

Jan 11, 2024 - 01:39 AM EST

PDB ID	:	7UWC
EMDB ID	:	EMD-26828
Title	:	Citrus V-ATPase State 2, H in contact with subunit a
Authors	:	Keon, K.A.; Abdelaziz, R.A.; Schulze, W.X.; Schumacher, K.; Rubinstein, J.L.
Deposited on	:	2022-05-03
Resolution	:	4.00 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev70
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motrie	Whole archive	EM structures
Wiethic	$(\# {\rm Entries})$	$(\# { m Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	Р	452	45%	6%	7%
2	А	623	81%	14%	5%
2	С	623	83%	13%	·
2	Е	623	81%	16%	·
3	В	488	76%	18%	6%
3	D	488	79%	17%	•
3	F	488	• 82%	13%	5%
4	G	230	8%	9% 11	%

 $Continued \ from \ previous \ page...$ Chain Length Quality of chain Mol Ι 2304 77% 12% • 10% Κ 2304 83% 11% 6% 19% 5Η 11080% 8% 12% J 511072% 15% 13% L 511085% 7% 8% 2596 М 79% 18% . i 7Ν 13075% 8% 18% 10% 8 Ο 37580% • 17% i 9 823 \mathbf{a} 87% 13% \mathbf{b} 3210 100% 11 182 \mathbf{c} 92% 8% • 12 \mathbf{d} 35176% 24% 1370е 94% 6% 14g 16493% 7% 14h 1645% 95% 14i 1645% 95% 16414j 5% 95% k 164145% 95% 1 141647% 93% 141645% \mathbf{m} 95% 141645% n 95% 7% 141640 93% 1524r 100%

2 Entry composition (i)

There are 15 unique types of molecules in this entry. The entry contains 46123 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called V-type proton ATPase subunit H.

Mol	Chain	Residues		Ator	AltConf	Trace		
1	Р	422	Total 2099	C 1254	N 422	O 423	0	0

• Molecule 2 is a protein called V-type proton ATPase catalytic subunit A.

Mol	Chain	Residues		At	oms		AltConf	Trace		
9	2 1	500	Total	С	Ν	0	\mathbf{S}	0	0	
	569	3935	2537	674	712	12	0	0		
0	С	602	Total	С	Ν	0	S	0	0	
	003	4146	2671	714	746	15	0	0		
0	F	602	Total	С	Ν	0	S	0	0	
Ζ	<u>1</u>	005	4252	2733	734	767	18	0	0	

• Molecule 3 is a protein called V-type proton ATPase subunit B2.

Mol	Chain	Residues		At	oms		AltConf	Trace		
3	3 B	460	Total	С	Ν	0	\mathbf{S}	0	0	
5		400	3147	2040	544	555	8	0	0	
2	Л	467	Total	С	Ν	0	\mathbf{S}	0	0	
5 D	407	3213	2086	560	560	7	0	0		
2	Б	462	Total	С	Ν	0	S	0	0	
3	Г	403	3194	2069	547	569	9		0	

• Molecule 4 is a protein called V-type proton ATPase subunit E.

Mol	Chain	Residues		At	oms		AltConf	Trace	
4	С	204	Total	С	Ν	0	S	0	0
4	4 G	204	1273	795	241	233	4	0	0
4	т	207	Total	С	Ν	0	S	0	0
4 1	207	1357	852	253	248	4	0	0	
4	K	217	Total	С	Ν	0	S	0	0
4	n	217	1364	855	250	253	6	0	

• Molecule 5 is a protein called V-type proton ATPase subunit G.

Mol	Chain	Residues		At	oms		AltConf	Trace	
5	5 H	07	Total	С	Ν	0	S	0	0
0		91	555	343	110	101	1	0	0
5	т	06	Total	С	Ν	0	S	0	0
0 0	90	517	316	100	100	1	0	0	
Б	т	101	Total	С	Ν	0	S	0	0
5	L	101	582	357	112	112	1	0	

• Molecule 6 is a protein called V-type proton ATPase subunit D.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
6	М	213	Total	C	N 01C	0	0	0
			1096	660	216	220		

• Molecule 7 is a protein called V-type proton ATPase subunit F.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
7	Ν	107	Total 544	C 330	N 107	O 107	0	0

• Molecule 8 is a protein called V-type proton ATPase subunit C.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
8	О	311	Total 1571	C 947	N 312	O 312	0	0

• Molecule 9 is a protein called V-type proton ATPase subunit a3.

Mol	Chain	Residues		Ator	\mathbf{ns}		AltConf	Trace
9	a	713	Total 3590	C 2161	N 715	0 714	0	0

• Molecule 10 is a protein called V-type proton ATPase subunit AP1 fragment.

Mol	Chain	Residues	Atoms			AltConf	Trace	
10	b	32	Total 160	C 96	N 32	O 32	0	0

• Molecule 11 is a protein called V-type proton ATPase subunit c".

Mol	Chain	Residues	Atoms			AltConf	Trace	
11	с	168	Total 833	C 497	N 168	O 168	0	0

• Molecule 12 is a protein called V-type proton ATPase subunit d2.

Mol	Chain	Residues	Atoms			AltConf	Trace	
12	d	268	Total 1344	C 806	N 268	O 270	0	0

• Molecule 13 is a protein called V-type proton ATPase subunit e1.

Mol	Chain	Residues	Atoms			AltConf	Trace	
13	е	66	Total 358	C 221	N 70	O 67	0	0

• Molecule 14 is a protein called V-type proton ATPase subunit c.

Mol	Chain	Residues	Atoms	AltConf	Trace
14	g	153	Total C N O S 764 456 153 154 1	0	0
14	h	155	Total C N O 763 452 155 156	0	0
14	i	156	Total C N O 780 463 156 161	0	0
14	j	155	Total C N O 777 465 155 157	0	0
14	k	155	Total C N O S 769 458 155 155 1	0	0
14	1	153	Total C N O 752 446 153 153	0	0
14	m	155	Total C N O 769 458 155 156	0	0
14	n	155	Total C N O 762 452 155 155	0	0
14	0	152	Total C N O 737 433 152 152	0	0

• Molecule 15 is a protein called V-type proton ATPase subunit AP2 fragment.

Mol	Chain	Residues	Atoms			AltConf	Trace	
15	r	24	Total 120	С 72	N 24	0 24	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: V-type proton ATPase subunit H

• Molecule 2: V-type proton ATPase catalytic subunit A

• Molecule 4: V-type proton ATPase subunit E

_	10%			
Chain O:		80%	• 17%	-
MET A2 815 A16 E25	K29 134 134 135 136 136 136 136 136 1154 1155 1155 1155	A162 A162 V163 R164 R164 S167 S167 N168 R171 PR0 A2P	LLE TLE SER GLU HLS H181 L181 L181 L181 L181 CL185 CL1	ASP TRP LLEU LLEU SER THR CLU LLEU LLEU T204
V207 V208 S211 S211 K213 K213	L215 Y216 E217 E217 D218 ASN GLU TYR ALA L223 L223 L223 D234	1238 R241 E242 F245 7245 R246 R246 C245 C245 R248 C245 R248 C245 C245 C245 C245 C245 C245 C245 C255 C25	E258 ◆ 8273 8277 8277 8277 1279 1279 1279 8322 8322 832	ALA ASN SER THR PHE TRP TRP TRP CTR GLU GLU GLU GLY
GLY MET MET ALA GLY GLY GLY GLY	ASP ASP ASP ASP ASP SER THR THR THR THR THR THR THR THR THR VAL VAL			
• Molecule	9: V-type proton ATP	ase subunit a3		
Chain a:		87%	13%	-
MET ALA GLU GLU GLN GLY GLY	GLY GLY GLY CYS CYS CYS CYS CYS PRO PRO PRO PRO PRO CSS SS	S93 S93 VAL LYS LYS LYS LYS THR ARR ARR ASN ASN ASN ASN ASN ASN ASN ASN ASN	0161 ARG ALU ALU ALU ALU CLU CLU CLU CLU CLU CLU CLU CLU	THR ILLE GLU PRO LEU
LEU THR ASP LYS CILU MET SER ALA	ASP PRO SER LIYS CLE TLE V193 K193 F1259 K258 K258 K258	C347 2348 1468 1468 1418 14 14 14 14 14 14 14 14 14 14 14 14 14 1	CLM SER ASP ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	SEA HIS CLY HIS CLU CLU PHE
GLU PHE SER GLU VAL PHE VAL HT10	<mark>B819</mark> ASP GLU GLU GLU			
• Molecule	10: V-type proton AT	Pase subunit AP1 frag	gment	
Chain b:	•	100%		-
X273				
• Molecule	11: V-type proton AT	Pase subunit c"		
Chain c:		92%	8%	
MET SER GLY SER VAL MET LEU GLY	GLU S11 S11 P178 ALA LVS PR0 VAL			
• Molecule	12: V-type proton AT	Pase subunit d2		
Chain d:	•	6%	24%	-
MET TYR GLY PHE GLU AG L28	THR ALA ALA ASP ASP TTR ASP CTS CTS CTS CTS CTS CTS CTS CTS CTS CTS	LYS MET MET HEU LEU SER ALA THR THR THR CLN CLN CLN CLN CLN CLN CLN	PRO SER PRO LEU HIS THR THS CS CS ALA ALA	THR GLU G115 THR THR
LEU HIS GLU R120 I138 ALA THR	LEU ALA VALA ALA ALA ALA ALA ALA ALA ALA AL	D235 1240 1240 1240 1240 8242 8242 8242 8242 8242 1247 1247 1248	1277 1278 1281 6334 VAL ALL ALL ALL ALL CILN CLN CLN SSR SSR SSR	ARG VAL HIS ASP SER VAL VAL VAL PHE TILE
		W O R L D W I D E PROTEIN DATA BANK		

6%

PHE

• Molecule 13: V-type proton ATPase subunit e1

Chain e:

• Molecule 14: V-type proton ATPase subunit c

Chain g: 93% 7%

94%

• Molecule 14: V-type proton ATPase subunit c

Chain h:	95%	5%
MET SER PHE CLY GLY ASP ASP ASP ASP ASP CS ALA ALA CLU		

• Molecule 14: V-type proton ATPase subunit c

Chain i:	95%	5%

• Molecule 14: V-type proton ATPase subunit c

MET SER PHE SER GLY GLY E8 E8

GLU

• Molecule 14: V-type proton ATPase subunit c

Chain l: 93% 7%

• Molecule 14: V-type proton ATPase subunit c

Chain m:	95%	5%
MET SER THR PHE SER GLY ASP ES R162	GLU	
• Molecule 14	: V-type proton ATPase subunit c	
Chain n:	95%	5%
MET SER THR PHE SER GLY ASP E8 R162	GLU	
• Molecule 14	: V-type proton ATPase subunit c	

• Molecule 15: V-type proton ATPase subunit AP2 fragment

Chain r: 100%

There are no outlier residues recorded for this chain.

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	53303	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	31	Depositor
Minimum defocus (nm)	677.558	Depositor
Maximum defocus (nm)	3414.211	Depositor
Magnification	Not provided	
Image detector	FEI FALCON IV $(4k \ge 4k)$	Depositor
Maximum map value	4.070	Depositor
Minimum map value	-0.411	Depositor
Average map value	0.032	Depositor
Map value standard deviation	0.119	Depositor
Recommended contour level	0.6	Depositor
Map size (Å)	485.1, 485.1, 485.1	wwPDB
Map dimensions	300, 300, 300	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.617, 1.617, 1.617	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bo	ond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	Р	0.85	0/2097	0.79	0/2925
2	А	0.26	0/4023	0.46	0/5546
2	С	0.34	0/4244	0.57	0/5833
2	Е	0.30	0/4350	0.50	1/5958~(0.0%)
3	В	0.29	0/3207	0.49	0/4403
3	D	0.31	0/3277	0.51	0/4494
3	F	0.28	0/3257	0.48	0/4468
4	G	0.28	0/1283	0.47	0/1764
4	Ι	0.25	0/1374	0.45	0/1884
4	K	0.25	0/1377	0.45	0/1895
5	Н	0.24	0/558	0.40	0/772
5	J	0.23	0/517	0.39	0/716
5	L	0.25	0/586	0.35	0/812
6	М	0.24	0/1099	0.40	0/1530
7	Ν	0.24	0/548	0.47	0/767
8	0	0.27	0/1578	0.43	0/2203
9	a	0.23	0/3613	0.38	0/5044
11	с	0.23	0/837	0.36	0/1164
12	d	0.23	0/1345	0.41	0/1870
13	е	0.23	0/363	0.33	0/506
14	g	0.25	0/769	0.39	0/1064
14	h	0.24	0/767	0.39	0/1062
14	i	0.25	0/785	0.40	0/1086
14	j	0.25	0/783	0.38	0/1084
14	k	0.25	0/774	0.39	0/1071
14	1	0.25	0/756	0.38	0/1047
14	m	0.25	0/774	0.38	0/1071
14	n	0.24	0/766	0.39	0/1061
14	0	0.24	0/736	0.37	0/1015
All	All	0.32	0/46443	0.48	1/64115~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a

sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	Е	0	1

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Ε	620	ASP	O-C-N	-5.68	113.62	122.70

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	Ε	620	ASP	Mainchain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	Р	2099	0	923	10	0
2	А	3935	0	3531	49	0
2	С	4146	0	3766	48	0
2	Е	4252	0	3975	63	0
3	В	3147	0	2942	55	0
3	D	3213	0	3010	53	0
3	F	3194	0	2985	44	0
4	G	1273	0	1039	17	0
4	Ι	1357	0	1177	20	0
4	K	1364	0	1113	20	0
5	Н	555	0	400	7	0
5	J	517	0	343	13	0
5	L	582	0	411	7	0
6	М	1096	0	579	6	0
7	Ν	544	0	279	4	0
8	0	1571	0	752	5	0
9	a	3590	0	1768	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
10	b	160	0	34	0	0
11	с	833	0	446	0	0
12	d	1344	0	632	0	0
13	е	358	0	170	0	0
14	g	764	0	446	0	0
14	h	763	0	432	0	0
14	i	780	0	460	0	0
14	j	777	0	448	0	0
14	k	769	0	439	0	0
14	1	752	0	425	0	0
14	m	769	0	439	0	0
14	n	762	0	429	0	0
14	0	737	0	393	0	0
15	r	120	0	26	0	0
All	All	46123	0	34212	390	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (390)	close	$\operatorname{contacts}$	within	the	same	$\operatorname{asymmetric}$	unit	are	listed	below,	sorted	by	their	clash
magnitud	e.													

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
3:B:357:ILE:HG23	3:B:369:PRO:HG2	1.55	0.89	
2:C:488:ARG:HE	2:C:492:LEU:HD23	1.39	0.85	
1:P:365:GLU:HA	1:P:369:PHE:HA	1.63	0.79	
4:G:139:HIS:CE1	4:G:178:HIS:CE1	2.72	0.77	
2:E:206:THR:HG22	2:E:208:LEU:H	1.48	0.76	
4:G:139:HIS:HE1	4:G:178:HIS:CE1	2.05	0.73	
2:E:277:VAL:HG23	2:E:315:VAL:HB	1.69	0.73	
3:D:157:ILE:HG12	3:D:163:ILE:HG13	1.70	0.72	
3:F:367:TYR:O	3:F:369:PRO:HD3	1.91	0.71	
2:A:228:PRO:HB3	2:A:464:LEU:HD21	1.71	0.71	
2:E:213:VAL:HG12	2:E:331:TYR:HB3	1.72	0.71	
2:A:122:PRO:HG2	2:A:125:VAL:HB	1.72	0.71	
2:E:252:GLY:HA3	2:E:258:LYS:HD3	1.72	0.70	
2:C:492:LEU:HD11	2:C:512:LEU:HD21	1.72	0.70	
3:B:45:ILE:HG13	3:B:93:LEU:HG	1.74	0.70	
3:B:306:TYR:HA	3:B:346:LEU:HD21	1.73	0.69	
3:D:94:LYS:HB3	3:D:124:TYR:HB3	1.74	0.68	
2:E:282:ARG:NH1	2:E:285:GLU:OE2	2.26	0.68	
3:B:287:GLU:HA	2:C:379:ALA:HB1	1.77	0.67	

	i i i i i i i i i i i i i i i i i i i	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:F:459:TRP:HE1	3:F:478:LEU:HB2	1.60	0.67
2:C:580:ASP:OD1	2:C:581:LEU:N	2.28	0.66
3:D:19:MET:SD	4:G:124:ARG:NH2	2.68	0.66
4:I:208:ARG:NH2	5:J:106:THR:O	2.28	0.66
3:B:50:LEU:HD11	3:B:56:ARG:HE	1.60	0.66
2:A:553:LEU:HD13	2:A:556:GLN:HE22	1.58	0.65
3:B:128:SER:HB3	3:B:254:ARG:HD3	1.79	0.65
3:D:276:THR:HG23	3:D:331:ILE:HD11	1.78	0.65
5:J:85:HIS:O	5:J:89:GLY:N	2.29	0.64
5:J:86:LEU:O	5:J:90:ALA:N	2.30	0.64
2:A:248:CYS:HB2	2:A:410:VAL:HA	1.80	0.64
5:H:79:THR:O	5:H:83:ILE:HG12	1.98	0.63
2:E:93:LEU:HA	2:E:97:ILE:HD11	1.80	0.63
3:D:161:GLN:HE22	3:D:379:LEU:HB2	1.64	0.63
3:F:46:VAL:HG12	3:F:88:PHE:HA	1.81	0.63
8:O:159:GLY:HA2	8:O:165:ASP:HA	1.81	0.63
5:J:89:GLY:O	5:J:93:ILE:N	2.30	0.63
3:B:140:PRO:HA	3:B:318:ARG:HD3	1.80	0.63
2:E:577:ARG:HD2	2:E:618:LEU:HD22	1.81	0.62
2:C:266:SER:O	2:C:311:ARG:NH1	2.32	0.62
3:D:140:PRO:HG2	3:D:379:LEU:HG	1.81	0.62
2:E:429:LEU:HA	2:E:432:VAL:HG12	1.81	0.62
2:E:392:ALA:HA	2:E:407:VAL:HG13	1.82	0.62
4:K:40:LYS:NZ	5:L:39:LYS:O	2.33	0.62
2:E:279:CYS:HB2	2:E:326:ARG:HG3	1.82	0.61
4:G:124:ARG:NH1	4:G:201:CYS:SG	2.73	0.61
2:C:23:TYR:HB2	2:C:79:ASN:HA	1.81	0.61
4:K:219:GLU:O	4:K:223:GLN:HG2	2.00	0.61
2:A:22:GLY:O	2:A:82:VAL:N	2.33	0.61
2:E:167:HIS:H	2:E:343:MET:HE3	1.66	0.61
2:E:398:LEU:O	2:E:403:ARG:NH1	2.31	0.61
4:I:107:HIS:O	4:I:111:LYS:HD2	2.00	0.61
5:J:83:ILE:O	5:J:87:ASN:N	2.33	0.61
3:B:15:LEU:O	4:K:208:ARG:NH2	2.33	0.60
2:C:213:VAL:HG22	2:C:331:TYR:HB3	1.82	0.60
3:F:328:GLN:HG3	3:F:330:PRO:HD3	1.82	0.60
5:J:84:HIS:O	5:J:88:ALA:N	2.24	0.60
1:P:169:LEU:C	1:P:171:ALA:H	2.04	0.60
3:F:104:ARG:NH1	3:F:117:PRO:O	2.25	0.60
7:N:58:ALA:O	7:N:62:PHE:N	2.35	0.60
8:0:273:SER:O	8:0:277:SER:N	2.30	0.60

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3·D·400·LEU·HD11	3.D.458.ALA.HB1	1.82	0.60
5:J:88:ALA:O	5:J:92:LYS:N	2.30	0.60
3:F:254:ARG:NH1	3:F:308:ASP:OD1	2.34	0.59
2:C:290:LEU:HD21	3:D:135:SEB:HA	1.84	0.59
3:D:206:ALA:HA	3:D:234:ARG:HG2	1.83	0.59
2:E:375:SER:H	6:M:195:LEU:HD11	1.66	0.59
3:B:127:ILE:HG21	3:B:255:ILE:HD13	1.84	0.59
2:E:300:LEU:HD21	2:E:304:ARG:HB2	1.85	0.59
2:A:266:SER:HB2	2:A:308:VAL:HG21	1.84	0.59
3:D:442:ALA:O	3:D:449:ARG:NH1	2.36	0.59
2:A:449:PRO:HG3	2:A:524:ALA:HA	1.83	0.58
3:B:46:VAL:HG21	3:B:86:VAL:HG12	1.85	0.58
2:E:143:ILE:HG21	2:E:149:LEU:HD23	1.85	0.58
3:B:384:ILE:HG21	3:B:394:SER:HB3	1.85	0.58
4:I:191:VAL:HG12	4:I:202:GLU:HA	1.86	0.58
2:A:46:VAL:HG23	2:A:84:ARG:HA	1.86	0.58
3:B:127:ILE:HB	3:B:254:ARG:HG2	1.85	0.58
2:C:561:GLY:HA2	2:C:566:GLY:HA3	1.86	0.58
4:G:108:ASN:OD1	4:G:109:SER:N	2.36	0.58
2:C:277:VAL:HG11	2:C:333:GLY:HA3	1.86	0.57
2:A:23:TYR:HB2	2:A:79:ASN:HA	1.86	0.57
3:B:79:ILE:HG23	3:B:84:THR:HG21	1.87	0.57
3:B:384:ILE:HG23	3:B:393:HIS:HB3	1.85	0.57
1:P:389:ALA:HB2	1:P:429:VAL:HA	1.85	0.57
4:I:114:LEU:HD21	4:I:142:VAL:HG22	1.86	0.57
3:D:168:ALA:H	3:D:171:LEU:HD12	1.68	0.57
2:C:250:ILE:HG22	2:C:436:TRP:HB2	1.87	0.56
2:A:195:GLU:HA	2:A:204:SER:HA	1.87	0.56
3:B:46:VAL:HG23	3:B:88:PHE:HA	1.87	0.56
4:K:124:ARG:HH11	4:K:201:CYS:HB3	1.68	0.56
3:D:158:ALA:HB2	3:D:383:ALA:HB2	1.86	0.56
2:E:581:LEU:HD13	2:E:611:LEU:HA	1.86	0.56
3:B:306:TYR:HB2	3:B:346:LEU:HD11	1.88	0.56
3:D:102:LEU:O	4:G:78:ARG:NH1	2.39	0.56
3:B:367:TYR:O	3:B:369:PRO:HD3	2.07	0.55
3:F:169:ALA:O	3:F:359:ARG:NH1	2.38	0.55
1:P:88:ASN:HA	1:P:92:ALA:HB2	1.87	0.55
3:D:143:MET:HB2	3:D:383:ALA:HB1	1.88	0.55
2:A:526:ASN:O	2:A:528:PHE:N	2.40	0.55
2:A:101:ILE:HG23	2:A:109:LEU:HB2	1.88	0.55
2:E:598:PRO:HA	2:E:601:VAL:HG12	1.89	0.55

	lous page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:A:304:ARG:CZ	2:A:305:GLU:H	2.19	0.54
3:D:253:PRO:HB2	3:D:312:ILE:HD11	1.88	0.54
2:C:581:LEU:HD13	2:C:611:LEU:HA	1.90	0.54
3:F:297:GLY:N	3:F:301:TYR:O	2.39	0.54
3:D:276:THR:HA	3:D:331:ILE:HG12	1.87	0.54
3:D:295:VAL:HG22	6:M:203:LEU:HD21	1.88	0.54
3:F:56:ARG:NH2	3:F:75:GLY:O	2.41	0.54
5:H:53:VAL:O	5:H:58:GLN:NE2	2.39	0.54
2:A:306:GLU:HG2	2:A:310:LYS:HD3	1.90	0.54
3:F:128:SER:HA	3:F:315:ARG:NH1	2.23	0.54
5:H:46:ILE:O	5:H:50:ARG:HG2	2.07	0.54
2:E:26:LYS:HB3	2:E:33:ILE:HB	1.88	0.54
2:A:250:ILE:HD11	2:A:436:TRP:HE3	1.72	0.54
4:G:116:GLY:HA3	5:H:108:VAL:HG21	1.90	0.54
4:K:89:VAL:O	4:K:92:MET:HG3	2.07	0.54
2:C:301:PRO:HG2	2:C:304:ARG:HB2	1.89	0.53
2:A:478:ILE:HG23	2:A:548:ILE:HG13	1.89	0.53
3:B:286:ARG:HE	3:B:301:TYR:HA	1.72	0.53
3:B:27:VAL:HG22	3:B:32:VAL:HG12	1.90	0.53
2:E:109:LEU:HD23	3:F:134:PRO:HD2	1.90	0.53
3:B:388:MET:HG2	3:B:389:THR:HG22	1.91	0.53
3:F:207:ILE:HB	3:F:235:VAL:HG22	1.90	0.53
4:G:125:LEU:HD11	4:G:201:CYS:HB2	1.90	0.53
1:P:290:MET:HA	1:P:295:LEU:H	1.72	0.53
2:C:354:THR:OG1	2:C:412:ALA:O	2.27	0.53
3:F:209:PHE:HB3	3:F:237:LEU:HD23	1.91	0.52
7:N:17:MET:HA	7:N:45:ILE:HA	1.92	0.52
2:A:289:VAL:HG22	2:A:293:PHE:CE2	2.45	0.52
2:E:151:GLY:HA2	2:E:170:LEU:HD23	1.91	0.52
3:D:171:LEU:HD13	3:D:357:ILE:HG22	1.92	0.52
3:D:309:LEU:HA	3:D:312:ILE:HG22	1.92	0.52
2:E:225:ALA:HA	2:E:394:LYS:HD3	1.92	0.52
3:F:117:PRO:HB2	4:I:86:ASP:OD2	2.10	0.52
5:J:97:VAL:O	5:J:101:LEU:HD23	2.09	0.52
3:D:22:ARG:NH2	3:D:82:LYS:O	2.41	0.51
2:A:108:PRO:HD3	2:A:129:ALA:HA	1.93	0.51
2:A:228:PRO:HA	2:A:243:VAL:HA	1.92	0.51
2:A:265:LEU:HA	2:A:269:SER:HB3	1.91	0.51
2:E:251:PRO:HD2	2:E:437:GLY:HA2	1.91	0.51
3:F:356:TYR:HD2	3:F:371:ASN:HB3	1.76	0.51
4:I:220:ILE:HG12	5:J:100:MET:HG2	1.93	0.51

Atom-1	Atom-2	Interatomic	Clash
		distance (Å)	overlap (Å)
2:C:154:LEU:HD23	2:C:169:ALA:HB2	1.92	0.51
3:B:164:PRO:HG3	3:B:351:THR:HG21	1.92	0.51
3:B:247:ILE:HA	3:B:250:ILE:HD13	1.92	0.51
3:D:161:GLN:HG3	3:D:162:LYS:N	2.25	0.51
5:J:85:HIS:HA	5:J:88:ALA:HB3	1.92	0.51
3:D:15:LEU:HD23	3:D:15:LEU:H	1.75	0.50
2:E:248:CYS:SG	2:E:249:ALA:N	2.83	0.50
3:F:112:PRO:HG2	3:F:118:PRO:HA	1.91	0.50
2:E:213:VAL:HA	2:E:335:THR:HG21	1.94	0.50
2:E:231:THR:N	2:E:237:ASP:OD2	2.44	0.50
2:A:286:MET:HA	2:A:289:VAL:HG12	1.92	0.50
3:B:360:GLN:HG2	3:B:361:LEU:HD12	1.94	0.50
8:0:274:LEU:O	8:O:279:LEU:N	2.38	0.50
3:F:23:THR:HG22	4:I:198:LYS:HB3	1.93	0.49
2:C:89:LEU:HD23	2:C:213:VAL:HG11	1.95	0.49
2:C:170:LEU:HD21	2:C:194:LEU:HD22	1.93	0.49
3:D:161:GLN:NE2	3:D:379:LEU:HB2	2.28	0.49
4:K:208:ARG:HA	4:K:211:VAL:HG12	1.93	0.49
3:B:343:THR:HB	3:B:344:PRO:HD3	1.93	0.49
3:F:241:LEU:N	3:F:244:ASP:OD2	2.46	0.49
5:L:96:ASP:OD1	5:L:97:VAL:N	2.45	0.49
3:B:165:LEU:HD12	3:B:355:ILE:HB	1.95	0.49
3:B:208:VAL:HB	3:B:273:VAL:HG12	1.94	0.49
2:C:289:VAL:HG13	2:C:293:PHE:CD2	2.47	0.49
3:F:459:TRP:HE1	3:F:478:LEU:HD13	1.77	0.49
4:I:137:ASP:OD1	4:I:137:ASP:N	2.44	0.49
2:C:108:PRO:HD3	2:C:129:ALA:HA	1.93	0.49
2:E:584:ARG:HH12	2:E:607:LEU:HA	1.76	0.49
3:B:20:GLU:HA	3:B:87:GLN:HA	1.94	0.48
3:B:246:THR:O	3:B:250:ILE:HD12	2.12	0.48
2:C:508:ASP:O	2:C:512:LEU:HD23	2.13	0.48
3:D:45:ILE:HD11	3:D:93:LEU:HG	1.95	0.48
3:D:60:VAL:HG22	3:D:70:VAL:HG22	1.95	0.48
1:P:65:LEU:CB	1:P:77:VAL:CB	2.91	0.48
3:B:431:GLU:OE2	3:B:464:ILE:HG21	2.13	0.48
3:D:27:VAL:HG22	3:D:32:VAL:HG12	1.95	0.48
3:D:306:TYR:HD2	3:D:346:LEU:HD22	1.79	0.48
3:F:400:LEU:HD23	3:F:436:PHE:HE1	1.78	0.48
4:K:24:LYS:O	4:K:28:ILE:HD12	2.14	0.48
3:B:104:ARG:NH1	3:B:117:PRO:O	2.40	0.48
2:C:131:ASP:OD1	2:C:134:THR:N	2.44	0.48

Atom-1	Atom-2	Interatomic	Clash	
		distance (A)	overlap (A)	
2:E:357:TRP:CG	2:E:357:TRP:O	2.67	0.48	
4:K:100:VAL:HG11	4:K:209:LEU:HD12	1.94	0.48	
3:F:73:PHE:HA	3:F:247:ILE:HG21	1.96	0.48	
3:F:416:VAL:HG23	3:F:417:VAL:HG23	1.95	0.48	
4:G:216:LYS:O	4:G:220:ILE:HG12	2.14	0.48	
2:E:300:LEU:HD23	2:E:300:LEU:H	1.79	0.48	
2:E:558:VAL:HG22	2:E:568:LYS:HA	1.95	0.48	
4:I:109:SER:HA	4:I:112:LYS:NZ	2.28	0.48	
2:A:137:GLU:O	2:A:158:VAL:HG13	2.14	0.47	
3:D:414:LYS:HA	3:D:417:VAL:HG22	1.96	0.47	
3:F:164:PRO:HD3	3:F:351:THR:OG1	2.14	0.47	
2:C:380:TYR:O	2:C:384:ARG:HG2	2.14	0.47	
1:P:169:LEU:C	1:P:171:ALA:N	2.68	0.47	
3:F:95:THR:HG21	3:F:255:ILE:HG23	1.97	0.47	
4:I:204:THR:HG23	4:I:207:ALA:H	1.80	0.47	
3:D:112:PRO:HG3	3:D:118:PRO:HA	1.95	0.47	
4:I:85:GLN:O	4:I:88:LEU:HG	2.13	0.47	
3:B:145:GLN:HB2	3:B:187:VAL:HG22	1.96	0.47	
3:D:149:SER:HB2	3:D:449:ARG:HD2	1.95	0.47	
5:J:38:ALA:O	5:J:41:GLU:HG3	2.14	0.47	
2:E:273:THR:HB	2:E:347:VAL:HG23	1.97	0.47	
2:C:331:TYR:HA	2:C:334:ILE:HG22	1.96	0.47	
1:P:71:GLU:CB	1:P:116:GLY:HA3	2.44	0.47	
3:D:200:GLY:O	3:D:204:ASN:N	2.47	0.47	
2:E:493:ASN:HA	2:E:496:VAL:HG12	1.97	0.47	
4:K:193:ALA:HB2	4:K:200:VAL:HG12	1.96	0.47	
2:C:101:ILE:HG22	2:C:109:LEU:HD12	1.97	0.47	
3:D:475:GLY:HA2	3:D:478:LEU:HD12	1.97	0.47	
2:E:315:VAL:HG12	2:E:315:VAL:O	2.15	0.47	
3:F:144:ILE:HD12	3:F:157:ILE:HG13	1.96	0.47	
2:E:167:HIS:H	2:E:343:MET:CE	2.27	0.46	
3:F:335:PRO:HG2	3:F:341:HIS:CD2	2.49	0.46	
3:D:373:LEU:HB3	3:D:374:PRO:HD3	1.97	0.46	
2:E:279:CYS:O	2:E:353:SER:OG	2.33	0.46	
4:G:99:GLU:O	4:G:103:VAL:HG23	2.15	0.46	
3:D:345:ASP:O	3:D:349:TYR:HD1	1.98	0.46	
2:E:30:PRO:HA	2:E:73:THR:HG21	1.97	0.46	
2:A:397:CYS:SG	2:A:403:ARG:HD3	2.56	0.46	
2:A:569:ILE:HD11	2:A:573:LEU:HD23	1.97	0.46	
2:C:265:LEU:O	2:C:269:SER:OG	2.25	0.46	
2:E:292:ASP:OD1	2:E:293:PHE:N	2.48	0.46	

Atom-1	Atom-2	Interatomic	Clash	
2.C.204.PBO.HA	2.C.300.MFT.HC2	1.07	0.46	
2.0.294.1 ItO.IIA 3.D.979.1 FU.HD91	2.0.309.ME1.IIG2	1.97	0.40	
3.E.105.ILE.HC23	3.E.274.ILL.IID11 3.F.937.LFU.HB9	1.97	0.40	
$2 \cdot \Delta \cdot 104 \cdot \text{LEU} \cdot \Omega$	$2 \cdot \Delta \cdot 205 \cdot \text{PHE} \cdot \text{N}$	2.45	0.40	
2:C:158:VAL:HG21	2.C·207·MET·HE3	1.96	0.40	
2:C:492:LEU:HA	$2 \cdot C \cdot 495 \cdot ILE \cdot HD13$	1.90	0.46	
3:D:163:ILE:HD13	3:D:353:GLY:HA3	1.97	0.46	
4:K:124:ARG:NH1	4:K:201:CYS:HB3	2.31	0.46	
2:A:246:GLY:O	2:A:408:THR:OG1	2.32	0.45	
2:E:211:TRP:CZ2	2:E:218:PRO:HD3	2.51	0.45	
2:E:347:VAL:O	2:E:407:VAL:HA	2.16	0.45	
3:F:48:ILE:HD13	3:F:72:VAL:HG12	1.98	0.45	
4:G:60:LYS:O	4:G:63:GLU:HG2	2.16	0.45	
3:B:272:LEU:HD12	3:B:327:THR:O	2.16	0.45	
2:C:22:GLY:O	2:C:82:VAL:N	2.33	0.45	
3:F:459:TRP:NE1	3:F:478:LEU:HB2	2.29	0.45	
2:E:131:ASP:OD2	2:E:134:THR:N	2.47	0.45	
2:E:415:PRO:HB3	2:E:425:THR:HG21	1.99	0.45	
4:G:212:VAL:HG12	5:H:101:LEU:HD13	1.99	0.45	
5:J:87:ASN:O	5:J:91:GLU:N	2.49	0.45	
2:A:74:ALA:HA	3:B:42:TYR:HD2	1.80	0.45	
4:G:51:ILE:HD11	5:H:53:VAL:HG11	1.99	0.45	
2:C:197:GLU:HA	2:C:202:LYS:HA	1.98	0.45	
2:E:475:PHE:HA	2:E:478:ILE:HG12	1.98	0.45	
3:F:144:ILE:HD11	3:F:159:ARG:HA	1.98	0.45	
2:C:471:PHE:HE2	2:C:541:VAL:HG11	1.81	0.45	
2:E:323:VAL:HG13	2:E:326:ARG:HH22	1.82	0.45	
3:B:309:LEU:HD12	3:B:346:LEU:HD22	1.99	0.45	
2:C:360:ALA:O	2:C:364:ILE:HG12	2.17	0.45	
4:K:134:CYS:HB2	4:K:178:HIS:HB3	1.99	0.45	
2:C:514:THR:HG21	2:C:551:TYR:HB2	1.98	0.44	
6:M:66:SER:O	6:M:70:ILE:HG12	2.17	0.44	
3:D:407:GLY:C	3:D:433:LEU:HD11	2.37	0.44	
2:E:340:PHE:HD1	2:E:343:MET:SD	2.40	0.44	
4:I:47:GLU:O	4:I:50:LYS:HG3	2.18	0.44	
4:K:182:HIS:HB2	4:K:185:SER:HB2	1.99	0.44	
3:B:305:MET:HE1	3:B:346:LEU:HD13	1.99	0.44	
2:E:89:LEU:O	2:E:213:VAL:HG23	2.17	0.44	
3:B:129:GLY:H	3:B:315:ARG:HH12	1.65	0.44	
2:C:413:VAL:HG12	2:C:414:SER:H	1.83	0.44	
3:D:14:THR:HG22	5:H:107:THR:HG23	1.99	0.44	

	lous page	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
4:K:85:GLN:O	4:K:88:LEU:HG	2.17	0.44	
2:A:230:LEU:HB3	2:A:270:ASN:OD1	2.18	0.44	
4:G:189:GLY:HA3	4:G:204:THR:HA	2.00	0.44	
2:A:552:ASN:O	2:A:555:ASN:N	2.50	0.44	
3:B:247:ILE:O	3:B:251:ILE:HG23	2.18	0.44	
3:B:261:GLU:HA	3:B:326:ILE:HD11	2.00	0.44	
2:E:226:ASP:OD1	2:E:226:ASP:N	2.50	0.44	
3:F:96:PRO:HB3	3:F:124:TYR:CE1	2.53	0.44	
5:J:93:ILE:O	5:J:97:VAL:HG23	2.18	0.44	
4:K:40:LYS:HG2	5:L:42:ALA:HB3	2.00	0.44	
8:O:35:PRO:HD2	8:O:322:PRO:HB3	2.00	0.44	
3:F:128:SER:HA	3:F:315:ARG:HH12	1.82	0.43	
2:C:162:SER:OG	2:C:310:LYS:NZ	2.31	0.43	
4:K:224:LEU:HG	5:L:93:ILE:HD11	2.00	0.43	
2:A:78:VAL:HG12	2:A:79:ASN:OD1	2.19	0.43	
2:C:492:LEU:HD21	2:C:512:LEU:HD21	2.01	0.43	
3:F:15:LEU:HD11	4:I:208:ARG:HG3	2.00	0.43	
2:A:175:MET:O	2:A:198:PHE:HB2	2.17	0.43	
2:A:538:TYR:O	2:A:542:TRP:HD1	2.01	0.43	
4:K:96:ALA:O	4:K:100:VAL:HG13	2.18	0.43	
3:B:171:LEU:HD13	3:B:357:ILE:HG22	1.99	0.43	
3:B:209:PHE:HD2	3:B:237:LEU:HD13	1.84	0.43	
3:B:360:GLN:O	3:B:364:ARG:HG3	2.18	0.43	
3:D:79:ILE:HG23	3:D:84:THR:HG21	2.00	0.43	
3:F:157:ILE:HD13	3:F:163:ILE:HG22	2.01	0.43	
4:K:32:ALA:HB1	5:L:31:LYS:HA	2.00	0.43	
3:B:145:GLN:NE2	3:B:450:ASN:HA	2.34	0.43	
3:B:344:PRO:HA	3:B:347:THR:HG22	2.01	0.43	
2:C:413:VAL:HG12	2:C:414:SER:N	2.34	0.43	
2:C:415:PRO:O	2:C:417:GLY:N	2.48	0.43	
2:A:211:TRP:CZ2	2:A:218:PRO:HD3	2.54	0.43	
2:A:531:TYR:CE1	2:A:590:PHE:HA	2.54	0.43	
2:C:119:VAL:HG21	3:D:319:ILE:HD11	2.01	0.43	
4:I:97:SER:O	4:I:100:VAL:HG12	2.19	0.43	
2:A:308:VAL:HG22	2:A:312:THR:OG1	2.19	0.42	
2:C:539:LYS:O	2:C:543:MET:HG3	2.19	0.42	
3:F:47:ASN:OD1	3:F:47:ASN:N	2.48	0.42	
6:M:95:VAL:O	7:N:12:SER:N	2.52	0.42	
2:C:614:GLY:C	2:C:616:ARG:H	2.22	0.42	
1:P:156:THR:OG1	1:P:159:ASP:CB	2.67	0.42	
2:A:158:VAL:HG21	2:A:207:MET:HE3	2.00	0.42	

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
2:C:272:ASP:HB2	2:C:345:TYR:HB3	2.02	0.42	
3:D:460:THR:HA	3:D:463:ARG:HE	1.83	0.42	
2:E:109:LEU:CD2	3:F:134:PRO:HD2	2.49	0.42	
3:D:117:PRO:HG2	4:G:82:LEU:HG	2.01	0.42	
3:F:164:PRO:HG2	3:F:166:PHE:HE1	1.84	0.42	
4:I:215:LYS:HD2	4:I:215:LYS:C	2.40	0.42	
4:K:193:ALA:HA	4:K:199:ILE:O	2.19	0.42	
2:A:53:LEU:HB3	2:A:69:VAL:HG11	2.02	0.42	
2:A:93:LEU:HD12	2:A:339:TYR:CD2	2.54	0.42	
3:B:60:VAL:HG22	3:B:70:VAL:HG22	2.01	0.42	
3:B:319:ILE:HG22	3:B:322:ARG:H	1.84	0.42	
3:D:367:TYR:O	3:D:369:PRO:HD3	2.20	0.42	
3:D:456:ASP:O	3:D:460:THR:HG23	2.19	0.42	
7:N:113:LEU:H	7:N:113:LEU:HD12	1.84	0.42	
2:A:46:VAL:HG11	2:A:67:ILE:HD13	2.01	0.42	
2:C:74:ALA:HA	3:D:42:TYR:HD1	1.83	0.42	
2:C:229:LEU:N	2:C:242:SER:O	2.46	0.42	
3:F:319:ILE:HG23	3:F:322:ARG:HB2	2.01	0.42	
4:I:222:LYS:C	4:I:222:LYS:HD3	2.40	0.42	
3:B:373:LEU:HB3	3:B:374:PRO:HD3	2.02	0.42	
2:A:53:LEU:HD23	2:A:53:LEU:HA	1.86	0.42	
2:A:245:GLY:H	2:A:408:THR:HB	1.85	0.42	
2:E:158:VAL:HG13	2:E:166:HIS:HB3	2.00	0.42	
2:C:266:SER:HA	2:C:274:VAL:HG21	2.01	0.42	
2:E:584:ARG:NH2	2:E:607:LEU:HG	2.35	0.42	
4:K:88:LEU:HD13	5:L:90:ALA:HB2	2.02	0.42	
2:E:271:SER:O	2:E:311:ARG:NH2	2.53	0.41	
4:I:75:ASN:O	4:I:79:ILE:HG12	2.20	0.41	
2:A:267:LYS:HE3	2:A:268:TYR:CZ	2.55	0.41	
3:B:128:SER:HA	3:B:315:ARG:HH22	1.86	0.41	
3:B:163:ILE:HD12	3:B:353:GLY:HA3	2.03	0.41	
3:D:407:GLY:O	3:D:433:LEU:HD11	2.20	0.41	
2:E:250:ILE:HD11	2:E:436:TRP:HE3	1.85	0.41	
4:I:98:LYS:HA	4:I:98:LYS:HD3	1.91	0.41	
1:P:169:LEU:O	1:P:171:ALA:N	2.53	0.41	
2:A:442:LEU:HB3	2:A:447:HIS:HB2	2.02	0.41	
3:B:34:LEU:HD21	3:B:86:VAL:HG11	2.03	0.41	
3:D:205:PHE:O	3:D:271:VAL:HA	2.21	0.41	
2:E:297:THR:OG1	2:E:306:GLU:O	2.39	0.41	
3:F:120:LEU:HG	4:I:221:ARG:HD2	2.02	0.41	
4:I:131:LEU:HD12	4:I:195:ARG:HE	1.84	0.41	

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
8:0:29:LYS:NZ	8:O:36:LEU:O	2.50	0.41
3:B:366:ILE:HG23	3:B:442:ALA:HB2	2.01	0.41
3:D:373:LEU:HD12	3:D:373:LEU:HA	1.89	0.41
2:E:513:GLU:C	2:E:515:ALA:H	2.24	0.41
3:B:246:THR:O	3:B:249:ARG:N	2.54	0.41
2:E:234:ARG:O	2:E:238:ALA:HB3	2.21	0.41
3:F:367:TYR:CE2	3:F:445:ALA:HA	2.56	0.41
2:A:449:PRO:HD3	2:A:525:GLN:H	1.85	0.41
2:A:574:ILE:HA	2:A:577:ARG:HG2	2.03	0.41
3:D:357:ILE:HG23	3:D:369:PRO:HB2	2.03	0.41
2:E:138:PHE:HB3	2:E:185:GLY:O	2.21	0.41
2:E:142:LYS:HA	2:E:142:LYS:HE2	2.02	0.41
2:E:331:TYR:HA	2:E:334:ILE:HG22	2.01	0.41
2:E:585:LEU:HD11	2:E:611:LEU:HD22	2.02	0.41
2:E:121:ILE:HG12	3:F:131:SER:O	2.21	0.41
2:E:340:PHE:O	2:E:343:MET:HB2	2.21	0.41
3:F:168:ALA:HB3	3:F:359:ARG:HH11	1.86	0.41
2:A:297:THR:OG1	2:A:306:GLU:O	2.31	0.41
2:C:315:VAL:HG12	2:C:315:VAL:O	2.21	0.41
3:F:161:GLN:CD	3:F:379:LEU:HB2	2.42	0.41
3:B:76:THR:HB	3:B:79:ILE:HD12	2.02	0.41
3:D:143:MET:SD	3:D:156:SER:OG	2.69	0.41
3:B:396:VAL:HG21	3:B:455:LEU:HD22	2.04	0.40
3:D:146:THR:HG21	3:D:157:ILE:HD12	2.03	0.40
2:E:164:MET:O	2:E:345:TYR:OH	2.26	0.40
2:A:189:LEU:HD23	2:A:208:LEU:HD12	2.03	0.40
2:A:250:ILE:HD11	2:A:436:TRP:CE3	2.52	0.40
3:D:261:GLU:HA	3:D:326:ILE:HD11	2.03	0.40
2:E:195:GLU:HA	2:E:203:LYS:O	2.20	0.40
3:F:347:THR:O	3:F:351:THR:N	2.52	0.40
4:K:100:VAL:HG12	5:L:102:LEU:HD11	2.03	0.40
3:B:393:HIS:CE1	3:B:451:ILE:HD11	2.56	0.40
2:C:354:THR:HA	2:C:357:TRP:HB3	2.02	0.40
2:C:359:GLU:OE1	2:C:362:ARG:NH1	2.54	0.40
2:E:228:PRO:HG3	2:E:467:PHE:CE2	2.57	0.40
2:E:252:GLY:HA2	2:E:438:LEU:HD12	2.03	0.40
6:M:51:ILE:HA	6:M:54:THR:HG22	2.03	0.40
4:G:139:HIS:HE1	4:G:178:HIS:ND1	2.19	0.40
4:G:194:SER:OG	4:G:195:ARG:N	2.55	0.40
6:M:131:GLN:O	6:M:135:CYS:N	2.50	0.40
2:A:491:ASP:HA	2:A:494:GLU:OE1	2.22	0.40

α \cdots 1	c		
Continued	trom	previous	page

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
3:B:335:PRO:HD2	3:B:341:HIS:CG	2.57	0.40	
3:D:150:THR:HG21	3:D:441:VAL:HG13	2.03	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	Р	418/452~(92%)	400 (96%)	8 (2%)	10 (2%)	6	36
2	А	585/623~(94%)	565~(97%)	19 (3%)	1 (0%)	47	79
2	С	601/623~(96%)	563 (94%)	37 (6%)	1 (0%)	47	79
2	Е	601/623~(96%)	563 (94%)	37 (6%)	1 (0%)	47	79
3	В	456/488~(93%)	423 (93%)	32 (7%)	1 (0%)	47	79
3	D	463/488~(95%)	435 (94%)	28 (6%)	0	100	100
3	F	459/488~(94%)	433 (94%)	26 (6%)	0	100	100
4	G	200/230~(87%)	193 (96%)	7 (4%)	0	100	100
4	Ι	203/230~(88%)	195 (96%)	8 (4%)	0	100	100
4	K	213/230~(93%)	203 (95%)	10 (5%)	0	100	100
5	Н	95/110 (86%)	94 (99%)	1 (1%)	0	100	100
5	J	94/110~(86%)	91 (97%)	3 (3%)	0	100	100
5	L	99/110 (90%)	99 (100%)	0	0	100	100
6	М	211/259~(82%)	196 (93%)	15 (7%)	0	100	100
7	Ν	105/130~(81%)	76 (72%)	25 (24%)	4 (4%)	3	27
8	Ο	303/375~(81%)	283 (93%)	20 (7%)	0	100	100
9	a	705/823~(86%)	662 (94%)	42 (6%)	1 (0%)	51	84
11	с	166/182~(91%)	162 (98%)	4 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
12	d	256/351~(73%)	235~(92%)	21 (8%)	0	100	100
13	е	64/70~(91%)	62~(97%)	2(3%)	0	100	100
14	g	151/164~(92%)	148 (98%)	3(2%)	0	100	100
14	h	153/164~(93%)	145 (95%)	8 (5%)	0	100	100
14	i	154/164~(94%)	148 (96%)	6 (4%)	0	100	100
14	j	153/164~(93%)	151 (99%)	2(1%)	0	100	100
14	k	153/164 (93%)	152 (99%)	1 (1%)	0	100	100
14	1	151/164 (92%)	149 (99%)	2 (1%)	0	100	100
14	m	153/164 (93%)	151 (99%)	2 (1%)	0	100	100
14	n	153/164~(93%)	151 (99%)	2(1%)	0	100	100
14	О	150/164 (92%)	141 (94%)	9 (6%)	0	100	100
All	All	$7668/8471\ (90\%)$	7269 (95%)	380 (5%)	19 (0%)	50	79

All (19) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	Р	176	PRO
1	Р	178	HIS
1	Р	217	SER
2	А	527	ALA
2	Е	448	PHE
7	N	32	VAL
1	Р	170	CYS
1	Р	426	ASN
1	Р	179	PRO
1	Р	181	ARG
7	N	21	GLU
1	Р	17	PRO
1	Р	114	TRP
3	В	389	THR
2	С	256	CYS
7	N	101	LYS
1	Р	282	PRO
7	N	35	VAL
9	a	59	SER

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Outliers Percenti	
1	Р	1/407~(0%)	1 (100%)	0	100	100
2	А	328/517~(63%)	326 (99%)	2(1%)	86	92
2	С	357/517~(69%)	354 (99%)	3~(1%)	81	89
2	Е	387/517~(75%)	386 (100%)	1 (0%)	92	95
3	В	272/413~(66%)	270 (99%)	2(1%)	84	90
3	D	275/413~(67%)	270 (98%)	5 (2%)	59	77
3	F	279/413~(68%)	279~(100%)	0	100	100
4	G	87/206~(42%)	86 (99%)	1 (1%)	73	85
4	Ι	108/206~(52%)	106 (98%)	2(2%)	57	75
4	К	96/206~(47%)	96 (100%)	0	100	100
5	Η	21/87~(24%)	21 (100%)	0	100	100
5	J	14/87~(16%)	14 (100%)	0	100	100
5	L	25/87~(29%)	25 (100%)	0	100	100
6	М	15/225~(7%)	15 (100%)	0	100	100
7	Ν	6/111~(5%)	6 (100%)	0	100	100
8	Ο	13/336~(4%)	13 (100%)	0	100	100
9	a	27/715~(4%)	27 (100%)	0	100	100
11	с	5/139~(4%)	5 (100%)	0	100	100
12	d	9/312~(3%)	9 (100%)	0	100	100
13	е	4/63~(6%)	4 (100%)	0	100	100
14	g	8/115~(7%)	8 (100%)	0	100	100
14	h	6/115 (5%)	6 (100%)	0	100	100
14	i	11/115~(10%)	11 (100%)	0	100	100
14	j	8/115 (7%)	8 (100%)	0	100	100
14	k	7/115~(6%)	7 (100%)	0	100	100
14	1	5/115 (4%)	5 (100%)	0	100	100

001000	contributed from proceeds pagem							
Mol	Chain	Analysed	Rotameric	Outliers	Percentiles			
14	m	7/115~(6%)	7 (100%)	0	100 100			
14	n	5/115~(4%)	5 (100%)	0	100 100			
All	All	2386/6897~(35%)	2370 (99%)	16 (1%)	84 90			

All (16) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
2	А	214	ARG
2	А	403	ARG
3	В	372	VAL
3	В	375	SER
2	С	107	ARG
2	С	347	VAL
2	С	404	THR
3	D	154	MET
3	D	376	LEU
3	D	397	SER
3	D	401	TYR
3	D	473	ILE
2	Е	181	VAL
4	G	139	HIS
4	Ι	50	LYS
4	Ι	215	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (4) such sidechains are listed below:

Mol	Chain	Res	Type
2	С	166	HIS
3	D	161	GLN
4	G	139	HIS
4	G	178	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-26828. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 150

Y Index: 150

Z Index: 150

6.2.2 Raw map

X Index: 150

Y Index: 150

Z Index: 150

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

Z Index: 93

6.3.2 Raw map

X Index: 151

Y Index: 153

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.6. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1073 $\rm nm^3;$ this corresponds to an approximate mass of 970 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.250 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.250 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	4.00	-	-
Author-provided FSC curve	4.04	4.48	4.14
Unmasked-calculated*	6.87	8.85	7.23

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 6.87 differs from the reported value 4.0 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-26828 and PDB model 7UWC. Per-residue inclusion information can be found in section 3 on page 7.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.6 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.6).

9.4 Atom inclusion (i)

At the recommended contour level, 96% of all backbone atoms, 94% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.6) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.9440	0.3430
А	0.9610	0.3580
В	0.9840	0.4120
С	0.9790	0.4160
D	0.9830	0.4320
Е	0.9840	0.4160
F	0.9690	0.3960
G	0.8930	0.3210
Н	0.8000	0.2600
Ι	0.9660	0.3010
J	0.9850	0.2600
K	0.9790	0.3260
L	0.9850	0.2950
М	0.9800	0.3410
N	0.9600	0.2780
0	0.8640	0.2130
Р	0.4950	0.1650
a	0.9770	0.2740
b	0.9120	0.3330
с	0.9800	0.3020
d	0.9110	0.2900
е	0.9890	0.3490
g	0.9760	0.3130
h	0.9780	0.3240
i	0.9720	0.3260
j	0.9940	0.3390
k	0.9780	0.3170
1	0.9760	0.3310
m	0.9810	0.3280
n	0.9610	0.3160
0	0.9620	0.3160
r	0.9420	0.3520

1.0

0.0 <0.0

