/646
24	2	0.37	0/436	0.58	0/585
25	3	0.24	0/291	0.45	0/404
26	4	0.40	0/433	0.63	0/577
27	5	0.36	0/394	0.60	0/529
28	6	0.41	0/368	0.74	0/479
29	7	0.37	0/519	0.64	0/675
30	8	0.39	0/295	0.55	0/387
All	All	0.71	0/98742	0.82	27/148283~(0.0%)

There are no bond length outliers.

All	(27)	bond	angle	outliers	are	listed	below:
-----	------	------	-------	----------	-----	--------	--------

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	А	557	G	O4'-C1'-N9	8.95	115.36	108.20
2	А	1357	U	C2-N1-C1'	7.41	126.60	117.70
2	А	231	А	O4'-C1'-N9	7.22	113.98	108.20
2	А	1067	А	C2-N3-C4	-6.64	107.28	110.60
2	А	1332	U	N3-C2-O2	-6.60	117.58	122.20
2	А	554	С	C2-N1-C1'	6.46	125.91	118.80
2	А	308	U	C2-N1-C1'	6.40	125.38	117.70
2	А	1700	G	O4'-C1'-N9	6.31	113.25	108.20
2	А	1072	А	O4'-C1'-N9	6.05	113.04	108.20
2	А	1358	С	C2-N1-C1'	5.68	125.04	118.80
2	А	2922	G	C4-N9-C1'	5.67	133.87	126.50
2	А	554	С	N1-C2-O2	5.50	122.20	118.90
2	А	2922	G	N7-C8-N9	5.48	115.84	113.10
2	А	1030	G	O4'-C1'-N9	5.44	112.55	108.20
2	А	750	G	O4'-C1'-N9	5.41	112.53	108.20
2	А	592	А	N1-C6-N6	-5.39	115.37	118.60
2	А	2789	U	P-O3'-C3'	5.38	126.16	119.70
2	А	2809	А	P-O3'-C3'	5.25	126.00	119.70
2	А	2472	А	P-O3'-C3'	5.24	125.98	119.70
2	А	2877	G	O4'-C1'-N9	5.21	112.36	108.20
2	А	2126	G	O4'-C1'-N9	5.13	112.31	108.20
13	Р	134	LEU	CA-CB-CG	5.12	127.08	115.30
2	А	809	G	C8-N9-C4	-5.09	104.36	106.40
2	А	527	G	O4'-C1'-N9	5.08	112.26	108.20
2	А	2068	G	O4'-C1'-N9	5.05	112.24	108.20
2	А	554	С	C6-N1-C1'	-5.05	114.75	120.80
6	Е	114	LEU	CA-CB-CG	5.01	126.82	115.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	V	3294	0	3305	0	0
2	А	62168	0	31257	331	0
3	В	2428	0	1229	15	0
4	С	2108	0	2184	23	0
5	D	1583	0	1646	20	0
6	Е	1539	0	1624	16	0
7	F	1171	0	1041	31	0
8	G	1355	0	1403	24	0
9	L	1117	0	1145	8	0
10	М	925	0	982	12	0
11	Ν	1057	0	1073	9	0
12	0	1045	0	1103	8	0
13	Р	957	0	993	5	0
14	Q	913	0	939	12	0
15	R	802	0	836	7	0
16	S	939	0	1011	9	0
17	Т	762	0	779	4	0
18	U	823	0	861	13	0
19	V	720	0	743	4	0
20	W	719	0	744	11	0
21	Y	571	0	570	5	0
22	Ζ	450	0	476	6	0
23	1	483	0	500	4	0
24	2	433	0	479	3	0
25	3	292	0	119	2	0
26	4	425	0	423	2	0
27	5	390	0	395	5	0
28	6	365	0	417	5	0
29	7	512	0	562	3	0
30	8	292	0	334	5	0
31	V	32	0	14	0	0
32	6	1	0	0	0	0
32	А	192	0	0	0	0
32	С	2	0	0	0	0
32	D	1	0	0	0	0
32	М	1	0	0	0	0
32	N	1	0	0	0	0
32	V	1	0	0	0	0
32	Ζ	1	0	0	0	0
33	0	1	0	0	0	0
34	4	1	0	0	0	0
34	5	1	0	0	0	0
34	8	1	0	0	0	0

	- $ -$					
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
35	4	1	0	0	0	0
35	8	1	0	0	0	0
35	А	130	0	0	0	0
35	Ν	1	0	0	0	0
35	Р	1	0	0	0	0
All	All	91008	0	59187	533	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (533) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:A:2141:U:H3	2:A:2214:G:H1	1.10	0.96
20:W:9:VAL:HG13	20:W:68:VAL:HG13	1.50	0.93
2:A:2263:G:H1'	22:Z:32:ASN:HB3	1.50	0.91
2:A:2173:G:H1	2:A:2184:U:H3	0.89	0.88
2:A:2134:G:H1	2:A:2221:U:H3	1.26	0.83
2:A:2125:G:H4'	2:A:2126:G:H5'	1.62	0.82
19:V:33:ALA:O	19:V:76:ARG:NH1	2.14	0.81
14:Q:63:PHE:HB3	14:Q:75:LYS:HD2	1.66	0.78
2:A:2345:U:O2	7:F:37:ASN:ND2	2.17	0.78
2:A:1579:A:N6	2:A:1595:G:O2'	2.17	0.77
2:A:2167:A:H2	2:A:2192:G:H1'	1.50	0.76
2:A:665:G:H4'	2:A:666:A:H5'	1.68	0.76
2:A:1151:U:H2'	2:A:1152:G:H8	1.50	0.75
2:A:84:A:N6	2:A:101:G:O2'	2.20	0.74
2:A:905:G:OP2	21:Y:85:LYS:NZ	2.20	0.74
2:A:211:C:OP1	28:6:29:ARG:NH2	2.22	0.73
2:A:648:G:O6	11:N:103:ARG:NH2	2.21	0.72
2:A:2154:G:OP1	2:A:2203:G:N2	2.23	0.72
2:A:2471:U:O3'	2:A:2472:A:H3'	1.90	0.72
2:A:1886:A:H2'	2:A:1887:A:C8	2.26	0.71
27:5:31:GLU:OE2	27:5:46:ARG:NH1	2.24	0.71
8:G:80:SER:OG	8:G:81:GLU:OE1	2.07	0.71
2:A:2338:A:N6	7:F:38:THR:O	2.24	0.70
2:A:1148:C:H2'	2:A:1149:A:H8	1.57	0.70
22:Z:6:VAL:HG23	22:Z:7:ILE:HD12	1.72	0.69
22:Z:7:ILE:HG22	22:Z:8:THR:HG23	1.73	0.69
2:A:676:A:OP2	29:7:15:LYS:NZ	2.25	0.69
2:A:2545:C:H5"	5:D:128:GLN:OE1	1.93	0.68

	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
18:U:14:THR:H	18:U:107:HIS:HD2	1.39	0.68
20:W:33:VAL:HG23	20:W:65:VAL:HG22	1.75	0.68
2:A:90:A:H4'	2:A:91:C:H5'	1.75	0.67
2:A:1151:U:H2'	2:A:1152:G:C8	2.30	0.67
8:G:43:ILE:HG13	8:G:52:VAL:HG12	1.77	0.67
23:1:11:THR:HB	23:1:60:ARG:HH11	1.59	0.67
4:C:131:GLU:OE1	4:C:133:LYS:NZ	2.28	0.67
11:N:55:LEU:HD23	11:N:60:ARG:HG2	1.77	0.67
3:B:29:C:H1'	3:B:52:G:H1	1.59	0.67
3:B:3:U:OP1	3:B:59:U:O2'	2.12	0.66
2:A:2361:A:H2'	2:A:2362:A:C8	2.30	0.66
9:L:18:VAL:HG23	9:L:138:PRO:HB2	1.76	0.66
2:A:1833:C:OP2	4:C:182:ARG:NH2	2.29	0.66
2:A:27:G:H1'	2:A:558:A:N6	2.11	0.66
2:A:2337:G:N2	7:F:153:ASP:OD2	2.24	0.66
6:E:49:HIS:HD2	6:E:92:PRO:HB2	1.60	0.66
2:A:1129:G:H21	2:A:1131:A:H8	1.43	0.65
10:M:64:ARG:NH1	10:M:81:GLU:OE2	2.28	0.65
2:A:220:G:H22	2:A:237:U:H4'	1.60	0.65
2:A:2184:U:H2'	2:A:2185:A:H8	1.61	0.65
12:O:64:VAL:HG22	12:O:106:ILE:HG22	1.79	0.65
2:A:2235:C:O2'	2:A:2237:C:OP1	2.14	0.64
2:A:1065:U:HO2'	2:A:1067:A:H2	1.44	0.64
4:C:10:THR:HG22	4:C:12:GLY:H	1.62	0.64
2:A:1530:G:H3'	2:A:1531:U:H5"	1.80	0.64
2:A:1248:A:H2'	2:A:1249:A:C8	2.33	0.64
2:A:2789:U:OP2	30:8:19:ARG:NH1	2.24	0.64
5:D:50:GLN:HE21	5:D:80:ILE:HG21	1.63	0.64
2:A:1131:A:HO2'	2:A:1150:C:HO2'	1.43	0.63
2:A:2173:G:O6	2:A:2184:U:O4	2.15	0.63
2:A:891:U:O2'	2:A:893:A:OP2	2.16	0.63
2:A:2141:U:O2	2:A:2214:G:N2	2.31	0.62
2:A:2341:G:H1	2:A:2344:A:H62	1.45	0.62
2:A:2408:G:H2'	2:A:2410:A:H2	1.65	0.62
2:A:579:U:O2'	16:S:49:ASP:OD2	2.15	0.62
2:A:2410:A:O2'	14:Q:119:PHE:O	2.15	0.62
2:A:1549:G:N2	4:C:98:ASP:O	2.28	0.61
2:A:798:A:H3'	28:6:1:MET:HE1	1.81	0.61
3:B:27:A:H2'	3:B:28:C:C6	2.35	0.61
2:A:1620:G:H4'	4:C:59:LYS:HG3	1.83	0.61
27:5:31:GLU:HG2	27:5:46:ARG:HG3	1.83	0.61

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
$2 \cdot 4 \cdot 498 \cdot G \cdot C8$	6·E·58·ABC·HD3	2.35	
2:A:1539:A:H2'	$4 \cdot C \cdot 98 \cdot ASP \cdot OD2$	2.00	0.01
10·M·50·GLY·O	10·M·53·LVS·NZ	2.01	0.61
8·G·40·GLU·HG2	8·G·61·HIS·HE1	1.65	0.01
2:A:1532:G:N2	2: A · 1560: A · N1	2.49	0.00
$\frac{2 \cdot A \cdot 591 \cdot A \cdot H4}{2 \cdot A \cdot 591 \cdot A \cdot H4}$	2:A:592:A:H5'	1.83	0.00
6:E:8:LYS:HG3	6·E:14:ALA:HB2	1.83	0.60
11:N:102:ILE:HD13	11:N:109:ILE:HD12	1.83	0.60
2:A:1093:G:N2	2:A:1156:G:O2'	2.34	0.60
2:A:1213:A:H2'	2:A:1214:A:C8	2.37	0.59
2:A:2163:G:O2'	2:A:2191:A:N1	2.35	0.59
2:A:1835:A:H2'	2:A:1836:A:C8	2.37	0.59
7:F:164:GLU:O	7:F:168:GLU:HG3	2.02	0.59
6:E:49:HIS:CD2	6:E:92:PRO:HB2	2.38	0.59
26:4:24:LEU:HD12	26:4:25:PRO:HD2	1.84	0.59
2:A:6:A:O2'	9:L:136:GLN:NE2	2.35	0.59
7:F:61:THR:HG21	7:F:89:VAL:HG11	1.84	0.59
2:A:1141:A:O2'	2:A:1142:A:H8	1.85	0.59
7:F:77:PHE:O	7:F:78:ARG:HD3	2.03	0.59
2:A:2789:U:H5	2:A:2791:A:N7	2.01	0.58
2:A:1135:G:N2	2:A:1136:U:O4	2.32	0.58
20:W:1:MET:SD	20:W:65:VAL:HG21	2.42	0.58
2:A:2716:C:OP1	15:R:51:ARG:NH2	2.29	0.58
2:A:2168:G:H3'	2:A:2169:A:H8	1.69	0.58
29:7:54:ASP:OD1	29:7:57:ARG:NH2	2.37	0.58
2:A:1532:G:HO2'	2:A:1533:A:H8	1.50	0.58
2:A:2208:U:H2'	2:A:2209:A:H8	1.69	0.58
2:A:2125:G:H4'	2:A:2126:G:C5'	2.34	0.58
2:A:2152:A:H2	2:A:2204:A:H5'	1.68	0.58
2:A:1311:G:H5"	18:U:20:ARG:HH22	1.68	0.58
2:A:789:A:O2'	2:A:1708:U:OP1	2.22	0.58
2:A:2438:G:O2'	2:A:2439:C:OP2	2.22	0.58
12:O:54:MET:HB3	12:O:121:ALA:HB2	1.86	0.57
2:A:304:A:H62	2:A:410:G:N2	2.01	0.57
7:F:48:LYS:O	7:F:52:SER:HB3	2.04	0.57
2:A:1532:G:O2'	2:A:1533:A:H8	1.87	0.57
2:A:2319:A:H4'	2:A:2320:A:O4'	2.04	0.57
2:A:1067:A:H62	2:A:1187:U:H3	1.51	0.57
18:U:55:VAL:HG12	18:U:110:VAL:HG12	1.87	0.57
2:A:125:A:H5"	28:6:19:ARG:HG3	1.87	0.56
8:G:46:GLU:OE1	8:G:47:GLY:N	2.37	0.56

Atom-1	Atom-2	Interatomic	Clash
9. A. 1465. A. UQ	9. A.1626.C.U91	1 51	overlap (A)
2.A.1400.A.110 5.D.122.II F.HD11	2:A:1050:G:H21 5:D:141:APC:C7	1.01	0.50
7.E.175.MET.CD	5.D.141.AnG.UZ	2.30	0.50
14.0.79.CLU.UC2	14.0.99.1 VS.IIE2	2.40	0.50
14:Q:78:GLU:HG2	$14:Q:82:L15:\Pi E2$	1.07	0.50
2:A:1400:A:HZ	2:A:1407:A:08	2.40	0.50
(:F:31:1LE:HA	(:F:158:1HK:HG22	1.87	0.50
12:0:32:1 Y K:0H	12:0:111:GLU:0E2	2.23	0.50
15:R:49:LYS:HB2	15:R:96:LYS:HD3	1.88	0.56
16:S:43:TYR:HB3	17:1:74:1YR:HB3	1.87	0.56
6:E:155:VAL:HB	6:E:194:1LE:HD12	1.87	0.56
8:G:8:THR:HG22	8:G:51:ASN:HD21	1.69	0.56
2:A:304:A:H62	2:A:410:G:H21	1.52	0.56
2:A:1763:U:O2'	2:A:1764:A:H8	1.88	0.56
9:L:4:THR:HG21	16:S:57:PHE:HE1	1.69	0.56
2:A:1140:U:H2'	2:A:1141:A:H2'	1.87	0.56
2:A:2380:C:OP1	27:5:34:LYS:NZ	2.39	0.56
2:A:2822:C:H2'	2:A:2823:A:C8	2.41	0.56
2:A:760:U:O2'	2:A:762:A:N6	2.39	0.55
2:A:1128:U:H2'	2:A:1129:G:O4'	2.06	0.55
7:F:132:VAL:O	7:F:151:GLY:CA	2.53	0.55
2:A:897:G:H21	24:2:46:MET:CE	2.20	0.55
30:8:12:GLU:N	30:8:12:GLU:OE1	2.37	0.55
2:A:27:G:HO2'	2:A:28:A:H8	1.51	0.55
7:F:157:VAL:HB	14:Q:2:ILE:HD11	1.88	0.55
2:A:2155:U:H2'	2:A:2156:A:C8	2.41	0.55
2:A:2177:G:O2'	2:A:2180:A:N6	2.40	0.55
2:A:2201:G:H22	2:A:2204:A:P	2.29	0.55
2:A:1460:G:O2'	2:A:1635:A:N1	2.32	0.54
10:M:13:ASN:ND2	10:M:96:THR:OG1	2.41	0.54
2:A:579:U:H2'	2:A:580:U:C6	2.42	0.54
2:A:92:G:H2'	2:A:93:U:C6	2.42	0.54
4:C:133:LYS:HB3	4:C:186:ALA:HB1	1.89	0.54
5:D:19:ASN:O	15:R:80:ARG:NH2	2.28	0.54
7:F:34:ILE:HG12	7:F:156:ILE:HD13	1.90	0.54
16:S:102:ASP:OD1	17:T:2:TYR:OH	2.24	0.54
2:A:139:A:H2'	2:A:140:G:C8	2.42	0.54
2:A:2438:G:HO2'	2:A:2439:C:P	2.30	0.54
2:A:2832:G:H2'	2:A:2833:A:H8	1.72	0.54
2:A:1245:U:H1'	16:S:4:VAL:HG22	1.89	0.54
20:W:79:THR:HG22	20:W:96:LYS:HD3	1.90	0.54
2:A:288:U:O2'	2:A:289:U:O5'	2.26	0.54

	• ••• F •• J •• •	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:A:1046:A:H2'	2:A:1047:A:C8	2.43	0.54
2:A:2196:A:OP1	2:A:2204:A:O2'	2.26	0.54
2:A:842:U:H2'	2:A:843:U:C6	2.43	0.53
2:A:2184:U:H2'	2:A:2185:A:C8	2.42	0.53
4:C:34:LEU:HD12	4:C:61:GLN:HG2	1.89	0.53
9:L:126:TYR:OH	9:L:133:HIS:NE2	2.39	0.53
4:C:61:GLN:O	4:C:63:ARG:NH1	2.41	0.53
8:G:40:GLU:HG2	8:G:61:HIS:CE1	2.43	0.53
2:A:258:A:H2'	2:A:259:A:C8	2.43	0.53
2:A:859:U:H2'	2:A:860:C:C6	2.43	0.53
2:A:2670:U:H2'	2:A:2671:G:O4'	2.08	0.53
2:A:2199:G:N2	2:A:2204:A:H62	2.05	0.53
7:F:132:VAL:O	7:F:151:GLY:HA2	2.08	0.53
2:A:344:C:H1'	20:W:12:ILE:HD12	1.91	0.53
2:A:2201:G:N2	2:A:2204:A:O5'	2.36	0.53
18:U:16:ARG:HH21	18:U:103:LYS:HD2	1.73	0.53
9:L:88:ARG:HD3	9:L:93:MET:HE2	1.90	0.53
12:O:42:ILE:HD12	12:O:97:VAL:HG21	1.91	0.53
2:A:2148:G:O2'	2:A:2199:G:N2	2.40	0.53
2:A:828:A:C2	4:C:225:MET:HG2	2.44	0.53
4:C:168:GLU:OE2	4:C:171:TYR:HB2	2.10	0.52
5:D:39:LYS:O	5:D:47:GLU:HA	2.09	0.52
2:A:193:A:H2'	2:A:194:C:C6	2.44	0.52
2:A:2199:G:H22	2:A:2204:A:H62	1.56	0.52
2:A:2324:U:H2'	2:A:2325:U:C6	2.45	0.52
2:A:2822:C:H1'	2:A:2920:A:H2	1.73	0.52
17:T:14:VAL:HG23	17:T:97:ILE:HG13	1.92	0.52
2:A:1102:G:H5"	2:A:1103:A:H5'	1.91	0.52
3:B:29:C:O2'	3:B:52:G:N2	2.42	0.52
2:A:1787:C:H5	15:R:94:ARG:NH2	2.08	0.52
2:A:2276:U:H2'	2:A:2277:U:C6	2.45	0.52
5:D:122:VAL:HB	5:D:128:GLN:HG3	1.91	0.52
2:A:2166:G:N2	2:A:2190:G:O2'	2.43	0.52
2:A:2324:U:OP1	2:A:2413:U:O2'	2.24	0.51
6:E:101:LEU:HB2	6:E:102:PRO:HD2	1.91	0.51
8:G:154:PRO:HG3	8:G:163:ARG:HB3	1.92	0.51
2:A:1764:A:H2'	2:A:1765:G:O4'	2.10	0.51
2:A:2346:C:H2'	2:A:2347:A:H8	1.75	0.51
14:Q:106:LYS:NZ	14:Q:110:GLU:OE2	2.30	0.51
15:R:24:ASP:HB2	15:R:88:ARG:O	2.09	0.51
2:A:1127:U:H2'	2:A:1128:U:C6	2.45	0.51

	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:A:304:A:N6	2:A:410:G:H21	2.08	0.51
2:A:1187:U:H4'	2:A:1188:A:O4'	2.10	0.51
2:A:1922:A:H2'	2:A:1923:A:C8	2.45	0.51
12:O:35:GLN:HE21	12:O:100:GLY:HA2	1.75	0.51
2:A:45:G:H5'	2:A:46:C:OP1	2.10	0.50
2:A:2827:C:H3'	2:A:2828:U:H5"	1.93	0.50
2:A:1248:A:H5'	6:E:41:ARG:HH22	1.77	0.50
2:A:2500:C:H2'	2:A:2501:A:O4'	2.11	0.50
2:A:1172:A:H4'	2:A:1173:A:H5"	1.93	0.50
10:M:4:GLN:HG2	10:M:5:GLU:HG2	1.92	0.50
2:A:624:C:H5'	16:S:31:LEU:HD22	1.93	0.50
7:F:64:LYS:NZ	25:3:5:ILE:O	2.31	0.50
8:G:38:ASN:HD21	8:G:64:LEU:HD13	1.76	0.50
20:W:85:VAL:HA	20:W:90:LYS:HA	1.94	0.50
2:A:27:G:O2'	2:A:28:A:H8	1.93	0.50
2:A:2134:G:H2'	2:A:2135:U:C6	2.47	0.50
2:A:2463:A:H2'	2:A:2463:A:N3	2.26	0.50
2:A:2842:U:H2'	2:A:2843:C:H6	1.76	0.50
2:A:101:G:HO2'	2:A:102:A:H8	1.60	0.50
2:A:2045:G:OP1	18:U:16:ARG:NH2	2.39	0.50
2:A:2043:G:H5"	18:U:47:SER:HB3	1.93	0.50
2:A:684:U:H2'	2:A:685:C:C6	2.47	0.49
2:A:1685:U:H2'	2:A:1686:C:C6	2.47	0.49
2:A:1812:U:H5	2:A:1817:A:N7	2.10	0.49
2:A:2167:A:H2'	2:A:2168:G:H8	1.77	0.49
4:C:37:LEU:HG	4:C:62:TYR:HB2	1.93	0.49
2:A:2546:G:H2'	2:A:2547:U:C6	2.47	0.49
2:A:2789:U:O2'	2:A:2790:A:OP2	2.23	0.49
2:A:746:G:O2'	2:A:1681:A:N3	2.38	0.49
2:A:1065:U:O2'	2:A:1067:A:H2	1.95	0.49
2:A:1483:A:H2'	2:A:1484:A:C8	2.47	0.49
2:A:2:G:H2'	2:A:3:U:C6	2.47	0.49
2:A:290:C:H2'	2:A:291:U:C6	2.48	0.49
2:A:1247:U:O2'	6:E:41:ARG:NH2	2.46	0.49
2:A:1829:U:H2'	2:A:1830:C:C6	2.48	0.49
7:F:63:GLN:HE21	7:F:89:VAL:HG13	1.77	0.49
2:A:2208:U:H2'	2:A:2209:A:C8	2.48	0.49
12:O:17:MET:CE	12:O:41:TRP:HD1	2.26	0.49
17:T:1:MET:HA	17:T:42:GLY:O	2.13	0.49
2:A:2097:C:H2'	2:A:2098:C:C6	2.47	0.48
2:A:2506:U:HO2'	2:A:2507:C:P	2.36	0.48

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:A:2832:G:H2'	2:A:2833:A:C8	2.48	0.48
2:A:407:G:H2'	2:A:408:U:C6	2.48	0.48
2:A:1519:A:H62	2:A:1573:A:H2	1.61	0.48
5:D:146:MET:HA	5:D:158:LYS:HE3	1.94	0.48
11:N:117:ILE:HD11	11:N:136:ILE:HA	1.95	0.48
7:F:41:GLY:HA2	7:F:85:ILE:HD11	1.96	0.48
2:A:229:A:O4'	2:A:231:A:N6	2.46	0.48
2:A:1700:G:O2'	2:A:1701:A:C8	2.66	0.48
2:A:1700:G:O2'	2:A:1701:A:H8	1.97	0.48
2:A:631:U:H2'	2:A:632:U:C6	2.49	0.48
3:B:46:A:H2'	3:B:47:C:H6	1.78	0.48
19:V:2:ASP:N	19:V:2:ASP:OD1	2.45	0.48
2:A:903:G:H2'	2:A:904:A:C8	2.48	0.48
2:A:2624:C:H2'	2:A:2625:G:C8	2.48	0.48
2:A:2671:G:O2'	2:A:2672:A:H8	1.97	0.48
3:B:30:C:N3	3:B:49:G:N1	2.62	0.48
2:A:373:A:H2	2:A:1255:G:HO2'	1.62	0.48
2:A:2348:U:H2'	2:A:2349:U:C6	2.49	0.48
2:A:1469:A:H2'	2:A:1471:G:N7	2.28	0.48
7:F:29:PRO:HG3	7:F:165:GLU:HB3	1.95	0.48
7:F:53:ALA:HA	7:F:56:GLU:OE2	2.14	0.48
14:Q:49:ASN:HB2	14:Q:51:VAL:HG22	1.96	0.48
2:A:760:U:H1'	2:A:763:U:H5	1.78	0.47
2:A:1897:U:OP1	2:A:2443:G:O2'	2.28	0.47
2:A:632:U:H2'	2:A:633:A:C8	2.49	0.47
2:A:1452:U:H2'	2:A:1453:G:C8	2.49	0.47
2:A:1944:U:H2'	2:A:1945:A:H5'	1.96	0.47
8:G:80:SER:HG	8:G:81:GLU:CD	2.16	0.47
2:A:1546:U:H5"	2:A:1547:C:H5	1.80	0.47
5:D:8:ARG:NH1	5:D:197:LYS:O	2.48	0.47
2:A:897:G:H21	24:2:46:MET:HE2	1.80	0.47
2:A:1105:G:H3'	2:A:1106:U:H2'	1.97	0.47
2:A:2107:U:H2'	2:A:2108:U:C6	2.50	0.47
2:A:2335:U:O2'	7:F:123:ASP:O	2.32	0.47
3:B:35:C:O2	14:Q:102:HIS:HE1	1.96	0.47
2:A:1482:G:H2'	2:A:1483:A:C8	2.50	0.47
2:A:2155:U:H2'	2:A:2156:A:H8	1.78	0.47
2:A:2104:A:H2'	2:A:2105:G:C8	2.50	0.47
2:A:2365:C:OP1	21:Y:84:LYS:NZ	2.48	0.47
9:L:4:THR:HG21	16:S:57:PHE:CE1	2.49	0.47
11:N:55:LEU:O	11:N:60:ARG:NH1	2.48	0.47

Atom-1	Atom-2	Interatomic $(\overset{1}{\lambda})$	Clash
$2 \cdot \Lambda \cdot 125 \cdot \Lambda \cdot \Omega 2^{7}$	$2 \cdot \Lambda \cdot 126 \cdot \Lambda \cdot C8$	$\frac{115tallee(A)}{2.67}$	0.47
$2 \cdot A \cdot 8 \cap 9 \cdot G \cdot O 2'$	$2 \cdot A \cdot 810 \cdot A \cdot OP1$	2.01	0.47
<u>4.C.53.HIS.HA</u>	4.C.217.ABC.HB2	1.05	0.47
4.0.33.III3.IIA	4.C.217.ARG.IID2	2.44	0.47
4.0.248.5ER.11D5	4.0.204.1111.002	2.44	0.47
<u>10.10.00.ANG.NIII</u> <u>2.4.297.С.Ц2</u> ?	10.M.93.1 IOO	2.40	0.47
$2:A:207:0:\Pi 2$	2:A:200:U:U0	2.50	0.47
2:A:2502:A:HZ	2:A:2000:G:U00	2.30	0.47
18:U:23:АКG:ПА	18:0:20:1LE:HG22	1.97	0.47
2:A:2107:A:U2	2:A:2192:G:H1	2.39	0.47
2:A:2225:C:H2 ⁷	2:A:2226:A:H8	1.80	0.47
2:A:2261:G:H22	22:Z:34:GLN:HE22	1.62	0.47
7:F:34:1LE:HD12	7:F:96:MET:HG3	1.96	0.47
8:G:9:ILE:HB	8:G:50:ILE:HB	1.97	0.47
18:U:87:LEU:HB2	18:U:103:LYS:HB2	1.96	0.47
27:5:40:ARG:HG3	27:5:40:ARG:HH11	1.80	0.47
2:A:290:C:H2'	2:A:291:U:H6	1.79	0.46
2:A:1902:U:H2'	2:A:1903:U:H2'	1.96	0.46
2:A:2344:A:N3	7:F:79:LEU:HD11	2.29	0.46
4:C:67:PHE:HE1	4:C:105:ILE:HD11	1.81	0.46
13:P:116:ILE:HG23	13:P:130:VAL:HG21	1.97	0.46
2:A:185:C:H2'	2:A:186:C:H5'	1.96	0.46
2:A:1545:A:H2'	2:A:1547:C:C5	2.50	0.46
2:A:1077:G:H21	30:8:36:GLN:HE22	1.62	0.46
2:A:2925:U:H2'	2:A:2926:U:C6	2.51	0.46
2:A:291:U:H2'	2:A:292:U:C6	2.51	0.46
2:A:993:A:H2'	2:A:994:C:C6	2.50	0.46
2:A:1433:G:H2'	2:A:1434:U:O4'	2.15	0.46
2:A:2304:G:OP1	21:Y:26:SER:HB3	2.16	0.46
2:A:288:U:HO2'	2:A:289:U:H6	1.62	0.46
2:A:651:A:H2'	2:A:652:A:C8	2.50	0.46
2:A:720:G:H1'	6:E:74:ARG:HD3	1.98	0.46
2:A:329:A:H2'	2:A:330:A:C8	2.51	0.46
2:A:1319:A:H4'	2:A:1320:G:OP1	2.14	0.46
16:S:12:LYS:HE3	16:S:12:LYS:HB2	1.70	0.46
20:W:70:LEU:O	20:W:78:PRO:HA	2.16	0.46
2:A:1946:A:N6	2:A:1949:A:N7	2.63	0.46
2:A:2144:U:O4	2:A:2177:G:O2'	2.31	0.46
2:A:2921:G:H8	2:A:2921:G:OP2	1.99	0.46
5:D:123:ILE:HG22	5:D:128:GLN:HB2	1.97	0.46
23:1:10:SER:O	23:1:12:THR:N	2.49	0.46
2:A:1213:A:H2'	2:A:1214:A:H8	1.81	0.46

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
2:A:2221:U:H2'	2:A:2222:G:H8	1.81	0.46
2:A:2348:U:H2'	2:A:2349:U:H6	1.81	0.46
8:G:164:TYR:HB2	8:G:167:GLU:HG3	1.97	0.46
18:U:51:ILE:O	18:U:55:VAL:HG23	2.15	0.46
2:A:957:A:H2'	2:A:958:A:C8	2.51	0.46
2:A:2226:A:H2'	2:A:2227:U:C6	2.50	0.46
22:Z:12:SER:HA	22:Z:29:TRP:O	2.16	0.46
2:A:1148:C:H2'	2:A:1149:A:C8	2.46	0.45
2:A:2186:C:H2'	2:A:2187:G:H8	1.81	0.45
2:A:1249:A:N3	11:N:4:HIS:HB3	2.32	0.45
2:A:2200:U:H2'	2:A:2201:G:O4'	2.16	0.45
6:E:13:ASN:OD1	6:E:14:ALA:N	2.49	0.45
8:G:46:GLU:OE2	8:G:49:GLU:N	2.49	0.45
10:M:120:GLU:OE1	15:R:65:SER:OG	2.24	0.45
23:1:13:GLU:O	23:1:17:GLN:HG2	2.16	0.45
24:2:37:LYS:HB3	24:2:43:ILE:HD13	1.98	0.45
5:D:50:GLN:HE21	5:D:80:ILE:CG2	2.29	0.45
5:D:122:VAL:HG21	5:D:143:PRO:HA	1.98	0.45
2:A:1108:G:H2'	2:A:1109:G:H8	1.82	0.45
2:A:1829:U:H2'	2:A:1830:C:H6	1.81	0.45
2:A:2587:U:H2'	2:A:2588:U:C6	2.52	0.45
14:Q:112:ALA:HB1	14:Q:117:LEU:HD12	1.98	0.45
2:A:873:U:O2'	2:A:2101:U:C2	2.70	0.45
2:A:911:G:H2'	2:A:912:C:C6	2.51	0.45
2:A:1551:U:H2'	2:A:1552:U:C6	2.51	0.45
18:U:29:ILE:HG23	18:U:37:ALA:HB1	1.99	0.45
4:C:66:ASP:OD2	4:C:102:ARG:HD3	2.17	0.45
2:A:2148:G:H2'	2:A:2150:A:C8	2.51	0.45
2:A:2921:G:H4'	2:A:2922:G:H8	1.82	0.45
29:7:8:ARG:HD2	29:7:8:ARG:HA	1.83	0.45
2:A:1115:A:H4'	2:A:1116:A:H5"	1.99	0.45
10:M:90:ASP:OD1	10:M:90:ASP:N	2.50	0.45
14:Q:11:ARG:HD2	14:Q:99:TYR:CZ	2.52	0.45
19:V:17:THR:HA	19:V:20:LEU:HD12	1.98	0.45
2:A:1537:G:H2'	2:A:1538:U:C6	2.52	0.45
2:A:2217:U:C2	2:A:2218:G:C8	3.05	0.45
7:F:33:LYS:HA	7:F:96:MET:SD	2.56	0.45
7:F:52:SER:OG	7:F:53:ALA:N	2.49	0.45
8:G:54:ARG:HB2	8:G:65:HIS:ND1	2.31	0.45
8:G:88:GLU:OE2	8:G:165:GLU:HG3	2.17	0.45
2:A:448:A:H2'	2:A:449:U:O4'	2.17	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:A:1043:G:OP1	16:S:92:ARG:HG2	2.16	0.45
2:A:1544:A:H2'	2:A:1545:A:C8	2.52	0.45
2:A:1903:U:O2'	2:A:1904:C:H5"	2.17	0.45
20:W:40:MET:SD	20:W:60:GLU:HG2	2.56	0.45
2:A:1019:A:OP1	2:A:1019:A:H8	2.00	0.44
2:A:1508:A:H4'	2:A:1509:A:O5'	2.16	0.44
2:A:1716:G:O2'	2:A:2024:U:O4	2.24	0.44
2:A:625:G:H2'	2:A:626:G:C8	2.51	0.44
2:A:2336:G:O6	2:A:2347:A:N6	2.50	0.44
3:B:46:A:H2'	3:B:47:C:C6	2.52	0.44
4:C:29:PRO:HB2	4:C:34:LEU:HD21	1.98	0.44
5:D:21:GLU:OE1	10:M:72:GLN:HG3	2.17	0.44
2:A:349:U:H2'	2:A:350:G:O4'	2.18	0.44
5:D:109:ASP:OD1	5:D:172:GLN:HA	2.18	0.44
2:A:258:A:H2'	2:A:259:A:H8	1.81	0.44
2:A:280:A:H2'	2:A:281:A:C8	2.52	0.44
2:A:2360:A:H2'	2:A:2361:A:C8	2.52	0.44
3:B:21:G:H2'	3:B:22:G:C8	2.52	0.44
2:A:199:A:N6	2:A:2463:A:O2'	2.49	0.44
2:A:351:G:H2'	2:A:352:A:C8	2.52	0.44
2:A:2214:G:H2'	2:A:2215:G:H8	1.83	0.44
2:A:2217:U:H2'	2:A:2218:G:C8	2.53	0.44
2:A:2570:U:H2'	2:A:2571:C:C6	2.51	0.44
5:D:130:ARG:HB2	5:D:140:HIS:O	2.17	0.44
10:M:64:ARG:HG2	10:M:83:ALA:HB3	1.99	0.44
2:A:291:U:H2'	2:A:292:U:H6	1.83	0.44
2:A:749:U:H2'	2:A:750:G:O4'	2.18	0.44
2:A:1497:G:O2'	2:A:1596:A:N3	2.49	0.44
2:A:1698:G:O2'	13:P:125:ASP:OD2	2.21	0.44
2:A:398:C:H2'	2:A:399:C:O4'	2.17	0.44
2:A:904:A:H2'	2:A:905:G:O4'	2.17	0.44
2:A:2146:C:C2	2:A:2147:A:C8	3.05	0.44
2:A:597:U:H2'	2:A:598:G:O4'	2.17	0.44
12:O:34:LEU:HD22	12:O:129:THR:HB	2.00	0.44
9:L:115:LEU:O	9:L:119:LEU:HG	2.17	0.44
20:W:32:ARG:HD3	20:W:64:HIS:HA	1.99	0.44
2:A:703:U:H2'	2:A:704:A:C8	2.52	0.43
2:A:2070:A:H2'	2:A:2071:G:C8	2.53	0.43
2:A:2632:G:C8	4:C:236:GLU:HG2	2.53	0.43
4:C:27:SER:O	4:C:27:SER:OG	2.31	0.43
2:A:831:U:H2'	2:A:832:C:C6	2.53	0.43

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	$\frac{\text{overlap}(\mathbf{A})}{0.42}$
2:A:950:U:H2	2:A:951:U:H0	1.82	0.43
2:A:1074:A:H2	2:A:1075:A:C8	2.52	0.43
2:A:1456:A:H2	2:A:1457:A:H8	1.81	0.43
2:A:1579:A:H62	2:A:1595:G:HO2	1.60	0.43
2:A:2915:G:H2	2:A:2916:A:O4	2.17	0.43
8:G:55:PRO:HD2	8:G:61:HIS:NE2	2.33	0.43
2:A:339:U:H2'	2:A:340:G:O4'	2.19	0.43
2:A:364:A:H5"	6:E:136:THR:HG23	2.00	0.43
2:A:2922:G:H2'	2:A:2922:G:N3	2.34	0.43
3:B:13:G:OP2	3:B:67:G:N2	2.51	0.43
14:Q:67:GLU:HB2	14:Q:71:ASP:OD2	2.19	0.43
2:A:91:C:H2'	2:A:92:G:O4'	2.18	0.43
2:A:2215:G:H2'	2:A:2216:C:H6	1.82	0.43
3:B:41:C:OP1	25:3:2:LYS:N	2.52	0.43
7:F:51:ASP:O	7:F:55:GLU:OE1	2.37	0.43
8:G:86:LYS:HG2	8:G:132:ILE:HG12	1.99	0.43
2:A:759:G:H2'	2:A:760:U:C6	2.53	0.43
5:D:126:HIS:CD2	5:D:159:LEU:HB3	2.52	0.43
2:A:1130:A:H1'	2:A:1151:U:O2'	2.18	0.43
2:A:1248:A:O4'	6:E:41:ARG:NH2	2.52	0.43
8:G:56:THR:H	8:G:61:HIS:CD2	2.37	0.43
13:P:118:LYS:HA	13:P:130:VAL:HG23	1.99	0.43
2:A:27:G:O2'	2:A:28:A:O5'	2.35	0.43
2:A:271:C:O2	2:A:271:C:H2'	2.18	0.43
2:A:2306:A:H2'	2:A:2307:A:C8	2.54	0.43
3:B:40:C:O2	7:F:90:THR:HG22	2.19	0.43
7:F:52:SER:HA	7:F:55:GLU:OE1	2.18	0.43
2:A:220:G:N2	2:A:237:U:H4'	2.32	0.43
2:A:1401:C:H2'	2:A:1402:G:O4'	2.19	0.43
8:G:44:ASN:OD1	8:G:51:ASN:N	2.48	0.43
2:A:525:A:N3	2:A:527:G:H5"	2.34	0.43
2:A:638:U:H2'	2:A:639:U:C6	2.54	0.43
2:A:1823:C:H2'	2:A:1824:A:C5	2.54	0.43
2:A:2412:G:H2'	2:A:2413:U:C6	2.54	0.43
2:A:2176:C:H2'	2:A:2177:G:O4'	2.19	0.43
3:B:110:G:H2'	3:B:111:C:C6	2.54	0.43
14:Q:79:LEU:O	14:Q:83:ARG:HG3	2.19	0.43
28:6:8:SER:HB3	28:6:11:LYS:HB2	2.00	0.43
18:U:69:LEU:HD22	18:U:114:GLU:OE2	2.19	0.42
28:6:24:THR:O	28:6:28:ARG:HG3	2.18	0.42
2:A:688:A:HO2'	2:A:689:A:P	2.42	0.42

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:A:1067:A:H3'	2:A:1067:A:C8	2.55	0.42
3:B:30:C:N4	3:B:49:G:O6	2.53	0.42
4:C:248:SER:HB3	4:C:254:THR:HG21	2.01	0.42
5:D:123:ILE:HD11	5:D:141:ARG:NH1	2.35	0.42
9:L:118:GLN:HE22	9:L:121:LYS:NZ	2.17	0.42
13:P:22:THR:HG21	13:P:67:ARG:HB2	2.01	0.42
2:A:409:G:H3'	2:A:410:G:C8	2.55	0.42
2:A:1105:G:H2'	2:A:1106:U:C6	2.55	0.42
8:G:89:LEU:HG	8:G:162:ILE:HG12	2.00	0.42
2:A:297:U:HO2'	2:A:298:U:H5	1.63	0.42
2:A:1015:G:H2'	2:A:1016:U:C6	2.54	0.42
2:A:1336:U:H2'	2:A:1337:U:C6	2.55	0.42
2:A:2494:C:H2'	2:A:2495:U:C6	2.54	0.42
11:N:87:ASP:N	11:N:87:ASP:OD1	2.53	0.42
22:Z:41:ASN:C	22:Z:43:LYS:H	2.23	0.42
2:A:878:G:H2'	2:A:879:C:C6	2.55	0.42
2:A:1906:G:O2'	2:A:1907:C:H6	2.02	0.42
13:P:134:LEU:HD12	13:P:134:LEU:O	2.19	0.42
2:A:117:A:H5'	2:A:118:A:H8	1.85	0.42
7:F:61:THR:HG23	7:F:91:LEU:HD11	2.01	0.42
4:C:146:MET:SD	4:C:154:LEU:HD11	2.60	0.42
2:A:1227:U:H2'	2:A:1228:U:C6	2.54	0.42
2:A:2225:C:H2'	2:A:2226:A:C8	2.55	0.42
2:A:344:C:C5	20:W:78:PRO:HG2	2.55	0.41
2:A:563:G:H2'	2:A:564:U:C6	2.55	0.41
2:A:1074:A:N6	2:A:1171:G:H2'	2.35	0.41
7:F:51:ASP:O	7:F:54:VAL:HB	2.20	0.41
8:G:11:ILE:HD11	8:G:50:ILE:HD11	2.02	0.41
8:G:15:VAL:HG12	8:G:28:GLY:HA3	2.01	0.41
10:M:19:VAL:CG1	10:M:41:CYS:HB2	2.50	0.41
18:U:16:ARG:NH2	18:U:103:LYS:HD2	2.35	0.41
20:W:22:LYS:H	20:W:36:GLU:HG2	1.85	0.41
2:A:540:G:H21	18:U:66:ASN:HD21	1.68	0.41
2:A:2926:U:H2'	2:A:2927:A:C8	2.55	0.41
4:C:30:GLU:O	4:C:34:LEU:HD23	2.20	0.41
2:A:407:G:H2'	2:A:408:U:H6	1.85	0.41
2:A:1430:C:H2'	2:A:1431:A:C8	2.55	0.41
2:A:1528:G:O2'	2:A:1529:U:OP1	2.35	0.41
6:E:196:LYS:O	6:E:199:VAL:HG12	2.20	0.41
2:A:554:C:H6	2:A:554:C:H2'	1.56	0.41
2:A:1763:U:O2'	2:A:1764:A:H5'	2.20	0.41

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
19:V:43:GLU:HG3	19:V:50:VAL:HG23	2.02	0.41
2:A:460:C:H2'	2:A:461:A:C8	2.55	0.41
2:A:2775:A:OP1	30:8:35:LYS:HE3	2.21	0.41
6:E:13:ASN:OD1	6:E:15:GLY:N	2.47	0.41
23:1:14:ILE:HG23	23:1:15:GLN:HG3	2.02	0.41
2:A:115:C:O2'	2:A:125:A:N3	2.48	0.41
2:A:637:U:H2'	2:A:638:U:C6	2.56	0.41
10:M:23:LYS:HE2	10:M:23:LYS:HB2	1.81	0.41
2:A:2347:A:H2'	2:A:2348:U:C6	2.54	0.41
2:A:2561:U:H2'	2:A:2563:U:O5'	2.21	0.41
7:F:53:ALA:HA	7:F:56:GLU:CD	2.41	0.41
8:G:156:PRO:O	8:G:171:ARG:HD3	2.21	0.41
2:A:969:C:O2'	21:Y:34:ALA:HB2	2.21	0.41
2:A:2052:U:OP2	26:4:6:ARG:NH2	2.54	0.41
2:A:214:G:H5"	2:A:215:A:OP2	2.21	0.41
2:A:714:A:H2'	2:A:716:A:H62	1.86	0.41
2:A:1554:U:H2'	2:A:1555:U:O4'	2.21	0.41
2:A:1712:U:O2'	2:A:2719:G:H4'	2.20	0.41
2:A:2410:A:H2'	2:A:2411:A:O4'	2.21	0.41
2:A:2862:A:O2'	5:D:59:LYS:HD2	2.21	0.41
5:D:65:GLU:O	5:D:69:VAL:HG22	2.20	0.41
6:E:161:GLU:HA	6:E:161:GLU:OE1	2.21	0.41
7:F:57:LEU:HD23	7:F:57:LEU:HA	1.95	0.41
27:5:40:ARG:HG3	27:5:40:ARG:NH1	2.36	0.41
2:A:575:G:H2'	2:A:575:G:N3	2.35	0.41
2:A:1465:A:H2	2:A:1634:A:H2	1.69	0.41
2:A:2580:U:H2'	2:A:2581:G:H8	1.85	0.41
11:N:76:ILE:HD13	11:N:76:ILE:HA	1.88	0.41
2:A:13:A:O2'	2:A:15:G:N7	2.48	0.40
2:A:288:U:O2'	2:A:289:U:H6	2.03	0.40
2:A:851:G:N2	2:A:875:A:OP1	2.54	0.40
2:A:1787:C:C5	15:R:94:ARG:NH2	2.89	0.40
2:A:2499:C:OP1	30:8:5:PRO:HD2	2.21	0.40
6:E:31:LYS:HD3	11:N:9:SER:HB2	2.03	0.40
7:F:77:PHE:C	7:F:78:ARG:HD3	2.41	0.40
10:M:98:ILE:HD13	10:M:114:ILE:HG23	2.03	0.40
14:Q:17:ARG:O	14:Q:20:SER:OG	2.24	0.40
21:Y:79:ARG:HD2	21:Y:80:MET:O	2.21	0.40
2:A:1124:C:H1'	2:A:1134:A:H5"	2.03	0.40
2:A:1459:U:H2'	2:A:1460:G:C8	2.56	0.40
2:A:1771:A:H2'	2:A:1772:A:C8	2.56	0.40

continuea from preet	continued from protocol pagem				
Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)		
3:B:3:U:H2'	3:B:4:G:C8	2.56	0.40		
2:A:186:C:O2'	2:A:187:C:H6	2.05	0.40		
8:G:56:THR:HG22	8:G:57:ASP:H	1.85	0.40		
8:G:104:VAL:HG22	8:G:114:GLU:OE1	2.22	0.40		
2:A:2134:G:H2'	2:A:2135:U:H6	1.83	0.40		
5:D:16:PHE:CE1	5:D:22:LEU:HD13	2.56	0.40		
2:A:1108:G:H2'	2:A:1109:G:C8	2.57	0.40		
2:A:2193:G:H2'	2:A:2194:C:H6	1.87	0.40		
2:A:2327:C:O2'	2:A:2328:C:H5'	2.21	0.40		
2:A:2529:C:OP2	12:O:82:ARG:HD3	2.21	0.40		
2:A:2671:G:HO2'	2:A:2672:A:P	2.45	0.40		
4:C:161:SER:HB3	4:C:194:GLN:HG3	2.04	0.40		
5:D:5:ILE:HG22	5:D:202:ILE:HB	2.04	0.40		

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	v	416/418~(100%)	393~(94%)	22~(5%)	1 (0%)	47	73
4	С	271/277~(98%)	259~(96%)	11 (4%)	1 (0%)	34	60
5	D	204/209~(98%)	197~(97%)	7 (3%)	0	100	100
6	Е	201/207~(97%)	192 (96%)	9 (4%)	0	100	100
7	F	173/179~(97%)	159 (92%)	14 (8%)	0	100	100
8	G	175/178~(98%)	169~(97%)	6 (3%)	0	100	100
9	L	140/145~(97%)	139 (99%)	1 (1%)	0	100	100
10	М	120/122~(98%)	113 (94%)	7~(6%)	0	100	100
11	N	142/146~(97%)	134 (94%)	8 (6%)	0	100	100
12	Ο	131/144 (91%)	131 (100%)	0	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
13	Р	118/135~(87%)	114 (97%)	4 (3%)	0	100	100
14	Q	116/119~(98%)	110 (95%)	6 (5%)	0	100	100
15	R	101/114 (89%)	99~(98%)	2 (2%)	0	100	100
16	S	114/119~(96%)	110 (96%)	4 (4%)	0	100	100
17	Т	99/102~(97%)	97~(98%)	2 (2%)	0	100	100
18	U	108/118~(92%)	107 (99%)	1 (1%)	0	100	100
19	V	88/94 (94%)	86 (98%)	2 (2%)	0	100	100
20	W	100/103~(97%)	96 (96%)	4 (4%)	0	100	100
21	Y	74/96~(77%)	68 (92%)	6 (8%)	0	100	100
22	Z	57/62~(92%)	50 (88%)	7 (12%)	0	100	100
23	1	57/63~(90%)	53~(93%)	4 (7%)	0	100	100
24	2	54/59~(92%)	52 (96%)	2 (4%)	0	100	100
25	3	57/81~(70%)	51 (90%)	6 (10%)	0	100	100
26	4	51/57~(90%)	48 (94%)	3 (6%)	0	100	100
27	5	45/49~(92%)	45 (100%)	0	0	100	100
28	6	41/44~(93%)	41 (100%)	0	0	100	100
29	7	61/66~(92%)	56 (92%)	5 (8%)	0	100	100
30	8	34/37~(92%)	33~(97%)	1 (3%)	0	100	100
All	All	3348/3543~(94%)	3202 (96%)	144 (4%)	2(0%)	54	78

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	V	230	MET
4	С	155	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
1	v	353/365~(97%)	353~(100%)	0	100	100
4	С	221/225~(98%)	221 (100%)	0	100	100
5	D	169/171~(99%)	169 (100%)	0	100	100
6	Е	165/174~(95%)	165 (100%)	0	100	100
7	F	97/155~(63%)	95~(98%)	2 (2%)	53	80
8	G	145/147~(99%)	145 (100%)	0	100	100
9	L	119/121~(98%)	119 (100%)	0	100	100
10	М	101/101 (100%)	101 (100%)	0	100	100
11	Ν	104/115~(90%)	104 (100%)	0	100	100
12	О	103/113~(91%)	103 (100%)	0	100	100
13	Р	95/111 (86%)	95 (100%)	0	100	100
14	Q	96/97~(99%)	96 (100%)	0	100	100
15	R	84/99~(85%)	84 (100%)	0	100	100
16	S	95/97~(98%)	95 (100%)	0	100	100
17	Т	75/82~(92%)	75 (100%)	0	100	100
18	U	83/97~(86%)	83 (100%)	0	100	100
19	V	78/84~(93%)	78 (100%)	0	100	100
20	W	69/88~(78%)	69 (100%)	0	100	100
21	Y	58/76~(76%)	58 (100%)	0	100	100
22	Ζ	46/53~(87%)	46 (100%)	0	100	100
23	1	51/55~(93%)	51 (100%)	0	100	100
24	2	50/52~(96%)	50 (100%)	0	100	100
26	4	47/50~(94%)	47 (100%)	0	100	100
27	5	44/48~(92%)	44 (100%)	0	100	100
28	6	39/39~(100%)	39 (100%)	0	100	100
29	7	53/56~(95%)	53 (100%)	0	100	100
30	8	35/35~(100%)	35 (100%)	0	100	100
All	All	2675/2906~(92%)	2673 (100%)	2 (0%)	93	98

All (2) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
7	F	78	ARG
7	F	80	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (34) such side chains are listed below:

Mol	Chain	Res	Type
1	V	42	ASN
1	V	67	GLN
1	V	382	ASN
1	V	384	HIS
5	D	33	ASN
5	D	50	GLN
5	D	140	HIS
5	D	152	ASN
6	Е	46	GLN
6	Е	49	HIS
6	Е	75	GLN
6	Е	145	ASN
6	Е	162	ASN
7	F	63	GLN
8	G	147	ASN
9	L	118	GLN
9	L	136	GLN
10	М	13	ASN
10	М	110	ASN
11	Ν	35	HIS
12	0	35	GLN
14	Q	15	HIS
16	S	44	GLN
17	Т	90	GLN
18	U	66	ASN
18	U	107	HIS
19	V	73	ASN
21	Y	58	ASN
22	Ζ	34	GLN
26	4	48	GLN
27	5	16	ASN
29	7	26	HIS
29	7	40	GLN
30	8	36	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
2	А	2890/2932~(98%)	464 (16%)	23~(0%)
3	В	113/116~(97%)	14 (12%)	0

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
All	All	3003/3048~(98%)	478 (15%)	23~(0%)

All (478) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
2	А	13	А
2	А	14	А
2	А	28	А
2	А	34	U
2	А	46	С
2	А	60	G
2	А	71	А
2	А	75	G
2	А	89	U
2	А	93	U
2	А	100	U
2	A	101	G
2	А	117	А
2	A	118	A
2	А	119	U
2	А	125	А
2	А	126	А
2	А	133	А
2	А	140	G
2	А	161	А
2	А	164	А
2	А	167	U
2	А	186	С
2	А	187	С
2	А	198	А
2	A	199	A
2	A	201	A
2	A	214	G
2	A	215	A
2	A	218	A
2	A	223	A
2	А	224	A
2	А	228	A
2	A	230	A
2	А	231	A
2	A	232	U
2	A	247	G

Mol	Chain	Res	Type
2	А	250	G
2	А	257	А
2	А	269	С
2	А	270	С
2	А	274	А
2	А	275	С
2	А	276	С
2	А	283	C
2	А	285	U
2	А	287	C
2	А	289	U
2	А	290	С
2	А	295	G
2	A	296	G
2	A	300	U
2	A	301	A
2	А	307	С
2	А	308	U
2	А	309	С
2	А	313	A
2	А	320	U
2	А	323	A
2	А	345	G
2	А	354	A
2	А	360	G
2	А	372	A
2	А	373	A
2	А	375	А
2	А	382	U
2	А	388	А
2	A	404	A
2	A	410	G
2	A	411	A
2	A	417	A
2	A	418	G
2	A	429	С
2	A	432	G
2	A	433	U
2	A	457	G
2	A	466	С
2	A	470	G
2	A	490	С

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mol	Chain	Res	Type
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	501	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	503	А
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	А	526	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	527	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	550	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	552	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	553	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	554	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	555	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	567	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	572	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	574	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	575	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	576	U
$\begin{array}{c c ccccccccccccccccccccccccccccccccc$	2	А	577	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	583	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	591	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	592	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	594	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	595	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	606	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	616	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	618	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	646	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	657	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	659	A
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	А	666	А
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	А	667	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	672	A
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	А	679	G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	А	682	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	689	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	690	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	699	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	700	A
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	А	732	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	768	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	А	776	U
2 A 791 G 2 A 793 U 2 A 794 G	2	А	784	С
2 A 793 U 2 A 794 G	2	А	791	G
2 A 794 G	2	А	793	U
	2	А	794	G

Mol	Chain	Res	Type
2	А	810	А
2	А	811	G
2	А	821	G
2	А	825	А
2	А	828	A
2	А	830	U
2	А	835	А
2	А	836	U
2	А	838	G
2	А	851	G
2	А	852	С
2	А	858	С
2	А	865	А
2	A	873	U
2	А	874	U
2	А	891	U
2	А	892	A
2	А	893	А
2	А	913	А
2	А	921	G
2	А	926	G
2	А	957	А
2	А	959	С
2	А	961	С
2	А	964	А
2	А	973	U
2	А	974	А
2	А	979	U
2	А	980	A
2	А	987	A
2	A	991	A
2	A	992	G
2	A	1007	G
2	A	1020	А
2	А	1026	A
2	A	1029	A
2	A	1031	С
2	A	1042	A
2	A	1051	C
2	A	1055	A
2	A	1058	U
2	A	1059	A

Mol	Chain	Res	Type
2	А	1068	G
2	А	1072	А
2	А	1073	А
2	А	1079	U
2	А	1092	А
2	А	1093	G
2	А	1106	U
2	А	1115	А
2	А	1116	А
2	А	1117	G
2	А	1130	А
2	А	1134	А
2	А	1136	U
2	А	1141	А
2	А	1142	А
2	А	1143	U
2	А	1157	А
2	А	1158	G
2	А	1161	А
2	А	1173	А
2	А	1174	А
2	А	1178	U
2	А	1179	А
2	А	1181	С
2	А	1182	G
2	А	1185	G
2	А	1187	U
2	А	1188	А
2	А	1203	А
2	А	1230	G
2	A	1249	A
2	А	1250	G
2	A	1264	G
2	A	1265	А
2	A	1283	G
2	A	1295	G
2	A	1296	A
2	A	1298	A
2	A	1301	G
2	A	1302	С
2	А	1311	G
2	А	1316	G

Mol	Chain	Res	Type
2	А	1317	А
2	А	1320	G
2	А	1333	С
2	А	1344	А
2	А	1345	А
2	А	1364	G
2	А	1365	А
2	А	1369	С
2	А	1373	U
2	А	1394	С
2	А	1396	U
2	А	1409	А
2	А	1423	U
2	A	1429	A
2	А	1435	А
2	A	1439	А
2	А	1440	U
2	А	1445	G
2	А	1451	G
2	А	1462	U
2	А	1463	U
2	А	1464	А
2	А	1465	А
2	А	1469	А
2	А	1470	U
2	А	1478	С
2	А	1493	А
2	А	1494	А
2	А	1502	А
2	А	1509	А
2	A	1517	C
2	А	1519	А
2	A	1528	G
2	A	1529	U
2	A	1531	U
2	A	1532	G
2	A	1533	А
2	A	1534	G
2	A	1536	A
2	A	1539	A
2	А	1542	С
2	А	1543	A

Mol	Chain	Res	Type
2	А	1546	U
2	А	1553	С
2	А	1558	G
2	А	1559	А
2	А	1570	G
2	А	1571	U
2	А	1573	А
2	А	1575	G
2	А	1579	А
2	А	1581	G
2	А	1611	С
2	А	1612	G
2	А	1618	А
2	A	1621	A
2	А	1630	U
2	А	1638	G
2	А	1642	U
2	А	1656	С
2	А	1657	А
2	А	1659	А
2	А	1660	С
2	А	1683	А
2	А	1695	А
2	А	1696	G
2	А	1697	С
2	А	1700	G
2	А	1701	А
2	А	1723	G
2	А	1724	С
2	А	1749	А
2	A	1762	U
2	A	1763	U
2	A	1764	А
2	A	1771	A
2	A	1778	A
2	A	1781	G
2	A	1782	A
2	А	1783	G
2	A	1787	C
2	A	1789	G
2	A	1796	G
2	A	1797	G

Mol	Chain	Res	Type
2	А	1806	А
2	А	1809	G
2	А	1815	С
2	А	1818	А
2	А	1819	А
2	А	1833	С
2	А	1834	А
2	А	1849	С
2	А	1862	А
2	А	1881	А
2	А	1887	А
2	А	1891	G
2	А	1895	G
2	A	1903	U
2	А	1904	С
2	А	1906	G
2	А	1907	С
2	А	1915	С
2	А	1928	С
2	А	1938	С
2	А	1939	G
2	А	1945	А
2	А	1947	С
2	А	1948	U
2	А	1949	А
2	А	1950	U
2	А	1962	G
2	А	1963	G
2	А	1969	А
2	А	1971	А
2	A	1973	U
2	A	1988	U
2	A	1996	С
2	A	1997	G
2	A	2000	C
2	A	2003	А
2	A	2004	A
2	A	2005	G
2	A	2024	U
2	A	2026	U
2	A	2030	A
2	А	2056	А

Mol	Chain	Res	Type
2	А	2060	G
2	А	2064	А
2	А	2065	G
2	А	2066	А
2	А	2069	С
2	А	2072	G
2	А	2076	С
2	А	2088	С
2	А	2089	G
2	А	2093	А
2	А	2094	G
2	А	2095	А
2	А	2102	G
2	А	2126	G
2	А	2127	A
2	А	2141	U
2	А	2144	U
2	А	2145	А
2	А	2149	G
2	А	2150	А
2	А	2151	U
2	А	2152	A
2	А	2159	А
2	А	2165	A
2	А	2167	А
2	А	2190	G
2	А	2198	G
2	А	2205	U
2	А	2206	А
2	А	2221	U
2	А	2231	A
2	А	2236	G
2	А	2237	С
2	А	2245	A
2	А	2256	A
2	А	2258	A
2	А	2271	G
2	А	2272	G
2	А	2292	G
2	А	2302	G
2	А	2316	С
2	А	2319	A

Mol	Chain	Res	Type
2	А	2320	А
2	А	2321	А
2	А	2329	U
2	А	2338	А
2	А	2341	G
2	А	2353	А
2	А	2355	А
2	А	2358	G
2	А	2360	А
2	А	2367	С
2	А	2380	С
2	А	2383	С
2	А	2394	А
2	А	2410	А
2	А	2412	G
2	А	2416	G
2	А	2418	С
2	А	2435	U
2	А	2439	С
2	А	2447	G
2	А	2455	С
2	А	2456	U
2	А	2458	А
2	А	2462	G
2	А	2463	А
2	А	2468	А
2	А	2473	С
2	А	2474	С
2	А	2481	А
2	А	2492	А
2	А	2498	С
2	А	2507	С
2	A	2509	А
2	А	2524	U
2	А	2531	С
2	A	2535	G
2	А	2538	G
2	A	2551	A
2	А	2558	G
2	A	2562	G
2	А	2587	U
2	А	2599	А

Mol	Chain	Res	Type
2	А	2600	G
2	А	2605	А
2	А	2606	С
2	А	2607	G
2	А	2615	G
2	А	2642	U
2	А	2643	С
2	А	2646	U
2	А	2648	U
2	А	2663	G
2	А	2679	С
2	A	2696	G
2	A	2715	G
2	A	2722	U
2	А	2724	С
2	А	2747	G
2	А	2759	U
2	А	2766	С
2	А	2768	G
2	A	2777	G
2	A	2781	A
2	А	2783	А
2	A	2790	A
2	A	2798	A
2	A	2799	G
2	A	2810	G
2	A	2811	A
2	A	2812	U
2	A	2813	G
2	A	2822	C
2	A	2824	U
2	A	2827	C
2	A	2828	U
2	A	2829	Ŭ
2	A	2832	G
2	A	2835	A
2	A	2837	U
2	A	2841	A
2	A	2862	A
2	A	2864	A
2	A	2872	G
2	A	2890	U

Mol	Chain	Res	Type
2	A	2896	G
2	А	2901	G
2	А	2902	A
2	А	2908	А
2	А	2912	А
2	А	2920	А
2	А	2929	С
3	В	10	U
3	В	19	А
3	В	20	А
3	В	23	U
3	В	33	U
3	В	40	С
3	В	51	А
3	В	54	U
3	В	55	А
3	В	65	G
3	В	85	С
3	В	87	U
3	В	88	Ċ
3	В	107	G

All (23) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
2	А	27	G
2	А	88	G
2	А	92	G
2	А	139	А
2	А	553	U
2	А	688	А
2	А	809	G
2	А	979	U
2	А	1248	А
2	А	1249	А
2	А	1508	А
2	А	1528	G
2	А	1532	G
2	A	1533	А
2	A	1569	U
2	А	1817	А
2	А	1886	А

Continued from previous page...

Mol	Chain	Res	Type
2	А	2438	G
2	А	2463	А
2	А	2472	А
2	А	2506	U
2	А	2789	U
2	А	2809	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 205 ligands modelled in this entry, 204 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Bos	Tink	Bo	ond leng	ths	В	ond ang	les
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
31	GCP	v	501	-	27,34,34	1.43	5 (18%)	34,54,54	1.92	8 (23%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
31	GCP	v	501	-	-	5/15/38/38	0/3/3/3

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(\text{\AA})$	$\mathrm{Ideal}(\mathrm{\AA})$
31	V	501	GCP	C5-C6	4.00	1.48	1.41
31	V	501	GCP	PG-O3G	2.73	1.61	1.54
31	V	501	GCP	PG-O2G	2.59	1.60	1.54
31	V	501	GCP	C5-C4	2.36	1.47	1.40
31	V	501	GCP	PB-O2B	2.12	1.61	1.56

All (8) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
31	V	501	GCP	C2-N3-C4	4.76	120.79	115.36
31	V	501	GCP	C2-N1-C6	3.98	122.26	115.93
31	V	501	GCP	C5-C6-N1	-3.97	118.00	123.43
31	V	501	GCP	C4-C5-C6	-3.54	117.42	120.80
31	V	501	GCP	PB-O3A-PA	-3.50	121.47	132.56
31	V	501	GCP	C3'-C2'-C1'	3.35	106.02	100.98
31	V	501	GCP	N3-C2-N1	-3.18	122.98	127.22
31	V	501	GCP	C4-C5-N7	-2.49	106.81	109.40

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
31	V	501	GCP	C5'-O5'-PA-O1A
31	V	501	GCP	C5'-O5'-PA-O3A
31	V	501	GCP	O4'-C4'-C5'-O5'
31	V	501	GCP	PB-C3B-PG-O1G
31	V	501	GCP	C5'-O5'-PA-O2A

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient that rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-42577. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 256

Y Index: 256

Z Index: 256

6.2.2 Raw map

X Index: 256

Y Index: 256

Z Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 256

Y Index: 254

Z Index: 274

6.3.2 Raw map

X Index: 256

Y Index: 254

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.3. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{42577}msk_{1.map}$ (i) 6.6.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 834 nm^3 ; this corresponds to an approximate mass of 753 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.370 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.370 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{B}_{\mathrm{assolution ostimato}}(\mathbf{\hat{\lambda}})$	Estim	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit		
Reported by author	2.70	-	-		
Author-provided FSC curve	-	-	-		
Unmasked-calculated*	3.05	3.69	3.08		

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.05 differs from the reported value 2.7 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-42577 and PDB model 8UUA. Per-residue inclusion information can be found in section 3 on page 11.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.3 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.3).

9.4 Atom inclusion (i)

At the recommended contour level, 95% of all backbone atoms, 95% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.3) and Q-score for the entire model and for each chain.

Atom inclusion	Q-score
0.9470	0.5830
0.9380	0.5630
0.9320	0.6020
0.7840	0.3990
0.9390	0.6110
0.9310	0.6080
0.9680	0.6350
0.9660	0.6350
0.9300	0.6190
0.9650	0.5890
0.9860	0.5260
0.9490	0.6170
0.9510	0.6140
0.9340	0.5940
0.8210	0.4180
0.8590	0.5170
0.9580	0.6140
0.9180	0.6040
0.9270	0.5920
0.9360	0.6040
0.9490	0.6120
0.8790	0.5060
0.9420	0.6050
0.9710	0.6160
0.9640	0.6120
0.9450	0.6120
0.9390	0.5960
0.9380	0.5710
0.9550	0.6240
0.9360	0.5990
0.7170	0.4820
	Atom inclusion 0.9470 0.9380 0.9380 0.9320 0.7840 0.9390 0.9390 0.9390 0.9390 0.9390 0.9390 0.9390 0.9390 0.9390 0.9300 0.9660 0.9660 0.9650 0.9650 0.9490 0.9490 0.9340 0.8210 0.8210 0.8590 0.9360 0.9180 0.9270 0.9360 0.9490 0.9490 0.9420 0.9420 0.9420 0.9420 0.9380 0.9380 0.9380 0.9380 0.9380 0.9360 0.9360 0.9360

