

Feb 18, 2023 – 01:14 PM EST

PDB ID	:	7UXH
EMDB ID	:	EMD-26861
Title	:	cryo-EM structure of the mTORC1-TFEB-Rag-Ragulator complex
Authors	:	Cui, Z.; Hurley, J.
Deposited on	:	2022-05-05
Resolution	:	3.20 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 43
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.32.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	whole archive $(\#Entries)$	$\mathop{\mathrm{EM}}\limits_{(\#\mathrm{Entries})}$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	2549	86%	14%
1	С	2549	19% 86%	14%
2	В	326	97%	•
2	D	326	97%	·
3	Е	1335	84%	15%
3	U	1335	84%	15%
4	F	313	95%	5%
4	М	313	94%	• 5%
4	V	313	94%	• 5%

Mol	Chain	Length	Quality of chain							
4	0	212	5%	54/						
4	C	515	94%	• 5%						
5	G	399	70%	30%						
			7%							
5	N	399	69%	31%						
5	W	300		200/						
	vv		11%	30%						
5	d	399	69%	31%						
0	TT	1.01	40%							
6	Н	161	68% ·	31%						
6	0	161	71%	29%						
			50%	2570						
6	Х	161	67% •	31%						
C		1.61	41%							
0	е	101	70% •	29%						
7	Ι	125	98%	••						
			9%							
7	Р	125	99%	•						
7	V	195	26%							
- 1	1	120	98%	••						
7	f	125	98%	••						
	т	10.4	26%							
8	J	124	95%	• •						
8	Q	124	96%	•••						
	~		54%							
8	Z	124	94%	• •						
0	<i>c</i> r	194	13%							
0	g	124	97%	•						
9	Κ	99	83%	• 15%						
			32%							
9	R	99	82%	• 15%						
Q	ล	99	0470	15%						
5	a	55	52%	• 15%						
9	h	99	83%	• 15%						
10	т	01	74%							
10	L	91	98%	•						
10	S	91	97%	••						
			84%	-						
10	b	91	98%	·						
10	;	01	57%							
10	1	91	98%	•						

Mol	Chain	Length		Quality of chain
11	Т	476	22%	78%
11	j	476	22%	78%

2 Entry composition (i)

There are 15 unique types of molecules in this entry. The entry contains 190396 atoms, of which 95230 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Serine/threonine-protein kinase mTOR.

Mol	Chain	Residues				AltConf	Trace			
1	1 Δ	0100	Total	С	Н	Ν	Ο	\mathbf{S}	0	0
	2100	35406	11226	17819	3080	3164	117	0	0	
1	1 0	2188	Total	С	Н	Ν	Ο	S	0	0
	U		35404	11226	17817	3080	3164	117	0	0

• Molecule 2 is a protein called Target of rapamycin complex subunit LST8.

Mol	Chain	Residues		Atoms						Trace
2 B	217	Total	С	Η	Ν	0	S	0	0	
	D	317	4797	1526	2341	436	476	18	0	0
0	2 D	317	Total	С	Η	Ν	0	S	0	0
Z			4797	1526	2341	436	476	18	0	0

• Molecule 3 is a protein called Regulatory-associated protein of mTOR.

Mol	Chain	Residues	Atoms						AltConf	Trace
3 E	1100	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	
		1155	18025	5757	9002	1568	1638	60	0	0
2	3 U	1122	Total	С	Η	Ν	Ο	S	0	0
э		1199	18025	5757	9002	1568	1638	60		0

• Molecule 4 is a protein called Ras-related GTP-binding protein A.

Mol	Chain	Residues				AltConf	Trace			
4	Б	200	Total	С	Η	Ν	0	S	0	0
4	Г	290	4889	1554	2443	427	448	17	0	0
A M	200	Total	С	Η	Ν	0	S	0	0	
4	111	290	4890	1554	2444	427	448	17	0	0
4	V	208	Total	С	Η	Ν	0	S	0	0
4 V	290	4882	1553	2438	427	447	17	0	0	
4	0	20.0	Total	С	Η	Ν	0	S	0	0
<u>+</u>	C	290	4889	1554	2443	427	448	17		U

Chain	Residue	sidue Modelled Actu		Comment	Reference
F	66	LEU	GLN	conflict	UNP Q7L523
М	66	LEU	GLN	conflict	UNP Q7L523
V	66	LEU	GLN	conflict	UNP Q7L523
с	66	LEU	GLN	conflict	UNP Q7L523

There are 4 discrepancies between the modelled and reference sequences:

• Molecule 5 is a protein called Ras-related GTP-binding protein C.

Mol	Chain	Residues				AltConf	Trace			
5 G	281	Total	С	Η	Ν	0	S	0	0	
		4523	1459	2258	370	424	12	0	0	
5	5 N	277	Total	С	Η	Ν	0	S	0	0
0	IN	211	4446	1430	2220	365	419	12	0	0
5	W	201	Total	С	Η	Ν	0	S	0	0
O VV	281	4523	1459	2258	370	424	12	0	0	
5 1	d	277	Total	С	Η	Ν	0	S	0	0
5	u	211	4446	1430	2220	365	419	12	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
G	75	ASN	SER	engineered mutation	UNP Q9HB90
N	75	ASN	SER	engineered mutation	UNP Q9HB90
W	75	ASN	SER	engineered mutation	UNP Q9HB90
d	75	ASN	SER	engineered mutation	UNP Q9HB90

• Molecule 6 is a protein called Ragulator complex protein LAMTOR1.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
6	Ц	111	Total	С	Η	Ν	0	S	0	0
0	11	111	1738	547	870	150	170	1	0	0
6	0	115	Total	С	Н	Ν	Ο	S	0	0
0	0	115	1791	562	896	155	176	2	0	0
6	v	111	Total	С	Н	Ν	0	S	0	0
0	Λ	111	1738	547	870	150	170	1	0	0
6	0	115	Total	С	Н	Ν	0	S	0	0
0	e	110	1791	562	896	155	176	2	0	0

• Molecule 7 is a protein called Ragulator complex protein LAMTOR2.

Mol	Chain	Residues			Aton		AltConf	Trace		
7	т	194	Total	С	Η	Ν	0	\mathbf{S}	0	0
1	1	124	1888	590	950	161	180	7	0	0
7	р	194	Total	С	Η	Ν	0	S	0	0
1	1	124	1888	590	950	161	180	7	0	0
7	v	194	Total	С	Η	Ν	0	S	0	0
1	1	124	1888	590	950	161	180	7	0	0
7	f	194	Total	С	Η	Ν	0	S	0	0
1	1	124	1888	590	950	161	180	7	0	0

• Molecule 8 is a protein called Ragulator complex protein LAMTOR3.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
Q	т	120	Total	С	Η	Ν	0	S	0	0
0	J	120	1892	601	958	157	175	1	0	0
8	0	120	Total	С	Н	Ν	0	S	0	0
0	Q	120	1892	601	958	157	175	1	0	0
Q	7	120	Total	С	Η	Ν	0	S	0	0
0		120	1892	601	958	157	175	1	0	0
8	ď	120	Total	С	Η	Ν	Ο	S	0	0
0	g	120	1892	601	958	157	175	1	0	0

• Molecule 9 is a protein called Ragulator complex protein LAMTOR4.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
0	K	84	Total	С	Η	Ν	0	S	0	0
9	Γ	04	1294	404	652	115	122	1	0	0
0	D	81	Total	С	Η	Ν	0	S	0	0
9	n	04	1294	404	652	115	122	1	0	0
0		81	Total	С	Η	Ν	0	S	0	0
9	a	04	1294	404	652	115	122	1	0	0
0	h	81	Total	С	Η	Ν	0	S	0	0
9	11	04	1294	404	652	115	122	1	0	U

• Molecule 10 is a protein called Ragulator complex protein LAMTOR5.

Mol	Chain	Residues			Aton		AltConf	Trace		
10	т	80	Total	С	Η	Ν	0	\mathbf{S}	0	0
10		09	1312	400	657	113	135	7	0	0
10	q	80	Total	С	Η	Ν	0	S	0	0
10	C C	89	1311	400	656	113	135	7	0	0
10	h	80	Total	С	Η	Ν	0	S	0	0
10	D	89	1311	400	656	113	135	7	0	0

Continued from previous page...

Mol	Chain	Residues			AltConf	Trace				
10	i	89	Total 1311	C 400	Н 656	N 113	0 135	S 7	0	0

• Molecule 11 is a protein called Transcription factor EB.

Mol	Chain	Residues			Aton		AltConf	Trace		
11	Т	107	Total 1723	C 541	Н 847	N 165	O 165	${ m S}{ m 5}$	0	0
11	j	107	Total 1724	C 541	Н 848	N 165	0 165	${S \atop 5}$	0	0

• Molecule 12 is INOSITOL HEXAKISPHOSPHATE (three-letter code: IHP) (formula: $C_6H_{18}O_{24}P_6$).

Mol	Chain	Residues		At		AltConf		
19	Λ	1	Total	С	Η	0	Р	0
12 A	A	1	42	6	6	24	6	0
19	C	1	Total	С	Η	Ο	Р	0
	U	1	42	6	6	24	6	0

• Molecule 13 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$).

Mol	Chain	Residues		A		AltConf			
12	Б	1	Total	С	Η	Ν	Ο	Р	0
10	Г	1	42	10	10	5	14	3	0
12	М	1	Total	С	Η	Ν	0	Р	0
10	101	1	42	10	10	5	14	3	0
12	V	1	Total	С	Η	Ν	Ο	Р	0
10	v	1	42	10	10	5	14	3	0
12	0	1	Total	С	Η	Ν	Ο	Р	0
10	C	1	42	10	10	5	14	3	0

• Molecule 14 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
14	F	1	Total Mg 1 1	0
14	М	1	Total Mg 1 1	0
14	V	1	Total Mg 1 1	0
14	с	1	Total Mg 1 1	0

• Molecule 15 is GUANOSINE-5'-DIPHOSPHATE (three-letter code: GDP) (formula: $\rm C_{10}H_{15}N_5O_{11}P_2).$

Mol	Chain	Residues			AltConf				
15	С	1	Total	С	Η	Ν	Ο	Р	0
10	G	1	38	10	10	5	11	2	0
15	N	1	Total	С	Η	Ν	Ο	Р	0
10	IN	1	38	10	10	5	11	2	0
15	W	1	Total	С	Η	Ν	Ο	Р	0
10	vv	1	38	10	10	5	11	2	0
15	d	1	Total	С	Η	Ν	Ο	Р	0
10	u		38	10	10	5	11	2	U

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Serine/threonine-protein kinase mTOR

• Molecule 4: Ras-related GTP-binding protein A

Chain F:	95%	5%
MET PRO ASN THR A5 K295 K295	R302 ASP ASP PRO LYS HITS LEU LEU LEU ART ART	
• Molecule 4:	Ras-related GTP-binding protein A	
Chain M:	94%	• 5%
MET PRO ASN THS A5 V45 R83 R83	R150 R153 R153 R153 R156 R156 R227 R227 R227 R156 R15 R156 R156 R156 R156 R156 R156	
• Molecule 4:	Ras-related GTP-binding protein A	
Chain V:	94%	• 5%
MET PRO ASN THR AS L151 E156	A220 R227 R227 R227 R302 R302 R302 ARC L107 L107 L107 L107 ARC L107 L107 ARC	
• Molecule 4:	Ras-related GTP-binding protein A	
Chain c:	94%	• 5%
MET PRO ASN THR A5 R38 A5 V45 V45	R51 R83 R97 R153 E156 E156 E156 M189 M189 R222 R223 R223 R223 R223 R223 R223 R22	PRO LYS HIS SER LEU LEU MET ARC
• Molecule 5:	Ras-related GTP-binding protein C	
Chain G:	70% 30%	
MET SER LEU GLN TYR GLY GLU GLU THR	PRO LLEU ALA SER SER SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	GLY CYS CYS GLY GLY GLY GLY AIA ASP SS9
K84 MET SER SER PRO ASN ASN GLU THR FLEU LEU	GIU GIU THR ASP ASP ASP ASP ASP ASP ASP GIN GIN ASP PHE PHE PHE PHE PHE PHE PHE PHE PHE PI18 GIN PI18 GIN PI18 ASP PHE PHE PHE PHE PHE PHE PHE PHE PHE PH	THR HR ARG ARG ARG CYS CYS CYS CYS CYS CIN THR THR
ALA SER SER SER LFU LYS ALA ALA LEU THR HIS ASN	DILY THR PRIC ARIC ALASI LILE LILE	
• Molecule 5:	Ras-related GTP-binding protein C	
Chain N:	69% 31%	
	WORLDWIDE PROTEIN DATA BANK	

MET SER SER CALN CALN CALN CALN CALN CALN CALU CALU CALU CALU CALU CALN CALN CALN CALN CALN CALN CALN CALN	PRS 1878 1878 1878 1878 1878 1878 1878 187	GLY GLY GLY GLY GLY GLY GLY ALR ALR ALR ALR ALS ALS ALS ALS
LES LYS MET SER SER PRO FRO FRO ASR CUU THR LEU CUU CUU CUU CUU CUU CUU CUU CUU CUU C	ILLE SER NIO6 VI15 VI15 PHE PHE CLN GLN GLN GLN GLN GLN GLN GLN GLN GLN G	F134 R135 0144 0144 0149 0148 0149 0170 0170
D186 D205 L208 E209 K210 K210 H212 F215 Y216 L217 L217 L217 S306 S306	V371 THR THR SER HIS ARG CYS CYS CYS CUS CUS CUS CUS CUS CUS CUS CUS CUS CU	THR PRO ARG ASN ALA TLE
• Molecule 5: Ras-related GT	P-binding protein C	
Chain W:	70%	30%
MET SER LEU LLU CLN CLN CLN CLN CLU CLU CLU CLU CLU CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	PRO LIYS ASP ASP ASP CLY CLY CLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	GLY ALA GLY GLY GLY CLY CLY CLY CLY ALA ALA ALA ALA ALA ALA ALA
K84 MET SER SER SER PRO ASN CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	M106 P118 OLN OLN MET MET ASP PHE PHE PHE ASP PHE ASP PHE ASP PHE ASP PHE ASP PHE ASP PHE ASP PHE R200	D3 04 03 05 E3 47 E3 47 E3 65 E3 68 C THR THR HITS ARG SER RER
CYS CYS HILS CLY THR SER ALA ALA ALA ASN ASN ASN ASN ASN ASN ALA	21T	
• Molecule 5: Ras-related GT	P-binding protein C	
11%		
Chain d:	69%	31%
	PR0 PR0 PHH PR0 PHH PR1 PHH PHH PHH PHH PHH PHH PHH PHH PHH PHH	31%
Chain d:	ebo Record and a set of the set	THR PHE PHE ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
11% Chain d: 11%	II200 ASN PB0 L1203 L17 A204 L17 A204 L17 A204 L17 A206 ASP L17 ASP A206 ASP L17 ASP A206 ASP C17 ASP H212 PHE C11 AA H212 PHE C11 AA M16 C11 AA AA M16 C11 AA AA M16 C11 AA AA AA AA AA AA M16 C11 AA AA M16 C11 AA AA M16 C11 AA AA AA AA AA AA	Alternative service se
111% HHH HILL Chain d: 111% <td>N200 ASN N200 N200 ASN TTR A004 TTR ASN A005 ASP LT03 A006 ASP ASP A206 ASP ASP A206 ASP ASP A206 ASP ASP A206 ASP ASP A201 B115 AL A115 AL AL A115 AL AL A116 AL AL A115 AL AL A116 AL AL A118 AL AL A114 AL AL A115 AL AL A114 AL AL A114 AL AL A114 AL AL A115 AL AL A114 AL AL A114 AL AL A114 AL AL A114 AL AL</td> <td>AF V355 V356 C470 C470 C470 C470 C47 C47 C47 C47 C47 C47 C47 C47</td>	N200 ASN N200 N200 ASN TTR A004 TTR ASN A005 ASP LT03 A006 ASP ASP A206 ASP ASP A206 ASP ASP A206 ASP ASP A206 ASP ASP A201 B115 AL A115 AL AL A115 AL AL A116 AL AL A115 AL AL A116 AL AL A118 AL AL A114 AL AL A115 AL AL A114 AL AL A114 AL AL A114 AL AL A115 AL AL A114 AL AL A114 AL AL A114 AL AL A114 AL AL	AF V355 V356 C470 C470 C470 C470 C47 C47 C47 C47 C47 C47 C47 C47
Chain d:		All
11% Chain d: Image: State of the sta	69% 69% 04 04 05 05 05 05 05 05 05 05 05 05	31%

• Molecule 7: Ragulator complex protein LAMTOR2

• Molecule 10: Ragulator complex protein LAMTOR5

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	192332	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	800	Depositor
Maximum defocus (nm)	2200	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	57.773	Depositor
Minimum map value	-33.205	Depositor
Average map value	-0.015	Depositor
Map value standard deviation	0.964	Depositor
Recommended contour level	6.0	Depositor
Map size (Å)	617.39996, 617.39996, 617.39996	wwPDB
Map dimensions	588, 588, 588	wwPDB
Map angles ($^{\circ}$)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.05, 1.05, 1.05	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GTP, MG, IHP, GDP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles	
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.28	0/17941	0.60	0/24276
1	С	0.28	0/17941	0.60	0/24276
2	В	0.27	0/2514	0.57	0/3426
2	D	0.26	0/2514	0.57	0/3426
3	Е	0.31	0/9242	0.61	2/12573~(0.0%)
3	U	0.31	0/9242	0.62	1/12573~(0.0%)
4	F	0.31	0/2491	0.65	0/3353
4	М	0.30	0/2491	0.65	0/3353
4	V	0.31	0/2489	0.65	1/3350~(0.0%)
4	с	0.33	0/2491	0.70	1/3353~(0.0%)
5	G	0.31	0/2309	0.62	0/3114
5	Ν	0.29	0/2267	0.62	0/3057
5	W	0.31	0/2309	0.63	0/3114
5	d	0.30	0/2267	0.61	0/3057
6	Н	0.28	0/884	0.63	0/1201
6	0	0.29	0/912	0.64	0/1239
6	Х	0.27	0/884	0.63	0/1201
6	е	0.30	0/912	0.68	0/1239
7	Ι	0.31	0/949	0.69	0/1285
7	Р	0.32	0/949	0.69	0/1285
7	Y	0.32	0/949	0.74	0/1285
7	f	0.32	0/949	0.71	0/1285
8	J	0.29	0/951	0.64	0/1290
8	Q	0.29	0/951	0.68	0/1290
8	Ζ	0.29	0/951	0.67	0/1290
8	g	0.32	0/951	0.71	0/1290
9	Κ	0.28	0/649	0.64	0/876
9	R	0.27	0/649	0.66	0/876
9	а	0.27	0/649	0.65	0/876
9	h	0.27	0/649	0.66	0/876
10	L	0.30	0/661	0.64	0/896
10	S	0.29	0/661	0.66	0/896

Mol	Chain	Chain Bond lengths		Bond angles	
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
10	b	0.27	0/661	0.60	0/896
10	i	0.29	0/661	0.64	0/896
11	Т	0.28	0/896	0.63	0/1211
11	j	0.31	0/896	0.64	0/1211
All	All	0.29	0/96732	0.62	5/130991~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	D	0	1
3	Ε	0	3
3	U	0	1
4	М	0	1
4	с	0	1
9	Κ	0	1
9	R	0	1
9	a	0	1
9	h	0	1
All	All	0	11

There are no bond length outliers.

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
4	V	151	LEU	CA-CB-CG	5.77	128.58	115.30
4	с	44	ASP	CB-CG-OD1	5.32	123.09	118.30
3	U	831	MET	CA-CB-CG	5.13	122.02	113.30
3	Е	796	LEU	CA-CB-CG	5.12	127.09	115.30
3	Е	831	MET	CA-CB-CG	5.04	121.88	113.30

There are no chirality outliers.

All (11) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	D	25	ARG	Sidechain
3	Е	118	ARG	Sidechain
3	Е	210	ALA	Mainchain
3	Е	211	LEU	Peptide

Mol	Chain	Res	Type	Group
9	Κ	65	ARG	Sidechain
4	М	83	ARG	Sidechain
9	R	65	ARG	Sidechain
3	U	118	ARG	Sidechain
9	a	65	ARG	Sidechain
4	с	83	ARG	Sidechain
9	h	65	ARG	Sidechain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	2158/2549~(85%)	2108 (98%)	50 (2%)	0	100	100
1	С	2158/2549~(85%)	2108 (98%)	50 (2%)	0	100	100
2	В	315/326~(97%)	298~(95%)	17 (5%)	0	100	100
2	D	315/326~(97%)	298~(95%)	17 (5%)	0	100	100
3	Е	1123/1335~(84%)	1046 (93%)	77 (7%)	0	100	100
3	U	1123/1335~(84%)	1048 (93%)	75 (7%)	0	100	100
4	F	296/313~(95%)	280~(95%)	16 (5%)	0	100	100
4	М	296/313~(95%)	277 (94%)	18 (6%)	1 (0%)	41	74
4	V	296/313~(95%)	283 (96%)	13 (4%)	0	100	100
4	с	296/313~(95%)	272 (92%)	23 (8%)	1 (0%)	41	74
5	G	275/399~(69%)	264 (96%)	11 (4%)	0	100	100
5	N	271/399~(68%)	258 (95%)	13 (5%)	0	100	100
5	W	275/399~(69%)	262 (95%)	13 (5%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
5	d	271/399~(68%)	259~(96%)	12 (4%)	0	100	100
6	Н	107/161~(66%)	103 (96%)	4 (4%)	0	100	100
6	Ο	113/161 (70%)	106 (94%)	7 (6%)	0	100	100
6	Х	107/161~(66%)	102 (95%)	5 (5%)	0	100	100
6	е	113/161 (70%)	106 (94%)	7 (6%)	0	100	100
7	Ι	122/125~(98%)	118 (97%)	3 (2%)	1 (1%)	19	58
7	Р	122/125~(98%)	107 (88%)	15 (12%)	0	100	100
7	Y	122/125~(98%)	117 (96%)	4 (3%)	1 (1%)	19	58
7	f	122/125~(98%)	115 (94%)	6 (5%)	1 (1%)	19	58
8	J	118/124~(95%)	112 (95%)	6 (5%)	0	100	100
8	Q	118/124~(95%)	117 (99%)	1 (1%)	0	100	100
8	Z	118/124~(95%)	112 (95%)	6 (5%)	0	100	100
8	g	118/124~(95%)	114 (97%)	4 (3%)	0	100	100
9	К	80/99~(81%)	68~(85%)	11 (14%)	1 (1%)	12	47
9	R	80/99~(81%)	70 (88%)	9 (11%)	1 (1%)	12	47
9	a	80/99~(81%)	69~(86%)	10 (12%)	1 (1%)	12	47
9	h	80/99~(81%)	69~(86%)	10 (12%)	1 (1%)	12	47
10	L	87/91~(96%)	79 (91%)	8 (9%)	0	100	100
10	S	87/91~(96%)	79 (91%)	8 (9%)	0	100	100
10	b	87/91~(96%)	79 (91%)	8 (9%)	0	100	100
10	i	87/91~(96%)	81 (93%)	6 (7%)	0	100	100
11	Т	105/476~(22%)	96 (91%)	8 (8%)	1 (1%)	15	54
11	j	105/476~(22%)	97~(92%)	7 (7%)	1 (1%)	15	54
All	All	11746/14620~(80%)	11177 (95%)	558 (5%)	11 (0%)	54	83

All (11) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
4	М	45	VAL
7	Y	86	VAL
7	f	86	VAL
11	Т	43	GLN
11	j	43	GLN
9	a	13	PRO

Continued from previous page...

Mol	Chain	Res	Type
9	h	13	PRO
9	K	13	PRO
9	R	13	PRO
4	с	45	VAL
7	Ι	86	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	c Outliers F		Percentiles	
1	А	1919/2220~(86%)	1918 (100%)	1 (0%)	93	98	
1	С	1919/2220~(86%)	1917 (100%)	2~(0%)	93	98	
2	В	269/276~(98%)	269 (100%)	0	100	100	
2	D	269/276~(98%)	269 (100%)	0	100	100	
3	Ε	1000/1163~(86%)	997~(100%)	3~(0%)	92	96	
3	U	1000/1163~(86%)	996 (100%)	4 (0%)	91	95	
4	F	272/287~(95%)	271~(100%)	1 (0%)	91	95	
4	М	272/287~(95%)	269~(99%)	3~(1%)	73	88	
4	V	271/287~(94%)	268~(99%)	3~(1%)	73	88	
4	с	272/287~(95%)	270~(99%)	2(1%)	84	94	
5	G	255/340~(75%)	254~(100%)	1 (0%)	91	95	
5	Ν	251/340~(74%)	251~(100%)	0	100	100	
5	W	255/340~(75%)	255~(100%)	0	100	100	
5	d	251/340~(74%)	251~(100%)	0	100	100	
6	Н	97/141~(69%)	95~(98%)	2(2%)	53	79	
6	Ο	100/141~(71%)	99~(99%)	1 (1%)	76	90	
6	Х	97/141~(69%)	94 (97%)	3(3%)	40	72	
6	е	100/141~(71%)	98~(98%)	2(2%)	55	80	
7	Ι	97/98~(99%)	97 (100%)	0	100	100	
7	Р	97/98~(99%)	97~(100%)	0	100	100	

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
7	Y	97/98~(99%)	97~(100%)	0	100	100
7	f	97/98~(99%)	97~(100%)	0	100	100
8	J	105/108~(97%)	103 (98%)	2(2%)	57	81
8	Q	105/108~(97%)	104 (99%)	1 (1%)	76	90
8	Z	105/108~(97%)	102 (97%)	3~(3%)	42	74
8	g	105/108~(97%)	105 (100%)	0	100	100
9	Κ	71/83~(86%)	71 (100%)	0	100	100
9	R	71/83~(86%)	70 (99%)	1 (1%)	67	86
9	a	71/83~(86%)	71~(100%)	0	100	100
9	h	71/83~(86%)	71 (100%)	0	100	100
10	L	76/77~(99%)	76~(100%)	0	100	100
10	S	76/77~(99%)	75~(99%)	1 (1%)	69	87
10	b	76/77~(99%)	76~(100%)	0	100	100
10	i	76/77~(99%)	76 (100%)	0	100	100
11	Т	96/419~(23%)	95~(99%)	1 (1%)	76	90
11	j	$9\overline{6}/419~(23\%)$	95~(99%)	1 (1%)	76	90
All	All	10457/12692~(82%)	10419 (100%)	38 (0%)	91	95

All (38) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	2266	ARG
1	С	970	MET
1	С	2090	LYS
3	Е	375	MET
3	Е	786	LYS
3	Е	1242	ARG
4	F	295	LYS
5	G	166	LYS
6	Н	47	ARG
6	Н	104	LYS
8	J	7	ARG
8	J	67	LYS
4	М	150	ARG
4	М	227	ARG
4	М	295	LYS

Mol	Chain	Res	Type
6	0	47	ARG
8	Q	7	ARG
9	R	11	ARG
10	S	78	LYS
11	Т	71	LYS
3	U	83	ARG
3	U	786	LYS
3	U	1008	LYS
3	U	1242	ARG
4	V	220	LYS
4	V	227	ARG
4	V	295	LYS
6	Х	47	ARG
6	Х	114	GLN
6	Х	151	LYS
8	Ζ	7	ARG
8	Z	67	LYS
8	Z	108	LYS
4	с	227	ARG
4	с	295	LYS
6	е	47	ARG
6	е	145	GLN
11	j	71	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (3) such sidechains are listed below:

Mol	Chain	Res	Type
1	С	2106	HIS
7	Р	121	GLN
11	Т	28	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 14 ligands modelled in this entry, 4 are monoatomic - leaving 10 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	ol Type Chain Res Lin	Tink	Bo	ond leng	$_{\rm ths}$	Bond angles				
	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
13	GTP	F	401	14	26,34,34	1.21	2 (7%)	32,54,54	1.64	6 (18%)
15	GDP	W	401	-	24,30,30	0.93	1 (4%)	30,47,47	1.20	3 (10%)
15	GDP	Ν	401	-	24,30,30	0.96	1 (4%)	30,47,47	1.16	3 (10%)
15	GDP	d	401	-	24,30,30	0.95	1 (4%)	30,47,47	1.24	4 (13%)
13	GTP	М	401	14	26,34,34	1.17	2 (7%)	32,54,54	1.55	6 (18%)
13	GTP	с	401	14	26,34,34	1.17	2 (7%)	32,54,54	1.59	6 (18%)
13	GTP	V	401	14	26,34,34	1.19	2 (7%)	32,54,54	1.63	6 (18%)
15	GDP	G	401	-	24,30,30	0.95	1 (4%)	30,47,47	1.20	3 (10%)
12	IHP	А	2601	-	36,36,36	1.47	6 (16%)	54,60,60	0.73	1 (1%)
12	IHP	С	2601	-	36,36,36	1.47	6 (16%)	54,60,60	0.64	1 (1%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
13	GTP	F	401	14	-	1/18/38/38	0/3/3/3
15	GDP	W	401	-	-	1/12/32/32	0/3/3/3
15	GDP	Ν	401	-	-	2/12/32/32	0/3/3/3
15	GDP	d	401	-	-	3/12/32/32	0/3/3/3
13	GTP	М	401	14	-	5/18/38/38	0/3/3/3
13	GTP	с	401	14	-	5/18/38/38	0/3/3/3

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
13	GTP	V	401	14	-	1/18/38/38	0/3/3/3
15	GDP	G	401	-	-	2/12/32/32	0/3/3/3
12	IHP	А	2601	-	-	7/30/54/54	0/1/1/1
12	IHP	С	2601	-	-	7/30/54/54	0/1/1/1

All (24) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
13	F	401	GTP	C5-C6	-4.16	1.39	1.47
13	с	401	GTP	C5-C6	-4.13	1.39	1.47
13	М	401	GTP	C5-C6	-4.12	1.39	1.47
13	V	401	GTP	C5-C6	-4.12	1.39	1.47
12	С	2601	IHP	P3-O13	3.72	1.66	1.59
12	А	2601	IHP	P3-O13	3.72	1.66	1.59
12	А	2601	IHP	P4-014	3.07	1.65	1.59
12	С	2601	IHP	P4-014	3.06	1.65	1.59
12	С	2601	IHP	P2-O12	3.05	1.65	1.59
12	А	2601	IHP	P2-O12	3.05	1.65	1.59
12	А	2601	IHP	P6-O16	3.02	1.65	1.59
12	С	2601	IHP	P6-O16	3.01	1.65	1.59
12	С	2601	IHP	P1-011	2.93	1.64	1.59
12	С	2601	IHP	P5-O15	2.93	1.64	1.59
12	А	2601	IHP	P1-011	2.86	1.64	1.59
12	А	2601	IHP	P5-O15	2.84	1.64	1.59
15	d	401	GDP	C6-N1	-2.74	1.33	1.37
15	Ν	401	GDP	C6-N1	-2.62	1.34	1.37
15	G	401	GDP	C6-N1	-2.42	1.34	1.37
15	W	401	GDP	C6-N1	-2.34	1.34	1.37
13	с	401	GTP	C2-N3	2.12	1.38	1.33
13	М	401	GTP	C2-N3	2.12	1.38	1.33
13	V	401	GTP	C2-N3	2.08	1.38	1.33
13	F	401	GTP	$\overline{C2-N3}$	2.03	1.38	1.33

All (39) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
13	V	401	GTP	PB-O3B-PG	-4.34	117.94	132.83
13	F	401	GTP	PB-O3B-PG	-4.08	118.82	132.83
13	с	401	GTP	PB-O3B-PG	-4.07	118.87	132.83
13	F	401	GTP	PA-O3A-PB	-3.93	119.33	132.83
13	М	401	GTP	PB-O3B-PG	-3.79	119.82	132.83

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
13	V	401	GTP	PA-O3A-PB	-3.74	120.00	132.83
13	с	401	GTP	PA-O3A-PB	-3.71	120.10	132.83
13	М	401	GTP	PA-O3A-PB	-3.68	120.19	132.83
15	d	401	GDP	PA-O3A-PB	-3.59	120.49	132.83
15	G	401	GDP	PA-O3A-PB	-3.56	120.62	132.83
15	W	401	GDP	PA-O3A-PB	-3.45	120.97	132.83
15	N	401	GDP	PA-O3A-PB	-3.45	121.00	132.83
13	V	401	GTP	C5-C6-N1	3.37	119.91	113.95
13	F	401	GTP	C5-C6-N1	3.35	119.86	113.95
13	с	401	GTP	C5-C6-N1	3.30	119.78	113.95
13	М	401	GTP	C5-C6-N1	3.28	119.74	113.95
13	с	401	GTP	C8-N7-C5	3.18	109.05	102.99
13	F	401	GTP	C8-N7-C5	3.17	109.03	102.99
13	V	401	GTP	C8-N7-C5	3.17	109.02	102.99
13	М	401	GTP	C8-N7-C5	3.15	109.00	102.99
13	V	401	GTP	C2-N1-C6	-3.08	119.42	125.10
13	F	401	GTP	C2-N1-C6	-3.03	119.53	125.10
13	М	401	GTP	C2-N1-C6	-3.03	119.53	125.10
13	с	401	GTP	C2-N1-C6	-3.02	119.53	125.10
15	G	401	GDP	C8-N7-C5	2.45	107.65	102.99
15	d	401	GDP	C8-N7-C5	2.43	107.62	102.99
15	W	401	GDP	C5-C6-N1	2.43	118.24	113.95
15	W	401	GDP	C8-N7-C5	2.42	107.60	102.99
15	G	401	GDP	C5-C6-N1	2.42	118.22	113.95
15	Ν	401	GDP	C8-N7-C5	2.41	107.58	102.99
15	N	401	GDP	C5-C6-N1	2.35	118.11	113.95
13	С	401	GTP	O6-C6-C5	-2.31	119.87	124.37
13	М	401	GTP	O6-C6-C5	-2.29	119.90	124.37
15	d	401	GDP	C5-C6-N1	2.28	117.98	113.95
12	А	2601	IHP	C3-C2-C1	2.24	115.32	110.41
13	V	401	GTP	O6-C6-C5	-2.15	120.18	124.37
13	F	401	GTP	O6-C6-C5	-2.14	120.19	124.37
12	С	2601	IHP	O13-C3-C2	2.13	113.70	108.69
15	d	401	GDP	O4'-C1'-C2'	-2.03	103.96	106.93

Continued from previous page...

There are no chirality outliers.

All (34) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
12	А	2601	IHP	C2-C3-O13-P3
12	А	2601	IHP	C3-C4-O14-P4
12	А	2601	IHP	C5-C4-O14-P4

Mal	Chain	Doc	Turne	Atoma
IVIOI	Unain	nes	Type	Atoms
12	C	2601	IHP	C2-C3-O13-P3
12	С	2601	IHP	C3-C4-O14-P4
13	М	401	GTP	C5'-O5'-PA-O3A
13	М	401	GTP	C3'-C4'-C5'-O5'
13	с	401	GTP	C5'-O5'-PA-O3A
15	G	401	GDP	C5'-O5'-PA-O1A
15	Ν	401	GDP	PA-O3A-PB-O2B
15	W	401	GDP	C5'-O5'-PA-O1A
15	d	401	GDP	C5'-O5'-PA-O1A
12	С	2601	IHP	C5-C4-O14-P4
13	М	401	GTP	O4'-C4'-C5'-O5'
15	d	401	GDP	PA-O3A-PB-O2B
12	А	2601	IHP	C1-O11-P1-O31
12	С	2601	IHP	C1-O11-P1-O31
13	М	401	GTP	PA-O3A-PB-O2B
13	М	401	GTP	C5'-O5'-PA-O2A
13	с	401	GTP	C3'-C4'-C5'-O5'
13	с	401	GTP	PA-O3A-PB-O2B
13	F	401	GTP	PA-O3A-PB-O1B
12	А	2601	IHP	C5-O15-P5-O25
12	С	2601	IHP	C5-O15-P5-O25
12	А	2601	IHP	C5-O15-P5-O35
12	А	2601	IHP	C5-O15-P5-O45
12	С	2601	IHP	C5-O15-P5-O35
12	С	2601	IHP	C5-O15-P5-O45
13	V	401	GTP	C5'-O5'-PA-O3A
15	d	401	GDP	C5'-O5'-PA-O3A
15	N	401	GDP	O4'-C4'-C5'-O5'
13	с	401	GTP	PA-O3A-PB-O1B
13	с	401	GTP	C5'-O5'-PA-O2A
15	G	401	GDP	C3'-C4'-C5'-O5'

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the

average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-26861. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 294

Y Index: 294

Z Index: 294

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 275

Y Index: 296

Z Index: 290

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 6.0. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 658 $\rm nm^3;$ this corresponds to an approximate mass of 595 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.312 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-26861 and PDB model 7UXH. Per-residue inclusion information can be found in section 3 on page 11.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 6.0 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (6.0).

9.4 Atom inclusion (i)

At the recommended contour level, 69% of all backbone atoms, 69% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (6.0) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$	
All	0.6882	0.3780	
А	0.7186	0.3640	
В	0.6614	0.2060	
С	0.6671	0.3650	
D	0.5555	0.2000	
Е	0.8820	0.4930	
F	0.8877	0.4970	
G	0.8504	0.4580	
Н	0.3525	0.2220	
Ι	0.6475	0.3080	
J	0.5467	0.2410	
K	0.0906	0.1080	
L	0.2052	0.0790	
Μ	0.7866	0.4330	
Ν	0.7030	0.3590	
Ο	0.5091	0.2780	
Р	0.7191	0.3930	
Q	0.7261	0.3850	
R	0.4324	0.2090	
S	0.4992	0.2580	
Т	0.7474	0.4180	
U	0.8539	0.4940	
V	0.8463	0.4920	
W	0.7885	0.4530	
Х	0.2374	0.1730	
Y	0.5564	0.3120	
Z	0.3804	0.2230	
a	0.0350	0.0810	
b	0.1669	0.1190	
С	0.7359	0.4280	
d	0.6305	0.3660	
е	0.3941	0.2690	
f	0.6518	0.3960	
g	0.6457	0.3740	
h	0.3052	0.2060	

Chain	Atom inclusion	Q-score
i	0.3645	0.2510
j	0.6845	0.4100

