

Full wwPDB X-ray Structure Validation Report (i)

Nov 4, 2024 – 09:03 AM EST

PDB ID	:	8UWZ
Title	:	The structure of Raamsizumab in complex with VEGF121
Authors	:	Singer, A.U.; Bruce, H.; Blazer, L.; Sicheri, F.; Adams, J.J.; Sidhu, S.S.
Deposited on	:	2023-11-08
Resolution	:	3.50 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	1.20.1
EDS	:	3.0
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.003 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motric	Whole archive	Similar resolution
IVIETIC	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	164625	1094 (3.56-3.44)
Clashscore	180529	1045 (3.54-3.46)
Ramachandran outliers	177936	1032 (3.54-3.46)
Sidechain outliers	177891	1033 (3.54-3.46)
RSRZ outliers	164620	1093 (3.56-3.44)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain					
1	А	228	70%		27%	•		
1	С	228	59%		35%	• 5%		
2	В	212	64%		34%	•		
2	D	212	63%		31%	••		
3	Е	121	55%	23%	·	19%		

Mol	Chain	Length	Quality of chain						
3	F	121	56%	24%	••	18%			
4	G	2	100%						
5	Н	3	33%	67%					

8UWZ

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 7733 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Raamsizumab heavy chain.

Mol	Chain	Residues		Atoms				ZeroOcc	AltConf	Trace
1 C	216	Total	С	Ν	0	\mathbf{S}	0	0	0	
		1576	1006	253	312	5				
1	Δ	221	Total	С	Ν	0	S	0	0	0
	221	1640	1048	266	321	5	0	0	0	

• Molecule 2 is a protein called Raamsizumab light chain S1C variant.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
2 D	205	Total	С	Ν	Ο	S	0	0	0	
	205	1456	906	240	305	5				
0	D	208	Total	С	Ν	0	S	0	0	0
2 D	208	1517	950	249	313	5	0	0	U	

• Molecule 3 is a protein called Isoform VEGF121 of Vascular endothelial growth factor A, long form.

Mol	Chain	Residues		Atoms			ZeroOcc	AltConf	Trace
3 E	98	Total	С	Ν	0	\mathbf{S}	0	0	0
		739	466	129	131	13		0	0
3 F	00	Total	С	Ν	0	S	0	0	0
	99	738	461	128	136	13		0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Е	115	ASN	LYS	conflict	UNP P15692
F	115	ASN	LYS	conflict	UNP P15692

• Molecule 4 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace
4	G	2	Total C N 28 16 2	O 10	0	0	0

• Molecule 5 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace
5	Н	3	Total 39	C N 22 2	O 15	0	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Raamsizumab heavy chain

Chain B:	64%	34% •	
ASP ILE GLN MET MET TS QS A29 A29 A29 A29 A29 A29 A29 A29 A29 A29	R 23/ R 34 M 440 M 441 M 441 M 441 M 443 M 440 M 441 M 441M 441	V71 F87 F87 L89 L89 C99 C106 A106 A106 A106 A106 C135 F136 F136 F136 F136 F136 F136 F136 F136	
A150 8151 8151 8151 8155 8155 8155 8155 8	8167 8167 168 1171 1171 1171 1172 1172 1172 1172 117	Y193 Y193 L194 L196 T198 Y201 Y201 Y201 Y205 Y206 Y206 Y206 Y206 Y206 Y206 Y206 Y206	
• Molecule 3: Isof	orm VEGF121 of Vascu	ular endothelial growth factor A, long form	
Chain E:	55%	23% • 19%	
ALA PRO MET MET ALA GLV GLV GLV ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	14 V20 Y21 721 721 723 724 725 724 725 724 745 745 746 746 750 850 850 850	V52 P53 L54 M55 M55 C61 M62 C61 M62 M62 M62 M78 M78 M78 M78 M78 M78 M78 M78 183 177 177 177 191 191 191 191 191 191	
K101 C104 C104 K107 K108 ARC ARC ARC ARC ARC ARC ARC ARC ARC ARC	ASP ASP ARG ARG		
• Molecule 3: Isofe	orm VEGF121 of Vascu	ular endothelial growth factor A, long form	
Chain F:	56%	24% •• 18%	
ALA PRO MET MET ALU GLY GLY GLN ASN M18 ASN M18	922 823 824 823 824 127 135 135 135 135 135 135 135 135 135 135	C60 C60 C60 C60 C60 C60 C60 C60 C60 C60	
K108 D109 ARG GLU GLU GLU CTS ASN CTS ASP LYS PRO	ARG		
• Molecule 4: 2-ac opyranose	etamido-2-deoxy-beta-	D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gl	luc
Chain G:	•	100%	
NAG2 NAG2			
• Molecule 5: beta	a-D-mannopyranose-(1-	-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-	-ac

etamido-2-deoxy-beta-D-glucopyranose

Chain H:	33%	67%	
NAG1 NAG2 BMA3			

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 31	Depositor
Cell constants	167.75Å 167.75Å 42.50Å	Deneriten
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor
$\mathbf{P}_{\text{accolution}}(\hat{\lambda})$	83.87 - 3.50	Depositor
Resolution (A)	83.87 - 3.50	EDS
% Data completeness	99.6 (83.87-3.50)	Depositor
(in resolution range)	$99.6 \ (83.87 - 3.50)$	EDS
R _{merge}	0.12	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.80 (at 3.49 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.20.1_4487	Depositor
B B a	0.237 , 0.298	Depositor
II, IIfree	0.237 , 0.298	DCC
R_{free} test set	15177 reflections $(10.09%)$	wwPDB-VP
Wilson B-factor ($Å^2$)	133.6	Xtriage
Anisotropy	0.512	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	$0.32 \;, 150.7$	EDS
L-test for $twinning^2$	$< L >=0.48, < L^2>=0.30$	Xtriage
	0.046 for -h,-k,l	
Estimated twinning fraction	0.028 for h,-h-k,-l	Xtriage
	0.028 for -k,-h,-l	
F_o, F_c correlation	0.94	EDS
Total number of atoms	7733	wwPDB-VP
Average B, all atoms $(Å^2)$	167.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.36% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: BMA, NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	Bond lengths		angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.30	0/1691	0.58	0/2325
1	С	0.33	0/1622	0.60	0/2232
2	В	0.32	0/1552	0.61	0/2126
2	D	0.33	0/1487	0.60	0/2039
3	Е	0.29	0/759	0.60	0/1032
3	F	0.31	0/755	0.56	0/1027
All	All	0.32	0/7866	0.59	0/10781

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	D	0	1
3	F	0	1
All	All	0	2

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	D	24	ARG	Sidechain
3	F	56	ARG	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1640	0	1515	44	0
1	С	1576	0	1416	66	0
2	В	1517	0	1358	54	0
2	D	1456	0	1267	53	0
3	Е	739	0	658	24	0
3	F	738	0	651	26	0
4	G	28	0	25	1	0
5	H	39	0	34	2	0
All	All	7733	0	6924	247	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 17.

All (247) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	A + a	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:150:THR:HA	1:C:200:PRO:HA	1.54	0.88
3:E:24:SER:HB3	3:F:53:PRO:HD3	1.59	0.85
1:C:140:ALA:HB1	1:C:228:PRO:HA	1.60	0.82
3:E:46:ILE:HB	3:E:83:ILE:HB	1.68	0.76
2:D:41:TRP:HB2	2:D:54:ILE:HB	1.72	0.72
1:A:57:TYR:HB2	1:A:64:TYR:HB2	1.73	0.71
2:D:56:LYS:HE2	2:D:66:GLU:HG3	1.72	0.71
3:E:77:THR:HG22	3:E:95:SER:HB2	1.73	0.71
2:B:201:LEU:HD13	2:B:205:ASP:HB2	1.71	0.71
1:A:213:VAL:HB	1:A:222:VAL:HG23	1.72	0.70
1:C:167:VAL:HG22	1:C:213:VAL:HG13	1.72	0.70
2:D:100:ALA:HB3	2:D:102:TYR:HE1	1.58	0.69
1:C:167:VAL:HG13	1:C:213:VAL:HG22	1.75	0.68
2:D:43:GLN:HB2	2:D:53:LEU:HD11	1.76	0.67
3:E:20:VAL:HG13	3:F:78:MET:HE2	1.76	0.67
3:E:53:PRO:HD3	3:F:24:SER:HB3	1.78	0.65
1:C:106:ARG:NE	1:C:116:ASP:OD1	2.27	0.64
1:C:151:ALA:N	1:C:199:VAL:O	2.26	0.64
1:A:8:GLY:O	1:A:19:LEU:HD21	1.98	0.64

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:D:169:TYR:HB3	2:D:172:ASN:HA	1.78	0.64
1:C:141:PRO:HD3	1:C:153:LEU:HB3	1.80	0.63
1:C:38:SER:HB2	1:C:107:HIS:HB3	1.81	0.62
1:C:40:HIS:O	1:C:104:CYS:HA	1.99	0.62
1:C:99:THR:CG2	1:C:126:VAL:H	2.12	0.62
2:D:186:GLN:NE2	2:D:191:SER:O	2.32	0.62
2:B:186:GLN:NE2	2:B:191:SER:O	2.33	0.62
2:B:140:PRO:HB3	2:B:151:SER:H	1.65	0.62
1:C:141:PRO:HG3	1:C:153:LEU:HD23	1.81	0.61
3:E:60:CYS:N	3:F:51:CYS:SG	2.73	0.61
3:E:35:ILE:HG23	3:E:96:PHE:HE2	1.66	0.61
1:C:136:VAL:HG22	1:C:157:VAL:HG22	1.83	0.60
1:A:45:ALA:HB3	1:A:48:LYS:HB2	1.83	0.60
1:C:99:THR:HG22	1:C:126:VAL:H	1.66	0.60
3:F:84:LYS:HG3	3:F:85:PRO:HD2	1.83	0.60
2:B:206:TYR:HA	2:B:212:TYR:OH	2.02	0.60
2:D:22:THR:HG23	2:D:88:THR:HG22	1.84	0.59
2:B:29:ALA:O	2:B:38:ARG:HG2	2.03	0.59
3:F:74:SER:HA	5:H:1:NAG:H81	1.85	0.58
2:D:186:GLN:HG2	2:D:193:TYR:CZ	2.38	0.58
2:B:140:PRO:HG3	2:B:150:ALA:HB1	1.85	0.58
1:C:67:TYR:HE1	1:C:78:ILE:H	1.52	0.58
1:A:97:GLU:H	1:A:97:GLU:CD	2.05	0.57
2:D:79:SER:OG	2:D:88:THR:OG1	2.23	0.57
2:B:171:ASP:HA	2:B:211:VAL:HB	1.85	0.57
1:C:215:HIS:O	1:C:219:ASN:N	2.38	0.57
2:B:136:PHE:HD2	2:B:155:LEU:HD23	1.68	0.57
1:C:57:TYR:HB2	1:C:64:TYR:HB2	1.85	0.57
1:C:28:PHE:HE1	1:C:37:TYR:CG	2.22	0.56
3:E:12:HIS:CE1	3:E:14:VAL:HG13	2.40	0.56
1:C:157:VAL:HG11	1:C:165:VAL:HG11	1.86	0.56
2:B:137:ILE:HD11	2:B:214:CYS:HB3	1.88	0.56
1:A:19:LEU:HD23	1:A:20:ARG:N	2.20	0.56
2:B:140:PRO:HD3	2:B:152:VAL:HG22	1.85	0.56
1:A:38:SER:HB2	1:A:107:HIS:HB3	1.86	0.56
2:D:201:LEU:HD12	2:D:205:ASP:HB2	1.87	0.56
1:A:159:ASP:HB3	1:A:190:LEU:HD13	1.88	0.56
2:B:186:GLN:HG2	2:B:193:TYR:CE2	2.41	0.56
3:E:51:CYS:N	3:F:60:CYS:SG	2.78	0.55
3:E:63:ASP:HB3	3:E:66:LEU:CD2	2.36	0.55
2:D:96:PRO:HB2	2:D:188:SER:O	2.07	0.55

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:H:2:NAG:H3	5:H:2:NAG:H83	1.89	0.55
1:C:62:TYR:CE2	3:F:27:HIS:HB2	2.42	0.55
2:B:169:TYR:HB2	2:B:213:ALA:HB3	1.88	0.55
1:A:153:LEU:HD23	1:A:199:VAL:HG21	1.89	0.55
3:E:53:PRO:HD2	3:E:78:MET:HE1	1.88	0.54
1:C:134:PRO:HB3	1:C:160:TYR:HB3	1.89	0.54
2:B:44:GLN:NE2	2:B:48:LYS:O	2.41	0.54
1:A:137:PHE:CD2	2:B:144:GLN:HG3	2.43	0.54
1:A:6:GLU:OE2	1:A:121:GLY:N	2.24	0.54
2:B:169:TYR:HA	2:B:173:ALA:O	2.07	0.54
1:A:6:GLU:HA	1:A:22:SER:O	2.08	0.53
3:F:67:GLU:HG3	3:F:69:VAL:HG13	1.90	0.53
2:D:220:THR:HG23	2:D:221:THR:H	1.74	0.53
3:F:65:GLY:O	3:F:107:LYS:N	2.40	0.53
1:A:113:TRP:CD1	2:B:38:ARG:HD2	2.43	0.52
2:B:135:VAL:HA	2:B:155:LEU:O	2.09	0.52
2:D:168:TRP:CB	2:D:175:GLN:HB2	2.40	0.52
2:B:41:TRP:HD1	2:B:54:ILE:HB	1.75	0.52
1:C:169:TRP:HB3	1:C:174:LEU:HB3	1.91	0.52
1:A:25:ALA:HB1	1:A:28:PHE:CE1	2.45	0.52
1:C:212:ASN:ND2	1:C:223:ASP:OD2	2.41	0.52
2:B:133:PRO:HG2	2:B:225:VAL:HG21	1.92	0.51
1:C:99:THR:HG22	1:C:125:THR:HA	1.91	0.51
1:A:35:TRP:HD1	1:A:36:TYR:CE1	2.28	0.51
2:B:41:TRP:CE2	2:B:89:LEU:HB2	2.44	0.51
2:D:100:ALA:HB3	2:D:102:TYR:CE1	2.42	0.51
2:D:168:TRP:HB2	2:D:175:GLN:HB2	1.92	0.51
1:A:28:PHE:CE2	1:A:106:ARG:HD3	2.46	0.51
1:C:137:PHE:HD2	1:C:156:LEU:HD23	1.75	0.51
1:C:55:TYR:CZ	1:C:66:TYR:HB3	2.46	0.51
2:D:167:SER:HB2	2:D:215:GLU:HB3	1.93	0.51
2:D:19:VAL:HG23	2:D:91:ILE:HB	1.92	0.50
2:D:178:ASN:O	2:D:199:LEU:HA	2.11	0.50
1:A:4:LEU:O	1:A:120:GLN:NE2	2.45	0.50
1:C:38:SER:HB3	1:C:57:TYR:CE1	2.47	0.49
2:D:168:TRP:O	2:D:175:GLN:N	2.42	0.49
3:E:22:GLN:HG2	1:A:36:TYR:O	2.12	0.49
1:C:105:ALA:HB3	1:C:115:LEU:HD23	1.95	0.49
2:B:136:PHE:HB2	2:B:155:LEU:HB3	1.94	0.49
1:C:41:TRP:CD1	1:C:89:LEU:HB2	2.47	0.49
1:C:199:VAL:HG21	1:C:209:TYR:HE1	1.78	0.49

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:116:ASP:O	1:C:117:TYR:C	2.51	0.49
2:D:104:CYS:O	2:D:119:GLY:N	2.45	0.48
1:A:169:TRP:CD1	1:A:178:VAL:HG11	2.48	0.48
2:B:181:GLU:HG2	2:B:195:LEU:HD21	1.95	0.48
1:C:145:SER:HA	2:D:136:PHE:CE1	2.49	0.48
1:A:25:ALA:HB3	1:A:85:ASN:ND2	2.28	0.48
1:A:55:TYR:CZ	1:A:66:TYR:HB3	2.48	0.48
2:B:55:TYR:CD2	2:B:56:LYS:HG3	2.48	0.48
2:B:138:PHE:HB2	2:B:153:VAL:HB	1.95	0.48
2:D:99:PHE:CE1	2:D:186:GLN:HB2	2.49	0.48
3:F:35:ILE:HG23	3:F:96:PHE:HE2	1.78	0.48
2:B:41:TRP:CD2	2:B:89:LEU:HB2	2.49	0.48
2:D:140:PRO:HD3	2:D:152:VAL:HG22	1.96	0.48
1:A:170:ASN:HD21	1:A:209:TYR:HA	1.78	0.48
2:B:20:THR:HA	2:B:89:LEU:O	2.14	0.48
1:C:145:SER:HA	2:D:136:PHE:HE1	1.79	0.47
3:E:66:LEU:CD1	3:E:104:CYS:HB3	2.44	0.47
1:C:41:TRP:NE1	1:C:89:LEU:HB2	2.28	0.47
1:A:161:PHE:HB2	1:A:190:LEU:HD23	1.96	0.47
1:C:136:VAL:HA	1:C:156:LEU:O	2.14	0.47
1:C:108:ALA:HB1	3:F:18:MET:HE1	1.95	0.47
3:F:34:ASP:OD1	3:F:34:ASP:N	2.47	0.47
2:B:130:VAL:HG13	2:B:160:TYR:O	2.15	0.47
1:C:6:GLU:OE2	1:C:104:CYS:N	2.43	0.47
1:C:134:PRO:HD3	1:C:215:HIS:ND1	2.30	0.47
3:E:28:PRO:HB2	3:E:55:MET:HE3	1.97	0.47
3:E:35:ILE:HG13	3:E:50:SER:O	2.14	0.47
1:C:41:TRP:HA	1:C:103:TYR:O	2.15	0.47
1:C:180:THR:HA	1:C:195:SER:HA	1.96	0.46
1:C:2:VAL:HB	1:C:117:TYR:CZ	2.50	0.46
2:D:214:CYS:C	2:D:226:THR:HG23	2.36	0.46
1:C:41:TRP:CZ3	1:C:104:CYS:HB3	2.51	0.46
1:C:98:ASP:OD1	1:C:98:ASP:N	2.49	0.46
3:E:35:ILE:HG23	3:E:96:PHE:CE2	2.49	0.46
1:C:43:ARG:HD3	1:C:53:VAL:HG22	1.97	0.46
2:D:83:SER:O	2:D:83:SER:OG	2.32	0.46
2:D:99:PHE:CZ	2:D:186:GLN:HB2	2.51	0.46
2:D:176:SER:O	2:D:178:ASN:N	2.49	0.46
2:D:8:PRO:HD2	2:D:21:ILE:HG23	1.98	0.46
3:F:81:MET:HG2	3:F:83:ILE:HG12	1.96	0.46
1:A:113:TRP:HB3	2:B:107:ARG:HG3	1.97	0.46

	i agem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:13:VAL:O	1:C:126:VAL:HA	2.16	0.46
1:C:203:SER:HB2	1:C:207:GLN:HE22	1.81	0.46
2:B:126:ILE:HD11	2:B:191:SER:OG	2.16	0.46
1:C:35:TRP:HA	1:C:58:PRO:HB2	1.98	0.45
1:A:141:PRO:HB3	1:A:153:LEU:HB3	1.99	0.45
1:C:21:LEU:O	1:C:88:TYR:HA	2.16	0.45
2:B:159:PHE:HB2	2:B:218:GLN:HE22	1.82	0.45
2:D:40:ALA:HB3	2:D:105:GLN:HB3	1.99	0.45
2:B:27:GLN:N	2:B:27:GLN:OE1	2.50	0.45
1:C:69:ASP:OD1	1:C:69:ASP:N	2.50	0.45
2:D:77:SER:O	2:D:89:LEU:HD12	2.17	0.45
2:D:107:ARG:HA	2:D:116:PHE:CD1	2.51	0.45
3:F:67:GLU:OE1	3:F:107:LYS:HA	2.17	0.45
2:D:145:LEU:HD21	2:D:206:TYR:CD2	2.52	0.45
2:D:170:VAL:HG23	2:D:175:GLN:HG3	1.99	0.45
1:A:137:PHE:HE1	2:B:147:SER:HG	1.64	0.45
1:A:186:GLN:H	1:A:186:GLN:HG3	1.61	0.45
1:A:159:ASP:HA	1:A:190:LEU:HB3	1.98	0.45
1:C:75:ARG:NH1	1:C:98:ASP:OD2	2.44	0.45
2:D:125:GLU:HG3	2:D:126:ILE:N	2.31	0.45
3:E:101:LYS:HE3	2:B:114:TYR:OH	2.16	0.45
1:A:75:ARG:NH1	1:A:98:ASP:OD2	2.48	0.44
3:E:63:ASP:HB3	3:E:66:LEU:HD21	1.99	0.44
1:A:38:SER:O	1:A:106:ARG:HA	2.17	0.44
2:D:75:ARG:NE	2:D:98:ASP:OD2	2.49	0.44
3:F:80:ILE:HG13	3:F:94:MET:HE2	1.99	0.44
1:C:4:LEU:O	1:C:120:GLN:NE2	2.50	0.44
2:D:107:ARG:HA	2:D:116:PHE:HD1	1.83	0.44
1:C:153:LEU:HD21	1:C:209:TYR:CD1	2.52	0.44
2:B:137:ILE:HG12	2:B:227:LYS:HD3	2.00	0.44
3:F:65:GLY:O	3:F:106:PRO:HA	2.18	0.44
2:B:140:PRO:HB3	2:B:151:SER:N	2.33	0.43
2:D:169:TYR:HA	2:D:173:ALA:O	2.18	0.43
2:B:158:ASN:HA	2:B:192:THR:OG1	2.18	0.43
2:B:232:GLY:O	2:B:233:GLU:C	2.56	0.43
2:D:40:ALA:O	2:D:104:CYS:HA	2.19	0.43
1:A:139:LEU:HD21	1:A:156:LEU:HB2	2.01	0.43
2:D:100:ALA:H	2:D:124:VAL:HB	1.83	0.43
2:D:175:GLN:HB3	2:D:178:ASN:HD21	1.83	0.43
3:E:60:CYS:SG	3:F:51:CYS:N	2.78	0.43
3:F:84:LYS:HE3	3:F:84:LYS:HB2	1.60	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
2:B:166:VAL:HG21	2:B:195:LEU:HD22	2.00	0.43
3:E:107:LYS:HE3	3:E:107:LYS:HB2	1.76	0.43
3:E:74:SER:O	3:E:97:LEU:HD12	2.19	0.43
3:F:56:ARG:HE	3:F:97:LEU:HD23	1.84	0.43
1:C:6:GLU:OE2	1:C:119:GLY:HA3	2.19	0.42
2:D:176:SER:C	2:D:178:ASN:H	2.21	0.42
3:F:35:ILE:HG21	3:F:94:MET:HE1	2.01	0.42
2:B:39:VAL:HA	2:B:105:GLN:O	2.19	0.42
2:D:140:PRO:HB3	2:D:151:SER:H	1.85	0.42
1:A:84:LYS:O	1:A:86:THR:OG1	2.33	0.42
2:B:99:PHE:CE1	2:B:186:GLN:HG3	2.55	0.42
2:B:206:TYR:HD2	2:B:207:GLU:OE2	2.03	0.42
1:C:163:GLU:OE1	1:C:164:PRO:HA	2.19	0.42
1:A:38:SER:O	1:A:39:ILE:HD13	2.19	0.42
1:A:67:TYR:CE2	1:A:77:THR:HA	2.53	0.42
1:A:75:ARG:NH2	1:A:98:ASP:OD2	2.50	0.42
1:C:38:SER:O	1:C:39:ILE:HD13	2.19	0.42
1:C:139:LEU:HB3	2:D:138:PHE:CD2	2.54	0.42
1:A:185:LEU:HD12	1:A:185:LEU:HA	1.81	0.42
2:B:156:LEU:O	2:B:194:SER:HA	2.19	0.42
2:D:72:PRO:HB2	2:D:75:ARG:HG2	2.02	0.42
2:B:154:CYS:HB2	2:B:168:TRP:CZ2	2.55	0.42
2:B:213:ALA:HA	2:B:228:SER:HB2	2.02	0.42
1:A:40:HIS:ND1	1:A:55:TYR:HB3	2.35	0.42
2:B:171:ASP:OD1	2:B:211:VAL:N	2.39	0.42
2:D:39:VAL:HA	2:D:105:GLN:O	2.19	0.42
1:C:4:LEU:HD23	1:C:4:LEU:HA	1.80	0.42
1:A:76:PHE:CE1	1:A:91:MET:HB3	2.54	0.42
2:B:137:ILE:HG21	2:B:229:PHE:HD2	1.85	0.42
1:C:111:TYR:O	2:D:55:TYR:HB2	2.21	0.41
3:F:77:THR:HA	3:F:95:SER:HA	2.02	0.41
1:A:2:VAL:HG22	1:A:28:PHE:HB3	2.02	0.41
1:C:184:VAL:HG22	1:C:192:SER:HB2	2.02	0.41
1:A:167:VAL:HG22	1:A:213:VAL:HG13	2.01	0.41
2:D:179:SER:HA	2:D:198:THR:O	2.20	0.41
1:C:62:TYR:HE2	3:F:27:HIS:HB2	1.86	0.41
2:D:206:TYR:C	2:D:208:LYS:H	2.24	0.41
1:C:44:GLN:HB3	1:C:101:VAL:CG1	2.51	0.41
1:C:169:TRP:CB	1:C:174:LEU:HB3	2.51	0.41
1:C:199:VAL:HG21	1:C:209:TYR:CE1	2.55	0.41
3:E:50:SER:OG	3:F:60:CYS:HB3	2.21	0.41

A + am 1	Adama D	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:D:212:TYR:HE2	2:D:231:ARG:HG3	1.86	0.41
3:F:38:GLU:O	3:F:40:PRO:HD3	2.21	0.41
2:B:68:TYR:HB3	2:B:71:VAL:HG23	2.02	0.41
2:B:179:SER:HA	2:B:198:THR:O	2.21	0.41
2:D:220:THR:HG23	2:D:221:THR:N	2.36	0.41
3:E:75:ASN:OD1	4:G:1:NAG:H83	2.20	0.41
1:A:37:TYR:O	1:A:58:PRO:HD2	2.21	0.41
1:A:96:ALA:HA	1:A:126:VAL:HB	2.03	0.41
1:A:134:PRO:HB3	1:A:160:TYR:HB3	2.02	0.41
2:B:37:GLY:HA2	2:B:87:PHE:CE2	2.56	0.41
2:B:172:ASN:OD1	2:B:172:ASN:N	2.54	0.41
3:E:81:MET:HA	3:E:91:ILE:HG22	2.03	0.41
2:B:159:PHE:HD2	2:B:218:GLN:NE2	2.18	0.41
1:A:35:TRP:HA	1:A:58:PRO:HB2	2.02	0.40
1:C:55:TYR:CD1	1:C:55:TYR:C	2.95	0.40
1:C:109:TRP:N	3:F:22:GLN:OE1	2.40	0.40
2:D:203:LYS:HA	2:D:206:TYR:HB3	2.04	0.40
2:B:201:LEU:HD12	2:B:202:SER:O	2.20	0.40
2:D:212:TYR:O	2:D:228:SER:HA	2.21	0.40
2:B:152:VAL:HG12	2:B:168:TRP:CH2	2.56	0.40
1:C:55:TYR:HE1	1:C:64:TYR:HB3	1.86	0.40
1:C:97:GLU:CD	1:C:97:GLU:H	2.24	0.40
2:B:152:VAL:HG12	2:B:168:TRP:HH2	1.87	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	219/228~(96%)	204 (93%)	15~(7%)	0	100	100
1	С	208/228~(91%)	191 (92%)	17 (8%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	В	206/212~(97%)	178 (86%)	28~(14%)	0	100	100
2	D	199/212~(94%)	171 (86%)	28~(14%)	0	100	100
3	Ε	96/121~(79%)	88~(92%)	8 (8%)	0	100	100
3	F	97/121~(80%)	90~(93%)	7~(7%)	0	100	100
All	All	1025/1122~(91%)	922~(90%)	103 (10%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	171/189~(90%)	168~(98%)	3(2%)	54	74
1	С	160/189~(85%)	157~(98%)	3 (2%)	52	73
2	В	156/183~(85%)	153 (98%)	3 (2%)	52	73
2	D	146/183~(80%)	139~(95%)	7 (5%)	21	50
3	Е	78/110 (71%)	72 (92%)	6 (8%)	10	34
3	F	77/110 (70%)	73~(95%)	4 (5%)	19	47
All	All	788/964~(82%)	762~(97%)	26 (3%)	33	61

All (26) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	С	28	PHE
1	С	46	PRO
1	С	98	ASP
2	D	24	ARG
2	D	99	PHE
2	D	104	CYS
2	D	145	LEU
2	D	149	THR
2	D	201	LEU

201111			
Mol	Chain	Res	Type
2	D	214	CYS
3	Е	45	TYR
3	Е	51	CYS
3	Е	60	CYS
3	Е	61	CYS
3	Е	89	GLN
3	Е	95	SER
3	F	56	ARG
3	F	60	CYS
3	F	68	CYS
3	F	82	ARG
1	А	43	ARG
1	А	127	SER
1	А	212	ASN
2	В	6	GLN
2	В	172	ASN
2	В	231	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	90	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

5 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

Mal	ol Type Chain Bo		Dec	Tiple	Bo	ond leng	$_{\rm ths}$	B	ond ang	gles				
	туре	Ullalli	nes	nes	nes	nes	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	NAG	G	1	3,4	$14,\!14,\!15$	0.62	0	17,19,21	0.53	0				
4	NAG	G	2	4	14,14,15	0.58	1 (7%)	17,19,21	1.45	1 (5%)				
5	NAG	Н	1	3,5	14,14,15	1.84	3 (21%)	17,19,21	1.15	2 (11%)				
5	NAG	Н	2	5	14,14,15	0.71	1 (7%)	17,19,21	1.67	4 (23%)				
5	BMA	Н	3	5	11,11,12	0.60	0	15,15,17	0.98	1 (6%)				

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	G	1	3,4	-	3/6/23/26	0/1/1/1
4	NAG	G	2	4	-	2/6/23/26	0/1/1/1
5	NAG	Н	1	3,5	-	4/6/23/26	0/1/1/1
5	NAG	Н	2	5	-	6/6/23/26	0/1/1/1
5	BMA	Н	3	5	-	1/2/19/22	0/1/1/1

All (5) bond length outliers are listed below	/:
---	----

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
5	Н	1	NAG	O5-C1	-4.93	1.35	1.43
5	Н	1	NAG	C1-C2	4.13	1.58	1.52
5	Н	1	NAG	C3-C2	2.18	1.57	1.52
5	Н	2	NAG	C1-C2	2.08	1.55	1.52
4	G	2	NAG	O5-C1	2.01	1.47	1.43

All (8) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	G	2	NAG	C1-O5-C5	5.50	119.55	112.19
5	Н	2	NAG	C2-N2-C7	4.39	128.78	122.90
5	Н	2	NAG	C1-O5-C5	3.37	116.71	112.19
5	Н	1	NAG	C4-C3-C2	3.36	115.94	111.02
5	Н	1	NAG	O5-C5-C4	-2.47	104.82	110.83
5	Н	2	NAG	C1-C2-N2	2.44	114.27	110.43
5	Н	2	NAG	O4-C4-C3	2.13	115.41	110.38

Continued from previous page...

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^{o})$	$Ideal(^{o})$
5	Н	3	BMA	C1-O5-C5	2.04	114.92	112.19

There are no chirality outliers.

All (16) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
5	Н	2	NAG	C4-C5-C6-O6
5	Н	1	NAG	O5-C5-C6-O6
5	Н	2	NAG	O5-C5-C6-O6
4	G	2	NAG	O5-C5-C6-O6
5	Н	1	NAG	C4-C5-C6-O6
4	G	1	NAG	C8-C7-N2-C2
4	G	1	NAG	O7-C7-N2-C2
5	Н	1	NAG	C8-C7-N2-C2
5	Н	1	NAG	O7-C7-N2-C2
5	Н	2	NAG	C8-C7-N2-C2
5	Н	2	NAG	O7-C7-N2-C2
5	Н	3	BMA	O5-C5-C6-O6
4	G	2	NAG	C4-C5-C6-O6
4	G	1	NAG	C1-C2-N2-C7
5	Н	2	NAG	C1-C2-N2-C7
5	Н	2	NAG	C3-C2-N2-C7

There are no ring outliers.

3 monomers are involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	Н	1	NAG	1	0
4	G	1	NAG	1	0
5	Н	2	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
1	А	221/228~(96%)	-0.60	0 100 100	111, 147, 196, 236	0
1	С	216/228~(94%)	-0.48	0 100 100	120, 170, 233, 266	0
2	В	208/212~(98%)	-0.41	1 (0%) 87 75	127, 168, 203, 225	0
2	D	205/212~(96%)	-0.34	0 100 100	142, 214, 264, 341	0
3	Е	98/121 (80%)	-0.40	0 100 100	119, 139, 196, 213	0
3	F	99/121~(81%)	-0.50	0 100 100	118, 144, 163, 200	0
All	All	1047/1122 (93%)	-0.46	1 (0%) 92 89	111, 163, 239, 341	0

All (1) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	В	43	GLN	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
5	BMA	Н	3	11/12	0.44	0.09	202,202,202,202	0
5	NAG	Н	2	14/15	0.46	0.12	188,188,188,188	0
5	NAG	Н	1	14/15	0.76	0.12	173,173,173,173	0

Continued from previous page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
4	NAG	G	2	14/15	0.77	0.10	170,170,170,170	0
4	NAG	G	1	14/15	0.77	0.10	170,170,170,170	0

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

